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ABSTRACT

Aims. Investigations of stellar and tidal evolution of binary stars with giant components are rare. In this paper, we will investigate
such features in three binary systems for which at least one component is a giant star. As some of these giants seem to be in the
blue loop, it is an excellent opportunity to investigate the sensitivity of core overshooting on their location in the HR Diagram. We
expect that these characteristics shall serve as an incentive to observers to investigate such kinds of binaries, increasing the accuracy
of measurements and the number of systems to test the evolutionary models.
Methods. Prior to performing the study of the circularization and synchronization levels, an analysis of the capability of our stellar
evolutionary models to reproduce the observed masses, radii and effective temperatures is carried out. Next, the differential equations
of tidal evolution are integrated and the corresponding critical times are compared with the inferred age of the system and with the
observed eccentricity and rotational velocities (when available).
Results. We have found good agreement between our stellar models and the astrophysical properties of η And, V2291 Oph and SZ
Cen by adopting a moderate core overshooting amount (αov = 0.20). Three mechanisms were used to try to explain the observed levels
of circularization and synchronization: the hydrodynamical mechanism, turbulent dissipation and radiative damping. In the cases of
η And and SZ Cen, for which the rotational velocities are available, by assuming solid body rotation for both stars of each system we
have found that the theoretical ratio between the rotational velocities VrotA/VrotB at the inferred ages are in good agreement with the
observational ratios.
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1. Introduction

Tidal interactions in a binary system may lead to a final coales-
cence of both stars or, less drastically, to an equilibrium state,
characterized by a circular coplanar orbit and with the rotational
velocities synchronized with the orbital period. The evolution-
ary models, on the other hand, can provide in many cases a
good approximation to the age of the system. By comparing this
age with the critical times of circularization and synchronization
computed by using current tidal theories, we can extract some
information from the observed rotational velocities and eccen-
tricity. As the time scales are strongly dependent on the absolute
dimensions (mainly the radius), the best candidates for such a
study are the double-lined eclipsing binaries with good determi-
nation of absolute dimensions. This kind of systematic investi-
gation was already carried out by Claret & Cunha (1997), for
example. However, the sample adopted in that paper and oth-
ers was constituted basically of Main-Sequence stars and the be-
haviour of more evolved components, concerning tidal interac-
tions, was studied only in a few systems: λ And, AY Cet and TZ
For (Habets & Zwaan 1989; Claret & Giménez 1995). Only in
the case of TZ For was it possible to determine the masses, radii
and effective temperature with good accuracy.

Tidal evolution also can be investigated in binaries located
in clusters since they can give information on the level of cir-
cularization of these coeval samples. One of the most important
observations concerning binaries in clusters is the cut-off period
(Mayor & Mermilliod 1984), that is the period characterizing
a transition between circular and eccentric orbits. This concept

was recently revised (see for example Claret 2005; Meibom &
Mathieu 2005). Comparison between the cut-off periods (or their
recently introduced equivalents) with those inferred from the dif-
ferent mechanisms of circularization is also a good tool to test
current tidal theories.

In the present work we investigate the stellar and tidal evo-
lution of three binary systems for which at least one component
is a giant star. There are some advantages to the use of such
rare systems: a) although the precision is not as high as in the
case of the double-lined eclipsing binaries, the masses and radii
of giants are determined with an acceptable accuracy; b) from
the stellar evolution point of view, there is an extra advantage
since the components are well separated and the models for sin-
gle stars can be applied; c) as pointed out by Schröder, Pols &
Eggleton (1997), some of the ζ Aur giants are in the blue loop
phase, which makes them an excellent test of the amount of core
overshooting. The uncertainties involved in the analysis of our
sample stars are admitedly quite large, if compared with those
derived from double-lined eclipsing binaries. Therefore, the con-
clusions should be taken with caution. In order to illustrate the
potential of the method in more accurate systems, we also intro-
duce a double-lined eclipsing binary (SZ Cen) which presents
moderately evolved stars with good determinations of the abso-
lute dimensions.

The paper is organized as follows: first we introduce the
main astrophysical parameters of our sample and the evolution-
ary stellar models which fit such properties. Next, the differential
equations of tidal evolution are presented and some discussion
on its derivation is also introduced, as well as the numerical
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Table 1. Astrophysical parameters for η And, V2291 Oph, SZ Cen (so-
lar, K units, km s−1, days).

η And V2291 Oph SZ Cen
M1 2.395 ± 0.087 3.86 ± 0.15 2.317 ± 0.026
M2 2.268 ± 0.082 2.95 ± 0.09 2.277 ± 0.021
log (L1/L�) 1.81 ± 0.02 2.73 ± 0.08 1.77 ± 0.007
log (L2/L�) 1.60 ± 0.02 2.07 ± 0.08 1.64 ± 0.07
log Teff1 3.703 ± 0.007 3.686 ± 0.009 3.875 ± 0.017
log Teff2 3.700 ± 0.007 4.041 ± 0.019 3.892 ± 0.017
R1 10.5 32.9 ± 1.5 4.554 ± 0.032
R2 8.5 3.0 ± 0.2 3.624 ± 0.026
e 0.0034 ± 0.0020 0.311 0.0
P 115.7 385 4.11
VrotA 9 – 60 ± 5
VrotB 9 – 44 ± 4
Ref. 1, 2, 3, 6 1, 2 4, 5

References to Table 1: 1 Schröder et al. (1997); 2 Iwamoto &
Saio (1999); 3 Griffin (private comunication); 4 Andersen (1975);
5 Andersen (1991); 6 Massarotti et al. (2008).

method used to integrate them. Finally, once the stellar mod-
els are able to reproduce the observations, we use them to com-
pute the critical times of circularization and synchronization and
compare them to the observed rotational velocities (if available)
and orbital eccentricities.

2. Stellar models for η And ,V2291 Oph and SZ Cen

η And (this star is also designed as HR 271, HD 5516 and HIP
4463) was discovered to be a spectroscopic binary by Campbell
& Wright (1900). Gordon (1946) obtained several spectrograms
and determined its spectroscopic orbit. More recently Hummel
et al. (1993) determined the orbit of the system by using opti-
cal interferometry. The masses of the primary and secondary in-
ferred from these observations and from the spectroscopic stud-
ies by Gordon are 2.59 ± 0.30 M� and 2.34 ± 0.22 M�.

The astrophysical parameters of η And have been used to
test the capability of evolutionary stellar models (Schröder et al.
1997; Iwamoto & Saio 1999). In both works the primary seems
to be in the core helium burning phase while the secondary is
in the ascending giant branch. However, no studies on tidal ef-
fects were carried out in these papers. The masses used in such
papers are somewhat different from those derived by Hummel
et al. (1993). Here we adopted the masses from a recent spec-
troscopic orbital solution (Griffin, private communication). We
will use the following values: M1 = 2.395 ± 0.087 M� and
M2 = 2.268±0.082 M�, where M1 and M2 are the masses of the
primary and secondary, respectively (see Table 1). On the other
hand, Massarotti et al. (2008) presented rotational and radial ve-
locities for 761 Hipparcos giants, including η And. Considering
the observational values of the eccentricity and the rotational ve-
locities, it is possible to carry out an investigation of the tidal
braking of this system, in addition to the traditional comparison
between the observed astrophysical parameters (masses, radii,
effective temperatures) and the theoretical predictions provided
by the evolutionary models.

Prior to comparing the observed and theoretical levels of cir-
cularization and synchronization of η And, V2291 Oph and SZ
Cen, we need to check the capability of our stellar models to fit
their observed properties. The basic properties of the code we
use to generate the stellar models can be found in Claret (2004)

and references given therein. For completeness, we enumerate
below its main characteristics:

1. The convective core overshooting can be introduced by
means of an excess distance beyond the formal convective
border (as determined by the Schwarzchild criterion). This
distance is defined as dover = αovHp, where Hp is the pres-
sure scale height taken at the edge of the convective core as
given by Schwarzschild’s criterion and αov is a free param-
eter (see Claret 2007, for a semi-empirical determination of
αov using double-lined eclipsing binaries). The overshooting
is applied only at the core boundary.

2. Opacities. The code uses the tables of opacities provided by
Iglesias & Rogers (1996), completed by the calculations by
Alexander & Ferguson (1994) for lower temperatures.

3. Convection. We adopted the mixing-length theory to de-
scribe the envelopes of colder models. Mixing-length is also
adopted in the convective cores and can be either adiabatic
or superadiabatic.

4. The nuclear network is essentially the same as that described
in Claret (2004). The only novelty is the incorporation of
measurements of the nuclear reaction 14N(p, γ)15O (Runkle
2003; Formicola et al. 2004).

5. Numerical details. In the integration of the outer layers, in
order to save computational time, we do not assume a fixed
luminosity and effective temperature but rather we allow the
model to lie within a given area in the HR diagram. In prac-
tice, three envelope computations are performed correspond-
ing to a triangle in the HR diagram. To guarantee more ac-
curate computations we decreased the triangle size used in
defining an envelope in the HR diagram to Δ log Teff = 0.001
and Δ log L = 0.004 or smaller. This is particularly impor-
tant to define the depth of the convective envelope, needed to
compute λ2 (see next section).

The chemical composition of binary systems is not a commonly
available observational parameter – which makes the compar-
ison of these systems with theoretical predictions provided by
evolutionary models more uncertain – but in the case of η And
we have two determinations. However, the chemical composi-
tion of η And is not clear. McWilliam (1990) obtained the first
one which is subsolar ([Fe/H] = −0.54 ± 0.25), while Taylor
(1991) found [Fe/H] = −0.04 ± 0.11. To include the observed
range of Z, we adopted three combinations to model η And:
Z = 0.006, Z = 0.018 and an intermediate value, Z = 0.012.
These metallicities are scaled to the solar values: (X, Y, Z)� =
(0.704, 0.279, 0.017) for the solar mixture by Grevesse & Sauval
(1998).

The first panel of Fig. 1 shows the best fit we found for
η And. The inferred hydrogen content X was 0.724. We have
adopted moderate core overshooting, characterized by αov =
0.20 that is in good agreement with the determination by
Schröder et al. (1997), though those authors used a different
chemical composition. The adopted mixing-length parameter α
was 1.68, the same value as we use to calibrate our solar model.
We also confirm that the more massive component is the blue
loop phase while the secondary is found to be on the giant
branch. The derived age is log t = 8.879−0.007

+0.009. The isochrone
that fits the observational data for η And is shown more clearly
in Fig. 3.

The other two combinations of Z also give acceptable fits,
as we can see in the second (Z = 0.018) and third (Z = 0.006)
panel of Fig. 1. In the case of the subsolar metallicity, we have
to change the mixing-length ad hoc to 1.45 because the mea-
sured effective temperature of the giant star is too low when we
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Fig. 1. Theoretical HR diagram and observational parameters for ηAnd.
The continuous line represents the primary while dashed line denotes
the secondary. We have considered moderate core overshooting with
αov = 0.20. The luminosity is in solar units and effective temperatures
are in K. The asterisk indicates the position of the primary while the
open circle denotes the position of the secondary at the ages indicated
in the text. The first panel corresponds to the models with X = 0.724,
Z = 0.012; the second panel to X = 0.706, Z = 0.018 and the third
panel (X = 0.742, Z = 0.006).

use the solar mixing-length parameter with a sub-solar compo-
sition. The inferred age is log t = 8.778−0.012

+0.031 which means that
it is not as well determined as the previous case. This should be
compared with the models computed by Iwamoto & Saio (1999):
these authors found that core overshooting is not necessary to ex-
plain the astrophysical parameters of η And if models with sub-
solar metallicity are adopted; their mixing length parameter is
very similar to ours (1.40). The approximately solar composition
also requires some changes in the input physics. The mixing-
length parameter was increased to 1.85 and the final solution is
better than that by adopting the models with subsolar metallic-
ity since the inferred age is log t = 8.918−0.020

+0.003. Comparing our
models with Z = 0.018 with those by Iwamoto & Saio (1999)
(both adopting core overshooting), the mixing-length parameter
is similar, as the core overshooting parameter (αov = 0.20 and
0.15, respectively).

Core overshooting is frequently invoked to explain some
properties of double-lined eclipsing binaries and colour-
magnitude diagrams of clusters. Such an expression is often
related to an extra mixing beyond the classical Schwarzchild
criterion. Extra mixing produces stellar models with prolonged
Main-Sequence times because more fuel is available in the core.
In addition, extra mixing also produces effects on later stages of
the stellar evolution. A good summary of the global effects of the
extra mixing can be found in Schröder et al. (1997). However,
other mechanisms may also be acting to increase the core size,
for example internal gravity waves or rotation. Talon et al. (1997)
investigate the properties of a 9 M� rotating model, and con-
clude that the resulting extra mixing is similar to that obtained
by adopting moderate core overshooting. We have investigated
the dependence of αov on stellar mass, i.e. we attributed the ex-
tra mixing only to core overshooting, (Claret 2007). One of the
conclusions of the study is that core overshooting (or equiva-
lently other mechanisms such as induced mixing by rotation)
seems to be necessary to match the absolute dimensions of key
double-lined eclipsing binaries as well as the colour-magnitude
diagrams of clusters. Keeping this in mind and given the mass
range of the systems we are investigating here, we decided to
adopt only models with moderate core overshooting. On the
other hand, due to the uncertainty in the chemical composition
determination of η And, we will center our attention on mod-
els with an intermediate Z, although the conclusions concerning
tidal evolution are unaltered.

V2291 Oph is a rare ζ Aur-type system. The absolute dimen-
sions are given by Griffin et al. (1995) and by Schröder et al.
(1996). More or less at the same epoch, Marshal (1996) deter-
mined the chemical composition of V2291 Oph. The resulting
[Fe/H] is +0.43 ± 0.2 and we adopt Z = 0.03 to characterize
the system. Schröder, Pols & Eggleton (1997) analysed V2291
Oph and found an acceptable fit by adopting Z = 0.02 and a
moderate amount of core overshooting αov ≈ 0.27. Iwamoto
& Saio (1999), on the other hand, using the same astrophys-
ical parameters but adopting a different chemical composition
(Z = 0.03 according to Marshal 1996), also found a good
match. In both cases, a larger value of the mixing-length param-
eter was adopted (2.0 and 2.3, respectively). We have adopted
(X, Z) = (0.64, 0.03),α = 2.5 and αov = 0.20. The comparison is
shown in the first panel of Fig. 2. The position of the secondary
(less massive component) is more difficult to fit and defines the
age error bars. The inferred age is log t = 8.271−0.020

+0.090.
SZ Cen is a double-lined eclipsing binary whose primary has

evolved beyond the TAMS while the secondary is still in the
Main-Sequence (Andersen 1975, 1991) As far as we know, there
are no chemical observations for SZ Cen. The models which fit

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911900&pdf_id=1
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Fig. 2. Theoretical HR diagram and observational parameters for V2291
Oph (first panel), and SZ Cen (second panel). Same symbols as in
Fig. 1.

.

its absolute dimensions better are those with moderate core over-
shooting and (X, Z) = (0.70, 0.02), (see second panel of Fig. 2).
The derived age is log t = 8.869−0.014

+0.001.

3. Equations of tidal evolution

In binary systems, the viscous dissipation of time-dependent
tides acts to synchronize the stellar rotation and circularize the
orbit. As a consequence of tidal interactions we expect either a
coalescence due to the spiralling of both stars or an equilibrium
situation characterized by a coplanar circular orbit and with both
rotational angular velocities synchronized with the orbital period
P. The explicit equations of tidal evolution are complicated and
they are coupled. The derivative de/dt depends on the internal
structure of the stars, on the eccentricity as well as on the ratio
Ωi/Ωo whereΩi is the angular velocity of the star i andΩo is the
mean orbital angular velocity. On the other hand, the derivative
dΩi/dt also depends on the same parameters. Such differential
equations can be integrated if we know the initial conditions.
Unfortunately this is not the case. In order to obtain some infor-
mation on the tidal evolution of binary stars, some simplifica-
tions are assumed in the mentioned equations: small eccentrici-
ties and small departure of synchronism which lead to the time
scales of circularization/synchronization (Eqs. (1)–(9)). In this
way, only relative values of the eccentricity and rotational an-
gular velocity can be obtained. The integrations are carried out
until the relative variations of eccentricity and angular velocities
become 0.5 per cent of the original values (for more details, see
Zahn 1977, 1989). The evolutionary ages at which this occurs
are the critical time tcir and tsync1,2, respectively. The mentioned

simplifications limit our conclusions concerning tidal evolution,
specially for those systems showing high values of eccentrici-
ties and/or high levels of asynchronism. As mentioned above, a
better approach to the tidal evolution problem consist of integrat-
ing the complete set of coupled differential equations simultane-
ously with the stellar evolution equations, as done for example
by Eggleton & Kiseleva-Eggleton (2002) for cool Algols sys-
tems, or more recently by Stancliffe & Eldridge (2009) for the
evolution of the progenitor of Supernova 1993J. However, the
combination of initial trial parameters (period, rotational veloc-
ities and eccentricity) is large and a more detailed treatment is
needed. At present we are involved in a new code version which
takes into account such combinations, as well as a Monte Carlo
error analysis to estimate the uncertainties in the circulariza-
tion/synchronization levels (Torres et al. 2009). However, such
calculations are beyond the scope of the present paper. We hope
to present the results in the near future by using double-lined
eclipsing binaries with more accurate absolute dimensions that
are suitable to test the current tidal evolution theories.

The simplified differential equations that describe the varia-
tions of the eccentricity and the angular rotational velocities in a
binary system are

d ln(Ωi − Ωo)k

dt
= − 1
τsyn,k

(1)

where Ωo and Ωi were already defined, k = 1, 2 refer to the
primary and secondary component, respectively and τsyn,k is the
time scale of synchronization and

d ln e
dt
= − 1
τcir

(2)

where e is the eccentricity and τcir is time scale of circularization.
To integrate the above differential equation we have to consider
the contribution of both components

1
τcir
=

1
τcir,1

+
1
τcir,2

(3)

where subscripts 1 and 2 refer to the primary and the secondary
component.

There are three mechanisms which have been invoked to ex-
plain the orbital evolution of binary systems. The first braking
mechanism is due to Tassoul (1987, 1988). Following this de-
scription, the stars in a binary system tend to synchronize and
circularize the orbit due to the tidal distortions which cause large
scale hydrodynamical currents. Following Tassoul: “The hydro-
dynamical mechanism involves a large scale meriodional flow,
superposed on the motion around the rotation axis of the tidally
distorted component. These transients (due to the lack of ax-
ial symmetry), mechanically driven currents – which are much
faster than the steady, termally driven Eddington-Vogt currents
– cease to exist as soon as synchronization has been achieved in
the star”. On the other hand, in a binary system, a star is subject
to the gravitational field of its companion and from this inter-
action a tidal bulge appears. If we assume that both stars are
synchronized, this bulge is aligned but if there is departure from
synchronism a delay gives rise to a torque. This torque tends
to bring the star back into the synchronism. Zahn (1975, 1989)
indentified two mechanisms: turbulent dissipation and radiative
damping. Both mechanisms are responsible for the tidal friction
on late-type and early-type stars, respectively. For a more ex-
tensive discussion on the three mechanisms see Claret & Cunha
(1997).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911900&pdf_id=2
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For the hydrodynamical mechanism we compute the time
scales for circularization and synchronization following Tassoul
(1988):

τHsyn = 5.35 × 102+γ−N/4 (1 + q)
q

L−1/4 M5/4R−3P11/4 (4)

τHcir = 9.4 × 103+γ−N/4(1 + q)2/3β−2L−0.25M23/12R−5P49/12 (5)

where q is the mass ratio, β the radius of gyration, P the orbital
period in days, and M, L and R are the stellar mass, luminos-
ity and radius in solar units. The parameter N is related to the
different ways to transport energy into the outer layers of the
stars in such way that 10N = νt/νr, where νt and νr are the eddy
and radiative viscosities, respectively. For stars with envelopes
in convective equilibrium, it is often assumed that N = 10, while
N = 0 is assumed for stars whose envelopes are in radiative equi-
librium. The adjustable parameter γ was introduced by Tassoul
in order to take into account some limitations inherent to the
time scale derivation, for example, that the spin-down times is
only a lower limit. It was calibrated by Claret et al. (1995) who
obtained γ = 1.6 by using double-lined eclipsing binaries.

For the case of turbulent dissipation (convective envelopes):

τTDsync = 3.95 × 102β2M7/3 (1 + q)2

q2
L−1/3λ2

−1 P4

R16/3
(6)

τTDcirc = 1.99 × 103M3 (1 + q)5/3

q
L−1/3λ2

−1 P16/3

R22/3
· (7)

For stars with convective cores and radiative envelopes (radiative
damping) the time scales are:

τRDsync = 2.03β2 M7/3 (1 + q)2

q2
E2
−1 P17/3

R7
(8)

τRDcirc = 1.71 × 101M3 (1 + q)5/3

q
E2
−1 P7

R9
· (9)

In these equations M, R and L are in solar units while P is given
in days and the time scales are given in years. The torque con-
stant E2 is related to the dynamic tidal contribution to the total
perturbed potential and it is similar to k2 (the apsidal motion con-
stant) but it is much more dependent on the stellar structure than
the mentioned constant. Concerning the calculation of λ2, that
is connected to the structure of the external layers, we refer the
readers to Claret & Cunha (1997). The differential Eqs. (1)–(2)
were integrated for each system (using the time scales given by
Eqs. (4)–(9)) through a fourth order Runge-Kutta method. The
radius of gyration and the torque constant as well as other astro-
physical parameters such as the age, radius, luminosity, etc are
directly inferred from the same evolutionary stellar models used
to compare the observed properties of η And, V2291 Oph and
SZ Cen.

4. The tidal evolution of η And, V2291 Oph and SZ
Cen; final remarks

4.1. η And

The orbital elements of η And present some ambiguities, for
example, the derived eccentricity. Hummel et al. (1993) give
the value 0.006 ± 0.002 while Pourbaix et al. (2004) found
e = 0.0081 and Massarotti et al. (2008) derived the value

0.0032 ± 0.0044. The most recent determination of e was pro-
vided by Griffin (private communication, 0.003±0.0020). Given
that value and the error bars, we can conclude that the orbit is
practically circular and this imposes a constraint on the calcula-
tions of the critical times of circularization through Eqs. (2), (3),
(5), (7) and (9).

Massarotti et al. (2008) obtained the projected rotational ve-
locities for both components of η And: VrotA sin i = 4.6 km s−1

and VrotB sin i = 4.7 km s−1. Hummel et al. (1993) derived the in-
clination of the orbit, i ≈ 30◦, which gives for both components
≈9 km s−1. The theoretical values are, respectively, VrotAT =
4.6 km s−1 and VrotBT = 3.7 km s−1. Within the uncertainties, we
can consider that both components are not synchronized with the
orbital period.

Considering such data and integrating the above differential
equations, we are finally able to analyse the tidal evolution of
η And. Note that during the integration we assume that the or-
bital period is constant since the rotational angular momentum
of both stars is much smaller than the orbital one. While on the
main sequence, η And and V2291 Oph have convective cores
and radiative envelopes. However, as they evolve to giants, core
convection shuts down and a convective envelope develops. This
has the effect of changing which tidal mechanism is important:
for the hydrodynamical mechanism, we will have a transition in
N which is related to the different mechanisms of transport of
energy in the outer layers. Equally, we have a transition between
the radiative damping and turbulent dissipation for the same rea-
sons explained above. For practical purpose, we prefer to use the
effective temperature as a criterion, instead of masses, to select
the best value of N.

We select the model with (X, Z) = (0.724, 0.012) and log t =
8.879−0.007

+0.009 to investigate the tidal evolution of η And. The hy-
drodynamical mechanism predicts that the orbit of η And should
be circular (Fig. 3, first panel) since its critical time for cir-
cularization is log tcir = 8.806, which is smaller than the in-
ferred age of the system considering its error bars; therefore it
is compatible with the observed eccentricity. Theoretical calcu-
lations predict that the primary component should be synchro-
nized (log tsync1 = 8.800) which is in contradiction to obser-
vations. On the other hand, the prediction for the secondary is
log tsync2 = 8.864, which is shorter than the inferred age, and
this is also in disagreement with observations.

The radiative damping and turbulent dissipation are anal-
ysed using the same stellar models and the main results are
shown in Fig. 3 (second panel). Following these mechanisms,
the orbit should be circular; the critical time for circularization
is log tcir = 8.872 which is shorter than the inferred age. This
is in agreement with the observed level of circularization. The
situation of synchronization is similar to that predicted by the
hydrodynamical mechanism: the primary achieves synchroniza-
tion near the tip of the red giant branch (log tsync1 = 8.805) while
the secondary achieves the equilibrium state at the same phase
at log tsync2 = 8.870. As previously commented, both compo-
nents of η And are still not synchronized and the theoretical pre-
dictions are in clear disagreement with these data. Concerning
synchronization, some words of caution should be given. Unlike
the case of circularization, where the eccentricity is more clearly
established, the analysis of the rotational velocities is not so
straightforward. As is known, the observed rotational velocities
correspond to the upper layers of the stars. However, there is a
possibility that these are decoupled from the rotational velocities
in the core.

As we have previously seen, the critical time of synchroniza-
tion for the primary indicates that this would be synchronized
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Fig. 3. Radius evolution of η And (continuous line represents the pri-
mary and the dashed one the secondary). The radius is in solar units
while the time is given in years. The horizontal lines denote the ob-
served radii and their error bars and the arrows indicate the times for
circularization (circ), for synchronization of the primary (sy1) and sec-
ondary (sy2). The vertical dashed line marks the inferred age of the sys-
tem. First panel: hydrodynamical mechanism; second panel: turbulent
dissipation and radiative damping mechanisms.

near the tip of the giant branch. However, from Fig. 3, we note
that it immediately contracts. Assuming that it rotates as a rigid
body (see Fig. 4) we can estimate the spin-up due to contraction:
around 4 times faster than it achieves the tip of the giant branch.
This might be a possible explanation for the disagreement be-
tween the observed rotational velocity and the critical time of
synchronization.

Although there are uncertainties in the rotational velocities
of the components of η And, they can be used to infer, in a first
approximation, the angular momentum distribution within the
stars. If we assume that both stars rotate as rigid bodies, we can
predict the rotation evolution with respect to the ZAMS veloci-
ties. In spite of the uncertainty in sin i or in the intrinsic values
of the rotational velocities, the observed ratio VrotA/VrotB is unal-
tered by these sources of error and can be followed as a function
of time. We show such an evolution in Fig. 4. The observed ratio
≈1.0 and the theoretical VrotA/VrotB we derive at the inferred age
of the system in Fig. 4 is 1.09. This should be compared with the
value obtained for TZ For (Claret & Giménez 1995) for which
an observed ratio of 10 was measured, also in good agreement
with the theoretical value.

4.2. V2291 Oph

One of the most serious limitations of V2291 Oph concern-
ing its tidal evolution is the evolutionary time scales of both

Fig. 4. The rotational evolution of ηAnd. The primary is represented by
the continuous line and the secondary by the dashed one. The inferred
age of the system is marked with a vertical dashed-dotted line.

components. The mass of the primary is about 30% higher that
the secondary and the time scales are so different that a direct
integration of the differential equations is not possible, mainly
in the case of the turbulent dissipation/radiative damping mech-
anisms. This is because of the condition assuring that the system
is synchronized (or circularized) – relative variations of eccen-
tricity and angular velocities became 0.5 per cent of the origi-
nal values – cannot be fulfilled for both time scales of V2291
Oph simultaneously (even if we allow a less restrictive con-
dition). As is well known, the hydrodynamical mechanism is
more efficient than turbulent dissipation and radiative damp-
ing. Therefore, we present here only the calculations made by
adopting the hydrodynamical mechanism. On the other hand, no
information is available on the rotational velocities. Of course,
no substantial amount of information can be extracted from the
study of this system. However, even without the observed ro-
tational velocities, we can predict the synchronization time for
both components to be compared with future observations.

The results by adopting the hydrodynamical mechanism are
shown in Fig. 5. The critical times of synchronization of both
components is predicted to be near the tip of the giant branch.
On the other hand, the orbit of V2291 Oph is highly eccentric
(e ≈ 0.31) and the critical time for circularization (log tcir =
8.277) is slightly longer than the inferred age (log t = 8.271)
but well within the error bars for the age. Although this criti-
cal time is compatible with the observed eccentricity, due to the
high value of e and due to the small difference between the crit-
ical time for circularization and age one would expect that this
difference is not enough to circularize the orbit. The high eccen-
tricity of V2291 Oph leads to an interesting question: did this
system originally begin with a very high initial eccentricity (say,
0.8) that has been reduced to 0.3? Or maybe that the eccentricity
was initially near 0.30 and has not undergone strong tidal forces?
As the system shows a long orbital period, the corresponding
tidal forces are relatively weak and the latter option seems to be
the most probable. However, the above analysis should be taken
with caution. As mentioned in the beginning of Sect. 3, the high
value of the present eccentricity is clearly not consistent with
the adopted assumption used to derive the time scale of circular-
ization. More complete and accurate data may shed some light
on this ambiguous situation although they will be not enough to
remove the mentioned inconsistency. We encourage observers to

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911900&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911900&pdf_id=4
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Fig. 5. The same as in Fig. 3 but for V2291 Oph. Hydrodynamical
mechanism.

Fig. 6. The same as in Fig. 3 but for SZ Cen. Hydrodynamical mecha-
nism and turbulent dissipation/radiative damping. The critical times for
synchronization for the hydrodynamical mechanism are not shown due
to the difference in time scale. Because the critical times of circulariza-
tion and synchronization are very similar, only one arrow is show for
the radiative damping mechanism.

improve and complete the astrophysical data for V2291 Oph and
other similar systems. The benefits are worth the effort since we
have good information of only one system showing very evolved
components (TZ For).

4.3. SZ Cen

SZ Cen presents a circular orbit and the observed values of the
rotation velocities are 60 ± 5 and 44 ± 4 km s−1 for the primary
and secondary, respectively. The theoretical rotational velocities
at the periastron are 56 and 45 km s−1 and we can consider both
components as synchronized. The calculations made by adopt-
ing the hydrodynamical mechanism reveal that the critical time
for circularization is log tcir = 8.740, that is smaller than the in-
ferred age (log t = 8.869). Such a result is compatible with the
circular orbit of SZ Cen. Concerning the levels of synchroniza-
tion, the hydrodynamical mechanism seems to be able to explain
the rotational velocities since the critical times are about 2 order
of magnitude shorter than the inferred age (log tsync1,2 ≈ 6.2).

On the other hand, the radiative damping mechanism pre-
dicts a critical time for circularization longer that the age of
the system (log tcir = 8.878) and therefore it is not compatible
with the circular orbit of SZ Cen. Following this mechanism, the
primary should be synchronized at log tsync1 = 8.877, more or
less at the same time as the system circularizes. The secondary
will synchronize the orbit a little later, at log tsync1 = 8.890. This
seems to be in disagreement with the observed rotational veloc-
ities since they indicate that both components are synchronized.
However, given the small differences between the critical times
for synchronization, and the inferred age, the associated stellar
models, the tidal theories and the observational data may be not
accurate enough to elucidate the question. On the other hand, by
applying the same simple method to follow the rotational evo-
lution as described in the case of η And, we have found that
the predicted VrotA/VrotB is around 1.2 while the observed value
is 1.3.

Although the actual theories of tidal braking are able to ex-
plain some tidal characteristics of our three systems, some pre-
dictions are in disagreement with the observed eccentricities and
rotational velocities. In addition, we should remember that there
are also problems of modelling double-lined binary systems with
very evolved components, such as the unique case of TZ For.
Only for a high value of αov was it possible to place both com-
ponents in the same isochrone (Claret 2007). This may be an
evidence that there are problems with the late stellar evolution-
ary stages. It is clear that we need to obtain more accurate data
for binaries with very evolved components to elucidate such dis-
crepancies and ambiguities.
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