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Abstract 

In this work, we carried out a preliminary study of traffic-derived pollutants from primary 

sources (vehicles), and on roads (paved area), road borders and surroundings areas. The 

study is focussed on the identification, distribution and concentration of pollutants and 

magnetic carriers. 

The results of magnetic parameters and their analyses suggest that the magnetic signal of 

vehicle-derived emissions is controlled by a magnetite-like phase, and magnetic grain size 

estimations reveal the presence of fine particles (0.1-5 µm) that can be inhaled and 

therefore are dangerous to human health. Results of magnetic susceptibility (about 175 10-

5 SI) show higher magnetic concentration –magnetic enhancement– in the central area of 

the tollbooth line that is related to higher traffic. In addition, magnetic susceptibility on 

several roadside soils along 120 km were computed for generating a contour map, such 2-D 

mapping shows higher magnetic values (100-200 10-5 SI) near the edge of the road 

indicating that magnetic particles emitted by vehicles are accumulated and mainly 

concentrated within a distance of a couple of meters (1-2 m) along the road. In 

consequence, magnetic susceptibility parameter seems to be a suitable indicator of traffic-

related pollution. 

Non-magnetic studies show an enrichment of some trace elements –such as Ba, Cr, Cu, Zn 

and Pb– associated to traffic pollution. Furthermore, statistical correlations between content 

of toxic trace metals and magnetic variables support the use of magnetic parameters as 

potential proxies in this study area. 
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1 Introduction 

Different pollution sources involving industry, vehicle and domestic emissions, release in 

the atmosphere magnetic particles, heavy metals and others compounds that can be 

incorporated either in the environment or in living organism such as vegetation, animals 

and human beings. 

A major contribution to pollution in urban areas is attributed to traffic, especially emission 

of vehicles (Palmgren et al. 2003). Most of vehicle emissions comprise different fraction 

particles, that is, ultrafine particles (<30 nm, 30-100 nm) formed in the engine, in the 

exhaust pipe or immediately after the emission; fine particles (0.1-2 µm) formed by 

chemical reactions or other processes; and coarse mode (>2 µm) formed mechanically by 

abrasion of road material, tyres and brake lining (Palmgren et al. 2003). These particles can 

be deeply inhaled and therefore are dangerous to human health, hence respiratory and 

cardiovascular diseases are among the leading causes of death in many countries (e.g. Pope 

et al. 2002, Knutsen et al. 2004, Knox 2006). Some studies indicate a direct relation 

between particle concentration and health effect increase with decreasing particle grain size 

(Pope & Dockery 2006). 

Magnetic mapping in magnetism has been well accepted for investigating industrial and 

urban pollution in different environments, such as, soils, rivers/streams and lakes, different 

vegetation species, and roads (e.g. Hunt et al. 1984, Hoffmann et al. 1999, Matzka & 

Maher 1999, Petrovský & Ellwood 1999, Jordanova et al. 2003, Amereih et al. 2005, Lu et 
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al. 2005, Zhang et al. 2006, Kim et al. 2007, Chaparro et al. 2007, Maher et al. 2008). A 

considerable number of studies have indicated relationships between magnetic parameters 

and heavy metal concentration based on a genetic relationship from a simultaneous 

production of both particle sources (e.g. Beckwith et al. 1986, Georgeaud et al. 1997, 

Petrovský et al. 1998, Knab et al. 2001, Spiteri et al. 2005, Chaparro et al. 2006, 2008). 

In this contribution, we carried out a preliminary study of traffic-derived pollutants on 

roads (asphalt surface), road borders and surroundings areas (soils), as well as on the 

primary sources (vehicles). The study is mainly focussed on the identification, distribution 

and concentration of toxic trace metals and magnetic carriers in a road from Argentina and 

in vehicles using, in particular, various rock-magnetic techniques. Although there are 

magnetic mapping studies of traffic-related areas, most of them focussed on the influence 

of pollutants on nearby soils, vegetation and dust particles, being scarce the rock-magnetic 

studies of primary sources, such as, soot and material from exhaust pipes (e.g. Abdul-

Razzaq & Gautam 2001, Lu et al. 2005), as well as, from the brake lining system of 

vehicles. This information can be useful for future investigation on identifying different 

contamination sources from vehicles and their influence. 

2 Material and methods 

2.1 Study area and sampling 

The study area comprises the road Autovia 2, which is located in the eastern part of the 

Buenos Aires province (latitude 36º 51’ S, longitude 57º 52’ W, Fig. 1). This road is one of 

the most important in this province that connects the capital city of Argentina (Buenos 
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Aires city) with Mar del Plata city; and has a considerable traffic density of about 5500 

vehicles per day and reaching about 8000 vehicles per day at the weekends. 

Sampling and in situ magnetic susceptibility (is) measurements were done in tollbooth 

sites (Maipu, see Fig. 1) and in various roadside soils –from Maipu to Mar del Plata– along 

the road Autovia 2. At each measuring way point, several in situ readings were performed 

and then averaged to avoid non-representative values. 

On the other hand, samples were collected from exhaust pipes (inner wall) of several 

vehicles (gasoline/diesel-soot) as well as from the brake system, road-deposited sediments, 

asphalt material and roadside soils. 

These soils, sediments and soot were carefully sampled using plastic scrapers and tools in 

order to avoid contamination. Collected samples of scraped material on the road were 

identified as CM (n= 16, samples collected from the tollbooth 1 and 2) and SM (n= 8, 

samples collected from each tollbooths at the vehicle braking/accelerating area), swept 

material on the road as LM (n= 10), soil samples as MP (n= 11), road material as asphalt 

material (n= 14), soot samples from vehicles exhaust emission (diesel-powered engines) as 

diesel (n= 11) and (gasoline-powered engines) gas (n= 7), and brake system samples as 

brake lining material (n= 4). All samples were air-dried, ground, homogenized and 

quartered, to pass through a 2 mm sieve. 

2.2 Magnetic methods 

The collected material was prepared and sub sampled in the laboratory to accomplish 

several rock-magnetic measurements: magnetic susceptibility (), anhysteretic and 

isothermal remanent magnetisation (ARM and IRM), and stepwise thermal 
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demagnetisation. Furthermore, several related magnetic parameters, ratios and plots were 

obtained and analysed. Among them, mass-specific magnetic susceptibility (χ), anhysteretic 

susceptibility (ARM), ARM/ ratio, saturation of IRM (SIRM), S-ratio (-IRM-300mT/SIRM), 

remanent coercivity (Hcr) and SIRM/ ratio were calculated. 

Magnetic susceptibility measurements were carried out using a magnetic susceptibility 

meter MS2, Bartington Instruments Ltd, connected to two sensors: MS2D (for fieldwork) 

or MS2B (for laboratory work) dual frequency sensor (470 and 4700 Hz). The ARM was 

imparted superimposing a DC field of 90 μT to an AF of 100 mT, using a partial ARM 

(pARM) device attached to a shielded demagnetizer Molspin Ltd. IRM (acquisition and 

backfield) studies were carried out by using an ASC Scientific model IM-10-30 pulse 

magnetizer. Thermal demagnetisation was done with an ASC Scientific model TD-48 

thermal specimen demagnetizer; samples were heated in increasing stepwise temperatures 

in air; after each step, measurements –remanent magnetisation and magnetic susceptibility– 

were done for cooled (at room temperature) samples. The remanent magnetisation after 

each step for ARM, IRM and stepwise thermal demagnetisation studies was measured by a 

Molspin Ltd. Minispin fluxgate spinner magnetometer. 

2.3 Grain size and chemical analysis 

Some samples for non-magnetic analyses were homogenised, quartered and prepared for 

grain size and chemical analyses. Granulometric analysis of sand (>50 μm), silt (2-50 μm) 

and clay (<2 μm) size fractions were performed using a Coulter laser equipment. To 

eliminate the organic matter, samples were chemically disaggregated with 10% H2O2 

heated to 80º C, then stirred and ultrasound was also used to facilitate particle dispersion. 
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The analysis of the total elemental composition was carried out after total acid digestion 

with HF (48%) in a microwave oven. The analytical methods are described in detail in 

Navas & Machín (2002), Navas et al. (2008). Samples were analysed for the following 17 

elements: Li, K, Na (alkaline), Mg, Ca, Sr, Ba (light metals) and Cr, Mn, Fe, Co, Ni, Cu, 

Al, Zn, Cd and Pb (heavy metals). Analyses were performed by atomic emission 

spectrometry using an inductively coupled plasma ICP-OES (solid state detector). 

Concentrations, obtained after three measurements per element, are expressed in mg/kg and 

g/kg. Detection limits for the trace elements are: Li: 35 ppb, Cr: 45 ppb, Cu, Zn and Pb: 55 

ppb, Co: 40 ppb, Ni: 60 ppb, Cd: 25 ppb. 

3 Results and discussion 

3.1 In situ magnetic studies 

3.1.1 Tollbooth area 

Measurements of magnetic susceptibility on the paved area are displayed in Fig. 2. 

Increases of is (higher magnetic concentration) are interpreted as magnetic enhancement if 

measurements on paved road borders –specially, the paved parking area indicated on the 

left corner from Fig. 2– are considered as baseline values. Such an assumption is valid 

taking into account the low vehicles transit by these areas. A similar is distribution was 

found in a German motorway by Hoffmann et al. (1999); although in such case of study the 

traffic density was higher (~24 000 vehicles per day), is values on the asphalt surface from 

this motorway (about 120-130 10-5 SI) are comparable with measurements in our study. 
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From Fig. 2, representative maximum values –about 175 10-5 SI– are three times (or 

more) higher than the baseline values, ~50 10-5 SI. The single maxima (e.g. about 250 and 

300 10-5 SI, Fig. 2) are interpreted as anomalous values associated with inhomogeneities 

of the asphalt material and/or the presence of Fe-rich material in/under the paved surface. 

Note that low is values are observed towards the road edges. 

On the other hand, is values on roadside grass area (see in Fig. 2) decrease from the edge 

of the road. Such decreasing behaviour is also noted in roadside soils along the Autovia 2 

(see Sect. 3.1.2 and Fig. 3), which is expected for traffic-related pollutants that can be 

transported from the road and accumulated on the nearby roadside soils areas. Such 

behaviour is in agreement with other studies carried out in different countries (e.g. Amereih 

et al. 2005, El-Hasan 2008). 

Since the area under study constitutes a compulsory stop for vehicles, it is expected a major 

contribution and accumulation of pollutants because of the vehicle acceleration and braking 

than in free-traffic areas. We associate the magnetic enhancement to higher traffic of 

vehicles, which is particularly noted in the central area of the tollbooth line for site Maipu. 

This distribution can be related to the available tollbooths for traffic during the year. 

Central tollbooths –only used by cars– are the most utilised ones, while the others are 

operational especially on vacations and weekends. Moreover, tollbooths on each road side 

are mostly transited by heavy duty diesel vehicles (trucks and busses), which are powered 

by diesel fuel. Thus, an explanation for low values of magnetic susceptibility in such 

tollbooth areas can be related to diesel soot emission according to the  values of diesel 

soot samples (see magnetic properties of diesel/gas soot in Sect. 3.2.2). 

3.1.2 Roadside soils 
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On the other hand, magnetic susceptibility measurements on roadside soils, along the road 

between Maipu and Mar del Plata, were done and this data-set was computed by using the 

Origin® 8 Software. Data were converted into a matrix, i.e. a gridding procedure, using the 

Kriging correlation method (Origin® 8 Software 2007). After applying the gridding 

procedure, the matrix was used for generating a contour map (Fig. 3). 

The spatial distribution (2-D mapping) of magnetic data shows higher values of is near the 

edge of the road, on the contrary, lower values are found moving away from the edge. Such 

behaviour is expected regarding that pollutant are emitted by vehicles (the only pollution 

source along the road), transported from the road, and accumulated on the nearby soil. A 

rather constant magnetic behaviour is expected along the road, but two zones of higher 

values are noted in Fig. 3. This behaviour is possible if the distance (~120 km) is taking 

into account and hence terrain level variations (Flanders 1994) may lead to these areas of 

magnetic accumulation. Another explanation may be related to the influence of the Maipu 

tollbooth area (0 km) and Mar del Plata city (120 km, Fig. 3). It is possible to note in this 

figure that both zones are far between them and each one close to the mentioned areas; 

hence they could induce zones of pollutant accumulation. However, this fact should be 

confirmed by further and future studies. 

Although detailed magnetic measurements on soils from the area are not shown here, the 

lithogenic/geogenic contribution to the magnetic signal is low. This can be observed in Fig. 

2, where is values on the grass area far from road centre (about 45-60 m) are about 20 10-

5 SI. In Fig. 3, low values (about 30-50 10-5 SI) are observed within a couple of meters (1-

2 m) from the road edge, which is in agreement with the latter conclusion and other 

previous studies (e.g. Hoffmann et al. 1999, Gautam et al. 2004, Zhang et al. 2006). 
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3.2 Rock-magnetic studies 

3.2.1 Magnetic carriers 

Several magnetic parameters and studies are shown in Fig. 4, 5 and 6. They were analysed 

to identify and characterize the main magnetic carriers. The S-ratio values range from 0.915 

to 1 for all samples, except for most of the asphalt samples (0.770-0.873, Fig. 4b), which 

indicate that magnetic fraction is dominated by ferrimagnetic minerals. Furthermore, the 

remanent coercivity (Hcr) results have a narrow range of variation for swept, scraped and 

soil samples (31-40 mT); and for vehicles and asphalt material relatively wider between 21 

and 36 mT (Fig. 4a). 

In Fig. 4a, SIRM/ and Hcr parameters are displayed in a plot, one grouping on the right 

(specially SM, CM, LM and MP samples) can be appreciated from this plot showing some 

differences between carriers. On the other hand, differences between most of samples and 

asphalt samples are clearly observed from another plot, S-ratio versus SIRM/ (Fig. 4b). 

This fact is coherent with the nature of the asphalt samples, being constituent material of 

the pavement, and therefore, different of samples from the pollution (vehicle-derived) 

source. Most of samples are characterised by higher values of S-ratio and a high dispersion 

of SIRM/ values, which is relatively reasonable according to the different kind of samples 

studied. Magnetic grain size distribution should be taking into account for such a high 

dispersion, especially, because SIRM/ parameter is a magnetic carrier and grain size 

dependent parameter. Nevertheless, it is possible to distinguish that SM, CM and LM 

samples are well grouped (Fig. 4b), as well as in Fig. 4a, showing low dispersion of S-ratio 

and SIRM/ parameters. 
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The Hcr values are coherent with (titano)magnetite range according to Peters & Dekkers 

(2003), moreover, the presence of magnetite and/or titanomagnetite is confirmed from 

thermal demagnetisation studies (Fig. 5) as well, where the Curie temperatures of 

representative samples belong to the range of (titano) magnetite. 

Unblocking temperatures (TU) were identified from changes in the slope of remanent 

magnetisation. In general, two TU of ~280ºC and ~580ºC are observed for road (CM, SM 

and LM) and road-side samples (MP, Fig. 5a, b), though a higher TU of ~685ºC is observed 

for an MP sample. Soot and brake lining samples show a first phase at ~135ºC, other at 

~330ºC, and the third phase at 580ºC, except for a soot sample at ~685ºC (Fig. 5c). On the 

other hand, a first phase of 130-180ºC is observed for the asphalt samples, a second one of 

TU of ~ 330ºC; and a third phase of higher TU of 480-530ºC and 630-685ºC (Fig. 5d). The 

first phases indicate the presence of titanomagnetite, and the second phase (TU of ~580ºC) 

corresponds to magnetite (Dankers 1978). The phase of the highest temperatures (>600ºC) 

may be associated to maghemite and/or hematite. 

Magnetic susceptibility measurement at room temperature in thermal demagnetisation 

studies is particularly used as a tool for monitoring magnetic mineral changes. In these 

thermal studies, neoformation of (titano) magnetite is not expected, at least in a 

considerable proportion, according to the magnetic susceptibility results (/RT versus 

Temperature, Fig. 5). Neoformation of magnetic minerals (magnetite, maghemite and/or 

hematite) due to Fe-bearing materials conversion seems to be only possible for diesel 

samples (Fig. 5c) where the change begins at 280ºC reaching the maximum at 380ºC. 

The formation of magnetic particles from the burning of some fossil fuel was pointed out 

by Flanders (1994). In particular, production of iron oxides from the combustion of diesel 
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fuel was also reported by Kasper et al. (1999), which found that carbonaceous matter 

preferentially condenses at the surface of the iron oxide nuclei. Abdul-Razzaq & Gautam 

(2001) reported magnetite in particulate matter collected from diesel engine exhaust; and 

recently, Kim et al. (2007) –on two magnetic extracts– also found iron oxides from diesel 

vehicle emissions and from the abrasion of brake lining surfaces. 

The presence of these magnetic carriers is not only important because of their relationship 

with heavy metals but also due to their own adverse influence on human health. Such 

magnetic particles can be inhaled and absorbed in human tissues, having potential 

implication for many biomedical issues. Among them, human exposure to the strong static 

magnetic field used in magnetic resonance imaging, as well as to weaker fields produced by 

the electric power system and cellular phones (e.g. Kirschvink et al. 1992). The presence of 

magnetite in tissues can also cause severe tissue damage, i.e. considerable heat is induced –

magnetic thermoablation– when an alternating magnetic field is applied. Such process has 

not only heating-induced but also cytotoxic effects (Hilger et al. 2003). 

3.2.2 Magnetic grain size and concentration 

Concentration and magnetic grain size of ferrimagnetic carriers (magnetite-like mineral) 

can be estimated from the King Plot (King et al. 1982, Fig. 6). Magnetic concentration can 

be appreciated from  parameter in Fig. 6, where the highest values belong to brake lining 

samples, and the lowest values belong to some asphalt and soot (diesel) samples. The other 

samples are well grouped showing higher magnetic concentrations, although the grouping 

is mainly made of scraped, swept and soot (gas) samples, some other samples (asphalt, soil 

and diesel) can be observed there. 
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On the other hand, magnetic grain size estimations are made from the calibration lines 

based on the King’s phenomenological model. Such estimations reveal magnetic grain size 

differences among samples regarding their origin. Note in Fig. 6 that most of scraped and 

swept samples range from 1 to 5 µm; asphalt samples show two distribution: 0.2-1 µm and 

5-20 µm; soil samples range between 0.2 and 1 µm. And as expected, finer particles –

between 0.1 and 1 µm– were estimated from one of the main pollution source: soot (gas 

and diesel) samples. Some diesel and brake samples show exception of higher magnetic 

grain sizes (1-5 µm). 

Results of frequency dependent  parameter (κFD%) are mostly below 2%; which indicates 

scarce or no ultrafine (<0.03 μm) superparamagnetic (SP) ferrimagnetic minerals (Dearing 

1994). In particular, lower values were found for scraped (0-2.8%, mean= 1.3%), swept (0-

0.3%, mean= 0%), soil (0-2.2%, mean= 0.3%) and brake (0-0.8%, mean= 0.3%) samples 

than for gas (0-5.6%, mean= 2.4%), diesel (0-3.4%, mean= 1.1%), and asphalt (0-4.7%, 

mean= 0.7%) samples. Even though mean values of soot (gas and diesel) and asphalt 

samples are low in general, their ranges may be indicative of admixtures of SP and coarser 

non-SP grains. 

The magnetic grain sizes from our study are in agreement with different fraction particles 

from vehicle emissions (Palmgren et al. 2003). That is, as mentioned above, ultrafine 

particles (<30 nm, 30-100 nm) formed in the engine by coagulation and condensation of 

combustion gases; fine particles (0.1-2 µm) formed by chemical reactions after combustion; 

and coarse mode (>2 µm) formed mechanically by abrasion of road material, tyres and 

brake lining. Whereas, the presence of relatively coarser magnetic particles in most of 
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scraped, swept and soil samples may be due to component mixing among different 

contribution sources, i.e. vehicles emissions, soil material, and asphalt particles. 

It is worth mentioning that such magnetic grain size particles reported on here –especially 

from vehicle emissions– can be easily inhaled, thereafter they can penetrate deep into the 

respiratory system and their residence time may be very long, up to several months (WHO 

2000); in consequence, they may lead to serious hazard to human health. 

3.3 Toxic trace metals and granulometric fractions 

Determination of the total elemental composition reveals variability among SM, CM and 

LM samples. A boxplot for 13 selected elements (Li, Sr, Ba, Cr, Cu, Mn, Fe, Al, Zn, Ni, 

Co, Cd and Pb) and another for granulometric fractions are displayed in Fig. 7 summarising 

descriptive statistics for each variable. Since these elements are present in the environment, 

contribution of wind-borne particles from soils should be considered, hence baseline values 

of elements are displayed in Fig. 7a for comparison. These baseline values were defined 

from studies of regional soils –Typic, Vertic and Aquic Argiudolls, Typic Natraqualfs, 

Mollic Natrudalfs, Typic Natraquolls, Typic Natrudolls– according to Lavado et al. (2004) 

and Chaparro et al. (2004a). 

As can be observed in Fig. 7b, SM, CM and LM samples are dominated by the coarse 

fraction (sand, about 60%); on the other hand, subordinated fine fractions are about 27% for 

silt and about 13% for clay contents. However, if scraped (SM and CM) and swept (LM) 

samples are studied separately, differences are noted. In particular, a balance between fine 

(54%, silt: ~36% and clay: ~18%) and coarse (sand: ~45%) fractions is observed for 

scraped samples; but swept samples are dominated by the coarse fraction (sand: ~92%). 

Although correlations between granulometric fractions and elements are not presented here, 
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results show positive relationships (R-values: 0.52-0.91) between fine fractions and Li, Cr, 

Fe, Al, Zn, Co, Cd and Pb. 

Concentration of Ba, Cr, Cu, Zn, Cd and Pb (360.7, 50.4, 108.8, 279.6, 1.02 and 115.5 

mg/kg respectively, Fig. 7a) are above their corresponding baseline values, considering that 

traffic is the only pollution source in this area, such element-abundance can be evidently 

interpreted as an anthropogenic contribution. These elements have previously been reported 

in other traffic related studies (e.g. Weckwerth 2001, Wang et al. 2003, Lin et al. 2005). 

Based metal additives are originally present in fuels and lubricating oils, e.g. Ba in diesel 

fuel is used as a smoke suppressant, Mn as an anti-knock agent, Zn, Ca and Mg and other 

metal based additives are used to minimize the damaging effect of residual complexes –

after combustion metal complexes may remain as deposits in the chamber engine– in the 

corrosion and wear of the engine (Huhn et al. 1995, Lim et al. 2007). Although these 

additives are added, manufacturers generally do not provide the elemental composition. 

Therefore, authors have conducted studies, determining considerable amounts of Ba, Zn, 

Ca, Fe, Co, Cd and Pb, as well as others –e.g. Li, Sr, Cr, Mn, Ni, Cu– in minor amounts 

(Lim et al. 2007, Wang et al. 2003). After combustion, toxic trace metal emission from 

vehicular sources can be produced by the engine in form of diesel/gas-soot (e.g. Ba, Zn, Ni, 

Fe, Mn, Cr, Cu, Co, Cd and Pb), general corrosion and engine wear (e.g. Fe and Cr), brake 

lining system (e.g. Fe, C, O, Al, Si, Ca, S, Sb, Mo, Ba, Zn and Cu, Österle et al. 2001, Chan 

& Stachowiak 2004, Mosleh et al. 2004), and tyre wear (e.g. Zn). 

As noted in Fig. 7a, there is an enrichment of Ba, Cr, Cu, Zn, Cd and Pb related to the 

vehicular influence, and therefore these toxic trace metals may be considered as tracers of 

traffic pollution in the study area. Such result is in agreement with other studies indicating 

new tracers of vehicle of combustible-powered, that is for example, Ba and Zn (Monaci et 
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al. 2000); Zn, Cr, Ni, Cu and Cd (Weckwerth 2001); Fe and Pb, and a more limited 

enhancement of Zn, Mn and Ba (Maher et al. 2008). 

Direct observations of magnetic extracts by scanning electron microscope (SEM, using a 

JEOL JSM-6460LV microscope) showed different morphologies –spherules and 

aggregates, agglomerates in a variety of shapes, and (sub)angular particles– and grain sizes 

that are in agreement with estimated size, i.e. finer submicron agglomerates from diesel 

soot, (sub)micron agglomerates and spherules from gas soot and coarser micron particles 

from brake abrasion. Most of determined elements (by chemical analysis), and others (C, 

O, S, Sb and Ti), were also detected by x-ray Energy Dispersive Spectroscopy (EDS, 

system EDAX Genesis XM4 - Sys 60). These latter results and SEM observations will be 

presented elsewhere. This analysis was not only carried out on swept, scraped and soil 

samples but also on gas, diesel and brake lining material, confirming the production of trace 

elements from the primary pollution sources: vehicles. 

3.4 Relationship between magnetic and chemical variables 

The link between magnetic and heavy metal compounds is based on a genetic relationship 

from a simultaneous production of toxic trace metals and magnetic particles. Most of the 

statistical analyses in magnetic monitoring have used simple correlation (Pearson’s 

correlation) analysis in order to correlate one-to-one magnetic and chemical variables, 

obtaining good results as well as statistically non-significant correlations for some magnetic 

parameters. Some studies showed poor correlations among magnetic susceptibility and 

heavy metals (e.g. Petrovský et al. 1998, Chaparro et al. 2004b, Zhang & Yu 2002), 

whereas alternative magnetic parameters correlated very well (e.g. Georgeaud et al. 1998, 

Chaparro et al. 2004a). 
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Several magnetic (7) and chemical (17) variables were linearly correlated for selected SM, 

CM and LM samples using the software Multivariado. In Table 1, results (R-values) are 

summarized, and in particular, relevant correlations are highlighted in bold type. These 

correlations (R>0.5) are of great interest for trace element above their baseline values 

(discussed above), as noted, Cr and Cd show strong positive correlations with  (or ) and 

ARM; but Ba a moderate negative correlation with ARM. Zn and Pb only show strong and 

moderate correlations with the ARM/-ratio, such result was also obtained by Chaparro et 

al. 2004b, 2005 in streams and lakes from Argentina that received pollutants from 

industrial and urban pollution sources. On the other hand, the metals below their baseline 

values could be a consequence of natural origin or a mixing between particles of natural 

and anthropogenic origin. However, Li, Sr, Mn, Fe, Al and Co show moderate and strong 

positive correlations with  (or ), ARM and SIRM. Hcr and S-ratio only correlate with Ca, 

Sr and Mn; and most of correlations between SIRM/, ARM/-ratio and chemical variables 

are negative. 

These results support the existence of relationships between some magnetic and chemical 

variables. Moreover, the above mentioned conclusions reveal that magnetic concentration 

parameters (especially  and ARM) and the magnetic grain size parameter (ARM/-ratio) 

can map some toxic trace elements. As noted, concentration of (ferri)magnetic particles and 

contents of Li, Ba, Cr, Mn, Fe, Al, Co and Cd seem to be associated; and on the other hand, 

fine grain size ferrimagnetic particles seem to have good affinity with Pb and Zn. Even 

though possible reasons are beyond the present study, it is worth mentioning that similar 

correlations were found for this grain size magnetic parameter: ARM/-ratio in other sites 

from Argentina (Chaparro et al. 2004b, 2005) when magnetic susceptibility yielded poor 
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correlations. This fact suggests the alternative use of other magnetic parameter to explain 

such chemical variables. 

Although simple correlation results between variables are moderate and strong, allowing 

the use of magnetic grain size and concentration parameters as indicators of some toxic 

trace metals emitted by vehicle, further statistical studies should be accomplished to 

thoroughly investigate links among variables. According to Chaparro et al. (2006, 2008), in 

recent studies, new multivariate statistical techniques –e.g. canonical correlation analysis 

(CCA), principal coordinate analysis (PCoordA), linear discriminant analysis (LDA) and 

multivariate analysis of variance (MANOVA)– have been proposed as complementary 

studies when simple correlation results are not so satisfactory. 

4 Conclusions 

In this case of study, magnetic susceptibility parameter seems to be a suitable indicator of 

traffic-related pollution. Results of is show magnetic enhancement in the central area of 

the tollbooth line (on the pavement), and near the edge of the road in soils, allowing as a 

first-order approach to identify the main areas of interest for pollution in the road Autovia 

2. Hence, magnetic enhancement is interpreted as a consequence of deposition and/or 

movement of pollutants into the asphalt surface and roadside soils. 

Results of thermal magnetic studies and remanence parameters indicate the predominance 

of magnetite-like phases that control the magnetic signal of vehicle-derived emissions. 

Although all collected samples: scraped, swept, soil, asphalt material, brake lining and soot 

samples show a similar magnetic behaviour, it is possible to discriminate among them 

according to their magnetic concentration and features. Magnetic grain size estimations 
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from our study are in most samples below 5 µm, and finer (0.1-2 µm) for soot samples; 

comprising fine particles that can be deeply inhaled and therefore can potentially lead to 

dangerous respiratory and cardiovascular diseases. 

The sources of pollution are vehicles that produce soot particles from exhaust and other 

solid particles generated by tyres, brake-lining, engine corrosion and abrasion of vehicles 

surfaces. Elemental composition analysis confirmed the presence and enrichment of some 

toxic trace metal, such as Ba, Cr, Cu, Zn, Cd and Pb, which may be considered as tracers of 

traffic pollution in the study area. Moreover, magnetic studies on brake lining and soot 

samples show a strong magnetic signal supporting the production of magnetic particles (in 

addition to toxic trace metals) from the primary sources. 

The co-existence of both metal and magnetic particles is supported from correlation 

analysis, selected magnetic and chemical variables show moderate and strong correlations 

(R-values from 0.55 to 0.83), hence the magnetic concentration parameters ( or  and 

ARM) and magnetic grain size parameter (ARM/-ratio) are potential indicators to map 

some toxic trace elements: Ba, Cr, Zn, Cd and Pb. 
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Figure Legends 

Fig. 1. Map of Buenos Aires province (Argentina), the road Autovia 2 and tollbooth sites. 

Fig. 2. Measurements of in situ magnetic susceptibility (is) on the paved area (black colour) and on 

the roadside grass area (gray colour). A profile across the road Autovia 2 is shown in Maipu 

tollbooth area. Numbers (bottom) correspond to each tollbooth. 

Fig. 3. Contour map of in situ magnetic susceptibility (is) on roadside soils along the road Autovia 

2. High values of is are observed near the road edge. 

Fig. 4. Magnetic properties for all samples: sediments, soils, diesel/gasoline soot, asphalt and brake 

samples. (a) Biplot of SIRM/ vs. remanent coercivity (Hcr); (b) Biplot of S-ratio vs. SIRM/. 

Fig. 5. Stepwise thermal demagnetisation (black colour) and normalised magnetic susceptibility 

(gray colour) measured at room temperature (after each step). Measurements for selected samples 

of: a) road sediments, b) road-side soils, c) diesel soot and brake lining material, d) asphalt material. 

Fig. 6. ARM vs.  (King plot, King et al. 1982) for all samples: sediments, soils, diesel/gasoline 

soot, asphalt and brake lining samples. 

Fig. 7. (a) Elemental composition and (b) grain size analysis of selected samples (n= 12; 5 samples 

SM, 2 samples CM and 5 samples LM). Variability of some selected element contents (in mg/kg for 

all elements, except for Fe and Al in g/kg). The box delineates interquartile range 25-75%, and the 

horizontal line in box indicates the median. Minimum and maximum values are shown using 

whiskers, as well as the mean value with an open square. The circles correspond to baseline values 

of regional soils from Buenos Aires province (Lavado et al. 2004, Chaparro et al. 2004a). 
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Table Titles 

Table 1. Statistical results (n= 12). Linear correlation (R-values) between magnetic and chemical 

variables. 
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Table 1. Statistical results (n= 12 ). Linear correlation (R-values) between magnetic and chemical variables

_______________________________________________________________________________________________________________________

κ ARM SIRM HCR S-ratio SIRM/κ κARM/κ

_______________________________________________________________________________________________________________________

Li 0.589 0.731 0.137 0.320 -0.040 -0.706 0.296
K 0.367 0.418 0.414 0.461 -0.180 -0.118 -0.446
Na 0.330 0.340 0.027 0.364 -0.230 -0.443 0.064

Mg 0.351 0.366 0.058 0.286 0.337 -0.445 -0.104
Ca 0.071 0.080 0.363 0.396 0.586 0.276 -0.529
Sr 0.007 0.151 0.557 0.383 0.571 0.545 -0.635
Ba -0.421 -0.568 -0.403 -0.152 0.263 0.149 -0.184

Cr 0.775 0.833 0.464 0.433 -0.217 -0.564 0.113
Cu -0.203 -0.128 0.086 0.112 -0.269 0.425 0.275
Mn 0.341 0.510 0.757 0.629 0.384 0.284 -0.601
Fe 0.703 0.674 0.322 0.426 -0.229 -0.609 0.096
Al 0.538 0.462 -0.114 -0.034 0.051 -0.831 0.347
Zn 0.195 0.196 -0.248 0.078 -0.487 -0.494 0.630
Ni -0.159 -0.065 0.161 0.132 -0.148 0.450 0.352
Co 0.645 0.564 0.056 0.280 -0.295 -0.816 0.225
Cd 0.693 0.730 0.285 0.042 -0.162 -0.640 0.189
Pb 0.242 0.207 -0.075 -0.197 -0.361 -0.335 0.554
_______________________________________________________________________________________________________________________
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