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Abstract: Several strains of Thermus thermophilus were tested in order to detect purine 

nucleoside synthase activity using pyrimidine nucleosides as the sugar-donor and adenine 

or hypoxanthine as bases. High productivity values (t =1 hr) were obtained while 

completely avoiding adenosine-deaminase degradation of the products. N-2-deoxy-

ribosyltransferase activity is described for the first time in hyperthermophilic bacteria. 
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Introduction 

 

Thermophiles are a group of microorganisms that grow under extreme temperature conditions. 

These microorganisms offer useful enzymes to expand the range of reaction conditions suitable for 

biocatalysis. In this way some interesting enzymes have been described such as esterases, lipases, 

proteases, alcohol dehydrogenases, etc. [1,2]. Nucleoside analogues are labile and polyfunctional 

molecules which chemical synthesis requires several protection/deprotection steps [3]. These 

compounds have a wide range of uses, mainly as antiviral or antitumoral drugs, but also in the 

treatment of hypertension or inflammatory processes. The one-pot synthesis using nucleoside 
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phosphorylases (NPs) or nucleoside 2’-deoxyribosyltransferases (NdRTs) are an alternative to the 

chemical synthesis [3-5].  

Several mesophile microorganisms have been identified as active for purine nucleoside synthesis, 

giving relatively good yield values after short reaction times [5,6]. However, the adenosine 

degradation by adenosine-deaminase (ADA) still remains as a problem for many of them (Scheme 1). 

In this work, we identify several strains of Thermus thermophilus capable of reaching high yield 

values, overcoming the ADA problem.  

Scheme 1. Reaction pathways of the adenine nucleoside synthesis and degradation of 

adenine and adenine nucleosides by ADA. 
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Scheme 2. One-pot enzymatic synthesis of adenine nucleosides using uridine or 2’-

deoxyuridine as donors of sugar moiety. 
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Results and Discussion 

 

The reactions of 2’-deoxyuridine (X =H) or uridine (X =OH) with hypoxanthine were tested. These 

reactions yield 2’-deoxyinosine (X =H) or inosine (X =OH), respectively (Scheme 2). Different 

Thermus thermophilus strains - cultured in optimum conditions - were tested. Better yields and 

productivity values were obtained with 2’-deoxyuridine (dUrd) than in the case of uridine (Urd) (Table 

1). These results seem to indicate that one very active nucleoside 2’-deoxyribosyltransferase or one 

thymidine nucleoside phosphorylase plus one purine nucleoside phosphorylase are present in these 

strains.  

Table 1. Yield and productivity values in the reaction dUrd or Urd + hypoxanthine, using 

different T. thermophilus strainsa. 

Strain 
2’-Deoxyinosine synthesis Inosine synthesis 

Yield (%) [cells ]b Productivityc Yield (%) [cells ]b Productivityc

NAR1 24 10,000 12 x 10-5 8.5 9,883 4.3 x 10-5 

HB27 28 6,364 22 x 10-5 14 6,364 11 x 10-5 

PRQ-16 24 6,316 19 x 10-5 11 6,111 9.0 x 10-5 

PRQ-25 25 6,250 20 x 10-5 11 5,978 9.2 x 10-5 

B 24 7,059 17 x 10-5 11 7,142 7.7 x 10-5 

RQ1 20 10,417 9.6 x 10-5 8.7 10,610 4.1 x 10-5 

N17 21 7,500 14 x 10-5 10.5 7,500 7.0 x 10-5 

HN1.11 12 3,529 17 x 10-5 5.3 3,786 7.0 x 10-5 

Fiji3A1 16.5 2,750 30 x 10-5 8.3 2,767 15 x 10-5 

CC16 23 6,053 19 x 10-5 10 5,952 8.4 x 10-5 

VG7 22 2,683 41 x 10-5 13 2,708 24 x 10-5 
a Reaction conditions: 65ºC, 5 mM deoxyuridine or uridine, 5 mM hypoxanthine, 30 mM sodium 

phosphate buffer (pH= 7). Total volume 4 mL; b million cells. mL-1; c µmol.h-1.million cells-1. 

 

Table 2. Yield and productivity of the reaction dUrd or Urd + adenine using some selected 

strains a. 

Strain 
2’-Deoxyadenosine synthesis Adenosine synthesis 

Yield (%) [cells] b Productivity c Yield (%) [cells] b Productivity c

NAR1 30 10,714 14 x 10-5 15 10,563 7.1 x 10-5 
HB27 44 11,000 20 x 10-5 21 10,938 9.6 x 10-5 
PRQ-16 29 6,041 24 x 10-5 15 6,000 12.5 x 10-5 
PRQ-25 28 5,600 25 x 10-5 15 5,556 13.5 x 10-5 
B 38 9,500 20 x 10-5 21 9,545 11 x 10-5 
RQ1 28 10,769 13 x 10-5 15 10,870 6.9 x 10-5 
N17 27 7,105 19 x 10-5 12 6,771 9.6 x 10-5 
HN1-11 15 5,769 13 x 10-5 6.9 5,847 5.9 x 10-5 
Fiji3A1 14 5,000 14 x 10-5 6.3 5,250 6.0 x 10-5 
CC16 30 6,818 22 x 10-5 14 6,667 10.5 x 10-5 
VG7 23 4,423 26 x 10-5 12 4,286 14 x 10-5 
a Reaction conditions: 65ºC, 5 mM deoxyuridine or uridine, 5 mM hypoxanthine, 30 mM sodium 

phosphate buffer (pH= 7). Total volume 4 m; b million cells. mL-1; c µmol.h-1.million cells-1. 
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In order to test the efficiency of the biocatalysts in the synthesis of 6-aminopurine nucleosides, the 

synthesis of 2’-deoxyadenosine (X=H) and adenosine (X=OH) (Scheme 2) was studied (Table 2). 

Productivity values, which are related to the number of cells carrying the reaction, were used to 

compare results, since each assay was performed from different cultures with different cells 

concentrations, making overall yield a poor parameter for comparison. 

As in the case of 6-oxonucleosides (Table 1), the synthesis of 2’-deoxyadenosine (dAdo) leads to 

better yields than the synthesis of adenosine (Ado) (Table 2). The productivities in dAdo (Table 2) 

were generally similar or higher compared to those in the synthesis of 2’-deoxyinosine (Table 1) 

except for strains VG7 and FIJI3A1. In any case, adenine nucleoside degradation products (inosine, 2’-

deoxyinosine or hypoxanthine) could not be detected, indicating absence of ADA activity at the tested 

temperature. From the results of Tables 1 and 2, we could conclude that the intracellular enzymes of 

strains show better selectivity versus 6-aminopurine than versus 6-oxopurines. This broad specificity 

has been described in mesophile bacteria [5,7]. Due to the different biomass production of the strains, 

productivity values were calculated to select the best biocatalysts. According to this criterion HB27, 

PRQ-16, PRQ-25, B, Fiji3A1 and VG7 were selected as the most interesting strains. The productivity 

values are better than those described for wild type mesophile or psychrophile species under the same 

experimental conditions [5,6,8]. Other workers [9] describe better nucleoside yields but the cell 

concentration was not given, so we cannot compare the catalytic activity. These productivities, the 

absence of ADA activity, the thermotolerance and the resistance to extreme conditions make these 

biocatalysts interesting for further developments. In addition, we must indicate that the cell cultures of 

each strain – in optimum conditions – are repetitive as we can observe in Tables 1 and 2. 

Table 3. Yield and productivity of the reaction thymidine + adenine or hypoxanthinea. 

Strain 
Thymidine + hypoxantine Thymidine + adenine 

Yield (%) [cells]b Productivityc Yield (%) [cells]b Productivityc

HB27 22 10,000 11 x 10-5 33 9,706 17 x 10-5 

PRQ-16 14 5,385 13 x 10-5 21 5,526 19 x 10-5 

PRQ-25 15 5,357 14 x 10-5 21 5,250 20 x 10-5 

B 21 8,750 12 x 10-5 39.5 8,977 22 x 10-5 

Fiji3A1 12 5,455 11 x 10-5 16 5,333 15 x 10-5 

VG7 11.5 3,382 17 x 10-5 19 3,519 27 x 10-5 
aReaction conditions: 65ºC, 5mM thymidine, 5mM adenine or hypoxanthine, 30mM sodium 

phosphate buffer (pH=7). Total volume 4 mL; b million cells. mL-1; c µmol.h-1.million cells-1. 

 

Similar reactions were performed using thymidine as the sugar-donor nucleoside and adenine or 

hypoxanthine as acceptor bases to explore the presence of one thymidine-nucleoside phosphorylase 

(selective versus thymidine and 2’-deoxyuridine (dUrd) compared to uridine (Urd) [11-13]). The 

combination of this enzyme plus a non-specific PNP can give activities similar to the expected for an 

active NdRT. The obtained productivity values with the selected strains (Table 3) were generally 

lower than those obtained with dUrd (Tables 1 and 2) showing a moderated selectivity versus adenine. 

Therefore, if the strains: i) gave better yields versus adenine than with hypoxanthine; ii) gave better 
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yields with 2’-deoxyribose nucleoside than with ribose nucleoside; iii) gave lower or similar yields 

using thymidine than using 2’-deoxyuracil, as sugar donors and iv) uridine is recognised as substrate, 

we could postulate that the strains present an active NdRT or one PyNP plus one PNP selective versus 

adenine compared to hypoxanthine.  

Other assays were performed for the optimization of reaction parameters such as pH, molar ratio of 

nucleoside/base and nature of the buffer. HB27 was selected due to the high productivities and the 

easy culture conditions. To explore the nature of the active enzyme, the same reaction was tested in 

two buffers. In Tris/HCl buffer 30mM (pH=7) the productivity values experienced an increase of 44% 

over those obtained in 30mM sodium phosphate buffer (pH=7). This result suggests, in accordance 

with the literature [1-4,6], that one NdRT, rather than two NPs, may be the most active enzyme in 

HB27. 

Scheme 3. Reaction mechanism of the N-2-deoxyribosyltranferase catalysis. 
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Figure. 1. Influence of pH in the productivity of deoxyadenosine by T. thermophilus 

HB27. Standard reaction conditions: 65ºC, 5mM deoxyuridine, 5mM adenine, 30mM 

sodium phosphate buffer (pH=7). Total reaction volume 4 mL. 

0

5

10

15

20

25

30

5,75 6 6,25 6,5 6,75 7 7,25 7,5 7,75 8
pH

P
ro

du
ct

iv
ity

 (
μ

m
ol

.h
-1

.m
ill

io
n 

ce
lls

-1
 x

10
5 )

 
 



Molecules 2009, 14                            

 

 

1284

Figure. 2. Influence of deoxyuridine/adenine ratio. Standard reaction conditions: 65ºC, 

5mM deoxyuridine, 5mM adenine, 30mM sodium phosphate buffer (pH=7). Total reaction 

volume 4 mL.  
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In Scheme 3 we show the reaction mechanism for the 2’-deoxynucleoside synthesis catalyzed by 

NdRT [3,5]. We can see that phosphate ion is not necessary for the catalytic process. This is the 

fundamental difference with NPs, which produce 1-α-ribose-phosphate [5,11,14,15]. 

The results in Figure 1 indicate that better productivities are obtained at pH <7.5. Similar optimum 

pH values were recommended in the case of NdRTs from Lactobacillus helveticus (6 <pH <6.5 [16]) 

or Lactococus, Streptoccocus, Aeroccoccus and Leuconostoc genera (pH =6.5 [17]). Therefore, these 

results seem to support the NdRT hypothesis.  

In Figure 2 we show that an excess in dUrd dramatically increases the productivity values. Similar 

results have been described [5,9,16,18,19], suggesting that the rate controlling step is the first one 

(Scheme 3). The excess of adenine moderately increases the yield. Taking into the account the 

mechanism of NdRT [14,15] we could only explain this result by assuming that the greater the 

concentration of dUrd is, the higher the concentration of active intermediate (1-α-glutamyl-ribose , 

Scheme 3) is, and therefore the yield increases. Contrarily, if the dUrd concentration is the same, the 

concentration of the reaction intermediate is constant and so an increase in the adenine concentration 

does not dramatically increase the yield as observed (Figure 2). We must indicate that an increase in 

the adenosine concentration does not lead to hypoxanthine formation. 

Several results hint towards the possibility of a NdRT involved in the reactions tested, such as the 

increased productivity when the reaction is carried in tris-HCl buffer without the presence of 

phosphate, which is a substrate in the NP reaction, or the apparent acidophility of the process. 

However, whole, living cells are a complex system with many variables which should be taken into the 

account. Also, it has been previously reported the existence of NPs in some of the tested strains, such 

as HB8 [20]. Now, cloning and isolation experiments are in progress in HB27 and PRQ-25 and VG7. 
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Experimental  

 

Materials and Microorganisms 

 

Nucleosides and purine bases were from Sigma-Aldrich (USA). HPLC solvents were from Scharlab 

(Spain) and the buffer reagents from Aldrich (Germany). Different strains of Thermus thermophilus 

were used in this work: NAR1, HB27, PRQ-16. PRQ-25, B, RQ1, Fiji3A1, HN1.11, CC16, VG7 and 

NR-17. Cells were grown in TB culture medium [0.8 % peptone (w/v), 0.4 % yeast extract (w/v) and 

0.3 % NaCl (w/v) in Milli-Q grade water, adjusted to pH 7.5 with NaOH] at 65 ºC [7] for 16 h under 

shaking at 150 rpm in Erlenmeyer flasks. After growing, the culture broth was centrifuged for 15 min 

at 10,000 g. The cells were harvested and washed in 10 mL of 30 mM sodium phosphate buffer (pH 

=7) and then re-centrifuged. The pellet was directly used in the purine nucleoside synthesis test 

reactions. 

 

Standard synthesis of purine nucleosides 

 

Cells were obtained from 20 mL of culture broth and resuspended 4 mL of reaction mixture (30 

mM sodium phosphate buffer, pH=7, sugar-donor nucleoside 5 mM and sugar-acceptor base 5 mM). 

The reactions were performed at 65ºC under shaking for 1 hour. Samples were obtained and filtered to 

be immediately analysed by HPLC. 

 
Synthesis in Tris/HCl buffer 

Cells were obtained from 20 mL of culture broth and resuspended with 4 mL of reaction mixture 

(30mM Tris/HCl buffer (pH=7)). Then 2’-deoxyuridine (5 mM) and adenine (5 mM) were added. The 

reaction was performed at 65ºC under shaking for 1 hour. Samples were filtered to be immediately 

analysed by HPLC.  

 

Sample analysis 

 

The samples were analyzed by HPLC using water/methanol (90:10 v/v) as the mobile phase and a 

flow rate of 1.2 mL·min-1. The Agilent 1100 Series HPLC was equipped with an UV detector (set at 

254 nm) and a C18 apolar column (0.46 x 15 cm, 5 µm), Teknokroma, Barcelona, (Spain). 
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