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Abstract 25 

Hylobius abietis is an important pest of coniferous plantations in Europe, to which high 26 

mortality, stem deformities and growth loss are typically attributed. In pine trees, as in other 27 

long-lived organisms, the costs of short term resistance against invading organisms could be 28 

shown in the long term. We examined the nutritional status of Pinus pinaster after a two-29 

years long H. abietis attack, measuring needle and phloem N and P concentrations, and the 30 

impact of the damage on subsequent growth, survival and stem deformities over a period of 31 

five years. The study sites were a P. pinaster family x fertilization trial, and a neighbouring 32 

twin trial not attacked with similar climate and soil characteristics. Growth losses after the H. 33 

abietis attack were important (up to 40%) but restricted to the first years after the attack. Five 34 

years after the attack the annual height increment of pines in the attacked stand was not 35 

related to the initial damage suffered, and plants showed regular stems, normal leader 36 

dominance and regular height after 5 yr. These findings, consistent with the comparison 37 

between stands, suggest a strong compensatory growth and that P. pinaster is a tolerant 38 

species to the large pine weevil. Needle nutrient concentrations in the healthy stand were, as 39 

expected, significantly greater in experimentally fertilized plants, and they were linearly 40 

related to those in phloem showing equilibrated stoichiometry both for nitrogen (r = 0.86; p 41 

<0.01; N = 25) and phosphorus (r = 0.84; p <0.01; N = 25). However, at the attacked stand, 42 

nutrient concentrations in the needles did not follow the experimentally manipulated nutrient 43 

availability in soils; and phosphorus concentration in the needles was unexpectedly not 44 

related to those in the phloem. The pine seedlings attacked by H. abietis showed altered 45 

potential of allocating nutrients to their tissues according to the nutrient availability existing 46 

in the soil, and also altered stoichiometry in N and P concentration among phloem and 47 

leaves. Maritime pine seem to be tolerant to the pine weevil attack, at least in the conditions 48 

of this study, where pine weevil damage caused a deep alteration of nutrient allocation and 49 

nutritional status. Further research is needed to elucidate to what extent altered nutrient 50 
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allocation may be part of an induced response to the attack or just derived from the vascular 51 

injury caused by the weevil wounding in the phloem. 52 

 53 

Keywords: Herbivory · Fertilization · Forest Pest · Resistance · Tolerance · Nutrient 54 

allocation 55 

 56 

Introduction 57 

Damage by the large pine weevil, Hylobius abietis L. (Coleoptera: Curculionidae) is 58 

the most severe threat to newly planted conifer seedlings after clearcutting in Europe 59 

(Nordlander et al. 2003). Adults feed on the stem bark and phloem of young seedlings, 60 

causing great economic losses if no protection measures are applied (Orlander and 61 

Nordlander 2003; Petersson and Orlander 2003; Nordlander et al. 2008). The pine weevil has 62 

been estimated to cause the death of up to 80% of coniferous seedlings planted following 63 

clear-cutting (von Sydow and Birgersson 1997; Orlander and Nilsson 1999; Nordlander et al. 64 

2008), and severe growth losses in the surviving seedlings (Orlander and Nilsson 1999; Zas 65 

et al. 2006). Besides mortality and growth reductions, H. abietis attack can cause the leader 66 

loss by stem girdling, which can lead to stem form defects in those plants where some lateral 67 

branches emerge to recover apical dominance. Although there is a clear consensus that H. 68 

abietis cause important growth reduction and stem deformities, experimental data supporting 69 

those effects are scarce. Furthermore, most of the papers reporting growth losses are usually 70 

limited to one or two years after damage. 71 

Besides growth loss and stem deformities, the nutritional status and nutrient 72 

allocation of plants could also be influenced by insect grazing. Plants subjected to insect 73 

attack have been found to present greater or lower nutrient concentrations in their plant 74 

tissues, and even altered within plant variability in nutrient concentrations, than their 75 

uninfested counterparts (Polley and Detling 1989; Ayres et al. 2000). In a revealing 76 
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experimental study, Newingham et al. (2007) recently reported a significant shift in nitrogen 77 

allocation to the shoot in the flowering plant Centaurea maculosa (Asteraceae) when infested 78 

with a belowground herbivore. However, little is known about the existence of herbivore 79 

induced responses involving altered resource allocation patterns in conifers or other long-80 

lived plants.  81 

Most of H. abietis damage has been reported in spruce and Scots pine (Orlander and 82 

Nilsson 1999; Orlander et al. 2000), but Pinus radiata and other European southern pines 83 

such as maritime pine (Pinus pinaster Ait.) are also a target species of this generalist phloem 84 

herbivore. Maritime pine is the most important forest tree species in Galicia (NW Spain), 85 

occupying nearly 400,000 ha (~27% of the Galician wooded area). In 2003 several P. 86 

pinaster family  fertilization trials were established to test the plasticity of 28 half sib 87 

families of the actual Galician maritime pine breeding population in relation to soil fertility, 88 

one of the main factors determining site index of coniferous stands in Galicia (e.g. Sánchez-89 

Rodríguez et al. 2002). One of those trials suffered a massive attack of H. abietis just after 90 

planting. We studied the differential preference of the weevil due to the fertilization and the 91 

genetic material in two companion papers (Zas et al. 2005; 2006). Briefly, we found that 92 

wounding intensity by the pine weevil in fertilized trees was up to 2.9-fold greater than in 93 

unfertilized control plants during the two consecutive years of attack; families markedly 94 

differed in their susceptibility to the insect; and damage by the weevil produced deep impact 95 

on fitness, where mortality was closely correlated to wounding intensity, and more damaged 96 

plants showed reduced growth rates in the following growing season. 97 

In this paper we describe how two consecutive years of large pine weevil attack in 98 

this P. pinaster family  fertilization trial affected the nutrient allocation and the subsequent 99 

growth recovery in the surviving seedlings. We studied the nutrient concentration in needles 100 

and phloem immediately after the attack, and we measured the plant growth during five years 101 

after planting. As we lack reference nutrient values from the seedlings before the attack, 102 
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because weevil damage began too early after planting, we also studied the same properties in 103 

a neighbouring twin family  fertilization trial free of H. abietis damage with similar climate 104 

and soil properties, and identical design and genetic material. 105 

 106 

Material and methods 107 

Location and description of the genetic trials 108 

We studied two twin P. pinaster experimental field trials located in the west coast of 109 

Galicia (NW Spain) separated by 30 km. The trial attacked by the pine weevil, previously 110 

described in companion papers (Zas et al. 2005; 2006), is located at Rianxo (42.36º N; 8.46º 111 

W; altitude 90 m a.s.l.; 6 km from the sea). The healthy stand used as reference is located at 112 

Rebordelo (42.46º N; 8.48º W; altitude 530 m a.s.l.; 18 km from sea). The climate in both 113 

sites is temperate humid Atlantic. Annual precipitation during the study period (2003 – 2007) 114 

was 1511±195 mm and 1976±221 mm, and the mean annual temperatures were 14.8±1.9 ºC 115 

and 12.1±0.6 ºC in Rebordelo and Rianxo, respectively. Monthly precipitation and mean 116 

monthly temperature strongly correlated between the two sites during those years (R
2
 = 0.900 117 

and R
2
 = 0.989 respectively, N = 60, p<0.001). 118 

Soils in both sites derived from granite and they are thin, sandy and acidic. Main 119 

characteristics just before plantation were low pH  (pH in H2O Rebordelo ~ 4.0; Rianxo ~ 120 

4.3), high organic matter content (~180 and 170 g kg
-1

 soil ash-free dry weight in Rebordelo 121 

and Rianxo, respectively), high total nitrogen content (Rebordelo ~ 7.1 g N kg
-1

 soil; Rianxo 122 

~ 6.3 g N kg
-1

 soil), and very low concentrations of other nutrients, especially of available 123 

phosphorus (Rebordelo Olsen P ~ 4.2 mg kg
-1

 soil; Rianxo Olsen P ~ 4.7 mg kg
-1

 soil). 124 

Before trial establishment, Rebordelo stand was covered mainly by Ulex europaeus L., and 125 

Rianxo stand was covered by a 35 year-old P. pinaster stand. The clear-felling of the latter 126 

stand in January 2002 motivated the subsequent weevil infestation.  127 
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The experimental design was identical in both family  fertilization trials. It was a 128 

split-plot block design replicated in 10 blocks, with the fertilization treatments acting as the 129 

main factor, and the pine families as the split factor. Whole plots were around 12 x 18 m in 130 

size. In total, we planted 2790 seedlings in each trial, corresponding to 10 blocks  9 131 

fertilization treatments  31 pine genetic entries. A more detailed description of the trials is 132 

in Zas et al. (2006). 133 

Six-month-old containerized P. pinaster seedlings were planted at beginning of 134 

March 2003.  Immediately after planting, nine fertilization treatments (with different 135 

combinations of four commercial fertilizers) were randomly assigned to the whole plots 136 

within each block, and manually distributed 30 cm around the seedlings. Plant material in 137 

both trials consisted of 28 open-pollinated families from plus trees randomly selected in a 138 

first generation seed orchard (Sergude, 42.82º N, 8.45º W), and three commercial seed 139 

sources as controls. Seedlings were grown together at the same nursery for both sites, and 140 

were about 15 cm tall at planting. Seedlings at Rianxo were attacked by H. abietis during 18 141 

months, since 3 months after planting (June 2003) until the end of autumn of the second year 142 

(December 2004), with peaks of damage at late spring and early autumn. The spatial analysis 143 

of the infestation revealed that the damage was uniformly spread throughout the experimental 144 

area (Zas et al. 2006). 145 

 146 

Sampling and field assessments 147 

In order to reduce the analytical effort to reasonable levels, for the purpose of the 148 

present paper we studied a randomly selected subsample of the whole trials at each site. We 149 

sampled eight families under five fertilization treatments in five blocks; and additionally 150 

three of these families were sampled in all the 10 blocks of the trials in order to account for 151 

the spatial variability. The sample size was 275 trees for each trial. 152 
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The four fertilization treatments selected for tree sampling within the trials had a 153 

common base of potassium sulphate (applied at 15 g K plant
-1

) and magnesium sulphate (at 5 154 

g Mg plant
-1

), plus an alternative combination of presence or absence of ammonium nitrate (5 155 

g N plant
-1

) and calcium phosphate (10 g P plant
-1

). In summary, four fertilization treatments 156 

(+N+PCa; -N+PCa; +N-PCa; -N-PCa) plus an unfertilized control were selected for this 157 

study. 158 

Plant growth was measured yearly (well in November or December) from 2003 to 159 

2007 in both trials. Growth variables measured were total height in cm and stem-base 160 

diameter in mm. Stem deformities (bottom stem bifurcations and strong bottom stem 161 

curvatures) were evaluated in the fifth year as a binomial variable (presence-absence) in both 162 

trials. 163 

The damage by H. abietis in the attacked stand was assessed during the first 164 

(February 2004) and the second year (December 2004) after planting. The intensity of 165 

wounding was evaluated by estimating the relative debarked area along the stem caused by 166 

the weevil using a four-level scale (0 = undamaged, 1 = some wounds, 2 = many wounds, 167 

and 3 = death due to girdling). To minimize subjectivity, the pine stem was divided in ten 168 

parts using an elastic ruler, recording the weevil wounding score in each part, and summing 169 

the ten values up, resulting in a 0-30 scoring for each tree. For the second year evaluation we 170 

followed the same method and scale of damage, but the stem height was only divided in five 171 

parts. As wounding preferences were extensively studied in a former paper for the whole trial 172 

(N = 2790 trees; Zas et al. 2006), for exploring the relationship with the nutritional status and 173 

subsequent growth increments in the present study we exclusively considered the wounding 174 

score in the 275-trees subsample. 175 

The nutritional status was studied two years after planting (December 2004), 176 

immediately after the insect attack at Rianxo. We evaluated nitrogen and phosphorus 177 

concentration in the needles of all the 275 plants of each trial. In each tree, a group of about 178 
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100 needles from the apical stem and orientated towards the West was collected in December 179 

2004, when nutrient concentrations are relatively stable (Will 1971), and transported to the 180 

lab in ice coolers. Needle samples were oven dried at 65 ºC to constant weight, finely 181 

ground, labelled and preserved for chemical analysis. 182 

To study the nutrient allocation, 25 seedlings were destructively sampled in the same 183 

five fertilization treatments, and in five randomly selected blocks in each site. These 184 

seedlings belonged to the mixed commercial seedlot produced in the same seed orchard as 185 

the studied families, which is formed by a random representation of the seeds produced by all 186 

the 116 plus trees in this seed orchard. A section 15 cm long of the apical stem (2004 growth) 187 

was sampled and transported in ice coolers to the lab, where the phloem was immediately 188 

separated by hand using a surgical knife, oven-dried and processed as above. Needles of 189 

these trees were sampled and processed as previously described. 190 

 191 

Chemical analysis 192 

For nitrogen and phosphorus content, 0.3 g of phloem and needles were digested in a 193 

mixture of selenous sulphuric acid and hydrogen peroxide (Walinga et al. 1995). Nitrogen 194 

was colorimetrically analysed in diluted aliquots of this digestion using a BioRad 680 195 

microplate reader (California, USA) at λ = 650 nm (Sims et al. 1995). Phosphorus was 196 

analysed in the same diluted aliquots by inductively coupled plasma optical emission 197 

spectroscopy (ICP-OES) using a Perkin-Elmer Optima 4300DV (Massachusetts, USA) in the 198 

central laboratory facilities at Universidade de Vigo – CACTI 199 

(www.uvigo.es/webs/cactiweb/). Nitrogen and phosphorus concentration were expressed in 200 

mg g
-1

 dried weight of tissue. Sample size for foliar nutrient content was N = 275 in each 201 

stand; and for phloem-needle relationships N = 25 in each stand. 202 

 203 

Statistical analyses 204 
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Within each site, nutrient contents and final tree growth were analyzed using the 205 

PROC-MIXED procedure of the SAS System (Littell et al. 2006) and the following within 206 

site mixed model Yijk =  + Feri + Famj + Bk + Fer x Famij + Fer x Bik + ijk , where  is the 207 

general mean, Feri, Famj and Bk are the main effects of fertilization treatment i (i = 1 to 5), 208 

family j (j = 1 to 8) and block k (k = 1 to 10),  Fer x Famij, and Fer x Bik are the 209 

corresponding interactions, and εijk is the experimental error. To analyze the whole plot factor 210 

(i.e. fertilization) with the appropriate error term, the Fer × B interaction was considered a 211 

random effect (Littell et al. 2006). For the purpose of the present paper, the main factor of 212 

study was fertilization and their interactions, and we do not present results regarding genetic 213 

effects. Family, as block, was anyway included in the model for reducing the residual 214 

variance to improve the power of the analyses. The genetic variation in pine susceptibility to 215 

the insect for the first and second year assessments were extensively studied in a companion 216 

paper (Zas et al., 2005). When main effects were significant, differences among treatment 217 

means were tested for significance using the LSMEAN statement (SAS-Institute 1999). Data 218 

are shown as least square means  standard error (LS means ± s.e.). 219 

To compare height and diameter growth over the five years between the two test sites 220 

we performed a repeated measures mixed model across sites using the PROC-MIXED 221 

procedure of the SAS System (Littell et al. 2006). The model included site (main factor), 222 

block (nested in site), fertilization (whole plot factor), family (split factor), time (repeated 223 

measures), and the corresponding interactions. A first order autoregressive model was 224 

assumed for the covariance structure of the repeated measures. For adequately account for 225 

the multisite split-plot design, the model included four different error terms.  226 

Differences in binomial variables between stands were analyzed with a chi-square 227 

test. Linear regressions and Pearson correlations were used to evaluate the relationships 228 

between weevil damage, pine growth and nutrient contents in plant tissues. These analyses 229 

were carried out on family means (N = 8) and on raw data (N = 275 for the subsample of 230 
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families used in foliar nutrient status; and N = 25 for the destructive sample of the 231 

commercial seedlot used in needle-phloem correlations). 232 

 233 

Results 234 

Growth loss  235 

Repeated measures analysis of tree height performed on the 5 years series in the two 236 

sites revealed a significant site  time interaction (F4,1847 = 67.5, p < 0.001). No significant 237 

differences between the attacked and the not attacked stands were found in height of the 238 

sampled trees at the first year after planting (Fig. 1a), suggesting similar forest site-quality 239 

for both stands. The intense pine weevil attack promoted significant growth losses during the 240 

following years in the infested stand, as revealed by a growth reduction of 40%, 15% and 5% 241 

in the second, third and fourth year, respectively, comparing to the growth observed in the 242 

stand with no attacks (Fig. 1a). However, plants in the attacked stand had apparently 243 

compensated for earlier growth losses by the 5
th

 year, and overcome in size those in the not 244 

attacked stand.  245 

Five years after the attack, the total height increment was not significantly related to 246 

the intensity of damage suffered (r = -0.10, p = 0.12, N = 275).  247 

A similar trend was observed for diameter growth, with a significant site x time 248 

interaction (F2,1137 = 21.20, p<0.001; Fig. 1b). During the second and the third year, diameter 249 

of plants in the infested stand was 35% and 25% lower than in the not attacked stand, 250 

respectively (Fig. 1b). However, no significant differences between stands were observed in 251 

diameter growth in the fifth year, indicating complete compensation of diameter growth, as 252 

with height growth (Fig. 1b). 253 

The early growth response to the fertilization treatments was significant in both trials 254 

(Fertilization F4,36 = 2.78, p<0.05 at Rianxo, and F4,36 = 10.1, p <0.001 at Rebordelo). The 255 

observed responses to fertilization during the first year were similar between sites, where the 256 
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pine height produced by the best fertilizer treatments was 53 ± 3 cm at Rianxo and 61 ± 3 cm 257 

at Rebordelo; while those achieved in unfertilized controls were respectively 48 ± 3 cm and 258 

44 ± 2 cm. However, after five years, height of fertilized trees (overall mean height of 259 

fertilized trees = 362 ± 3 cm) was significantly greater than the control (315 ± 3 cm) in the 260 

healthy stand (Table 1; Fig. 2e), whereas the effect of fertilization on final height and 261 

diameter at age five was lost in the attacked stand (Table 1; Fig 2f).  262 

 263 

Mortality and stem deformities 264 

Although 94% of the seedlings in the attacked stand (Rianxo) were damaged by the 265 

insect, mortality was only 12% after one year and 17% after two years (% of planted 266 

seedlings). These values were only slightly higher than the mortality registered in the healthy 267 

stand (3% and 8% after the first and second year, respectively).  268 

In the infested stand, damage by the pine weevil caused the leader loss of 35% and 269 

48% of the seedlings one and two years after the attack, respectively (Zas et al., 2006). 270 

However, although bottom stem deformities were significantly more frequent in the infested 271 

stand (
2

1 = 17.3, p = 0.0003), only 4.6% of the surviving seedlings showed severe stem 272 

deformities five years after the attack, indicating a good recovery of apical dominance by 273 

lateral branches. 274 

 275 

Nutritional status 276 

Increasing experimentally the nutrient availability in the not attacked stand 277 

significantly affected, as expected, the phosphorus and nitrogen concentration in the needles 278 

(Table 1, Fig. 2a, 2c). Phosphorus needle concentration was significantly greater in the 279 

treatments with phosphorus addition than in the unfertilized control (Fig. 2a). Nitrogen 280 

content, which is considered the superfluous nutrient in Galician soils, was generally greater 281 

in the unfertilized control than in the fertilized plants (Fig. 2c). Conversely, no significant 282 
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effect of the fertilization treatments was detected on needle nutrient concentrations in the 283 

attacked stand (Table 1; Fig. 2b, 2d). 284 

Phloem and needle nutrient concentrations showed a strong and positive linear 285 

relationship in the not attacked stand for nitrogen (Fig. 3a) and phosphorus (Fig. 3b). 286 

However, an unexpected lack of relationship was observed for phloem-needle phosphorus in 287 

the infested stand (Fig. 3b), while only a weak relationship appeared for nitrogen 288 

concentration between those tissues (Fig. 3a), evidencing altered stoichiometry in plant 289 

tissues.  290 

Wound intensity in the second year, i.e. just before needle sampling, was significantly 291 

and negatively correlated with N and P needle concentration when analysed on a raw data 292 

basis (r = -0.28; N = 275; p <0.001 for N, and r = -0.13, N = 275, p <0.05 for P), and with P 293 

concentration when analysed on a family mean basis (r = -0.64, N = 8, p <0.05).  294 

 295 

Discussion 296 

Impact of weevil attack on pine growth, stem deformities and mortality 297 

The large pine weevil, H. abietis, is an important insect pest of coniferous 298 

reforestation in Europe, to which important growth losses are commonly attributed. Our 299 

results showed a significant plant growth reduction in the infested stand during the following 300 

three years after the attack. During those years, plants showed an abnormally low interannual 301 

growth rate that suggests an important energy investment in repairing the damage suffered. 302 

Growth losses due to attacks by other weevil species have been previously reported, but little 303 

information is available in the case of H. abietis. White pine weevil (Pissodes strobi) attack 304 

reduced Pinus strobus height growth by 40 to 60% in a year (Hamid et al., 1995), and 305 

reduced significantly the total height in spruce plantations 10 years after planting (Kiss and 306 

Yanchuk 1991; King et al., 1997). Spruce growth remained negatively correlated with the 307 

initial P. strobi damage up to six years after the attack (vanAkker et al., 2004). However, P. 308 
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pinaster seedlings in our study were able to compensate for their early growth reduction, 309 

both in height and diameter, by the fifth year. To our knowledge this is the first work 310 

reporting subsequent growth patterns suggesting compensatory growth in a conifer plantation 311 

attacked by H. abietis. Plant growth compensation for insect damage has been commonly 312 

reported in long-lived woody plants (Trumble et al. 1993; Edenius et al. 1993; Bast and 313 

Reader 2003), and can be interpreted as a tolerance mechanism by which trees can reduce the 314 

impact of herbivores in plant fitness (Strauss and Agrawal 1999), allocating more resources 315 

to vegetative growth than undamaged trees. In this sense, P. pinaster seems to be highly 316 

tolerant to H. abietis at least on these sites. 317 

The inference of compensatory growth was strongly supported by the fact that pine 318 

height growth in the attacked stand was unrelated to initial weevil damage five years after the 319 

infestation, while that relationship was strongly negative (the most wounding the less 320 

subsequent annual growth) in 2 and 3 yrs old pine seedlings (Zas et al., 2006). Thus, pines 321 

were able to overcome the initial growth reductions caused by the insect.  322 

The similar pine heights at the 5
th
 year in the attacked and in the not attacked stand 323 

also support this compensatory growth investment. However, as in other “natural 324 

experiments” this conclusion relies on the assumption that site quality was similar in both 325 

sites, and that the two sites would have produced equivalent growth in the absence of insect 326 

attacks. We assumed same site quality based on (i) the similar soil properties before planting; 327 

(ii) similar climate, based on last 20 yrs precipitation and temperature mean values, the 328 

specific values observed during the experiment, and the close correlations between both sites 329 

for precipitation and temperature regimes (see Methods section); (iii), the same early growth 330 

response to the fertilization treatments; (iv) the same early growth of unfertilized seedlings in 331 

both stands; and our personal experience whit this species in the area. However, we cannot 332 

ensure exactly the same forest-site index for both stands, neither the absence of unaccounted 333 

site effects. Thus, the observed growth patterns could be alternatively explained simply by 334 
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better site quality in the attacked stand, promoting greater annual growth rates after the insect 335 

attack. Further manipulative experiments with protected control plants would definitely 336 

demonstrate the compensatory growth investment suggested by the comparison between 337 

stands. 338 

The intensity of the attack was fairly high in the studied trial, with near all plants 339 

attacked at some level, and near half of the seedlings losing their leaders. However, five 340 

years after the attack the surviving trees showed very few stem deformities (less than 4% of 341 

trees), and a generalized recovering of the apical dominance. These results also suggest high 342 

tolerance of P. pinaster to the pine weevil in the study area. 343 

In this study we observed much lower mortality due to H. abietis than those reported 344 

for northern European coniferous forests, where mortality commonly reach up to 80% of the 345 

seedlings planted following a clear-cutting (von Sydow and Birgersson 1997; Orlander and 346 

Nilsson 1999). Some hypotheses could contribute to explain these findings. In one hand, the 347 

suggested tolerance of this pine species, discussed above, could favour a lower mortality with 348 

the same level of damage. In agreement with this idea, Zas et al. (2008) found that mortality 349 

of Pinus radiata seedlings due to weevil damage was nearly twice that observed in P. 350 

pinaster adjacently planted for the same lever of insect damage  (Zas et al. 2008). On the 351 

other hand, a lower mortality of P. pinaster after H. abietis attack could simply result from a 352 

lower intensity of damage to each individual tree. Pine weevil populations in higher latitudes 353 

seem to be denser than those observed in the study area (Moreira et al., 2008). Besides, 354 

weevil biology could be constrained by biogeographical considerations, because the studied 355 

area represents its southern limit of the distribution (Orlander and Nilsson 1999). 356 

Furthermore, reduced availability of oviposition sites in Galicia could lead to weaker booms 357 

of emerging insects. The pine plantations after clear-cutting in NW Spain are clearly fewer 358 

and smaller than those observed in northern forests. Unfavourable conditions for the 359 

aggregation of H. abietis after clear-cutting are also probable because Galician landscape is 360 
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fragmented and composed by a mosaic of small size properties of broadleaves and coniferous 361 

stands, interspersed with grasslands, cropland and scrub, lacking of large continuous 362 

extensions of coniferous forest. 363 

In summary, all these findings consistently support that P. pinaster is a highly tolerant 364 

species to this pine weevil, at least in the area of this study. Lombardero et al. (2008) have 365 

also found evidences of high tolerance of P. pinaster to other insect herbivores at the same 366 

area. These authors reported that the impact of bark beetle attacks on the growth of P. 367 

pinaster was much lower than on other pine species, although the intensity of insect attacks 368 

were more than twice greater in P. pinaster. In agree with these observations, reduced costs 369 

of plant tissue reconstruction after herbivore grazing in favourable environments for high 370 

primary production (as the warm temperature and high precipitation in the NW Spain), could 371 

favour tolerance mechanisms against herbivory instead of investments in resistance (Strauss 372 

and Agrawal, 1999; Fine et al., 2004). 373 

 374 

Impact on nutritional status 375 

The response to fertilization treatments in the healthy stand agrees with the common 376 

deficiencies typically found in Galician forest soils. In this region P is a clear limiting 377 

nutrient while N is well supplied or even in excess (Sánchez-Rodríguez et al. 2002; Zas and 378 

Serrada 2003). And so, the regular trend observed in pine trees in these soils is an increase of 379 

P needle concentration due to P fertilization; and a lack of a response to N additions (e.g. Zas 380 

2003). The higher N content in the unfertilized controls can be explained by a dilution effect 381 

in the fertilized trees because of their higher growth promoted by the base fertilization of 382 

potassium and magnesium sulphate. However, and despite the early response in growth to the 383 

fertilization treatments, we did not detect significant effects of fertilization on needle 384 

phosphorus and nitrogen concentration in the attacked stand. In concordance with this 385 

findings, lower concentrations in needle nutrient appeared inversely related to the previous 386 
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level of damage suffered. These results suggest that the attack by the pine weevil strongly 387 

modified the potential of the pine seedlings to allocate their resources to the needles 388 

according to the nutrient availability existing in the soil.  389 

Another main finding of this study is that the seedlings attacked by H. abietis showed 390 

altered stoichiometry in N and P concentration among phloem and needles. Strong positive 391 

correlations among needles, stem, and root nutrient contents are commonly found in forest 392 

plantations, and are the regular trend in coniferous seedlings (Parks et al. 2000). We found 393 

strong positive relationships between the content of nutrients in phloem and needles in the 394 

not attacked stand. Nutrient analysis of greenhouse-grown P. pinaster seedlings of the same 395 

families also revealed a strong correspondence between nutrients in different tissues (Moreira 396 

et al., unpublished data). Thus, the lack of the corresponding relationship in the infested stand 397 

suggests that weevil damage is modifying the regular nutrient allocation patterns. 398 

The results observed in the attacked stand are clearly anomalous and the most 399 

plausible explanation for these anomalies is precisely the damage caused by the pine weevil, 400 

which definitely characterize this site. Moreover, the fact that the relationship between 401 

weevil damage and needle nutrient concentrations is significant and negative despite the 402 

positive effect of fertilization on weevil damage also supports the hypothesis that the pine 403 

weevil damage is the cause of the altered nutrient allocation pattern. However, due to the 404 

experimental design, we cannot reject that site differences could also contribute to explain 405 

the unexpected observed patterns.  406 

It has been suggested that reduced or increased levels of nutrients in target plant 407 

tissues could be part of induced responses to herbivory (Karban and Baldwin 1997; 408 

Newingham et al. 2007). Furthermore, Newingham et al. (2007) documented not simply 409 

altered nitrogen concentrations in target tissues of infested knapweeds but even allocation of 410 

nitrogen away from the target tissues. Karban and Baldwin (1997) highlighted the 411 

importance of such responses, not only because alterations of primary metabolites can 412 
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directly modify the tissue nutrient quality, but also because changes in primary metabolites 413 

may also change the efficacy of secondary compounds. 414 

The disruption of the normal nutrient allocation pattern following the insect attack 415 

found in the present study could be part of this type of induced responses to herbivory. This 416 

study would be the first time such a response is documented in pine trees. Alternatively to 417 

this hypothesis, feeding on the phloem by the pine weevil may also directly interrupt the 418 

nutrient transport along the stem due to the vascular injury caused by the weevil wounding 419 

activity in the phloem. Manipulative experiments using chemical elicitors of induced 420 

responses, such as methyl jasmonate, that does not involve physical damage in the vascular 421 

tissues will definitively help to prove or reject the existence of induced changes in the 422 

nutrient allocation patterns in long-lived plants such as pine trees. Disregarding whether the 423 

altered nutrient allocation within plant tissues is part of an induced response mechanism to 424 

the weevil attack, or it was derived directly from the vascular damage after insect wounding 425 

on the phloem, our results indicate that plant nutritional status was largely altered by the 426 

insect damage, which may have further important consequences on other plant vital 427 

processes.  428 

 429 
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 Table 1. Summary of the mixed model for phosphorus (P) and (N) and concentration in the 522 

needles, and height in the fifth year (H5) of  P. pinaster seedlings at two twin family  523 

fertilization trials, one of them attacked by H. abietis (Rianxo) and another not attacked 524 

(Rebordelo). 525 

 526 

 527 

    P  N  H5 

 
1
DFnum  DFdenom  F p>F  F p>F  F p>F 

Rianxo (attacked) 

Block 9 36  2.23 0.043  0.74 0.668  0.50 0.867 

Fertilization  4 36  1.41 0.251  0.96 0.441  0.80 0.531 

Family 7 153  0.81 0.578  1.09 0.374  1.21 0.301 

Fam  Fert 28 153  1.21 0.231  1.10 0.340  1.17 0.273 

Rebordelo (not attacked) 

Block 9 36  2.23 0.043  1.27 0.288  1.09 0.396 

Fertilization 4 36  3.87 0.010  4.27 0.006  2.97 0.032 

Family  7 177  2.38 0.024  2.29 0.029  0.87 0.528 

Fam  Fert 28 177  0.75 0.813  0.75 0.810  0.96 0.531 

 528 

1 
DF = degrees of freedom. 529 

530 
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FIGURE CAPTIONS 531 

 532 

Figure 1. Height (1a) and stem base diameter (1b) of P. pinaster seedlings during five 533 

consecutive years after planting in two twin family  fertilization trials, one of them attacked 534 

by H. abietis (Rianxo, black bars) and another not attacked (Rebordelo, white bars). Overall 535 

LS means across all fertilization and treatments  S.E. are presented, according to repeated 536 

measures ANOVA. N = 275 per trial. Asterisks indicate significant differences at p <0.01 537 

(**) and p <0.001 (***); n.s.: not significant. 538 

 539 

Figure 2. Effects of experimental fertilization on the concentration of phosphorus (2a, 2b) 540 

and nitrogen (2c, 2d) in the needles, and on the height at year 5 (2e, 2f) of P. pinaster 541 

seedlings in two twin family  fertilization trials, one of them attacked by H. abietis (Rianxo, 542 

right panels, black bars) and another not attacked (Rebordelo, left panels, white bars). 543 

Samples for foliar analyses were taken immediately after the second year attack, two years 544 

after planting. LS means ± S.E. N = 55 per treatment and trial. Different letters indicate 545 

significant differences at p <0.05. 546 

 547 

Figure 3. Nitrogen (a) and phosphorus (b) nutrient concentrations in needles vs phloem in 2 548 

years-old P. pinaster seedlings in two twin family  fertilization trials, one of them attacked 549 

by H. abietis (Rianxo, solid dots and lines) and another not attacked (Rebordelo, open dots, 550 

dashed lines). Each point represents a randomly-selected destructively sampled tree 551 

belonging to the same seed source at both stands. N = 25 for each site. 552 

 553 

 554 
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