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 The polymerase chain reaction (PCR) has become an essential research and 

diagnostic tool, being a powerful technique with a vast and increasing range of applications 

[1,2]. At the basis of PCR is DNA extraction from biological samples, which should render the 

substrate for the amplification reaction, provided a minimun quality and quantity level is 

achieved [3,4]. Quite a few rapid methods have been proposed for this purpose in the last 

years, which essentially depend on the sample and microorganisms to be analysed [5,6]. 

The simplest case is that of the colony which is directly introduced in the reaction mix: cells 

are disrupted as temperature raises to 95 ºC for 4 to 5 min in the first denaturation step. This 

has shown to be a valid method for isolated colonies of Gram-negative bacteria, yeasts and 

some Lactobacillus species [7-9]. However, this method is not valid in many instances, and 

cell lysis involving lytic enzymes and detergents have been used for recalcitrant 

microorganisms [10,11]. This is especially the case with Gram-positive bacteria, for which 

extraction from colonies involves digestion with mutanolysin and cell disruption with Triton X-

10 plus boiling, taking about 45 min the whole process [11]. Therefore, DNA extraction and 

preparation is a time-consuming step which dramatically reduces the speed of the PCR 

procedure and delays its outcome. 

In this study we describe a very simple and rapid method for extraction of both 

plasmid and chromosomal DNA from colonies or pellets of bacteria and yeasts, which is 

suitable for subsequent PCR. Our method involves only chloroform as the cell disrupting and 

extracting agent, contributing also to DNA preservation from inherent and contaminating 

nucleases.  

 

Bacterial species used as a demonstration included Lactobacillus plantarum CECT 

748, ATCC 8014, LB6 and LPCO10 [12], Lactococcus lactis MG1363, and Enterococcus 

faecium 6T1a, which were cultured in MRS medium (Oxoid, Basingstoke, UK) aerobically at 

30 ºC. Yeasts were cultured in YM medium (Difco, Detroit, Mi.) aerobically at 30 ºC. 
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For DNA extraction, single colonies growing on solid media were removed with a 

sterile plastic tip and resuspended in 100 µl of sterile deionized water in a microcentrifuge 

tube. One hundred µl of chloroform-isoamyl alcohol (24:1) were added to the suspensions 

and, after briefly vortexing for 5 sec, the mixture was centrifuged at 16.000 xg for 5 min at 4 

ºC. Five to 10 µl of the upper, aqueous phase were used as a source of DNA template for the 

different PCR applications. The rest of the mixture was stored at 4 ºC until use. When the 

bacteria or yeasts to be tested were grown in liquid media, pellets obtained after 

centrifugation of appropriated volumes to render masses equivalent to single colonies were 

washed with sterile deionized water and treated as above. 

 

Amplification of DNA fragments up to 3 kb was performed in 100-µl reaction mixtures 

containing 2.5 mM MgCl2, 1× reaction buffer, 100 µM each of the deoxynucleoside 

triphosphates, 100 pmol of each primer, 5 U of Taq DNA polymerase (Promega Co., 

Madison, Wis.), and 5-10 µl of the source of DNA template as described above. Conditions 

for amplifications were as described before [13]. For amplification of DNA fragments larger 

than 3 kb, the Expand Long Template PCR System (Roche Applied Science, Barcelona, 

Spain) was used according to the manufacturer’s instructions. Primers ITS1 and ITS4 for the 

amplification of the ITS region from yeasts have been previously described [14]. Primers 

LICIJ1 (5'-GACGACGACAAGATGGGAGCAATCGCAAAA-3'), LICJ2 (5'-

GGAACAAGACCCGTTAATGTCTTTTTAGCC-3'), ent7 (5’-

ACATTACGTACATTCCTACTAAG-3’) and pEF4.1 (5’-CCGGTTTCAGTCGCAGTACGC-3’) 

were designed from the sequence of the 21-kb plasmid  pEF1 from E. faecium LP6T1a [15]. 

Primers PlnE-rev (5’-ATGCTACAGTTTGAGAAGTTACA-3’), PlnF-for (5’-

CTATCCGTGGATGAATCCTC-3’), and PlnM-for (5’-TAAACAGGTAAAGCAGGTTGG-3’) 

were designed from the sequence of the plantaricins cluster in L. plantarum C11 [16]. For 

RAPD, the method of Rodas et al. [17] was followed using the primer OPL5 (Operon 
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Biotechnologies, Inc., Alameda, Ca.). All of the PCR and RAPD amplifications were 

performed in a GeneAmp PCR System 2400 thermal cycler (Perkin-Elmer Corporation, 

Norwalk, Conn.). After the reaction, 3 to 10 µl of the products were run in 0.7-1.2% agarose 

gels, stained with ethidium bromide and visualized under UV light. 

 

When chloroform-extracted samples from bacterial or yeast single colonies were used 

as the source of DNA template, amplification of DNA fragments from 0.3 up to 12.0 kb was 

obtained in all cases (Figs. 1 and 2). PCR amplifications of short and long fragments could 

be observed either from genes encoded by plasmid or chromosomal DNA. For instance, from 

E. faecium 6T1a single colonies, amplification of both short (150 and 300 bp, corresponding 

to entI and entI-enJ genes of the enterocin I operon, respectively; Fig. 1, lane 3) and long 

DNA fragments (12 kb; Fig. 2, lane 4) located in the plasmid pEF1 was achieved. Also, long 

fragments (up to 8 kb) belonging to the plantaricin locus in L. plantarum  LB6 and CECT748 

could be amplified from chromosomal DNA (Fig. 2, lanes 2 and 3). This provides an evidence 

that the method described here is valid to amplify genes which are either as single copy 

(chromosomal) or multicopy (plasmid). Furthermore, the fact that fragments as long as 12.0 

kb can be indeed amplified indicates that the DNA obtained by this method is reasonably 

intact. Interestingly, identical PCR amplifications could be observed when the same DNA 

preparations were used after storage at 4 ºC for periods up to 12 months (data not shown), 

indicating that DNA preparations were highly stable and suitable for successive PCR 

amplifications for at least that period of time. 

 

 On the other hand, DNA extraction and subsequent PCR amplification of the region 

spanning the 5.8 rRNA gene and the two ITSs from two different yeast species was achieved 

(Fig. 1, lanes 4 and 5), indicating that this method is suitable for microorganisms other than 

bacteria. Actually, similar results were obtained when the method was applied to yeasts from 

genera such as Saccharomyces, Issatchenkia, Geotrichum, Zygosaccharomyces, 

Hanseniaspora and Dekkera (data not shown). Moreover, PCR products obtained were 
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suitable for direct further digestion with restriction enzimes in order to generate a restriction 

pattern for identification of the yeasts at the species level (F.N. Arroyo, personal 

communication). 

 

Finally, the DNA obtained by this method allowed also efficient RAPD amplifications, 

as it is shown in Figure 1 (lanes 6 and 7) for two different L. plantarum strains. Band patterns 

were virtually identical to those obtained using standard total DNA preparations from the 

same strains (data not shown). This shows that this technique is also suitable for 

unspecifically primed PCR. 

 

The amount and quality of the DNA extracted by the method described in this paper 

warrants accurate and reproducible DNA amplifications by PCR for application in rapid 

screening and differentiation of microorganisms. Further subcloning, sequencing, and 

restriction analysis of the amplified fragments could also be eased. In our laboratory, we 

have been using this method for a few years, mainly in the screening of E. coli, L. plantarum 

and L. lactis colonies after transformation with recombinant plasmids, as well as for 

identification and typing of lactic acid bacteria with specific primers. Also, we have used the 

method to extract total DNA from pellets obtained after centrifugation of samples from olive 

fermentation brines, where we have detected specific L. plantarum and L. pentosus strains 

by PCR. In addition, this method offers the posibility of performing repetitive PCRs from the 

same DNA extraction, which is safely kept for a considerable extent of time. This is an 

advantage over those methods that involve introduction of the colony to be tested directly 

into the reaction mix, because exactly the same DNA template is used over the time for 

different purposes. Finally, our results suggest that other molecular applications such as RT-

PCR can benefit. 
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Legends to the figures 

 

Figure 1.- Agarose gel electrophoresis showing short-fragment PCR amplifications and 

RAPD products obtained from different bacteria and yeasts. Lanes 1 and 8, 1-kb PLUS DNA 

Ladder (Life Technology Inc., Gaithersburg, Md.). Lane 2, PCR amplification product from L. 

plantarum CECT 748 with primers PlnE-rev and PlnF-for; lane 3, PCR amplification products 

from E. faecium 6T1a with primers LICIJ1 and LICJ2; lanes 4 and 5, PCR amplification 

products from Rhodotorula glutini and Candida boidinii, respectively, using the primers ITS1 

and ITS4; lanes 6 and 7, RAPDs from L. plantarum ATCC8014 and LPCO10, respectively, 

using the primer OPL5. 

 

Figure 2.- Agarose gel electrophoresis showing long-fragment PCR amplification products 

obtained from either chromosomic or plasmidic bacterial DNA. Lanes 1 and 5, 1-kb PLUS 

DNA Ladder; lane 2, PCR amplification product from L. plantarum LB6 with primers PlnM-for 

and PlnE-rev; lane 3, PCR amplification products from L. plantarum 748 with primers PlnM-

for and PlnE-rev; lane 4, PCR amplification products from E. faecium 6T1a with primers ent7 

and pEF4.1. 
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