
Knockout of three-component regulatory systems reveals that the apparently 

constitutive plantaricin-production phenotype shown by Lactobacillus plantarum 

on solid medium is regulated via quorum sensing  
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It has been found that many bacteriocins from lactic acid bacteria (LAB) are only 

produced in broth cultures when specific growth conditions are achieved and a 

dedicated three-component regulatory system, involved in a quorum sensing (QS) 

mechanism, is switched on. Surprisingly, bacteriocin production in LAB occurs in an 

apparently constitutive manner on solid media. This study addresses the question of 

constitutive versus regulated bacteriocin production on solid media in two different QS-

regulated plantaricin-producing strains: Lactobacillus plantarum NC8 and L. plantarum 

WCFS1. Construction of knockout mutants for their respective regulatory operons 

revealed that bacteriocin production is controlled through a QS mechanism in both 

strains, on solid as well as in liquid media. These results could be extensible to other 

bacteriocins from LAB which are only produced on agar plates and not in broth 

cultures. Our findings suggest that QS-regulated bacteriocin production in LAB has 

evolved for competing on solid supports rather than in liquid media. In practice, this 

could be of major importance in vegetable fermentations, where the solid substrate itself 

provides an enormous surface where bacteria can attach to and produce biofilms. 

Therefore, QS-regulated bacteriocinogenic LAB growing in biofilms are under the 

optimum conditions to produce bacteriocins. Selection of strains to be used as starter 

cultures for vegetable fermentations should take into account these facts. 
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Bacterial communities produce antimicrobial compounds in to compete with other 

similar micro organisms. Among these, the proteinaceous compounds called 

bacteriocins seem to be directed to compete against related species or other bacteria 

sharing the same ecological niche (Tagg et al., 1976; Klaenhammer, 1993; Jack et al., 

1995). Although the synthesis of most bacteriocins reported until present appears to be 

constitutive (Quadri, 2002), the production of these antimicrobial compounds can be an 

unstable trait in some cases, indicating the existence of regulatory mechanisms (Nes and 

Eijsink, 1999). On that account, differences in bacteriocin production between solid and 

liquid media have been observed since early studies in both Gram-negative 

colicinogenic strains (Reeves, 1965), and Gram-positive bacteria (Tagg et al., 1976). In 

lactic acid bacteria (LAB), bacteriocins have been a major focus of research because of 

their potential use as natural food preservatives (Daeschel, 1993; de Vuyst and 

Vandamme, 1994; Cotter et al., 2005). In this group of bacteria, production of these 

antimicrobial compounds on solid but not in liquid media has been claimed in several 

studies. Cintas et al. (1995) found that out of 55 isolates of LAB exhibiting 

antimicrobial activity on agar media only 12 of them produced an inhibitory substance 

in liquid media. Similar frequencies have been reported by Schillinger and Lücke 

(1989) for lactobacilli, and by Geis et al.  (1983) for lactococci. Bacteriocins lactacin B 

(Barefoot and Klaenhammer, 1983), plantacin B (West and Warner, 1988), plantaricin F 

(Fricourt et al., 1994), and more recently enterolysin A (Nilsen et al., 2003) and streptin 

(Wescombe and Tagg, 2003) were found to be produced only on solid media. However, 

further investigations showed that most of these bacteriocins could be produced also in 

liquid media under appropriate conditions (Barefoot and Klaenhammer, 1984; Paynter 
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et al., 1997; Wescombe and Tagg, 2003). In addition, some LAB lose the ability to 

produce bacteriocins when inoculated in liquid media below a specific inoculum size 

(Diep et al., 1995; Saucier et al., 1995; Eijsink et al., 1996; Brurberg et al., 1997; Nilsen 

et al., 1998; O’ Keeffe et al., 1999). In these cases, the bacteriocin-producing (Bac+) 

phenotype could only be restored when the culture was streaked onto solid media or by 

the addition of the cell-free supernatant (CFS) from a previous Bac+ culture. Further 

research revealed that bacteriocin production in these strains is regulated by a three-

component regulatory system composed by an autoinducer peptide (AIP), a histidine-

kinase protein (HK) and a response regulator (RR). Such AIP acts as an indicator of the 

cell density which is sensed by the corresponding HK, resulting in activation of the RR, 

which finally activates the expression of all operons necessary for bacteriocin synthesis, 

transport and regulation (Kleerebezem et al., 1997; Nes and Eijsink, 1999). This 

quorum-sensing (QS) or autoinduction mechanism mediated by AIPs was found in 

Carnobacterium piscicola (Axelsson and Holck, 1995; Quadri et al. 1997; Saucier et al., 

1997; Kleerebezem et al., 2001), Lactobacillus plantarum (Diep et al., 1996; Brurberg 

et al., 1997; Maldonado et al., 2004b), Lactobacillus salivarius (Flynn et al., 2002), 

Lactobacillus sake (Brurberg et al., 1997; Diep et al., 2000) and Enterococcus faecium 

(Nilsen et al., 1998; O’Keeffe et al., 1999). Saucier et al. (1995) suggested that the 

differences observed in bacteriocin production between solid and liquid media could be 

attributable to differences in the rate of diffusion of the corresponding AIP: the AIP did 

not diffuse in agar as readily as in solution, allowing the cells on the agar surface to be 

in closer contact with the secreted AIP than in liquid medium. However, the 

functionality of the autoinduction mechanism on solid media has not been addressed 

yet. 
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  In previous works, we have shown that L. plantarum NC8 is unable to produce 

bacteriocins when inoculated as a pure culture in liquid medium, regardless of the 

inoculum size and growth conditions (Maldonado et al., 2003 and 2004a). However, 

coculture of L. plantarum NC8 with specific Gram-positive bacteria or the addition of 

its specific autoinducer peptide PLNC8IF to broth cultures resulted in bacteriocin 

production by this strain (Maldonado et al., 2003, 2004a and 2004b). Moreover, 

addition of PLNC8IF induced not only the expression of the genes encoding the three 

two-peptide bacteriocins identified in NC8 (plantaricins NC8, EF and JK), but also the 

plNC8If-plNC8Hk-plnD regulatory operon (Fig. 1A), thereby demonstrating 

autoinduction (Maldonado et al., 2004b). In contrast, we observed that isolated colonies 

of L. plantarum NC8 growing on MRS agar always showed bacteriocin activity, thus 

indicating that bacteriocin production on solid medium appears as a constitutive trait. 
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Here we report that constitutive bacteriocin production by L. plantarum NC8 on 

solid medium is only apparent and it is in fact regulated by the same autoinduction 

mechanism as in broth cultures, i.e. requiring the expression of the operon encoding the 

three-component regulatory system plNC8If-plNC8Hk-plnD. Construction of a 

knockout (KO) for this operon in L. plantarum NC8 has demonstrated that functionality 

of such operon is fully indispensable for bacteriocin production both on solid and in 

liquid media. In addition, we have studied bacteriocin production by L. plantarum 

WCFS1, a strain from human origin whose complete genome sequence has been 

recently reported (Kleerebezem et al., 2003). This strain has a plantaricin biosynthesis 

cluster containing a regulatory operon (plnABCD) encoding an atypical three-

component regulatory system consisting of an AIP (plantaricin A [PlnA]), a histidine 

kinase (PlnB) and two response regulators (PlnC and PlnD) (Fig. 1B). This plantaricin 

cluster was first discovered in L. plantarum C11, where production of plantaricins EF 
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and JK has been shown to be regulated by an autoinduction mechanism which depends 

on the expression of plnABCD (Diep et al., 1994 and 1996). Bacteriocin production by 

the WCFS1 strain had been supposed since its complete genome sequence was 

available, but an in-depth study had not been addressed before. Comparative bacteriocin 

production studies in the wild-type WCFS1 and a derivative, KO mutant strain lacking 

the operon plnABCD has reinforced the results and conclusions obtained with L. 

plantarum NC8. 
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2. Materials and methods 

 

2.1. Bacterial strains, media and growth conditions 

 

 Bacterial strains are described in Table 1. L. plantarum, L. pentosus and P. 

pentosaceus strains were propagated in De Man-Rogosa-Sharpe (MRS) broth or agar 

(Oxoid) at 30ºC. Where appropriate, erythromycin (Fluka) was added to the culture 

medium at 10 µg/ml. Enterococcus faecalis and Listeria innocua strains were 

propagated in Brain Heart Infusion (BHI) broth or agar (Oxoid) at 30ºC. L. lactis 

MG1363 was grown in M17 broth (Oxoid) plus 1% (wt/vol) glucose (GM17), at 30ºC. 

L. lactis MG1363 (pSIG308) was grown in GM17 containing 10 µg/ml of 

erythromycin. However, erythromycin was omitted when the CFS of the L. lactis 

MG1363 (pSIG308) culture was collected as a source of PLNC8IF. Escherichia coli 

DH5α was grown in Luria-Bertani (LB) broth or agar at 37ºC with vigorous agitation. 

E. coli DH5 transformant cells harbouring recombinant plasmids were selected on LB 

agar plates supplemented with 150 g of ampicillin (Fluka) or 200 g of erytromycin 

per ml, respectively, 16 l of X-Gal (5-bromo-4-chloro-3-indolyl-β-D-
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galactopyranoside) (50 mg/ml, Promega) per plate, and 4 l of IPTG (isopropyl β-D-

thiogalactoside) (200 mg/ml; Gibco BRL) per plate. 
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2.2. Bacteriocin and autoinduction assays. 

 

To check for bacteriocin production by isolated colonies, the direct method 

described by Tagg et al. (1976) was used. Briefly, overnight cultures of L. plantarum 

NC8 or WCFS1 were serially diluted in sterile saline and plated onto MRS agar plates 

to obtain ca. 30 colonies per plate. Plates were incubated at 30ºC for 24 h and overlaid 

with 4.5 ml soft agar inoculated with ca. 105 CFU/ml of the selected indicator bacterial 

strains shown in Table 1. The appropriate culture medium was used to make the soft 

agar according to the indicator bacteria to be used. Plates were further incubated at 30ºC 

for 24 to 48 h and examined for clear halos in the lawns of the indicator bacteria around 

isolated colonies, indicating bacteriocin activity. To check for bacteriocin production in 

broth cultures, cells of L. plantarum NC8 or WCFS1 from either 24 to 72-h-old colonies 

on MRS agar plates or overnight broth cultures were inoculated into fresh MRS broth at 

inoculum sizes ranging from 102 to 108 CFU/ml. Cultures were incubated at 30ºC and 

samples were withdrawn at the late exponential phase of growth, i.e. O.D.600nm of 2.0, 

centrifuged and the CFSs checked for bacteriocin activity by the spot-on-lawn method 

as described previously (Jiménez-Díaz et al., 1993), using P. pentosaceus FBB63 as the 

indicator strain. For the autoinduction experiments, as a source of the autoinducer 

peptide PLNC8IF we used a semi-purified sample of this peptide obtained from a CFS 

of L. lactis MG1363(pSIG308), a recombinant strain which expresses PLNC8IF  

heterologously (Maldonado et al., 2004b). For this purpose, a 2-litre culture of this 

strain was processed by a protocol similar to that described previously for the 
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purification of plantaricin S (Jiménez-Díaz et al., 1995), but selecting those fractions 

that exhibited induction of bacteriocin production in NC8. Briefly, the CFS was 

precipitated with ammonium sulfate, desalted, and consecutively applied to cation-

exchange (SP Sepharose fast-flow, Pharmacia) and hydrophobic-interaction (phenyl-

Sepharose CL4B, Pharmacia) columns. The presence of PLNC8IF was verified by 

matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass 

spectrometry as described before (Maldonado et al., 2004b). As a source of the 

autoinducer peptide PlnA we used a semi-purified sample of this peptide obtained from 

the CFS of a 2-litre Bac+ L. plantarum WCFS1 broth culture at its exponential phase of 

growth and processed as described above for PLNC8IF. To verify that PlnA was present 

in this sample, MALDI-TOF mass spectrometric analysis was carried out by Dr. S. 

Ogueta, Unidad de Proteómica - S.C.A.I., Universidad de Córdoba, Córdoba, Spain. For 

autoinduction, 50-µl aliquots of the relevant semi-purified AIP (PLNC8IF or PlnA) 

were added to 1 ml of MRS inoculated with ca. 108 cells from an overnight culture of 

the L. plantarum strain to be tested, incubated for 6 h at 30 ºC and then the resulting 

CFS examined for bacteriocin activity. In all autoinduction experiments, pure L. 

plantarum NC8 or WCFS1 cultures were used as controls of both bacteriocin and 

autoinducer activities. To test for plantaricin production of L. plantarum NC8-KO1 and 

WCFS1-KO1 isolated colonies on solid medium in the presence of the corresponding 

AIP, a protocol similar to that used by Diep et al. (1995) was used. Briefly, overnight 

cultures of each KO mutant strain were serially diluted in saline and plated onto MRS 

agar plates containing PLNC8IF or PlnA to obtain ca. 30 colonies per plate. These AIP-

containing agar plates were prepared by spreading 100-l aliquots of semi-purified 

PLNC8IF or PlnA over the surface of the plates immediately before plating the diluted 
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cultures. These plates were incubated for 24 h at 30 ºC and overlaid with 4.5 ml of MRS 

soft-agar containing ca. 105 CFU/ml of the indicator strain P. pentosaceus FBB63. 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

 

2.3. DNA isolation and transformation procedures 

 

Total genomic DNA from wild-type and derivative L. plantarum strains was 

isolated by the method of Cathcart (1995). Plasmid DNA from E. coli was extracted as 

described previously (Sambrook et al., 1989). Electroporation of L. plantarum NC8 and 

WCFS1 was carried out according to the method of Aukrust and Blom (1992). E. coli 

DH5α was electroporated by the method of Dower et al. (1998). 

 

2.4. Southern blot and hybridization 

 

Genomic DNA from L. plantarum was digested with XmaI, the resulting 

fragments were electrophoretically separated by size on a 0.7 % agarose gel and then 

blotted onto a Genebind 45 nylon membrane (Amersham). The ermAM gene harboured 

by pIL252 was amplified by PCR as described below, labelled with fluorescein-11-

dUTP in the same reaction and used as a probe in Southern hybridization experiments. 

Hybridization, washing and detection were performed using the ECL Labelling and 

Detection System in the conditions recommended by the manufacturer (Amersham). 

 

2.5. Oligonucleotides, PCR and DNA sequencing 

 

Oligonucleotides used as primers in PCR reactions (Table 2) were synthesized 

by MWG Biotech (Ebersberg, Germany). The relative position of those related to the 
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plantaricin cluster in NC8 and WCFS1 is depicted in Fig. 1. Primers PlnM-for 

(Maldonado et al., 2004b) and Eco-Del1 were used to amplify a 974-bp L. plantarum 

NC8 DNA fragment containing the plnM and plnP genes located upstream of the 

regulatory operon plNC8If-plNC8Hk-plnD. Primers Sal-Del2 and KpnPlnF-rev were 

used to amplify a 1,279-bp L. plantarum NC8 DNA fragment containing the plnF and 

plnI genes located downstream of plNC8If-plNC8Hk-plnD. The remaining primers 

related to the plantaricin cluster were used for diagnostic purposes. To amplify a DNA 

fragment containing the gene ermAM, primers erm-EcoRI and erm-HindIII were 

designed based on the published DNA sequence of the plasmid pIL252 (Genebank 

accession number AF039139), which encodes an adenine methylase conferring 

resistance to erythromycin and lincomycin. To facilitate subsequent cloning, EcoRI, 

HindIII and SalI sites were introduced at the ends of primers Eco-Del1 and erm-EcoRI, 

erm-HindIII, and Sal-Del2 respectively.  
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For amplification of DNA fragments up to 3 kb, 100-l reaction mixtures 

containing 2.5 mM MgCl2, 1 reaction buffer, 100 M concentrations of each of the 

deoxynucleotides triphosphates (dNTPs), 100 pmol of each of the primers, 5 U of Taq 

DNA polymerase (Promega) and 250 ng of genomic DNA as the template were used 

with a GeneAmp PCR System 2400 thermal cycler (Perkin-Elmer). Amplification 

included denaturation at 94ºC for 4 min, followed by 30 cycles of denaturation at 94ºC 

for 30 sec, annealing at 60ºC for 1 min, and polymerization at 72ºC for 1 min. For 

amplification of DNA fragments larger than 3 kb we used the Expand Long Template 

PCR system (Roche Applied Science, Barcelona, Spain) under the conditions 

recommended by the manufacturer. PCR amplifications of DNA fragments used for 

cloning or sequencing were performed using the High-Fidelity PCR System (Roche) 

under the conditions recommended by the manufacturer. For screening purposes, DNA 
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extractions from L. plantarum and E. coli colonies to be used as the template for PCR 

were carried out according to the method of Ruiz-Barba et al. (2005). 
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DNA sequencing was performed by the Servicio de Secuenciación Automática 

de DNA (SSAD), CIB-CSIC, Madrid, Spain, with an ABI PRISM 377 DNA sequencer 

(Applied Biosystems, Perkin-Elmer). 

 

2.6. Construction of a plNC8If-plNC8Hk-plnD knockout mutant of L. plantarum NC8 

 

Restriction enzymes, T4 DNA ligase, and other DNA-modifying enzymes were 

used as recommended by the manufacturer (Boehringer Mannheim). To delete the 

regulatory operon plNC8If-plNC8Hk-plnD from the chromosome of L. plantarum NC8 

by homologous recombination, plasmid pSIG316 (Table 2) was constructed. This 

suicide plasmid, which is unable to replicate in Gram-positive bacteria, contains a 906-

bp sequence carrying the plnP gene and a 1,034-bp sequence carrying the plnI gene 

(Fig. 2). Both genes, which are flanking the ermAM gene, served as homologous DNA 

for allelic exchange of the regulatory operon plNC8If-plNC8Hk-plnD from the 

chromosome of L. plantarum NC8 with the ermAM gene of pSIG316 (Fig. 2A). The 

plasmid pSIG316 was introduced by electroporation in L. plantarum NC8 in its native 

circular state or previously linearized with SacI or XbaI. KO mutants were selected by 

plating out appropriate dilutions on MRS agar plus erythromycin. ErmR colonies were 

further analyzed by PCR and phenotypically characterized as described below. 

 

2.7. Construction of a plnABCD knockout mutant of L. plantarum WCFS1 
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For deletion of the entire regulatory operon plnABCD of L. plantarum WCFS1 

the suicide plasmid pSIG316 was used, since in this strain this operon is also located 

between plnP and plnI, as in NC8 (Fig. 1). The entire plasmid pSIG316 as well as a 3.5-

kb HaeII-digested DNA fragment from this plasmid (containing the cassette plnP-

ermAM-plnI, Fig. 2B) were introduced separately into L. plantarum WCFS1 by 

electroporation. ErmR colonies were selected and characterized as described above for 

the NC8 KO mutants. 
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3. Results 

 

3.1. Bacteriocin production by L. plantarum NC8 and WCFS1 

 

When isolated colonies of L. plantarum NC8 growing on MRS agar were tested 

for bacteriocin production against the panel of selected Gram-positive indicator 

bacterial strains shown in Table 1, clear halos of inhibition in lawns of almost all of 

them were observed, indicating the existence of bacteriocin activity. The only 

exceptions were L. pentosus LPS5 and L. lactis MG1363, which showed to be resistant. 

However, bacteriocin production in broth cultures can not take place when L. plantarum 

NC8 is growing as a pure culture unless its specific autoinducer PLNC8IF is added 

(Table 3). 

On the other hand, isolated colonies of L. plantarum WCFS1 showed bacteriocin 

production against five of the indicator bacteria used, although its spectrum of activity 

was narrower than that shown by the NC8 strain. In fact, L. pentosus strains 128/2, 

BOM1, LPC1 and LPS5, as well as L. lactis MG1363 were resistant to WCFS1 

bacteriocins. However, when using CFSs from broth cultures we found that bacteriocin 
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production in WCFS1 was dependent on the inoculum size. We observed that the 

threshold concentration was ca. 105 CFU/ml. Hence, when the WCFS1 strain was 

inoculated in MRS broth below this concentration, it lost its ability to produce 

bacteriocins (Table 3). In addition, when these non-bacteriocin producing (Bac-) 

cultures were used to inoculate fresh MRS broth, they remained Bac- independently of 

the inoculum size, indicating that the autoinducing circuit had been switched off. The 

Bac+ phenotype of these broth cultures could only be restored by the addition of the 

autoinducer peptide PlnA (Table 3). MALDI-TOF mass spectrometry analysis of a 

partially purified, Bac+ L. plantarum WCFS1 CFS showed a peak corresponding to 

PlnA (not shown). These results indicate the existence of a functional autoinduction 

mechanism which is responsible for bacteriocin production in the WCFS1 strain, which 

is driven by the autoinducing peptide PlnA, as it has been described for L. plantarum 

C11 (Diep et al., 1994 and 1996). However, in contrast to the C11 strain, we observed 

that the Bac+ phenotype in WCFS1 could also be restored by plating out a Bac- broth 

culture onto solid medium to obtain isolated colonies and reinoculating these colonies 

into fresh broth at a concentration above the mentioned threshold (105 CFU/ml). 
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3.2. KO mutation of the plantaricin regulatory operons of L. plantarum NC8 and 

WCFS1 

 

To gain insight into the regulation of bacteriocin production in L. plantarum, we 

obtained KO mutants lacking the regulatory operons involved in bacteriocin production 

by L. plantarum NC8 and WCFS1. For this purpose we constructed the suicide plasmid 

pSIG316, which contains the genes plnP and plnI of L. plantarum NC8 and WCFS1 

flanking an erythromycin resistance cassette (Fig. 2). In the wild-type NC8 and WCFS1 

 13



strains, plnP and plnI are located up- and downstream, respectively, of the regulatory 

operons (Fig. 1). 
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Electroporation of L. plantarum NC8 with pSIG316 resulted in several EmR 

colonies which, after PCR analysis, showed to harbour the entire pSIG316 plasmid 

integrated into the L. plantarum NC8 chromosome. This integration was the result of a 

single crossing-over event (Campbell-type integration) between the genes plnP or plnI 

of pSIG316 and the homologous genes in the chromosome of the NC8 strain. These 

derivative strains were named L. plantarum NC8-INT. On the other hand, 

electroporation with linearised pSIG316 resulted in one EmR colony which, after the 

corresponding PCR analysis, showed that the entire regulatory operon plNC8If-

plNC8Hk-plnD had been replaced by the erythromycin cassette from pSIG316. This KO 

mutant strain was named L. plantarum NC8-KO1. This replacement was further 

confirmed by DNA sequencing of a PCR-amplified fragment from the chromosome of 

the NC8-KO1 mutant with the primer pair PlnM-for/PlnE-rev. Hence, homologous 

recombination with double crossing-over (DCO) between the plnP and plnI genes from 

the chromosome of NC8 with these genes from the suicide plasmid pSIG316 took place 

in L. plantarum NC8-KO1, leading to the substitution of the regulatory operon by the 

ermAM cassette (Fig. 2A). In Southern-blot experiments, the ermAM labelled probe 

hybridized with a unique >15-kb XbaI L. plantarum NC8-KO1 chromosomal DNA 

fragment, indicating the existence of just one copy of the ermAM gene in the mutant 

strain (not shown). In the wild-type L. plantarum NC8 strain, however, no hybridization 

was observed. 

 On the other hand, transformation of L. plantarum WCFS1 with intact pSIG316 

resulted also in several EmR colonies. PCR analysis using the primer pair PlnM-

for/PlnE-rev showed that all of these transformants had the entire plasmid pSIG316 
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integrated into the chromosome via a Campbell-type integration (not shown). These 

transformants were designated L. plantarum WCFS1-INT. Transformation with 

linearized pSIG316 resulted in one EmR colony which, after PCR analysis showed that 

the operon plnABCD had been replaced by the ermAM cassette (Fig. 2B). This KO 

strain was named L. plantarum WCFS1-KO1, being the result of a DCO recombination 

as illustrated in Fig. 2B. 
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3.3. Comparative bacteriocin production studies in KO and INT mutants of L. 

plantarum NC8 and WCFS1 

 

As in the wild-type L. plantarum NC8 strain, CFSs from broth cultures of L. 

plantarum NC8-KO1 did not show bacteriocin activity (Table 3). However, in contrast 

to NC8, addition of the autoinducer peptide PLNC8IF to broth cultures of L. plantarum 

NC8-KO1 did not result in bacteriocin production (Table 3). Differences in bacteriocin 

production due to different growth kinetics between the KO mutant and the wild-type 

strain in MRS broth were excluded, since both cultures grew at identical rates (not 

shown). Interestingly, the isolated colonies of L. plantarum NC8-KO1 on MRS agar 

were unable to produce any bacteriocin activity (Table 3 and Fig. 2A). This indicated 

that the plNC8If-plNC8Hk-plnD regulatory operon is also necessary for bacteriocin 

production on solid medium. This Bac- phenotype remained unchanged even after the 

addition of PLNC8IF to the agar plates (Table 3). Morphology and growth of NC8-KO1 

colonies were identical to the wild-type L. plantarum NC8. In contrast, all of the L. 

plantarum NC8-INT strains showed the same phenotype as the wild-type strain (Table 

3), indicating that the lack of the ability to produce bacteriocins in the KO strain was not 

attributable to the integration and/or expression of the ermAM gene. In the same 
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manner, in control experiments with L. plantarum NC8 transformed with the plasmid 

vector pIL252 the bacteriocin-production phenotype was identical to that of the wild-

type strain (Table 3). 
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 On the other hand, in contrast to the wild-type L. plantarum WCFS1, L. 

plantarum WCFS1-KO1 was unable to produce bacteriocin neither in broth nor on solid 

medium (Table 3 and Fig. 2B). Addition of PlnA to WCFS1-KO1 broth or agar-plate 

cultures did not induce bacteriocin production in this mutant strain either (Table 3). As 

isolated colonies of WCFS1-KO1 did not show bacteriocin activity, this fact suggests 

that bacteriocin production by WCFS1 on solid medium is also regulated by an 

autoinduction mechanism as it appears to be the case in broth cultures. Morphology and 

growth of the strain WCFS1-KO1 were virtually identical to WCFS1 wild-type. Finally, 

L. plantarum WCFS1-INT strain as well as L. plantarum WCFS1 transformed with the 

plasmid vector pIL252 showed the same phenotype as the wild-type strain (Table 3).  

 

4. Discussion 

 

We have shown that the discrepancy in the way L. plantarum NC8 produces 

bacteriocins on agar plates (apparently constitutive) and in broth cultures (QS regulated) 

is only apparent. Our results demonstrate that such bacteriocin production is indeed 

regulated by QS in both situations, as demonstrated by the Bac- phenotype of a KO 

mutant in the bacteriocin regulatory operon both on agar-plate and broth cultures (Table 

3). Thus, the Bac+ phenotype could not be restored even after the addition of the 

corresponding AIP, i.e. PLNC8IF (Table 3). 

To assess whether these findings were applicable to other QS-regulated 

bacteriocinogenic L. plantarum strains, we studied the phenotype of L. plantarum 
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WCFS1. For this strain, our results show that bacteriocins are produced on solid 

medium in an apparently constitutive manner, while production in broth cultures is 

dependent on the inoculum size (Table 3). This result disagrees with that obtained by 

Sturme (2005), who showed that the native state of WCFS1 was Bac- unless synthetic 

PlnA or a PlnA-containing CFS was added to the cultures. However, these differences 

could be due to variations in the initial inoculum size of WCFS1 used to test for 

bacteriocin production, or the use of different, less-sensitive indicator strains. We 

observed that highly diluted WCFS1 broth cultures (below 105 CFU/ml) were not able 

to produce bacteriocins, as it had been described previously for most QS-regulated 

class-II bacteriocins of LAB (Diep et al., 1995; Saucier et al., 1995; Eijsink et al., 1996; 

Brurberg et al., 1997; Nilsen et al., 1998; O’ Keeffe et al., 1999 ). Restoration of the 

Bac+ phenotype could only be achieved after the addition of a PlnA or by plating the 

culture out on solid medium. These results suggest that an autoinduction mechanism for 

bacteriocin production is also functional in WCFS1. This point has been reinforced 

since a KO mutant in the regulatory operon plnABCD (L. plantarum WCFS1-KO1) is 

unable to produce bacteriocin, even after the addition of PlnA (Table 3). The absence of 

bacteriocin activity surrounding the isolated colonies of L. plantarum WCFS1-KO1 has 

confirmed that on solid medium bacteriocin production by WCFS1 is also regulated by 

an autoinduction mechanism dependent on plnABCD expression. 
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The fact of obtaining the same phenotype with both NC8 and WCFS1 KO-

mutant strains is very significative, for major differences are found between their 

respective bacteriocin regulatory operons (Fig. 1). Apart from exhibiting different AIPs, 

the presence in the WCFS1 strain of the regulatory operon plnABCD is intriguing, 

especially because of the existence of two different RR proteins: PlnC and PlnD. Diep 

et al. (2003) showed that PlnC and PlnD antagonize to activate or downregulate, 
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respectively, bacteriocin production in L. plantarum C11. However, the NC8 strain 

manages with just PlnD. Also, the absence of the operon encoding PLNC8 and the 

presence of the plnN and plnO genes in L. plantarum WCFS1 emphasize the genotypic 

differences between both strains. Actually, some of these differences are translated to 

the respective phenotype, for the spectrum of activity of the strain NC8 is wider than 

that of WCFS1 (Table 3). This result is most probably due to the fact that both strains 

produce plantaricins EF and JK, while the strain NC8 produces also plantaricin NC8. 

Therefore, it is very probable that other LAB strains which have been described to 

produce bacteriocins on solid but not in liquid media are in fact regulated by similar QS 

mechanisms in both situations, regardless the specific AIP or regulatory operon used. 

The constitutive phenotype on agar plates could be only apparent in all these cases. 
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However, the most stimulating question is why bacteriocins are produced in a 

phenotypically constitutive manner on solid but not in liquid media. In nature, most 

bacteria appear to thrive attached to surfaces within biofilms, where they are 

substantially different from the same bacteria living as planktonic microorganisms 

(Korber et al., 1995). When growing as bacterial biofilms or colonies, cells are in close 

contact with their neighbours, thus enabling communication between them to make 

group decisions via QS mechanisms (Miller and Bassler, 2001; Henke and Bassler, 

2004). Chao and Levin (1981) pointed out that, by killing sensitive strains in a zone 

around the bacteriocin-producing colony, they could increase the concentration of 

resources available for themselves in a manner not possible in broth cultures. To date, 

we do not know whether the attachment to a solid surface per se provokes changes in 

the expression of relevant genes (i.e., involved in bacteriocin regulation), or it just 

enables bacterial communication by simply limited diffusion of this AIP, as suggested 

by Saucier et al. (1995). The result, in both cases, is an increase in the AIP level and the 
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activation of the autoinduction (QS) mechanism and thereby bacteriocin production. 

However, in LAB class-II bacteriocins whose production depends of a QS mechanism, 

broth cultures of the producing strains never appear to reach a quorum unless inoculated 

at a concentration above a certain threshold or an external source of a specific AIP 

(synthetic AIP or an AIP-containing CFS) is added to the culture medium. This flaw in 

the QS mechanism for bacteriocin production has been attributable to the existence of 

other environmental factors which should be the truly responsible for switching the 

bacteriocin-production machinery on (Nes and Eijsink, 1999). Whatever be the case, 

most LAB bacteriocins which are regulated by a QS mechanism will most probably be 

produced in those culture conditions which better mimic their natural ecological niche, 

such as growing on a solid support or the presence of other (inducing) micro organisms 

(Maldonado et al., 2004a and 2004b). Actually, Egland et al. (2004) proposed that 

juxtaposition is required for effective interspecies signalling in natural systems, 

emphasizing the relevance of signal transmission over very short distances. The 

mechanism for bacteriocin production in L. plantarum NC8 and WCFS1, and most 

probably other QS-regulated bacteriocin-producing LAB strains, seems to be designed 

for competing on solid supports, where the rate cost/benefit of producing their 

antimicrobial compounds appears to be more favourable than in liquid media (Dykes 

and Hastings, 1997). This could be of major importance in vegetable fermentations such 

as olive fermentations, where the solid substrate itself represents an enormous surface 

where bacteria can attach to and produce biofilms. QS-regulated bacteriocinogenic LAB 

strains able to produce and/or attach to these biofilms are in the optimum conditions to 

produce bacteriocins. In contrast, constitutively-produced bacteriocins, such as 

plantaricin S from L. plantarum LPCO10, do not face this constriction and are usually 

produced on solid as well as in liquid environments (Leal et al., 1998). Therefore, 
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selection of strains to be used as starter cultures for vegetable fermentations should take 

into account these features. 
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  Finally, the successful construction of the KO mutant strains L. plantarum NC8-

KO1 and L. plantarum WCFS1-KO1 provide us with a useful tool to further extend the 

study of gene regulation involved in bacteriocin production. Both mutant strains are 

suitable hosts for the study or development of new expression vectors based on other 

bacteriocin-related regulatory operons, since interference by cross-talk between similar 

three-component regulatory systems can be avoided. This study has also demonstrated 

for the first time that substitution by DCO homologous recombination of chromosomal 

DNA fragments as big as 3.5 kb is possible in L. plantarum. 
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Legends of the Figures 

 

Figure 1. Genetic map of the plantaricin cluster in L. plantarum NC8 (A) and L. 

plantarum WCFS1 (B). Their respective plantaricin regulatory operon is underlined. 

Open arrows represent genes that are different among both strains. Lollipops indicate 

the positions of putative promoter sequences. Numbered arrowheads represent the 

positions of primers used in this study (see Table 2), as follows: 1, PlnM-for; 2, 

EcoDEL-1; 3, SalDEL-2; 4, KpnPlnF-rev; 5, PlnI-rev; 6, PlnE-rev; 7, PlnP-for; 8, 

IFNC8-for; 9, PlnF-for; 10, RR-rev. The genetic map shown for L. plantarum NC8 is 

taken from Maldonado et al. (2004b), and that for L. plantarum WCFS1 is represented 

according to the sequence data at GenBank accession number AL935263. 

 

Figure 2. Phenotypic and genetic characterization of the plantaricin regulatory operon 

knockout mutants L. plantarum NC8-KO1 and L. plantarum WCFS1-KO1. Upper 

panels, bacteriocin assay of isolated colonies of L. plantarum NC8 and L. plantarum 

NC8-KO1 (panel A), and of L. plantarum WCFS1 and L. plantarum WCFS1-KO1 

(panel B) showing the presence and absence, respectively, of inhibition halos. P. 

pentosaceus FBB63 was used as the indicator strain. Lower panels, diagrams of the 

homologous recombination with double crossing-over between the plnP [P] and plnI [I] 

genes from the chromosome of L. plantarum NC8 and of L. plantarum WCFS1 with the 

same genes from the suicidal plasmid pSIG316, leading to the substitution of the 

plantaricin regulatory operon by the ermAM cassette in the mutant strains L. plantarum 

NC8-KO1 and L. plantarum WCFS1-KO1, respectively. The arrowheads indicate the 

position of relevant primers (see Table 2) used in the genetic characterization of the 

locus. Primer number key: 1, PlnM-for; 2, PlnE-rev; 3, erm-EcoRI; 4, erm-HindIII. 



Table 1. Bacterial strains used.

Bacterial strain Features Reference

Escherichia coli DH5α Host strain for recombinant plasmids Invitrogen

1Lactobacillus plantarum NC8 EmS Bac+; plasmid free strain isolated from grass silage; Shrago et al., 1986
inducible plantaricin (PLNC8, PlnEF and PlnJK) producer   Maldonado et al., 2004b

2L. plantarum WCFS1 EmS Bac+; isolated from human saliva; complete genome 
sequenced Kleerebezem et al., 2003

L. plantarum NC8-KO1 EmR Bac-, derivative of L. plantarum NC8 lacking the operon This work
plNC8If-plNC8Hk-plnD

L. plantarum WCFS1-KO1 EmR Bac-, derivative of L. plantarum WCFS1 lacking the operon This work
plnABCD

L. plantarum NC8-INT EmR Bac+, derivative of L. plantarum NC8 having the plasmid This work
pSIG316 integrated into the chromosome 

L. plantarum WCFS1-INT EmR Bac+, derivative of L. plantarum WCFS1 having the plasmid This work
pSIG316 integrated into the chromosome

Lactococcus lactis MG1363 Indicator strain for bacteriocin activity Maldonado et al., 2004a

L. lactis MG1363 (pSIG308) EmR Bac-; heterologous producer of PLNC8IF Maldonado et al., 2004b

Enterococcus faecalis CNRZ135 Indicator strain for bacteriocin activity Maldonado et al., 2004a

3Lactobacillus pentosus 128/2 Indicator strain for bacteriocin activity Maldonado et al., 2003

3L. pentosus BOM1 Indicator strain for bacteriocin activity Maldonado et al., 2004a

L. pentosus CECT4023T Indicator strain for bacteriocin activity; CECT
equivalent to L. pentosus ATCC8041

3L. pentosus LPC1 Indicator strain for bacteriocin activity Maldonado et al., 2004a

3L. pentosus LPS5 Indicator strain for bacteriocin activity Maldonado et al., 2004a

L. plantarum CECT748T Indicator strain for bacteriocin activity; CECT
equivalent to L. plantarum ATCC14917

Listeria innocua BL86/26 Indicator strain for bacteriocin activity Maldonado et al., 2004a

Pediococcus pentosaceus FBB63 Indicator strain for bacteriocin activity Maldonado et al., 2003

1 Kindly provided by Lars Axelsson from MATFORSK, Norwegian Food Research Institute, Osloveien, Norway.
2 Kindly provided by Michiel Kleerebezem from Wageningen Centre for Food Sciences, NIZO Food Research, Wageningen, The 
Netherlands.
3 Previously cited as L. plantarum. Identified as L. pentosus according to the genetic criteria of Torriani et al. (2001).
TType strain.
CECT: Colección Española de Cultivos Tipo (Spanish Type-Culture Collection), Burjassot, Spain.
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Table 2. Primers and plasmids used.

Primer Sequence1 Reference

IFNC8-for 5' ATGAAAAACATTAATAAGTACACTGAAC 3' Maldonado et al., 2004a

RR-rev 5' GAGTGAAAAGTATCGCGTTCC 3' Maldonado et al., 2004a

PlnE-rev 5' ATGCTACAGTTTGAGAAGTTACA 3' Maldonado et al., 2004a

PlnF-for 5' CTATCCGTGGATGAATCCTC 3' Maldonado et al., 2004a

PlnI-rev 5' CCCAACTCAATCACCCATTAAC 3' Maldonado et al., 2004a

PlnM-for 5' TAAACAGGTAAAGCAGGTTGG 3' Maldonado et al., 2004a

PlnP-for 5' TCTGAGCTTGTTACACCTACC 3' Maldonado et al., 2004a

EcoDEL-1 5' CGCG GAATTC  GTCACACTATTCAATAC 3'  (EcoRI) This work

SalDEL-2 5' CGCG GTCGAC  GATAGTTGGAGTAGGG 3'  (Sal I) This work

KpnPlnF-rev 5' CGCG GGTACC  GGGGGAGATCAACAATTATG 3' (KpnI) This work

erm-EcoRI 5' CGCG GAATTC  GAAACAGCAAAGAATGG 3' (EcoRI) This work

erm-HindIII 5' CGCG AAGCTT   TAGTAACGTGTAACTTTCC 3' (HindIII) This work

Plasmid    Size; Marker Features Reference
  

pUC18 2.7 Kb; ApR E. coli cloning vector Stratagene

pBSII-KS+ 2.9 Kb; ApR E. coli cloning vector Stratagene

pIL252 4.8 kb, EmR Low-copy-number Gram-positive cloning vector Simon and Chopin,
1988

pSIG227 4.1 Kb; ApR EmR pBSIIKS+ containing an 1.1 kb Sau3A insert obtained from This laboratory 
pIL252 which includes  the ermAM gene from pIL252 (unpublished)

pSIG313 3.8 Kb; ApR pBSIIKS+ containing an 0.9 kb BclI-EcoRI insert including This work
the plnP gene of L. plantarum NC8 

pSIG314 3.8 Kb; ApR pUC18 containing an 1 kbSal I-PstI insert including the plnI This work
gene of L. plantarum NC8

pSIG315 5.0 Kb; ApR EmR pSIG313 containing an 1.1 EcoRI-SalI insert from pSIG227 This work
which includes the ermAM gene from pIL252

pSIG316 5.8 Kb; ApR EmR pSIG314 containing an 2.1 kb SacI-SalI insert from pSIG315 This work
This vector harbors the plnP-ermAM-plnI gene fusion.

1Nucleotide sequences introduced for the recognition of specific restriction enzymes (in brackets) are shown in italic 
letters. A “clamp” nucleotide sequence (underlined) was added to the 5' end to facilitate restriction enzyme digestion.
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Table 3. Comparative bacteriocin production in wild type and 
derivative strains of Lactobacillus plantarum NC8 and WCFS1

Lactobacillus plantarum Strain1 CFS2 colonies3

NC8 - +

NC8+PLNC8IF                      + +

NC8-KO1 - -

NC8-KO1+PLNC8IF - -

NC8-INT - +

NC8 (pIL252) - +

WCFS1 (>105 CFU/ml)4 + +

WCFS1 (<105 CFU/ml) 4 - +

WCFS1 (<105 CFU/ml) 4+ PlnA + +

WCFS1-KO1 - -

WCFS1-KO1+ PlnA - -

WCFS1-INT (>105 CFU/ml) 4 + +

WCFS1-INT (<105 CFU/ml) 4 - +

WCFS1(pIL252) (>105 CFU/ml) 4 + +

WCFS1(pIL252) (<105 CFU/ml) 4 - +
1For a description of the strains, see Table 1. 2 Bacteriocin activity 
was assayed by the agar spot-on-lawn method using cell free 
supernatants (CFS) from MRS broth cultures of the L. plantarum
strains obtained at the late exponential phase of growth, i.e. an 
O.D.600nm of 2.0. 3 Bacteriocin activity of isolated colonies of the L. 
plantarum strains on solid medium. Pediococcus pentosaceus FBB63 
was used as the indicator strain. +: bacteriocin activity; -: no 
bacteriocin activity. 4Inoculum size for the broth culture used to 
obtain the corresponding CFS.
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