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 2 

ABSTRACT 1 

 2 

 Enterocin C (EntC), a class IIb bacteriocin was purified from culture supernatants of 3 

Enterococcus faecalis C901, a strain isolated from human colostrum. Enterocin C consists of 4 

two distinct peptides, named EntC1 and EntC2, whose complementary action is required for 5 

full antimicrobial activity. The structural genes entC1 and entC2 encoding enterocins EntC1 6 

and EntC2, respetively, and that encoding the putative immunity protein (EntCI) are located in 7 

the 9-kb plasmid pEntC, harboured by E. faecalis C901. The N-terminal sequence of both 8 

antimicrobial peptides revealed that EntC1 is identical to Ent1071A, one of the two peptides 9 

that form enterocin 1071 (Ent1071), a bacteriocin produced by E. faecalis BFE 1071. In 10 

contrast, EntC2 presents the non-polar alanine residue at position 17 (Ala17) instead of the polar 11 

threonine residue (Thr17) in Ent1071B, the second peptide constituting Ent1071. In spite of 12 

peptide similarities, EntC differs from Ent1071 in major aspects, including the complementary 13 

activity among its constitutive peptides and its wider inhibitory spectrum of activity. Different 14 

amphiphilic α-helical conformations between EntC2 and Ent1071B could explain both, 15 

acquired complementary activity and increased antimicrobial spectrum.16 



 3 

      INTRODUCTION 1 

 2 

 Colostrum and breast milk protect the newborn against infectious diseases, being this 3 

effect due to the combined action of a variety of protective factors present in these biological 4 

fluids, such as inmunoglobulins, inmunocompetent cells, antimicrobial fatty acids, polyamines, 5 

fucoylated oligosaccharides, lysozyme, lactoferrin, and antimicrobial peptides, which inactivate 6 

pathogens individually, additively, and synergistically (27). In addition, breast milk is an 7 

excellent and continuous source of commensal and potentially probiotic bacteria to the infant 8 

gut, including staphylococci, streptococci, and other lactic acid bacteria (LAB) (23, 33, 35). 9 

Some of the LAB strains isolated from this biological fluid have the ability to inhibit the 10 

growth of a wide spectrum of pathogenic bacteria by competitive exclusion and/or through the 11 

production of antimicrobial compounds, such as organic acids, hydrogen peroxide or the 12 

bacteriocin nisin, a lactococcal bacteriocin (6, 34, 43). 13 

Bacteriocins are antimicrobial compounds of proteinaceous nature with inhibitory 14 

activity against microorganisms that usually are closely related to the producing bacteria. In 15 

recent years, bacteriocins from LAB have been extensively studied due to their potential as 16 

food preservatives. The ability to produce such antimicrobial peptides is wide spread among 17 

enterococci (40), a property that makes them attractive to the food industry; in fact, several 18 

enterococcal strains with histories of safe use are included as components of starter, 19 

bioprotective or probiotic cultures (20).  20 

Enterococci form an essential part of the indigenous human microbiota soon after birth, 21 

being Enterococcus faecium and Enterococcus faecalis the most common species in human 22 

mucosal surfaces (16, 26, 46). On the other hand, some enterococcal strains can behave as 23 

opportunistic pathogens and cause nosocomial infections especially in patients with underlying 24 



 4 

diseases (29). Moreover, enterococci are noted for their capacity to exchange genetic 1 

information, including antibiotic resistance genes, by conjugation (12, 15).  2 

In this study, a two-peptide bacteriocin (enterocin C) produced by E. faecalis C901, a 3 

strain originally isolated from human colostrum provided by a healthy woman, was 4 

biochemical and genetically characterized. In addition, this strain was screened for the presence 5 

of potential virulence determinants and for its sensitivity to several clinically-relevant 6 

antibiotics. 7 

 8 

MATERIALS AND METHODS 9 

 Bacterial strains and media. E. faecalis C901 and all the bacterial strains used as 10 

indicators in this study (Tables 1 and 2) were grown routinely in MRS medium (Oxoid, 11 

Basingstoke, Hampshire, England) at 37ºC, with the exception of Actinomyces sp., 12 

Enterococcus gallinarum, E. saccharolyticus, Escherichia coli, Staphylococcus sp. and 13 

Streptococcus sp., which were grown in Brain Heart Infusion (BHI) medium (Oxoid). All the 14 

strains from human sources (Table 1) belonged to our own collection while those from food 15 

origin were obtained from different bacterial collections (Table 2). They were maintained as 16 

frozen stocks at –80ºC in MRS or BHI (Oxoid) plus 20% (vol/vol) glycerol. 17 

 18 

 Bacteriocin assays. Bacteriocin activity in cell-free supernatants (CFSs) from 19 

exponential and stationary-phase broth cultures (8 and 16 h, respectively) of E. faecalis C901 20 

was assayed by using the agar drop diffusion test as described previously (31), using the strains 21 

listed in Tables 1 and 2 as indicator microorganisms. Subsequently, E. faecalis L1443 was used 22 

as the indicator strain throughout the whole process of enterocin C purification and, also, to 23 

investigate the complementary activity of the two peptides (EntC1 and EntC2) that integrate 24 

enterocin C. For the late purpose, 5-µl aliquots of purified EntC1 were mixed with equal 25 



 5 

volumes of purified EntC2, and the mixes were assayed for antimicrobial activity by the agar 1 

drop diffusion test. Five-µl aliquots of each purified peptide were separately assayed in order to 2 

compare the results. Quantification of complementary activity among peptides EntC1 and 3 

EntC2 of enterocin C was carried out by the microtiter plate assay system (21). The inhibitory 4 

activity was expressed as bacteriocin units per millilitre (BU/ml) as described previously (31). 5 

 6 

 Bacteriocin purification. All the purification steps were carried out at room 7 

temperature, and all of the chromatographic equipment and media were purchased from 8 

Amersham Biosciences Europe GmbH (Freiburg, Germany). Peptides EntC1 and EntC2 were 9 

purified from a 2-L culture of E. faecalis C901. After 24 h at 37ºC without shaking, cells were 10 

removed by centrifugation at 10,000 × g for 10 min at 4ºC and, then, the bacteriocin was 11 

purified from the CFS using the procedure described by Maldonado et al. (30). Briefly, the CFS 12 

was precipitated with ammonium sulfate, desalted, and consecutively applied to cation-13 

exchange and hydrophobic-interaction columns. Finally, samples were subjected to C2/C18 14 

reverse-phase chromatography in FPLC (RPC-FPLC). Fractions showing inhibitory activity 15 

after the C2/C18 reverse-phase column were pooled and subjected to several runs until both 16 

EntC1 and EntC2 peptides were purified to homogeneity.  17 

 18 

 SDS-PAGE. During the purification process, the C2/C18 reverse-phase column fractions 19 

were analyzed in duplicate by SDS-PAGE using an 18% acrylamide resolving gel. After 20 

electrophoresis at 100 mV for 2 h, one gel was silver stained (52) while the other was used to 21 

detect inhibitory activity in an overlay assay with E. faecalis L1443 as the indicator strain (8). 22 

 23 

 N-terminal amino acid sequence and mass spectrometry. The N-terminal amino acid 24 

sequences of purified EntC1 and EntC2 peptides were determined by automated Edman 25 



 6 

degradation with a Beckman LF3000 sequencer/phenylthiohydantoin amino acid analyzer 1 

(System Gold, Beckman, Fullerton, CA). Molecular mass of the peptides was determined by 2 

Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-3 

TOF). These analysis were performed by Dr. Silvia Bronsoms (Servei de Proteòmica i 4 

Bioinformàtica, Universitat Autònoma, Barcelona, Spain). 5 

 6 

 PCR sequencing and location of the enterocin C structural and immunity genes. 7 

The primer pair 1071A-for (5’- ATGAAGCAATATAAAGTATTGAATG -3’) and 1071I-rev 8 

(5’- TTACTTAATTAAATAGTTCAGTACA -3’) were designed on the basis of the genes 9 

encoding Ent1071A (ent1071A) and Ent1071B (ent1071B) and their immunity protein (entI) 10 

(GenBank accession number: AF458698). DNA was amplified in 25-µl reaction mixtures 11 

containing 2.5 mM Mg Cl2, 1× reaction buffer, 200 µM concentrations of each of the 12 

deoxynucleotides triphosphates (dNTPs), 1 µM of each of the primers, and 1,25 U of Taq DNA 13 

polymerase (Ecotaq; Ecogen, Barcelona, Spain). Amplification included denaturation at 94ºC 14 

for 4 min, followed by 30 cycles of denaturation at 94ºC for 30 s, annealing at 56ºC for 1 min, 15 

polymerization at 72ºC for 1 min, and a final polymerization step at 72ºC for 5 min. 16 

The amplified fragment was excised from a 0.7% agarose gel, purified using the 17 

Nucleospin Extract II kit (Macherey-Nagel, Düren, Germany), and both strands were 18 

sequenced using primers 1071A-for and 1071I-rev at the Genomics Unit of the Universidad 19 

Complutense (Madrid, Spain). 20 

To locate the genes encoding EntC1 and EntC2 peptides, PCR assays were performed as 21 

described above, using plasmid or chromosomal DNA from E. faecalis C901 as templates. 22 

Plasmid DNA was extracted as described by Anderson and McKay (2) while total genomic 23 

DNA was isolated using the QIAmp tissue kit as recommended by the manufacturer. 24 

 25 



 7 

PCR screening of virulence and vancomycin-resistance (van) genes in E. faecalis 1 

C901. A novel multiplex PCR assay was designed to detect the presence of the potential 2 

virulence determinants gelE, cylA, efaAfs, epsfs, agg2, ccf, cpd, cad, and cob in E. faecalis C901 3 

using the primer pairs previously proposed by Eaton and Gasson (15). PCR amplifications were 4 

performed in 25-µl reaction mixtures containing 3 mM Mg Cl2, 1.5× reaction buffer, 400 µM 5 

of each deoxynucleotide triphosphate (dNTP), 0.2 µM of each primer, and 2,5 U of Taq DNA 6 

polymerase (Ecotaq). A colony suspension in deionized water (5 µl) was used as DNA 7 

template. PCR conditions included initial denaturation at 94°C for 5 min, followed by 30 cycles 8 

of denaturation at 94°C for 1 min, annealing at 51°C for 30 s, elongation at 72°C for 1 min 30 9 

s, and a final extension at 72°C for 5 min. E. faecalis P229 (15) was used as a positive control. 10 

 PCR for detection of vanA and vanB genes were carried out according to Dutka-Malen 11 

et al. (14) and Ramos-Trujillo et al. (49), respectively. E. faecium BM4147 (VanA+) and E. 12 

faecalis V583 (VanB+) were used as positive controls. 13 

 14 

 Computer analysis of DNA sequences. The Clone Manager Professional Suite 15 

software (version 6.00) was used for DNA analysis. The WinPep program (available at 16 

http://www.ipw.agrl.ethz.ch/~lhennig/winpep.html) was used for physico-chemical analysis of 17 

peptides (isoelectric point, molecular weight and hydropathy plot) (24). Edmunson α-helical 18 

wheel (51) was plotted with the Helical Wheel Applet program 19 

(http://cti.itc.virginia.edu/~cmg/Demo/wheel/wheelApp.html). 20 

  21 

 Nucleotide sequence accession number. The DNA sequence presented in this article 22 

has been deposited in the GenBank database under the accession number EU862242. 23 

  24 



 8 

 Hemolytic activity and susceptibility to antibiotics.  Hemolytic activity of E. faecalis 1 

C901 was determined on Columbia agar plates supplemented with 5% horse blood (COH, 2 

BioMerieux) and incubated for 72 h at 37°C. Minimal inhibitory concentrations (MICs) for 3 

several antibiotics commonly used against enterococcal infections were determined by a 4 

microdilution method using the Sensititre plates Staenc1F (Trek Diagnostic Systems, 5 

Cleveland, OH) following the manufacturer’s instructions. Briefly, colonies from solid media 6 

were suspended in saline solution to reach a 0,5 McFarland turbidity. Fifty µL of this 7 

suspension were transferred to a 10 ml tube of Mueller–Hinton broth (bacterial concentration of 8 

ca. 106 cfu/ml) and, finally, 100 µl of this suspension were inoculated into each plate well. 9 

Antibiotics analyzed were amoxycillin/clavulanic acid (AUG), ampicillin (AMP), 10 

chloramphenicol (CHL), ciprofloxacin (CIP), clindamycin (CLI), erythromycin (ERY), 11 

fosfomycin (FOS), gentamicin (GEN), imipenem (IMI), mupirocin (MUP), nitrofurantoine 12 

(NIT), linezolid (LNZ), oxacillin (OXA), penicillin (PEN), quinupristin/dalfopriscin (Q/D), 13 

rifampin (RIF), streptomycin (STR), teicoplanin (TEI), trimethoprim/sufamethoxazole (SXT), 14 

tetracycline (TET) and vancomycin (VAN). When available, the National Committee for 15 

Clinical Laboratory Standards (NCCLS; 2002) were used for determination of 16 

sensitivity/resistance (38). 17 

 18 

RESULTS 19 

 Antimicrobial activity of E. faecalis C901. CFSs obtained from exponential and 20 

stationary-phase E. faecalis C901 cultures showed antimicrobial activity against many indicator 21 

strains used in this study, including species both related and non-related to the producing strain, 22 

such as A. neuii, E. faecalis, E. faecium, F. hominis, L. lactis, L. paracasei, L. mesenteroides, 23 

P. acnes, S. caprae, S. epidermidis, S. anginosus and S. intermedius (Tables 1 and 2). It is 24 



 9 

noteworthy that all but one E. faecium and E. faecalis strains tested as indicators were 1 

inhibited, including other bacteriocin-producing strains.  2 

 3 

Purification of EntC1 and EntC2 peptides. Similarly to many LAB bacteriocins, the 4 

compound responsible for the antimicrobial activity produced by E. faecalis C901 precipitated 5 

in the presence of ammonium sulfate and showed a cationic and highly hydrophobic nature. 6 

Evidence that two peptides were involved in enterocin C activity was obtained after the first 7 

run in the C2/C18 reverse-phase column, when the agar drop diffusion test revealed that 8 

maximal antimicrobial activity was coincident with fractions in which two distinct absorbance 9 

peaks overlapped (not shown). Several additional runs were necessary to obtain fractions 10 

containing pure peptides, which were named EntC1 and EntC2, according to the order they 11 

eluted from the column. Fractions containing EntC1 showed little or no inhibitory activity in 12 

contrast to that displayed by fractions containing EntC2. SDS-PAGE gels showed that both 13 

peptides had been purified to homogeneity and displayed similar molecular weight (ca. 2.5 14 

kDa; Fig. 1A). When SDS-PAGE gels were assayed for antimicrobial activity, both peptides 15 

were active against the indicator strain E. faecalis L1443, being the activity displayed by EntC2 16 

notably higher (Fig. 1A). In addition, a small inhibition halo was observed in the zone between 17 

the bands corresponding to EntC1 and EntC2, which resulted from diffusion and mixing of 18 

both peptides, suggesting again their complementary nature (Fig. 1A). Complementary assays 19 

revealed that the bacteriocin activity of the two-peptide mix was greater than that observed for 20 

each separated peptide (Fig. 1B). More specifically, when bacteriocin activity of eluted 21 

fractions containing pure peptides was titrated, EntC1 showed no or just residual activity, 22 

meanwhile EntC2 showed 200 BU/ml. However, when EntC1 and EntC2 were combined in the 23 

same proportion, bacteriocin activity was 25600 BU/ml, ca. 128 times more than EntC2 24 



 10 

assayed alone. These results confirmed the existence of complementary activity between the 1 

peptides EntC1 and EntC2.  2 

 3 

Partial amino acid sequence and mass spectrometry of EntC1 and EntC2. Partial 4 

amino acid sequencing of EntC1 and EntC2 showed that the 10 N-terminal amino acids shared 5 

100% homology with the first 10 N-terminal amino acids of mature enterocin 1071A 6 

(Ent1071A) and 1071B (Ent1071B), respectively, from E. faecalis BFE 1071. Mass 7 

spectrometry analysis (MALDI-TOF) rendered molecular masses of 4,284 Da for EntC1 and 8 

3,867 Da for EntC2 (Fig. 2). The MW of mature Ent1071A and Ent1071B were 4,285 and 9 

3,899 respectively (4). These results suggested that the amino acid sequence of peptide EntC1 10 

could be identical to that of Ent1071A while the differences in the molecular masses between 11 

EntC2 and Ent1071B could be attributable to a variation in their amino acid sequence. 12 

 13 

Genetic analysis and DNA sequencing of enterocin C structural genes. In order to 14 

analyse the DNA sequence encoding enterocin C, a 786-bp DNA fragment was amplified with 15 

primers 1071A-for/1071I-rev using DNA from pENTC, a 9-kb size plasmid extracted from E. 16 

faecalis C901, as template. Sequencing of this DNA fragment revealed the presence of three 17 

open reading frames (ORFs) which shared high homology with the structural genes encoding 18 

enterocins 1071A (ent1071A) and 1071B (ent1071B) and their immunity protein 1071I 19 

(ent1071I). Detailed analysis of this sequence showed that entC1 and entC2 encoded two 20 

peptides of 57 and 62 amino acids, respectively. Both peptides contain leader sequences of the 21 

double-glycine type that, upon processing, give rise to mature peptides of 39 and 35 amino 22 

acids, respectively, whose deduced molecular masses (4,284 and 3,899 Da respectively) were 23 

coincident with those obtained experimentally for EntC1 and EntC2 peptides through mass 24 

spectrometry (Fig. 3). As expected, the deduced amino acid sequence of mature peptide EntC1 25 



 11 

was identical to mature enterocin 1071A. However, the amino acid sequence deduced for 1 

mature EntC2, differed in one amino acid with that of mature enterocin 1071B (Fig. 3). More 2 

specifically, EntC2 contains an alanine residue in position 17 (A17) instead of the threonine 3 

residue of the peptide Ent1071B at the same position (T17), due to the substitution of a single 4 

nucleotide (GCA in entC2, while ACA in ent1071B).The molecular mass predicted for the 5 

EntC2 peptide corresponded exactly with that obtained by MALDI-TOF, confirming the A17 of 6 

enterocin C901. The double-glycine leader sequences of both the EntC1 and EntC2 peptides 7 

were identical to those described for Ent1071A and Ent1071B, respectively.   8 

Downstream of entC2, a third ORF named entCI was found. This ORF encodes a 9 

putative protein of 125 amino acid residues with a theoretical pI of 9.4, and a MW of 14,866 10 

Da, which shares 100% homology with 1071I, the protein that putatively confers immunity to 11 

enterocin 1071A and 1071B. Finally, we found that the whole operon encoding enterocin C 12 

production and immunity is harboured by a 9-kb plasmid in E. faecalis C901, which was 13 

designated pENTC. 14 

 15 

Virulence determinants, van genes and sensivity to antibiotics of E. faecalis C901. 16 

The genes gelE, efaAfs, epsfs, agg2, ccf, cpd, cad and cob were present in E. faecalis C901 (Fig. 17 

4) but cylA was not detected. Haemolysis was not observed on COH plates. On the other hand, 18 

genes vanA and vanB, conferring resistance to vancomycin, were absent in this strain. MICs of 19 

selected antibiotics are shown in table 3. In summary, E. faecalis C901 was sensitive to most of 20 

the antibiotics tested with the exceptions of tetracycline and quinupristin-dalfopriscin.  21 

 22 

DISCUSSION 23 

To our knowledge, this is the first report describing the isolation of a bacteriocin-24 

producing LAB from human colostrum. Our results clearly indicate that enterocin C belongs to 25 



 12 

the class IIb bacteriocins (39) and, therefore, consists of two different peptides, EntC1 and 1 

EntC2, whose combination is necessary to obtain full bacteriocin activity.  2 

Enterocin C is nearly identical to enterocin 1071, a bacteriocin previously described 3 

which has been purified from two independent enterococcal strains: E. faecalis BFE1071 and 4 

E. faecalis FAIR E-309 (4, 19). In fact, the amino acid sequence of peptide EntC1 is identical 5 

to that of Ent1071A, while EntC2 differed only in one amino acid from enterocin 1071B (A17 6 

and T17, respectively). In contrast with the results obtained in this work with peptides EntC1 7 

and EntC2, whose activity is clearly complementary, it has been described that enterocin 8 

1071A acts independently from enterocin 1071B (5). In addition, it has been highlighted that 9 

the absence of activity against lactococci is a typical feature of enterocins 1071A and 1071B (4, 10 

5, 19). However, enterocin C shows inhibitory activity against L. lactis strains including L. 11 

lactis IL1403 (Tables 1 and 2), a strain resistant to enterocin 1071 (4). In the same manner, 12 

enterocin C was active against L. sakei NCFB 2714 but not against L. salivarius NCFB 2747, 13 

two strains which were resistant and sensitive, respectively, to enterocin 1071 (4). Therefore, 14 

the inhibitory spectrum of enterocin C appears to be quite distinct to that of enterocin 1071.  15 

A single amino acid change in one of the peptides which compose class IIb bacteriocins 16 

could be responsible for determining the specificity of the target strain. Lactococcin G 17 

(composed by LcnGα plus LcnGβ) and lactococcin Q (composed by LcnQα plus LcnQβ) are 18 

two homologous (88% identity) two-peptide bacteriocins whose inhibitory activity is limited to 19 

lactococcal strains (42, 55). The peptide LcnGα differs in six amino acids with LcnQα while 20 

peptide LcnGβ differs in only three amino acids with LcnQβ. Both bacteriocins are also similar 21 

to enterocin 1071 (57 and 59 % identities to lactococcins G and Q, respectively) (44). Zendo et 22 

al. (55) suggested that the different amino acid residues between LcnGβ and LcnQβ might be 23 

involved in the intensity of the antibacterial activity rather than in determining the specificity 24 

for target cells. On the other hand, since enterocin 1071 was not active against lactococcal 25 
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strains, they proposed that the amino acid residues that differ between lactococcins and 1 

enterocin 1071 might be involved in the specific recognition of target cells. Taking into account 2 

these observations, it could be possible that the amino acid residue at position 17 (Ala) in the 3 

peptide EntC2 of enterocin C is located in a zone involved in specificity determination.  4 

 In a recent study, Oppegård et al. (45) analysed bacteriocins lactococcin G and 5 

enterocin 1071 by site-directed mutagenesis. Their results suggested that the β peptide of each 6 

bacteriocin (LcnGβ and Εnt1071B) is important at determining target cell specificity, specially 7 

the N-terminal residues. Besides, the C-terminal residues might be involved in specific 8 

interaction with the cognate α peptide (LcnGα and Ent1071A, respectively). Thus, EntC2 9 

represents an Ent1071B natural variant whose study in combination with EntC1 and/or other 10 

similar two-peptide bacteriocins, such as lactococcins G and Q, could serve to elucidate the 11 

mode of action of these antimicrobial peptides as well as determine how target cell specificity 12 

is achieved. Actually, one single amino acid difference between EntC2 and Ent1071B (Ala17 13 

and Thr17, respectively) appears to be responsible for the high inhibitory activity of enterocin C 14 

against lactococci compared with the lack of activity of enterocin 1071. This amino acid 15 

change could also be responsible for the considerable enhancement in antimicrobial activity 16 

due to complementarity observed in enterocin C, as this change is not neutral, for a polar amino 17 

acid (Thr in Ent1071B) has been substituted by a non-polar one (Ala in EntC2). On the other 18 

hand, when Ent1071A and Ent1071B peptides were obtained after site-directed mutagenesis 19 

from LcnGα and LcnGβ, respectively, and heterologously expressed in L. sake Lb706, the 20 

mixture was active against lactococci (45). This result could indicate that the actual way by 21 

which a specific bacteriocin producer strain synthesizes a bacteriocin plays an extremely 22 

important role in its final power and spectrum of activity. Apart from particular amino acid 23 

changes that could determine important conformational modifications, facts such as the relative 24 

amounts produced of each complementary peptide by a specific producer strain could explain 25 
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why very similar two-peptide bacteriocins, such as enterocin C and enterocin 1071, can differ 1 

in their activity spectrum and complementary effect between their constitutive peptides.    2 

Amphiphilic α-helical conformations are found in several pore-forming antimicrobial peptides 3 

(48). Class IIb bacteriocins, as lactococcin G, are thought to form pores due to the amphiphilic 4 

character or their constituting peptides, which can adopt an α-helix conformation (22, 45). 5 

Attending to their amino acid sequence, amphiphilic α-helical motifs of enterocin C and 1071 6 

are represented as an Edmunson α-helical wheel (53) in figure 5. As it is shown in this figure, 7 

the non-polar Ala17 in EntC2 is in the place of the polar Thr17 in Ent1071B just in the 8 

hydrophilic side of the α-helix. This change in the polarity of that region could facilitate 9 

dimerization with EntC1 or interaction with the membrane of target cells. Thus, it could ease 10 

pore formation in the membranes of sensitive strains and/or increase the sensitivity of these. It 11 

is noticeable that the amphiphilic regions of lactococcins Gβ and Qβ are highly similar to that 12 

of EntC2 when represented as an α-helical wheel (Fig. 5), despite the differences in their 13 

aminoacid sequences (Fig. 3).  14 

 E. faecalis C901, isolated from human colostrum, produces a bacteriocin that is almost 15 

identical to enterocin 1071 produced by E. faecalis BFE 1071 and Fair-E 309, two strains that 16 

were isolated from mini pig faeces (4) and cheese (19), respectively. Enterocin C, as as it is 17 

with enterocin 1071 (5), is encoded by a plasmid that we have named pENTC and which is 18 

currently under sequencing. The extremely efficient plasmid conjugation system of E. faecalis 19 

(25) can explain the widespread of these highly homologous enterocins among different strains. 20 

In fact, E. faecalis C901 has shown to possess the genes cpd, cob, ccf, cad encoding sex 21 

pheromones which could facilitate conjugation with other E. faecalis strains. In addition, this 22 

strain harbours the gelE, efaAfs, epsfs, and agg2 genes but it lacked the cylA gene. The presence 23 

of the cited genes seems to be widespread among E. faecalis strains, including those with a 24 

long history of safe use in the food industry (15, 18). Despite the apparently “dualistic” nature 25 



 15 

of enterococci, the incidence of virulence determinants and/or any other factor of clinical 1 

significance, such as the antibiotic resistance pattern or the gene transfer potential, appear to be 2 

strain specific among isolates studied so far.  Vancanneyt et al. (54) compared the genotypes of 3 

strains of the related specie E. faecium from human, animal and food origin and found that all 4 

human isolates involved in clinical infection fell into a well defined subgroup, suggesting that 5 

there could be a common genetic basis for strains associated with human disease. Pillai et al. 6 

(47) also suggested that virulent subpopulations of E. faecalis may exist. Therefore, the safety 7 

of any enterococcal strain should be individually evaluated.  8 

Enterococci are among the predominant bacteria in human milk of healthy women (23, 9 

33, 35) and in faeces of healthy breastfed neonates (1, 51), which suggests that they may play 10 

important biological functions. The roles of enterococci in human hosts, both in health and 11 

disease, are far from clear, but the inclusion of enterococal strains among the microorganisms 12 

that will be studied in the frame of the human microbiome project may provide new clues in the 13 

next years.  14 

 15 

 16 
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LEGENDS OF THE FIGURES 1 

 2 

Legend of Figure 1. A) Left panel, silver stained SDS-PAGE corresponding to EntC1 and 3 

EntC2 purified peptides as indicated; right panel, bioassay of the same EntC1 and EntC2 4 

samples using E. faecalis L1443 as the sensitive strain, showing the corresponding inhibition 5 

zones; the arrow indicates the inhibition halo produced by the complementary action of both 6 

peptides; on the left of the panels, molecular weight markers. B) Spot-on-lawn test showing the 7 

inhibitory activity of EntC1 and EntC2 purified peptides and a mixture of them to demonstrate 8 

their complementary action; E. faecalis L1443 was used as the sensitive strain; the bar 9 

represents 10 mm. 10 

 11 

Legend of Figure 2. MALDI-TOF mass spectra analysis corresponding to EntC1 and EntC2 12 

peptides. a.i., arbitrary intensity. Estimated molecular weights are indicated on top of the 13 

corresponding mass spectra peaks. 14 

 15 

Legend of Figure 3. Amino acid sequence of EntC1 and EntC2 mature peptides deduced from 16 

their coding DNA sequences and alignment with homologous two-peptide bacteriocins 17 

Enterocin 1071 (Ent1071A + Ent1071B), Lactococcin G (LcnGα + LcnGβ) and Lactococcin Q 18 

(LcnQα + LcnQβ). Identical amino acid residues are boxed. For LcnQ, only those amino acid 19 

residues which are different from LcnG are indicated; among these, residues in italics are those 20 

identical to EntC1. Amino acid residues which are different in EntC2 and 1071B are 21 

underlined. Theoretical (t) and experimental (e) molecular weights are indicated.  22 

 23 

Legend of Figure 4. Agarose gel electrophoresis of multiplex PCR analysis of virulence 24 

determinants. Lanes: M, molecular weigh marker; the actual sizes are indicated on the left; 25 



 26 

C901, result using total DNA from E. faecalis C901 as the template; P229, result using total 1 

DNA from E. faecalis P229 as the template, used as the positive control in the PCR reactions. 2 

Virulence genes corresponding to each specific PCR-amplified DNA band are indicated at the 3 

right side. 4 

  5 

Legend of Figure 5. Edmundson α-helical wheel representation of the amphiphilic regions in 6 

enterocins EntC2 and Ent1071B, and lactococcins LcnGβ and LcnQβ. In all peptides the 7 

amphiphilic region starts at the amino acid residue 8 and ends with the amino acid residue 25. 8 

Polar and nonpolar amino acid residues are shown as white or shaded circles, respectively. 9 

Residues which are different in enterocin EntC2 with respect to enterocin Ent1071B, and in 10 

lactococcin LcnQβ to lactococcin LcnGβ are marked with boxes. 11 

 12 
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Table 1. Inhibitory spectrum of cell-free supernatants from Enterococcus faecalis C901 against 1 

bacterial strains from human origin. 2 

 3 

Bacterial species  Straina    Sensitivityb 4 

 5 

 6 

Actynomyces neuii  FR1543    ++ 7 

    P1543    + 8 

Bifidobacterium longum  H1542    - 9 

 10 

Enterococcus faecalis  C301, L1443   ++++ 11 

     12 

EV1444, FR1441, FR1542  +++ 13 

H1441, HK223, LAM43 14 

MA006, SC1541   15 

 16 

C1002, EV1542, L1543  ++ 17 

    LA1442, LV123, M1441  18 

    M1541, P1441a, SC1442    19 

 20 

Enterococcus faecium  C656    +++     21 

Enterococcus gallinarum HU521    -    22 

Enterococcus sacharolyticus HU522    -    23 

Escherichia coli   FR1545    -  24 

Facklamia hominis  EV1443    ++ 25 

Lactobacillus fermentum Lc40    - 26 

Lactobacillus gasseri  EV1461, LA2441, Lc9, Lc23 - 27 

Lactobacillus paracasei  C1351, C1352   ++++  28 

Lactobacillus reuteri   EV1763, LA1746  - 29 

Lactobacillus rhamnosus  FR1762    - 30 

Lactobacillus salivarius  HN6    -    31 

Leuconostoc mesenteroides  C1353    ++++  32 

Propionibacterium acnes P1544, SC1441, SC1544b +++ 33 

Propionibacterium avium         H1544b    - 34 

Propionibacterium granulosum C1441    -     35 

Staphylococcus caprae  FR1541a   + 36 

Staphylococcus epidermidis  EV1541    - 37 

  C1541 EV1441 FR1444   - 38 

FR1541b L1442 L1544   - 39 

L1546 M1564 P1441b  - 40 

P1541 SC1444b   - 41 

Streptococcus anginosus EV1442    +++  42 

FR1442, L1441, LA1441  - 43 

Streptococcus intermedius LA1443    +    44 

Streptococcus parasanguinis  L1541    -     45 

 46 
a Abbreviations: C, colostrums; H, faeces; EV, vaginal exudates; FR, rectal frotis; M, meconium; L, breast milk; LA, 47 

amniotic liquid; P, skin; SC, umbilical cord blood. 48 

b Sensitivity to cell-free supernatants of E. faecalis C901, assayed by the spot-on-lawn method. Sensitivity scale: + 49 

(<9mm), ++ (10-11 mm), +++ (11-12mm), and ++++ (12-14 mm), reflect the degree of sensitivity according to 50 

the diameter of the inhibition halo showed in brackets; -, resistant. 51 



 28 

Table 2. Inhibitory spectrum of Enterococcus faecalis C901 against several bacteriocin producing and non-1 

producing strains. 2 

 3 
Bacterial species Strain (bacteriocin)a  Sourceb Sensitivityc  Reference 4 
 5 
Enterococcus faecium  LP6T1a (L50A+L50B) CIG +++ (11, 17)  6 
 CTC492 (EntA+EntB) CTC + (3, 9, 41) 7 

 P13 (EntP) FVM +++ (10) 8 
E. faecalis  EFS2 (AS-48) UG +++ (30, 37) 9 
 OG1-X (AS-48) UG ++++ (37)   10 
 AE9, AE12, AE23 (Munt) HRM ++ (7) 11 
 PB1 (bac+) HRM +++  12 
 EF1 TNO ++++ 13 
 CNRZ 135,136, 137 INRA +++ 14 
 CNRZ 34 (bac+)  INRA - 15 
 BM4100WT TNO +++ 16 
 17 
Lactobacillus acidophilus NCDO 1748 NCDO - 18 
 ATCC 4356 TNO - 19 
L. brevis LB9 UV - 20 
L. casei NCDO 161 NCDO - 21 
L. curvatus  NCFB 2739 NCDO - 22 
L. delbruecki  ATCC 11842 IPLA - 23 
L. fermentum ATCC1493 ATCC - 24 
 NCDO1750 NCDO - 25 
L. hilgardii LB76 UV - 26 
L. pentosus LPCO10 (plnS) CIG - (28) 27 
 128/2 CIG - 28 
 CECT 4023 CECT - 29 
L. plantarum NC8 (plNC8+ plnEF + plnJK) MATFORSK - (13, 31, 32) 30 
 LB6 UV - 31 
 CECT748 CECT - 32 
L. reuteri DSM 20016 TNO - 33 
L. salivarius NCFB 2747 TNO -   34 
L. sakei NCFB 2714 TNO ++  35 
Lactococcus lactis  36 
    subsp. cremoris   MG1363                    CIT + 37 
 CNRZ117 INRA  - 38 
    subsp. diacetylactis   IPLA838  IPLA +++ 39 
    subsp. lactis            IL1403                 INRA ++++  40 
                                 IPLA972 (lcn972) IPLA ++ (36) 41 
Pediococcus parvulus P339 UV - 42 
P. pentosaceous FBB63, P56 TNO  - 43 
Streptococcus thermophilus  ST20 TNO - 44 
 45 
aBacteriocin produced is shown in brackets.  46 

b Abbreviations: ATCC, American Type Culture Collection (Rockville, Md.); CECT, Colección Española de Cultivos Tipo (Universidad de Valencia, 47 

Burjasot,Spain); CIG, Colección Instituto de la Grasa (Sevilla, Spain); CIT, Cranfield Institute of Technology (UK); CTC, Center of Technology of Meat 48 

(IRTA; Girona, Spain); FVM, Facultad de Veterinaria, Universidad Complutense (Madrid, Spain); HRM, Hospital Ramón y Cajal (Madrid, Spain); INRA, 49 

Institut National de la Recherche Agronomique (Jouy-en-Josas, France); IPLA, Intituto de Productos Lácteos de Asturias (Oviedo, Spain); Matforsk 50 

(Ås, Norway); NCDO, National Collection of Dairy Organisms (Reading, UK); TNO, Nutrition and Food Research (Zeist, The Netherlands);UV, 51 

Universidad de Valencia (Burjasot, Spain); UG, Universidad de Granada (Granada, Spain). 52 

c Sensitivity to cell free supernatant of E. faecalis C901, assayed by the spot-on-lawn method. Sensitivity scale: + (<9mm), ++ (10-11 mm), +++ 53 

(11-12mm), and ++++ (12-14 mm), reflect the degree of sensitivity according to the diameter of the inhibition halo showed in brackets; -, 54 

resistant. 55 

 56 
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Table 3.  Minimal inhibition concentrations (MICs) of  different  1 

antibiotics for E. faecalis C901.  2 

Antibiotica   MICs (µµµµg ml-1) S/Rb 3 

AUG   1/0.5   4/8  4 

AMP   2   ≤8/≥16 5 

CHL   16   ≤8/≥32 6 

CIP   2   ≤1/≥4 7 

CLI   >2 8 

ERY   2   ≤0.5/≥8 9 

FOS   32   ≤64/≥256 10 

GEN   128   ≤500/>500 11 

IMI   2    12 

MUP   256 13 

NIT   64 14 

LNZ   2   ≤2/≥8 15 

OXA   >2 16 

PEN   4 17 

Q/D   >4   ≤1/≥4 18 

RIF   ≤1   ≤1/≥4 19 

STR   ≤1000   ≤1000/≥1000 20 

TEI   ≤0,5   ≤8/≥32 21 

SXT   ≤1/38       22 

TET   >8   ≤4/≥16  23 

VAN   4   ≤4/≥32 24 
a Antibiotic abbreviations are described in Materials and Methods  25 

b NCCLS, 2002, (38) was used to determine sensitivity (S) or resistance (R)  26 
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Peptide Amino acid sequence and alignment MW(t)   MW(e)   Reference

EntC1 (1071A) ESVFSKIGNAVGPAAYWILKGLGNMSDVNQADRINRKKH 4,286 4,284 This study; (4, 5, 19)

LcnGα GTWDDIGQGIGRVAYWVGKAMGNMSDVNQASRINRKKKH 4,376    4,346 (42)

LcnQα SI G     V KA 4,260    4,260 (55)

EntC2 GPGKWLPWLQPAYDFVAGLAKGIGKEGNKNKWKNV        3,869 3,867 This study

1071B GPGKWLPWLQPAYDFVTGLAKGIGKEGNKNKWKNV 3,899 3,898 (4, 5, 19)

LcnGβ KKWGWLAWVDPAYEFIKGFGKGAIKEGNKDKWKNI 4,109    4,110 (42)

LcnQβ E  G  L                           4,018    4,018 (55)
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