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Abstract. A transverse ratchet effect has been measured in magnetic/
superconducting hybrid films fabricated by electron beam lithography and
magnetron sputtering techniques. The samples are Nb films grown on top of an
array of Ni nanotriangles. Injecting an ac current parallel to the triangle reflection
symmetry axis yields an output dc voltage perpendicular to the current, due to
a net motion of flux vortices in the superconductor. The effect is reproduced by
numerical simulations of vortices as Langevin particles with realistic parameters.
Simulations provide an intuitive picture of the ratchet mechanism, revealing the
fundamental role played by the random intrinsic pinning of the superconductor.
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1. Introduction

The study of transport in asymmetric substrates, under the generic name of ‘ratchet phenomena’,
has attracted increasing attention in the last few years. Ratchets exhibit unexpected transport
properties, such as rectification or negative resistance, which can be used to control motion
and also to reveal aspects of the underlying dynamics in many physical systems [1, 2]. This
is the case for vortex motion in superconductors, where different types of ratchets have been
implemented using substrates with asymmetric defects [3].

In ratchets, asymmetry is normally used to rectify an ac signal, but it can also induce
other nontrivial transport effects. One of these effects is the so-called transverse ratchet, in
which an ac force can induce a directed motion perpendicular to the force. Several authors
have theoretically worked on this topic [4]–[7]. Olson-Reichhardt and Reichhardt [8] have
studied this effect by numerical simulations of superconducting vortices as Langevin interacting
particles. In a recent publication, Gonzalez et al [9] have presented experimental evidence of
transverse ratchets in superconducting samples, using non-superconducting triangles embedded
in a superconducting film. In the usual ratchet effect configuration, the driving current is applied
perpendicular to the triangle reflection symmetry axis (tip to base axis) and the output dc voltage
signal is measured in the same direction. However, in the case of a transverse ratchet, the driven
current is applied parallel to the triangle reflection symmetry axis, and the output voltage drop is
measured perpendicular to the input current direction, i.e. perpendicular to the triangle reflection
symmetry axis. We recall that the voltage drop in one direction probes the vortex motion
along the perpendicular direction, as given by the Lorentz force and the Josephson equation [9]
(a schematic representation of the transverse setup is shown in figure 1).

In this work, we show that this transverse ratchet effect can be modeled in the
framework of the Langevin equation in two dimensions (2D), taking into account that
we are dealing with an adiabatic ratchet effect of interacting particles [10]. The crucial
point is the interplay between two pinning potentials: (i) intrinsic and random pinning
potentials, due to the structural defects present in the superconducting films; and (ii) artificial
periodic ratchet pinning potentials, due to the array of nonsuperconducting nanostructures
embedded in the superconducting films. This approach is able to reproduce the sign and
magnitude of the experimental data, with realistic values of all the parameters involved in the
simulation.
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Figure 1. Transverse ratchet configuration.

2. Experimental method

The samples are superconducting/magnetic hybrids, i.e. Nb films grown on top of arrays of Ni
nanotriangles, which are fabricated on Si (100) substrates. These samples are obtained following
several steps with different techniques. The first step is e-beam writing of the nanotriangles on a
polymethyl methacrylate (PMMA) resist covering the Si (100) substrate, the next is developing
using methyl isobutyl ketone : isopropyl alcohol (1 : 3) during 15 s and magnetron sputtering
deposition of Ni. Once lift-off is performed and the resist is removed, only nanometric Ni
triangles remain on top of the substrate, which is then covered by a thin film of Nb, also by
magnetron sputtering. The thicknesses are always the same, for Ni (triangles height) 40 nm, and
100 nm for the Nb film. The nanotriangles side is around 600 nm. The array period is 770 nm ×

750 nm. Samples were lithographed with a cross-shaped bridge (40 µm wide) using standard
optical lithography and reactive ion-etching techniques for magnetotransport measurements.
This cross-shaped bridge allows a transport current to be injected and voltage drops to be
measured along the two perpendicular directions. This guarantees that the only asymmetry in
the experimental layout is coming from the Ni triangular traps. Magnetotransport measurements
were carried out in a commercial liquid He cryostat provided with a superconducting magnet
and a variable temperature insert. The magnetic field, which creates the vortex lattice, is applied
perpendicular to the film. The magnetic properties of these arrays of Ni triangles have been
already published [11]. The temperature is kept constant and close to the superconducting
critical temperature, which is around 8.7 K in our samples. The measurements were done with
a frequency of the ac-applied current of 10 kHz. The experimental configuration is Hall-like,
the injected ac current is applied parallel to the triangle reflection symmetry axis (tip to base
axis) and the output voltage is recorded perpendicular to this axis. This type of measurements
could yield experimental artefacts due, for instance, to misalignment of the potential contacts.
In the related literature, one can find well-known experimental methods to avoid these unwanted
effects for all kinds of unpatterned [12] or patterned [13] samples. In our case, the experimental
signal coming from these effects is much smaller than the transverse ratchet effect signal and
the possible contribution to the experimental data could be neglected as was reported in [9].

Finally, close to critical temperature [14] magnetoresistance of superconducting thin films
with periodic arrays of pinning centers show minima when the vortex lattice matches the unit
cell of the array [15]. This geometric matching occurs when the vortex density is an integer
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multiple of the pinning center density, hence the number n of vortices per array unit cell can
be known by simple inspection of the magnetoresistance curves, in which the first minimum
corresponds to one vortex per unit cell, the second minimum to two vortices per unit cell, and
so on. Therefore, changing the applied magnetic field we can select the number of vortices per
array unit cell.

The transverse ratchet effect has been observed for different values of n, as shown in
figure 3. Firstly, we proceed to describe the numerical simulations and then we discuss the
results.

3. Numerical simulations

We have performed extensive numerical simulations of vortices as a set of 2D interacting,
overdamped Brownian particles in the Langevin approach. This type of simulations has
been used to study rectification, current reversal and lattice configuration effects [8, 16, 17].
Transverse vortex rectification has been previously analyzed by Olson-Reichhardt and
Reichhardt [8] and Savel’ev et al [6] using similar simulations. However, our experimental
results differ from these simulations.

Even though random intrinsic pinning effects in Nb and type-II superconductors
without periodic pinning traps have been widely discussed [18], Langevin-type simulations
of experimental vortex ratchet systems usually disregard the effect of intrinsic pinning
centers [8, 16, 17], [19]–[22]. As pointed out by Kolton [7], pinning defects may have a strong
influence on the transversal ratchet effect. In our simulations, Nb intrinsic pinning is taken into
account as a random distribution of potential wells, and as we will see later, the disorder induced
by the intrinsic pinning in the vortex lattice plays a fundamental role in the transverse ratchet
effect.

The Langevin equation for the position ri of the i th vortex reads

ηṙi(t) = −

∑
j 6=i

E∇iUvv

(
|ri − r j |

)
− E∇i Vtp(ri) − E∇i Vip(ri) + Fext(t) + 0i(t), (1)

where η is the viscosity, Uvv(r) is the interaction potential between vortices, Ftp
i (ri) =

− E∇i Vtp(ri) the force due to Ni triangular pinning traps, Fip
i (ri) = − E∇i Vip(ri) the force due

to randomly distributed pinning centers present in the Nb sample, Fext(t) the external force due
to the applied current, and 0i(t) are white Gaussian noises accounting for thermal fluctuations

〈0i(t) · 0j(t
′)〉 = 4kT ηδi jδ(t − t ′). (2)

For the vortex interaction potential, we have used [23]:

Uvv(r) =
φ2

0d

2πµ0λ2
K0

( r

λ

)
, (3)

where φ0 = h/(2e) is the quantum of flux, µ0 is the magnetic permeability of vacuum, K0 is
the zeroth-order modified Bessel function, λ is the penetration depth of the material, and d is
sample thickness.

For the friction coefficient η, we have used the Bardeen–Stephen contribution to vortex
viscosity per unit length giving η = φ2

0d/2πξ 2ρn, where d is the sample thickness, ξ is the
vortex coherence length and ρn is the normal state resistivity for Nb.
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Figure 2. Potential used for vortex–triangle interaction.

The external force is sinusoidal as in the experiment, with the same amplitude but different
frequency. The friction coefficient and vortex interaction strength set the appropriate timescale
for simulation, and unfortunately, the small time step required (1t = 2 × 10−6 µs) prevents us
from using the experimental value of applied force frequency of 10 kHz. However, experiments
show that the system is adiabatic and the result does not depend on signal frequency, which
allows us to use an adiabatic approximation as in [17]. Finally, we have compared adiabatic
simulations with those using an ac signal of 5 MHz showing that this is a sufficiently small
frequency to yield the same results (not shown). For the rest of the simulations, we have used a
5 MHz signal because this slightly simplifies data analysis by avoiding numerical computations
of the adiabatic integral.

The interaction between vortices and the triangular Ni pinning wells is modeled by a
potential Vtp in the shape of a triangle and with a smooth hyperbolic tangent profile and rounded
vertices and intensity Vtp0, as depicted in figure 2.

Intrinsic pinning defects have been simulated as a series of potential wells randomly
distributed across the sample and in the shape of paraboloids truncated at radius rd . Thus, the
interaction potential of vortex i with a defect in position rc is

Vip(ri) = −Vdef +
Vdef

r 2
d

(ri − rc)
2, if |ri − rc| < rd (4)

and zero otherwise, where Vdef represents the intensity of the intrinsic pinning potential.
Following [24]–[28], we have chosen the size of the defect as the size of the vortex core rd = ξ ,
which corresponds to point defects interacting with the core of the flux quantum. If the density
of pinning defects is sufficiently high as it is in Nb samples the overlapping pinning centers
will lead to a diffuse potential or ‘pin-scape’ that can be described by a much lower effective
pinning density and certain amplitude [24]. Only a small fraction of the resulting wells will
have an amplitude large enough to produce appreciable pinning, the majority of them overlap
producing a low amplitude wriggling in the pinning potential. This effective density has been
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Table 1. Numerical values used in simulations in units pN, µm, µs and K.

Magnitude Symbol Value

Friction coefficient [29]a η 6 × 10−5 pNµs µm−1

Penetration length [30]a λ 0.320 µm
Coherence lengtha ξ 0.090 µm
Sample thicknessa d 0.100 µm
Temperaturea T 8.3 K
Triangular pinningb Vtp0 0.08 pN µm
Intrinsic pinningb Vdef 0.015 pN µm
Defect densityb ρeff 14.5 µm−2

aExperimental values.
bValues that have been adjusted to reproduce experimental data behavior.

chosen large enough so that the defects produce lattice distortion, but not too large so that
computer simulation time remains below a reasonable limit.

Table 1 presents a summary of numerical values used in simulation.
Experimental and simulation results are represented in figure 3. Simulations and

experiment data show similar behavior. Several differences can be observed though. For
instance, simulated vortex velocity does not decay with force as fast as in the experimental
curves. In the case of the simulations, the decay is that of an adiabatic system where the
velocity is expected to decay slowly, as the inverse of the square root of the applied peak force
intensity. This is due to the fact that even for very high peak forces, the sinusoidal applied
force covers small values of the force for a short interval. This is however not observed in the
experimental data although the system is known to be adiabatic with respect to the applied
force frequency [3, 10]. At high enough driving forces, a vortex velocity threshold is found in
the experiments above which the interaction between the moving vortex lattice and the ordered
array, if there is any, is very weak, and commensurability effects are suppressed as was reported
by Velez et al [31]. Nevertheless, we point out that the sign of the current is correctly reproduced
by our simulations, which also agree with the order of magnitude of velocities and applied force.

4. Discussion: rectification mechanism

The mechanism for transverse rectification is depicted in figure 4 (see also supplementary
material available from stacks.iop.org/NJP/11/073046/mmedia) and can be stated as follows:

1. Fluctuations may take a vortex to a neighboring row of triangles.
2. If a vortex enters a triangle by its tip (downward motion in figure 4) it may be carried

further down parallel to the side of the triangle by the combination of the horizontal force
and the triangular potential. If the vortex enters the triangle at its base (upward motion in
figure 4), the external force and the triangle potential keep it close to the triangle base.
Thus, downward fluctuations are promoted or favored, ratcheting the particles down and
yielding a negative particle current.

As explained, fluctuations are essential for this mechanism, the source of these usually
being the temperature in most systems. However, the temperature in our experimental system
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Figure 3. Left: measured average vortex speed versus amplitude of applied
force, for applied magnetic field H = 64 Oe (n = 2) (green), H = 96 Oe (n = 3)
(black), H = 128 Oe (n = 4) (blue) and H = 176 Oe (n = 6 ) (red), T/Tc = 0.98.
Right: simulation results, average vortex speed versus amplitude of applied force,
for n = 2 (green), n = 3 (black), n = 4 (blue) and n = 6 (red) vortices per unit
cell. The line joining the dots is only a guide for the eye.

F

Figure 4. Sketch of rectification mechanism (see text for discussion).

is too low to provide fluctuations of sufficient amplitude. As previously stated, the role of
temperature fluctuations can also be played by a random distribution of pinning centers, which
may add the needed stochasticity to vortex motion.

As expected, removing the pinning centers from simulations makes the transverse signal
disappear for n = 4 and drastically reduces the signal for n = 2 and 3. For n = 4 and without
the intrinsic pinning disorder, the Abrikosov lattice formed by the vortices approximately
matches the triangle square lattice, forming a well ordered almost triangular lattice, as explained
and depicted in [17]. When pulled horizontally, vortices move in almost perfect order from
one column to the next, yielding a vanishing vertical current, as shown in figure 5 (see also
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Figure 5. Simulation results, average vortex speed versus amplitude of applied
force in the absence of intrinsic pinning, for n = 2 (green), n = 3 (black), n = 4
(blue) and n = 6 (red) vortices per unit cell. The line joining the points is only a
guide for the eye.

supplementary material available from stacks.iop.org/NJP/11/073046/mmedia). For n = 2, the
vortex lattice is not perfectly ordered even in the absence of intrinsic pinning disorder,
presenting some interstitial vortices, a small part of the triangles trapping just one vortex or
three. This disorder is enough to provide a small transversal signal as also shown in figure 5;
however, the addition of pinning disorder clearly enhances the signal, as also happens for n = 3.

Finally, the effect or pinning disorder is the opposite for n = 6, where the vortex interaction
is stronger and matching between the vortex and the array of triangles is worse in the absence
of intrinsic disorder. In this case, adding intrinsic pinning merely increases the overall pinning
and the movement of the vortices is slower, giving less signal.

Supplementary multimedia material allows the reader to compare simulations with or
without intrinsic pinning disorder and inspect the mechanism behind rectification.

5. Conclusions

In summary, hybrids of superconducting films with periodic asymmetric nanotriangles show
a transverse ratchet effect, i.e. injecting an ac current parallel to the reflection symmetry axis
yields a dc output voltage in the perpendicular direction. This effect can be modeled in the
framework of the Langevin equation for interacting particles in 2D. The simulations provide
an intuitive mechanism for the observed transverse rectification of vortices. Moreover, we have
shown that intrinsic random pinning is necessary to reproduce the experimental results. The role
played by the intrinsic pinning is smeared out when the number of vortices is increased.
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