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A non-Abelian flavour symmetry in a minimal supersymmetric standard model can explain

the flavour structures in the Yukawa couplings and simultaneously solve the SUSY flavour

problem. Similarly the SUSY CP problem can be solved if CP is spontaneously broken in

the flavour sector. In this work, we present an explicit example of these statements with a

SU(3) flavour symmetry and spontaneous CP violation. In addition, we show that it is still

possible to find some significant deviation from the SM expectations as far as FCNC and CP

violation are concerned. We find that large contributions can be expected in lepton flavour

violating decays, as µ → eγ and τ → µγ, electric dipole moments, de and dn and kaon CP

violating processes as ǫK . We also show that without further modifications, it is unlikely for

these models to solve the ΦBs
anomaly at low-moderate tanβ. Thus, these flavoured MSSM

realizations are phenomenologically sensitive to the experimental searches in the realm of

flavor and CP violation physics.

I. INTRODUCTION

In the next few years, after a long impasse in the phenomenological searches for new physics in

the energy frontier, all the high-energy particle physics community will be focused on the results

from the LHC experiments. Its first goal will be the study of the physics of electroweak symmetry

breaking, but besides this, we also expect some kind of new physics around the electroweak scale.

Supersymmetry (SUSY) is perhaps the new physics option that is best motivated. The LHC should

find some SUSY particles if SUSY is indeed the solution to the hierarchy problem and provides a

candidate for the dark matter observed in the universe.

Supersymmetry has been extensively studied in the last decades, but most of these studies have

been done in the framework of the so-called Constrained Minimal Supersymmetric Standard Model

(CMSSM). The CMSSM is one of the simplest supersymmetric extensions of the Standard Model
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as it assumes universality of the supersymmetric soft breaking terms and is completely determined

by four parameters (M1/2,m0, A0, tan β) plus a sign (sg(µ)). This simplified model is very useful

to explore the main features of the SUSY spectrum in collider experiments, however, nobody

really believes that the realization nature has chosen of supersymmetry is exactly the CMSSM,

specially concerning flavour. In analogy to the known flavour structures in the Yukawa couplings,

we naturally expect non-trivial flavour structures in the supersymmetry soft-breaking terms.

Therefore, we should consider other more general flavoured MSSM models as the SUSY models

we can find when we analyze the experimental results from LHC experiments. Nevertheless, it is

well-known that the presence of generic flavour structures in the SUSY soft-breaking terms causes

the so-called “supersymmetric flavour problem”. Flavour changing neutral currents (FCNC) and

flavour-dependent CP violation observables receive too large contributions from loops involving

SUSY particles and can not satisfy the stringent phenomenological bounds on these processes [1, 2].

Although this statement is still true, it is important to emphasize that the basis of this problem

lies clearly on our total ignorance about the origin of the observed flavour and CP-violation in our

theory, and this includes also the SM Yukawa couplings. The real flavour problem is simply our

inability to understand the complicated structures in the quark and lepton Yukawa couplings, and

likewise for the soft-breaking flavour structures in the MSSM. It has been recently shown in the

literature [3, 4] that an MSSM model with a non-Abelian flavour symmetry allows a simultaneous

understanding of the flavour structures in the Yukawa couplings and the SUSY soft-breaking terms,

adequately suppressing FCNC and CP violating phenomena and solving the SUSY flavour problem.

In this work, we intend to exhibit a concrete example of such strategy considering an MSSM

(with the limited number of new parameters present in the CMSSM) and showing that the presence

of a non-Abelian family (horizontal) symmetry can simultaneously account for the solution of both

flavor problems, namely that it is possible to successfully reproduce the correct fermion spectrum

while adequately suppressing FCNC and CP violating phenomena. Regarding the phenomenology

of these flavoured MSSM models, we do not expect large differences from the expectations in the

CMSSM from the point of view of collider studies, as we know that the departures from flavour

universality are strongly constrained by the present FCNC and CP violation experiments. Much

probably the resolution of the new supersymmetric flavour structures will have to rely on FCNC

and CP violation experiments. In the following we will analyze the FCNC and CP violation

phenomenology of our flavoured MSSM example. We will show that it is still possible to find

some significant deviation from the the SM expectations as far as the FCNC and CP violations are

concerned, making these realizations phenomenologically sensitive to the experimental searches in
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the realm of flavor physics.

In the next section, we introduce the flavour symmetries in SUSY and study its effects in the

SUSY soft-breaking terms. Then, we illustrate these effects with an explicit model with a SU(3)

flavour symmetry. In section III, we analyze the different FCNC and CP violation observables in

this model including lepton flavour violation, kaon physics, B physics and electric dipole moments.

Section IV is devoted to a combined analysis of all the FCNC and CP violation observables and we

show the correlations between the most interesting observables in this model. Finally, in section V

we present our conclusions.

II. FLAVOUR SYMMETRIES IN SUSY

Flavour symmetries have been used with success in the past to try to extract some meaning

from the complicated structures of fermion masses and mixings in the Standard Model (SM). Using

the Froggat-Nielsen mechanism [5], flavour symmetries explain the structure of the SM Yukawa

couplings as the result of a spontaneously broken symmetry associated with flavour. In different

extensions of the SM, these flavour symmetries will also constrain the new couplings and masses.

For instance, in the context of a supersymmetric theory, a flavour symmetry would apply equally

to the fermion and scalar sectors. Therefore, this implies that in the limit of exact symmetry

the soft-breaking scalar masses and the trilinear couplings must be invariant under the flavour

symmetry and the structures in the soft-breaking terms will be generated after the spontaneous

breaking of the flavour symmetry. Both the flavour structures in the Yukawa couplings and in the

soft-breaking terms are generated by the same mechanism and thus we can expect a close relation

between them1.

The flavour-diagonal scalar masses, i.e. couplings φ†φ, are clearly invariant under any symmetry

and are always allowed by the flavour symmetry. However, in general, this does not guarantee that

they are family universal. In the case of an Abelian [5, 6, 7, 8, 9, 10, 11, 12] family symmetry, the

symmetry does not relate different generations, and, generically, different fields will have different

diagonal soft masses. On the other hand, a non-Abelian family symmetry groups two or three

generations in a single multiplet with a common mass in the symmetric limit, thus helping to solve,

in principle, the FCNC problem. This was one of the main motivations for the construction of the

1 The relation between the soft-breaking terms and the Yukawa matrices is present in gravity mediation mechanisms,
but it would not be present if the mediation mechanism is flavour blind, as in the case of gauge mediation or anomaly
mediation
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first SU(2) flavour models [13, 14], where the first two generation sfermions, facing the strongest

constraints, share a common mass. In the case of an SU(3) flavour symmetry [3, 15, 16, 17], all

three generations have the same mass in the unbroken family symmetry limit. On the contrary,

trilinear couplings are completely equivalent to the Yukawa couplings from the point of view of the

symmetry because they involve exactly the same fields (scalar or fermionic components). Thus,

they are generated after symmetry-breaking as a function of small vevs. Therefore, to solve the

“SUSY flavour problem”, we will consider in this work non-Abelian family symmetries, and more

exactly SU(3) theories or discrete versions of this symmetry.

Apart from these renormalizable mass operators in the Lagrangian, we can construct non-

renormalizable operators neutral under the flavour symmetry inserting an appropriate number of

flavon fields. The flavon fields, charged under the symmetry, are responsible for the spontaneous

symmetry breaking once they acquire a vev. Then, higher dimensional operators involving two SM

fermions and a Higgs field, with several flavon vevs suppressed by a large mediator mass, generate

the observed Yukawa couplings. In the same way, these flavon fields will couple to the scalar fields

in all possible ways allowed by the symmetry and, after spontaneous symmetry breaking, they

will generate a non-trivial flavour structure in the soft-breaking parameters. Therefore, by being

generated by insertions of the same flavon vevs, we can expect the structures in the soft-breaking

matrices and the Yukawa couplings to be related.

The structure in the Yukawa couplings is not completely determined by the observed values of

fermionic masses and mixing angles. To solve this problem and fix the Yukawa couplings, we accept

that the smallness of CKM mixing angles is due to the smallness of the off-diagonal elements in the

Yukawa matrices with respect to the corresponding diagonal elements, and we make the additional

simplifying assumption of choosing the matrices to be symmetric. With these two theoretical

assumptions, and using the ratio of masses at the GUT scale to define the expansion parameters

in the up and down sector as ε̄ =
√
ms/mb and ε =

√
mc/mt, we can fix the Yukawa textures in

the quark sector to be:

Yd ∝





0 xd12 ε̄
3 xd13 ε̄

3

xd12 ε̄
3 ε̄2 xd23 ε̄

2

xd13 ε̄
3 xd23 ε̄

2 1



 , Yu ∝





0 xu12 ε
3 xu13 ε

3

xu12 ε
3 ε2 xu23 ε

2

xu13 ε
3 xu23 ε

2 1



 , (1)

where ε̄ ≃ 0.15, ε ≃ 0.05 and the xaij are O(1) coefficients fixed by the observed values of fermion

masses and mixings. In the Appendix we show the full structure of the Yukawas, and find the best

fit values xd12 ≃ 1.7, xd13 ≃ 0.4, xd23 ≃ 1.8, xu12 ≃ 1.4, xu13 ≃ 2, xu23 ≃ 2. In the leptonic sector we will

follow the same strategy as in Ref. [4] and require unification of charged lepton and down-quark
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flavour matrices, i.e. we embed our model in a grand unified framework, for instance SO(10), and

we try to explain simultaneously quark and lepton Yukawas. The detailed structure of the leptonic

Yukawa matrix is also shown in the Appendix.

Taking this Yukawa structure as our starting point, we will generate the flavour structure of

the soft-breaking terms in generic non-Abelian SU(3) flavour symmetries or discrete versions, like

∆(27) or ∆(54) [18, 19, 20, 21, 22]. Under these symmetries, the three generations of SM fields,

both SU(2)L-doublets and singlets, are triplets 3 and the Higgs fields are singlets. Therefore

Yukawa couplings and trilinear terms are not allowed by the symmetry. In these models, we add

several flavon fields. For instance in [3] we have θ3, θ23 (anti-triplets 3̄), θ̄3 and θ̄23 (triplets 3),

while in [17] we have also θ123 and θ̄123. The symmetry is broken in several steps, first SU(3)

is broken into SU(2) by the vev of θ3 and θ̄3, with 〈θ3〉 = (0, 0, a) and a being of the same

order as the mediator mass Mf , i.e. a/Mf ≃ O(1). Subsequently θ23 and θ̄23 get a smaller

vev ∝ (0, b, b), with b/Md ≃ ε̄ and b/Mu ≃ ε. Notice that in principle, we have three different

mediator masses, Mf = ML,Mu,Md, because the flavour symmetry must commute with the SM

symmetry and therefore the vector-like mediator fields must have the SM quantum numbers of the

usual particles2. In some models we also have θ123 and θ̄123 getting a lower vev ∝ (c, c, c) with

c/Md ≃ ε̄2.

Notice that the mentioned vevs require a vacuum alignment mechanism. In this work we do

not specify a particular mechanism, but we refer the interested reader to the examples in [3, 18,

23, 24, 25].

The basic structure of the Yukawa superpotential (for quarks and leptons) is then given by

WY = Hψiψ
c
j

[
θi3θ

j
3 + θi23θ

j
23

(
θ3θ3

)
+ ǫiklθ23,kθ3,lθ

j
23

(
θ23θ3

)
+ . . .

]
, (2)

in the absence of θ123 fields, or,

WY = Hψiψ
c
j

[
θi3θ

j
3 + θi23θ

j
23 + θi23θ

j
123 + θi123θ

j
23 . . .

]
, (3)

in the models with θ123. All flavon fields in these equations should be understood as θi/Mf . Note,

however, that the SU(3) symmetry is not enough by itself to determine the required structure

in the superpotential. Generically, we have to introduce additional global symmetries to forbid

unwanted terms, like a mixed term θ3θ23, that would spoil the Yukawa structure. Nevertheless,

the structure in Eqs. (2) and (3) is quite general for the different SU(3) models we can build, and

for additional details we refer to [3, 15, 16].

2 For simplicity, we take Md and Mu = ML in all our numerical calculations.
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In the same way, the scalar soft masses deviate from exact universality after SU(3) breaking. As

explained above, φ†iφi is completely neutral under gauge and global symmetries and gives rise to a

common contribution for the family triplet. However, after SU(3) breaking, terms with additional

flavon fields give rise to important corrections [3, 26, 27, 28]. Any invariant combination of flavon

fields can also contribute to the sfermion masses (at least with Planck scale suppression). In this

case, it is easy to see that the following terms will always contribute to the sfermion mass matrices

(the presence of the θ123 field will depend on the model):

(M2
f̃
)ji = m2

0

(
δji +

1

M2
f

[
θ†3iθ

j
3 + θ3,iθ

†

3

j
+ θ†23iθ

j
23 + θ23,iθ

†

23

j
+ θ†123iθ

j
123 + θ123,iθ

†

123

j
]

+
1

M4
f

(ǫiklθ
†

3

k
θ
†

23

l
)(ǫjmnθ3,mθ23,n) + . . .

)
, (4)

where f represents the SU(2) quark and lepton doublets or the up (neutrino) and down (charged-

lepton) singlets, so thatMf = ML,Mu,Md. From here we see that taking 〈θ123〉/Md = 〈θ̄123〉/Md =

ε̄2, both models with and without θ123 have the same structure up to corrections O(ε4) that will be

always subdominant in the relevant soft mass matrices in the basis of diagonal Yukawa matrices.

Notice that in Eq. (4) only the fields that enter the superpotential have their vevs and associated

mediators masses fixed by the ε or ε̄ parameters. For instance in the discrete model of Ref.[19], θ̄123

(the 3-field that in this reference is written as θ123) does not enter the superpotential. Therefore, its

contributions to the soft masses can be suppressed even having a large vev if the associated mediator

mass is high enough3. However, in the continuous version of this model [17], the vevs of θ̄123/Mf

and θ̄123/Mf are constrained to be both O(ε2) by D-flatness and thus they are not dangerous in the

soft-mass matrices. Moreover, we have to remember that these deviations from universality in the

soft-mass matrices proportional to flavour symmetry breaking come always through corrections in

the Kähler potential and these effects will be important only in gravity-mediation SUSY models.

In the case of the trilinear couplings we have to emphasize that from the point of view of the

flavour symmetry these couplings are completely equivalent to the corresponding Yukawa coupling.

This means that they necessarily involve the same combination of flavon vevs, although order

one coefficients are generically different because they require at least an additional coupling to a

field mediating SUSY breaking (in general coupled in different ways in the various contributions).

Therefore, from our point of view, we expect that the trilinear couplings have the same structure

as the Yukawa matrices in the flavour basis. However in general they are not proportional to the

Yukawas, because of different O(1) coefficients in the different elements. Thus, we can expect that

3 We thank G. G. Ross and I. de Medeiros Varzielas for clarifying this point.
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going to the SCKM basis does not diagonalize the trilinear matrices. In fact, the trilinear matrices

maintain the same structure as in the flavour basis and only the O(1) coefficients are modified.

Therefore, we can see that in these SU(3)-like models with the three generations unified in a

single field, we have basically the same “leading order” structures in the soft mass matrices and the

trilinear couplings directly related to the structures in the Yukawa couplings. In the following we

concentrate in the SU(3) model of [3] because it has a complete phase structure in the flavon vevs

consistent with the CKM phase. Remember however, that the main features of the soft terms are

similar in other models and in principle the phase structure could be also adapted in these models.

A. SU(3) Flavour Model

Let us now specify more explicitely the SU(3) flavour model that we use as our main example.

The full superpotential is determined by SU(3) and several global symmetries are used to forbid

unwanted terms that would spoil the observed structure of the Yukawa couplings. Using the charges

presented in Table II, the leading terms in the superpotential are,

WY = Hψiψ
c
j

[
θi3θ

j
3 + θi23θ

j
23Σ +

(
ǫiklθ23,kθ3,lθ

j
23 + ǫjklθ23,kθ3,lθ

i
23

) (
θ23θ3

)
+

ǫijlθ23,l

(
θ23θ3

)2
+ ǫijlθ3,l

(
θ23θ3

) (
θ23θ23

)
+ . . .

]
, (5)

where to simplify the notation, the flavon fields have been normalized to the corresponding mediator

mass, which means that all the flavon fields in this equation should be understood as θi/Mf . The

field Σ is a Georgi-Jarlskog field that gets a vev in the B−L direction, distinguishing leptons and

quarks. Furthermore, as said above this model is embeded in a SO(10) grand unified structure

at high scales, which allow us to relate quark and lepton (including neutrino) Yukawa couplings.

However, the SU(2)R subgroup of SO(10) must be broken as we need different mediator masses

for the up and down sector and, in fact θ3 and θ3 are 3 ⊕ 1 representations of SU(2)R which is

broken by their vevs [3, 16, 29].

After spontaneous symmetry breaking the flavon fields get the following vevs:

〈θ3〉 =





0

0

1




⊗



 au3 0

0 ad3 e
iχ



 ; 〈θ̄3〉 =





0

0

1




⊗



 au3 e
iαu 0

0 ad3 e
iαd



 ;

〈θ23〉 =





0

b23

b23 e
iβ3




; 〈θ̄23〉 =





0

b23 e
iβ′

2

b23 e
i(β′

2
−β3)




; (6)
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Flavon Phase αu − αd χ β3 β′

2

Allowed Values (−40 ± 2)◦ (20 ± 10)◦ + 180◦n −(20 ± 10)◦ + 180◦n Unconstrained

TABLE I: Flavon phases after imposing CKM constraints, with n ∈ N . Notice that the approximate errors

we quote in χ and β3 are highly correlated, as shown in the Appendix.

where we require the following relations:

(
au3
Mu

)2

= yt,

(
ad3
Md

)2

= yb,

b23
Mu

= ε,
b23
Md

= ε̄. (7)

These relations are valid at the flavour breaking scale, that we take as the GUT scale in the

numerical evaluation.

It is straight-forward to see that this superpotential reproduces correctly the required Yukawa

structure in Eq. (1). For completeness, we also list in Table I the values that the flavon phases can

take, given the constraints imposed by the CKM matrix. The analysis leading to such constraints

is found in the Appendix.

We can now turn to the soft breaking terms. As mentioned in the previous section, a universal,

flavour diagonal mass term will always be allowed. Moreover, in a SUSY theory, the same messenger

fields as in the Yukawas will couple the flavons to the scalar fields in the soft terms. Thus, the

ε and ε̄ parameters still act as expansion parameters, and represent important corrections to the

soft terms.

Clearly any coupling involving a flavon field and its hermitian conjugate (i.e. θi†3 θ
j
3) is invariant

under the flavour symmetry. From this we can deduce that the soft mass terms get a minimum

structure determined uniquely by the flavon content of the model and on their vevs. This minimum

structure is obtained from the following effective terms:

(M2
f̃
)ji = m2

0

(
δji +

[
θ†3iθ

j
3 + θ3,iθ

†

3

j
+ θ†23iθ

j
23 + θ23,iθ

†

23

j
]

+ (ǫiklθ
k
3θ
l
23)(ǫ

jmnθ†3mθ
†
23n) + (ǫiklθ

†

3

k
θ
†

23

l
)(ǫjmnθ3,mθ23,n) + . . .

)
. (8)

In Table II we show a choice of global charges that reproduces the correct Yukawa structure and

does not allow other terms at leading order in the Kähler potential (soft-masses).

In the squark sector, after rephasing the fields such that the CKM matrix elements Vud, Vus,
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Field ψ ψc H Σ θ3 θ23 θ̄3 θ̄23

SU(3) 3 3 1 1 3̄ 3̄ 3 3

U(1) 0 0 0 1 0 -1 1 0

U′(1) -1 -1 0 2 1 0 -1 4

U′′(1) 1 1 0 -3 -1 1 0 -4

TABLE II: Charges required to build the minimal RVV1 Model.

Vcb and Vtb are real, the soft masses in the SCKM basis are:

(
M2
ũc

R

)T
=





1 + ε2 yt −ε3 eiω′ −ε3 ei(ω′−2χ)

−ε3 e−iω′

1 + ε2 ε2 e−2iχ

−ε3 e−i(ω′−2χ) ε2 e2iχ 1 + yt




m2

0 (9a)

(
M2
d̃c

R

)T
=





1 + ε̄2 yb −ε̄3 eiωus −ε̄3 eiωus

−ε̄3 e−iωus 1 + ε̄2 ε̄2

−ε̄3 e−iωus ε̄2 1 + yb




m2

0 (9b)

M2
Q̃

=





1 + ε2 yt −ε2ε̄ eiωus −ε̄3 yteiωus

−ε2ε̄ e−iωus 1 + ε2 ε̄2 yt

−ε̄3 yte−iωus ε̄2 yt 1 + yt



m2
0 (9c)

(
M2
ẽc
R

)T
=





1 + ε̄2 yb −ε̄3 −ε̄3 ei(χ−β3)

−ε̄3 1 + ε̄2 ε̄2 ei(χ−β3)

−ε̄3 e−i(χ−β3) ε̄2 e−i(χ−β3) 1 + yb




m2

0 (9d)

M2
L̃

=





1 + ε2 yt −ε2ε̄ −ε̄3 yt ei(χ−β3)

−ε2ε̄ 1 + ε2 ε̄2 yt e
i(χ−β3)

−ε̄3 yte−i(χ−β3) ε̄2 yt e
−i(χ−β3) 1 + yt




m2

0 (9e)

where M2
Q̃

(M2
L̃
) is in the basis where Yd (Ye) is diagonal, ωus is related to the CKM phase, and

ω′ = ωus − (δu − δd). The ωus and δi phases can be found in the Appendix. The structure of M2
Q̃

in the basis where Yu is diagonal is similar to M2
ũc

R
. Notice that, although the structure in terms

of ε, ε̄ in M2
ẽc
R

and M2
L̃

is the same as that of M2
d̃c

R

and M2
Q̃
, respectively, the coefficients from the

SCKM rotation and RGE evolution are different due to the Georgi-Jarlskog field Σ. This can be

seen in the Appendix, and is summarized in Table V, in Section IIIA. The phase structure of the

slepton matrices is different to the one of squarks, since the latter have been rephased in order for
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Field ψ ψc H Σ θ3 θ23 θ̄3 θ̄23

SU(3) 3 3 1 1 3̄ 3̄ 3 3

U(1) -2 -2 0 -4 2 3 0 -2

U′(1) 0 0 0 1 0 -1 1 0

TABLE III: Charges for RVV2 Model.

the CKM matrix to follow the standard phase convention.4

In Eq. (9), we have written only the leading contribution in ε and ε̄ to each element with a

leading phase, omitting effective complex O(1) coefficients. This sets the size of the modulus of the

mass-insertion. The O(1) coefficients are the remaining part of the full element, after factorizing

the terms explicitly written in Eq. (9). There are many contributions to these coefficients: first,

we have the real O(1) constants in front of each term in the Kähler potential, at MGUT . We also

have contributions from the real O(1) constants in the Yukawa matrices, coming from the rotation

into the SCKM basis. A third contribution comes from the RGE evolution to the EW scale. And

finally, it is possible to have further contributions from subleading terms in the Kähler potential,

still at MGUT .

All of these contributions can involve the flavon phases, so the effective O(1) can be complex. As

we are factorizing the leading phases, the phase in each coefficient shall only appear in subleading

terms. If the leading phases cancel for a particular observable, these subleading phases shall be

important. Such a cancellation can happen in EDMs. For example, in mass-insertion notation [30,

31], the corresponding effective O(1) coefficients of (δd13)RR and (δd13)LL have the following structure:

DRR
13 ∼ 1 − yb e

−2i(χ−β3) (10a)

QLL13 ∼ 1 − (ε2/ε̄2) e−2i(χ−β3). (10b)

Although Eq. (8) is the minimal structure present for all possible models, it is possible, for

particular choices of the global symmetries and charges, to build other symmetry-dependent soft-

mass structures. In fact, the observed structure in the Yukawa couplings does not fix completely

the introduced global charges and it is possible to add new invariant combinations of flavon fields

to the Kähler potential without modifying the Yukawas.

The first example of these new combinations of flavon fields in the Kähler is achieved by allowing

4 As physical observables are independent of phase conventions, we could also rephase the slepton superfields and
use the same phase structure as squarks.
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a θi3θ̄
j
23 term (RVV2). The required charges are shown in Table III. It is easy to check that, with

these charges, the structure of the Yukawa couplings in the superpotential remains unchanged.

This is due to the fact that the superpotential is a holomorphic function of the fields while the

Kähler is only a real function. When rotated to the SCKM basis, the soft-mass matrices become:

(
M2
ũc

R

)T
=





1 + ε2 yt −ε3 eiω′ −ε2 y0.5
t ei(ω

′−2χ+β3−β′
2
)

−ε3 e−iω′

1 + ε2 ε y0.5
t e−i(2χ−β3+β′

2
)

−ε2 y0.5
t e−i(ω

′−2χ+β3−β′
2
) ε y0.5

t ei(2χ−β3+β′
2
) 1 + yt



m2
0(11a)

(
M2
d̃c

R

)T
=





1 + ε̄2 yb −ε̄3 eiωus −ε̄2 y0.5
b ei(ωus−χ+β3−β′

2
)

−ε̄3 e−iωus 1 + ε̄2 ε̄ y0.5
b e−i(χ−β3+β′

2
)

−ε̄2 y0.5
b e−i(ωus−χ+β3−β′

2
) ε̄ y0.5

b ei(χ−β3+β′
2
) 1 + yb




m2

0(11b)

M2
Q̃

=





1 + ε2 yt −ε2ε̄ eiωus εε̄ y0.5
t ei(ωus−2χ+β3+β′

2
)

−ε2ε̄ e−iωus 1 + ε2 ε y0.5
t e−i(2χ−β3−β′

2
)

εε̄ y0.5
t e−i(ωus−2χ+β3+β′

2
) ε y0.5

t ei(2χ−β3−β′
2
) 1 + yt




m2

0 (11c)

(
M2
ẽc
R

)T
=





1 + ε̄2 yb −ε̄3 −ε̄2 y0.5
b e−iβ

′
2

−ε̄3 1 + ε̄2 ε̄ y0.5
b e−iβ

′
2

−ε̄2 y0.5
b eiβ

′
2 ε̄ y0.5

b eiβ
′
2 1 + yb



m2
0 (11d)

M2
L̃

=





1 + ε2 yt −ε2ε̄ εε̄ y0.5
t e−i(χ−β

′
2
)

−ε2ε̄ 1 + ε2 ε y0.5
t e−i(χ−β

′
2
)

εε̄ y0.5
t ei(χ−β

′
2
) ε y0.5

t ei(χ−β
′
2
) 1 + yt




m2

0 (11e)

One can see that the effect of this term in m2
d̃c

R

is to exchange one power of ε̄ by a y0.5
b suppression

in (δd13)RR and (δd23)RR. In m2
Q̃
, the same terms change an ε̄2 by an ε y0.5

t . However, for tan β = 10,

and considering that ε ≈ ε̄2, such replacements leave the structure of the mass matrices very similar

numerically to the original one (notice that yt and yb are taken at MGUT ). Nonetheless, it must

be remarked that the phase structure of the whole mass matrix is modified.

As in RVV1, it is crucial to take into account that relative phases exist within the effective O(1)

coefficients. For instance, although the global phase of (δd12)AA is still ωus, the O(1) structure of

(δd12)LL in RVV2 is now:

(QLL12 )RV V 2 ∼ 1 −
(
ε̄2/ε

)
(1 + ei(2χ−β3−β′

2
)). (12)

Notice that the factor (ε̄2/ε) = 0.45 does not really provide any suppression at all. This means

that the imaginary part of (δd12)LL is larger than just ε2ε̄ sinωus. We label this new, larger, effective

phase as ω′
us.
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Field ψ ψc H Σ θ3 θ23 θ̄3 θ̄23

SU(3) 3 3 1 1 3̄ 3̄ 3 3

U(1) -1 -1 0 5 1 -2 0 6

U′(1) 0 0 0 -1 0 0 1 -2

TABLE IV: Charges for RVV3 Model.

A second possibility is to allow a
(
ǫiklθk3θ

l
23

)
θj3 term (RVV3) in the Kähler, with the charges

being shown in Table IV. The soft matrices, when rotated into the SCKM basis, have the following

structure:

(
M2
ũc

R

)T
=





1 + ε2 yt −ε3 eiω′

ε yte
i(ω′−2χ+β3−δu)

−ε3 e−iω′

1 + ε2 ε2 e−2iχ

ε yte
−i(ω′−2χ+β3−δu) ε2 e2iχ 1 + yt




m2

0 (13a)

(
M2
d̃c

R

)T
=





1 + ε̄2 yb −ε̄3 eiωus ε̄ ybe
i(ωus+β3−δd)

−ε̄3 e−iωus 1 + ε̄2 ε̄2

ε̄ ybe
−i(ωus+β3−δd) ε̄2 1 + yb




m2

0 (13b)

M2
Q̃

=





1 + ε2 yt −εε̄2 ytei(ωus−2χ+β3+δd) ε yte
i(ωus−2χ+β3+δd)

−εε̄2 yte−i(ωus−2χ+β3+δd) 1 + ε2 ε̄2 yt

ε yte
−i(ωus−2χ+β3+δd) ε̄2 yt 1 + yt



m2
0

(13c)

(
M2
ẽc
R

)T
=





1 + ε̄2 yb −ε̄3 ε̄ ybe
i(χ−δd)

−ε̄3 1 + ε̄2 ε̄2 ei(χ−β3)

ε̄ ybe
−i(χ−δd) ε̄2 e−i(χ−β3) 1 + yb




m2

0 (13d)

M2
L̃

=





1 + ε2 yt −εε̄2 yt e−i(2χ−β3−δd) ε yt e
−i(χ−δd)

−εε̄2 yt ei(2χ−β3−δd) 1 + ε2 ε̄2 yt e
i(χ−β3)

ε yt e
i(χ−δd) ε̄2 yt e

−i(χ−β3) 1 + yt




m2

0 (13e)

with δi defined in the Appendix.

This model shows larger deviations from RVV1 in the LL sector. It is important to notice that

(δd12)LL is now of order εε̄2 instead of ε2ε̄, which will have considerable consequences in processes

such as µ → eγ. Likewise, (δd13)LL is of order ε yt instead of ε̄3, so an enhancement in τ → eγ

should be expected. Regarding the RR sector, for tan β = 10, the yb suppression at MGUT has

roughly the same size as an ε̄ suppression, so once again the structure of m2
d̃c

R

is numerically similar

to RVV1 for this value of tanβ.
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The trilinear couplings, on the other hand, follow the same symmetries as the Yukawas. Thus,

they have the same flavon structure in RVV1, RVV2 and RVV3. Nonetheless, although they have

the same structure, they do not have the same O(1) constants, which means that the rotation into

the SCKM basis does not diagonalize them. In the SCKM basis, after rephasing the fields, the

trilinears have the following structure:

Au =





0 ε3 e−iω
′

ε3 ei(2χ−ω
′)

ε3 eiω
′

ε2 Σu ε2 Σu e
2iχ

ε3 ei(ω
′+2β3−2χ) ε2 Σu e

2i(β3−χ) 1



A0 yt (14a)

Ad =





0 ε̄3 e−iωus ε̄3 e−iωus

ε̄3 e−iωus ε̄2 Σd ε̄2 Σd

ε̄3 ei(ωus+2β3−2χ) ε̄2 Σd e
2i(β3−χ) 1




A0 yb (14b)

where we have neglected the O(1) coefficients. One can get Ae by taking Ad with 〈Σe〉 = 3 〈Σd〉.
The soft mass matrices in Eqs. (9,11,13,14) are given at the large scale ∼ MGUT . Then, we

have to include also effects coming from the running from MGUT to MW . Although these effects

produce further non-universal contributions, they are usually smaller than the terms presented

here. In the quark sector, the misalignment of the Yu and Yd matrices gives sizeable contributions

to the LL and LR sectors, analogous to the MFV contributions of CMSSM models. In the lepton

sector with RH neutrinos, the same happens due to the misalignment of Yν and Ye [32, 33, 34].

Both of these contributions are unavoidable, albeit the Yν contribution is highly model dependent.

Moreover, in the present case there are new contributions to the running given by the intrinsic

non-universality of the soft mass matrices. Although these effects contribute even in the RR sector,

it turns out that the magnitude of the generated off-diagonal terms are, at most, of the same order

as those at MGUT . This means that the addition of running effects will only change the already

unknown O(1) constants, such that the low-energy phenomenology can still be understood by

analyzing Eqs. (9), (11), (13) and (14).

Finally, we have to emphasize once more that all the soft matrices presented here have unknown

O(1) coefficients in all non-universal terms. The flavour symmetry allows us to fix the order in ε

and ε̄ of the different entries but the final values could easily vary up or down by factors of two

and this has to be taken into account when analyzing our numerical results.
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III. FCNC AND CP VIOLATION OBSERVABLES

In the following, we shall study flavour and CP violating observables, presenting analytical

estimates in mass insertion approximation (MIA). Moreover, we will perform a full numerical

analysis in the SUGRA parameter space through a scan in m0 and M1/2 for fixed values of tanβ

and a0 = A0/m0. The numerical analysis is done defining the Yukawa, trilinear and soft mass

matrices at Mflav = 2 × 1016 GeV, for the three different versions of the model, as explained in

Section IIA. Then the different flavour matrices are evolved to the electro-weak scale, solving 1-

loop RGEs with SPheno [35]. O(1) coefficients in the Yukawa matrices are determined by requiring

a good fit on the fermion masses and quark mixings at MZ [36]. The result of such fit is presented

in the Appendix.

Regarding the unknown O(1) constants in both the superpotential and Kähler potential, as we

do not have a full high-scale model, we shall fix each O(1)s at a random value, between 0.5 and 2.

Notice they can be of either sign. Thus, a model is characterized by both the choice of symmetries

involved, and by the particular O(1)s we have in front of each effective term. In Section IV we

shall take into account their variation.

After running the resulting matrices down to the MZ scale, we diagonalize the Yukawas in order

to obtain the left and right mixing matrices and rotate the soft matrices into the SCKM basis. At

the MZ scale, for each point of the SUSY parameter space, we compute the SUSY spectrum and

check that the electroweak symmetry breaking does take place and no tachyonic particles arise.

Moreover, to be conservative, we require that the Lightest Supersymmetric Particle (LSP) is the

lightest neutralino.

In this work we do not include the non-holomorphic corrections to the Yukawa couplings, so

our results are valid for low and moderate values of tan β. In this regime, the effects of these non-

holomorphic corrections are usually small. The only exception is found in the case for the neutron

EDM, where new imaginary parts induced by these corrections can give sizeable contributions. We

give details on how we introduce such corrections to this observable in Section IIID.

Finally, we apply the following constraints:

• Bounds on the sparticle masses from direct searches at LEP and Tevatron [37].

• Lower bound on Higgs masses from LEP [38]. Although the SM bound on the Higgs mass

is of 114 GeV, in SUSY the modification of the lightest Higgs coupling could reduce this

constraint. In order to take this effect into account, for each point we calculate the Higgs
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mixing angle α and use Eq. (17) of Ref. [39] to estimate the correct Higgs mass bound. We

then use SPheno to calculate the two loop Higgs mass, and take into account a theoretical

uncertainty of 3 GeV [40, 41].

• b → sγ. The experimental world average from the CLEO [42], Belle [43] and BaBar [44]

collaborations is given by [45]:

BR(B → Xsγ)Eγ>1.6GeV = (3.52 ± 0.23 ± 0.9) × 10−4 . (15)

We have to compare these values with the MSSM predictions. In our numerical calculation,

we use the expression presented in Ref. [46] in which the branching ratio is explicitly given in

terms of arbitrary complex Wilson coefficients C7 and C8. At present, the SM contribution

to this decay is already available at NNLO while the SUSY contribution in a general MSSM

is partially known at NLO. In this work, we include the NLO SM contribution with a

modified low value of the scale for the charm mass to reproduce the NNLO SM contribution

(BR(B → Xsγ)
SM = 3.15× 10−4) [47, 48, 49]. We add the supersymmetric contributions at

one loop, and require that the total result does not deviate from the experimental value of

Eq. (15) in more than 2-sigma.

• Muon anomalos magnetic moment, aµ = (g − 2)µ/2. At present, the experimental result for

this observable is given by [50],

aexp
µ = 11659 2080 (63) × 10−11, (16)

while, computing the hadronic contribution by means of the hadronic e+e− annihilation

data, the SM theoretical expectation is [51, 52, 53],

aSM
µ = 11659 181 (8) × 10−10. (17)

The resulting discrepancy is:

∆aµ = aexp
µ − aSM

µ = +302(88) × 10−11. (18)

It is well-known that in the MSSM aµ receives contributions from χ̃0–µ̃ and χ̃±–ν̃ loops [54].

Such contributions are approximately given by the following expression:

aMSSM
µ

1 × 10−9
≈ 1.5

(
tan β

10

)(
300 GeV

mν̃

)2(µM2

m2
ν̃

)
. (19)

A comparison with Eq. (18) implies that the present discrepancy strongly favours the µ > 0

region of the SUSY parameter space. In the case of the theoretical prediction based on τ
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|(δe
LL)12| |(δe

LL)13| |(δe
LL)23| |(δe

RR)12| |(δe
RR)13| |(δe

RR)23|

RVV1 1

3
ε2ε̄ ytε̄

3 3ytε̄
2 1

3
ε̄3 1

3
ε̄3 ε̄2

RVV2 1

3
ε2ε̄ 1

3

√
ytεε̄

√
ytε

1

3
ε̄3 1

3

√
ybε̄

2 √
ybε̄

RVV3 3ytεε̄
2 ytε 3ytε̄

2 1

3
ε̄3 ybε̄ ε̄2

TABLE V: Order of magnitude of LFV mass-insertions, for the three models.

Present Bound Future Sensitivity

BR(µ→ eγ) 1.2 × 10−11 [56] O(10−13) [57]

BR(τ → µγ) 1.6 × 10−8 [58, 59] O(10−9) [60]

BR(τ → eγ) 1.1 × 10−7 [61] O(10−8) [62]

TABLE VI: Present bounds and future experimental sensitivities of lepton flavour violating processes.

decay [55], the difference of Eq. (18) is reduced to ∼ 1σ [52] but it still requires a positive

correction and disfavours strongly a sizable negative contribution.

A. Lepton Flavour Violation

As pointed out in [4], flavour models based on SU(3) give rise to potentially large rates of LFV

processes, such that positive signals of LFV can be found in the currently running or near-future

experiments, at least for SUSY masses within the reach of the LHC. The arising of large mixing

among flavours relies on the features of the SU(3) model discussed in the previous sections: the

presence of nonuniversal scalar masses already at the scale where the SUSY breaking terms appear,

and the fact that the trilinear Af matrices are in general not aligned with the corresponding Yukawa

matrices. Let’s start considering the case A0 = 0, where the latter effect is strongly reduced so that,

in terms of mass insertions, BR(li → ljγ) mainly depends on |(δeLL)ij |2 and |(δeRR)ij |2. Looking at

the structure of the slepton soft mass matrices in the three versions of the model (Table V), we see

that RVV1 and RVV2 are expected to give similar predictions for BR(µ → eγ) and BR(τ → µγ),

with possibly sizeable contributions coming from both the LL and the RR sector. In the case of

RVV3, the prediction for BR(τ → µγ) will be also similar to the previous two cases, while we

expect BR(µ → eγ) to be strongly enhanced. In fact, for RVV3, the LL mass insertion is larger by

a factor 9 yt ε̄/ε = O(10) with respect to RVV1 and RVV2, and the BR(µ → eγ) is consequently

increased by two orders of magnitude.

To summarize, let’s compare the expections for the different LFV processes. In the case A0 = 0,
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considering for simplicity only the contribution from δeLL, we have:

BR(τ → e γ)

BR(µ→ e γ)
≈
(
mτ

mµ

)5 Γµ
Γτ

(δeLL)213
(δeLL)212

≈ O(1) (RVV1, RVV2, RVV3) (20)

BR(τ → µγ)

BR(µ→ e γ)
≈
(
mτ

mµ

)5 Γµ
Γτ

(δeLL)223
(δeLL)212

≈ O(103) (RVV1, RVV2), O(10) (RVV3) (21)

where Γµ (Γτ ) is the µ (τ) full width. Given the present limits and future sensitivities of LFV

processes shown in Tab. VI, we see that BR(τ → eγ) is not able to constrain the parameter space

better than BR(µ→ eγ) in none of the three models. On the other hand, we expect from Eq. (21)

that the present constraints given by µ→ eγ and τ → µγ, that differ by three orders of magnitude,

are comparable for RVV1 and RVV2, while µ→ eγ should give the strongest constraint in the case

of RVV3.

In the case A0 6= 0, generally large δeLR insertions arise as a consequence of the misalignment

between Af and the corresponding Yukawa matrix Yf . In this case, the neutralino contribution to

BR(µ → eγ) gets strongly enhanced [4] and the present (or future) bound requires heavier SUSY

masses to be fulfilled, specially in the region where the gaugino mass is much larger than the

common sfermion mass. Nevertheless, we expect this effect to be visible only in the case of RVV1

and RVV2, while for RVV3 the very large (δeLL)12 should still give the dominant contribution.

Let us now consider the results of the numerical analysis for the LFV decays. After fixing the

unknown O(1) parameters to random values, we present in Fig. 1 the current bounds provided by

µ→ eγ and τ → µγ in the (m0, M1/2) plane, and also the final reach of the MEG experiment. In the

first row, the A0 = 0 case is displayed (for tan β = 10). We see that, as expected, RVV1 and RVV2

give similar results both for BR(µ → eγ) and BR(τ → µγ). The regions of the parameter space

excluded by the present bounds BR(µ → eγ) <∼ 1.2·10−11, BR(τ → µγ) <∼ 1.6·10−8 are comparable,

as obtained by the naive estimate in Eq. (21), although τ → µγ turns out to be more constraining

for m0 > M1/2. The presently allowed region is approximately (m0, M1/2) >∼ (700, 300) GeV. In

the case of RVV3, µ→ eγ already gives a strong constraint, (m0, M1/2) >∼ (1400, 800) GeV, which

is much more stringent than the one provided by τ → µγ. Although the precise values may vary

with different O(1) parameters, these plots give an idea of the reach of these LFV experiments.

As a consequence, for SUSY masses lying within the LHC reach, RVV3 results already rather

disfavoured, while RVV1 and RVV2 are not strongly constrained. Considering the sensitivity

expected at the MEG experiment for BR(µ → eγ), O(10−13), we see that also RVV1 and RVV2

will be tested in most of the parameter space accessible to the LHC, while RVV3 will be completely

probed well beyond the LHC reach. Moreover, in case of larger values of tanβ (e.g. tan β = 30),
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FIG. 1: Current LFV constraints in the m0-M1/2 plane, for RVV1 (left), RVV2 (center) and RVV3 (right)

for tanβ = 10 and A0 = 0 (first row), A0 = m0 (second row). The brown region corresponds to the present

limit BR(µ → eγ) <∼ 1.2 · 10−11, the light brown region represents the sensitivity of the MEG experiment

(10−13). The present BaBar+Belle combined limit BR(τ → µγ) <∼ 1.6 ·10−8 is shown in dark green, and the

light green region corresponds to the sensitivity of a Super Flavour Factory (10−9). The dark brown region

show areas excluded by having a charged LSP or by LEP, excepting the Higgs mass bound, which is shown

in thick dashed red lines.

since BR(µ → eγ) ∝ tan2 β, MEG will be able to test all the displayed parameter space also for

RVV1 and RVV2 (cfr. [4], where a similar model has been studied).

In the second row of Fig. 1, the three versions of the model are displayed for the case A0 = m0,

in order to show the potentially large flavour mixing induced by the A-terms. As expected, we

see that, for RVV1 and RVV2, the µ → eγ bound is increased with respect to the A0 = 0 case,

specially for M1/2
>∼ m0, as a consequence of the large (δeLR)12 insertion contributing in diagrams

with pure B̃ exchange. Also in this case, MEG has a very high capability of testing the parameter

space. Indeed, for moderate slepton masses the neutralino contribution is so large that the models

will be fully probed. Only in the case of rather heavy sleptons, the BR(µ → eγ) can be suppressed

enough to escape the reach of MEG. In the case of RVV3, the contribution from LL insertion

remains dominant and no substantial changes are observed with respect to the case of vanishing
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trilinear terms.

As RVV3 is heavily constrained by LFV, in the following we shall exclude it from our analysis,

and concentrate exclusively on RVV1 and RVV2.

B. Kaon physics

Supersymmetric contributions to K0–K
0

mixing are mainly determined by the mixing between

the first two generations of down type squarks. In terms of mass insertions, a major hadronic

constraint on ℑm{(δd12)AB} comes from ǫK . The kaon mass difference, ∆MK , does constrain

|(δd12)AB |. However, this observable is less sensitive to small MIs since the long-distance effects are

difficult to estimate.

On the experimental side, current data [37] shows that |ǫexp
K | = (2.229 ± 0.012) × 10−3 and the

phase of ǫK is φǫ = (43.51 ± 0.05)◦. On the theoretical side, many improvements are being made

in the determination of input parameters needed to calculate the SM prediction of ǫK . We have

good information on the CKM matrix elements thanks to the vast amount of data from B physics.

Also available are new lattice estimates of the B̂K parameter which enters the ∆S = 2 hadronic

matrix element. However, these developments have lead to a puzzle in understanding the data.

The authors of Refs. [63, 64] realized that within the SM, the theoretical prediction of ǫK might

not be enough to account for the measured value if one accepts the unitarity triangle (UT) fit using

B physics observables. One can summarize their result in the numerical form [63, 64],

|ǫSM
K | = 1.78 · 10−3×

( κǫ
0.92

)( B̂K
0.72

)( |Vcb|
0.0412

)2( Rt
0.914

)
×

{

0.74 ×
( |Vcb|

0.0412

)2( Rt
0.914

)(
sin 2β

0.675

)( ηtt
0.5765

)(S0(xt)

2.30

)
+

(
sin β

0.362

)[
0.40 ×

( ηct
0.47

)(S0(xc, xt)

0.00221

)
− 0.14 ×

( ηcc
1.43

)( xc
0.000250

)]}

.

(22)

The definition of each symbol and its value can be found in the above references. Notice that the

sin β, sin 2β appearing in this equation refer to the UT angle β, not to the ratio of the Higgs vevs

in SUSY. The denominator of each fraction is the central value of the input parameter appearing

in the numerator, quoted in Ref. [63]. Major uncertainties are those in B̂K , |Vcb|4, R2
t , which are

5%, 11%, 7%, respectively. One important refinement made in this expression, which had been

overlooked in most of the literature, is the factor κǫ that parameterizes suppression of the result

due to φǫ 6= π/4 and the imaginary part of the 0-isospin amplitude of K → ππ. In addition, latest
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lattice values of B̂K are lower than previous determinations. Here we take B̂K = 0.720(13)(37)

[65, 66] (see also [67]). These two facts cooperate to make |ǫSM
K | insufficient for the central values,

obtaining |ǫSM
K | = 1.78× 10−3, which is smaller than the observed |ǫK | by 18%. This deficit should

be compensated by some new source; since our model has extra sources of CP violation, we are

lead to invoke these new sources to resolve the puzzle.

Before we proceed further, a clarification is in order regarding the ǫK puzzle. It stems from the

tension among different observables used to determine the UT on the (ρ, η) plane. The regions

preferred by ǫK , SψK , and ∆MBs/∆MBd
do not precisely overlap with one another (see Ref. [68]

for example). As we said, if one accepts the regions determined by SψK and ∆MBs/∆MBd
, then

ǫK should be modified. Conversely, one may also conceive a scenario where the ǫK region is in

fact correct whereas one or more of the B sector observables have been contaminated by new

physics effects. This could be an equally legitimate solution in a general case. However, it is not

viable within our framework. The reason is that supersymmetric contributions to the above three

observables are (up to O(1) uncertainties) correlated and that the ǫK region is modified much more

than the other two. We shall add more quantitative comments on this in the next subsection.

In order to evaluate the supersymmetric effects on ǫK , we should calculate MSUSY
K12 =

〈K|HSUSY
eff |K〉. For this, we follow Ref. [69] which presents the ∆S = 2 Wilson coefficients from

the gluino-squark box graphs (which are the largest SUSY contributions in the presence of sizeable

squark mass insertions) and the expressions for evolving those Wilson coefficients from the sparticle

mass scale down to the hadronic scale. After that, the SUSY contribution to ǫK is given by the

formula,

ǫSUSY
K = eiφǫ sinφǫ

Im(MSUSY
K12 )

∆MK
. (23)

And then we can express the supersymmetric contribution to ǫK in terms of mass insertions as,

ǫSUSY
K

ǫexp
K

=
√

2 sinφǫ Im

{
(δd12)

2
LL + (δd12)

2
RR

0.00622

(
B̂K
0.72

)[

2.2

(
f̃6(x)

(−1/30)

)

− 1.2

(
xf6(x)

1/20

)]

−

(δd12)LL(δd12)RR
0.000132

(
B4(µ)

0.70

)[

0.05

(
f̃6(x)

(−1/30)

)

+ 0.95

(
xf6(x)

1/20

)]}(
500 GeV

mq̃

)2

,

(24)

where x ≡ m2
g̃/m

2
q̃ and functions f6(x) and f̃6(x) can be found in Ref. [69]. We have omitted the

term proportional to B5(µ) which happens to contribute only O(1%).

In the numerical analysis, we set B̂K = 0.72 [65, 66] and use the central values of B2,...,5(µ)

from Ref. [70].
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FIG. 2: Contours of |ǫSUSY
K | for RVV1, in the m0-M1/2 plane for tanβ = 10 and A0 = 0. The lines are (from

thicker to dotted) |ǫSUSY
K | = 10−3, 5 × 10−4, 10−4, 5 × 10−5, respectively. We show predictions for positive

(left) and negative (right) O(1)’s forM2

d̃c

R

, giving in some cases ǫSUSY
K with the wrong phase, which are shown

in grey. Current LFV bounds are also shown in green, and the (g − 2)µ favoured region is shown hatched

in yellow. The dark brown region show areas excluded by having a charged LSP or by LEP, excepting the

Higgs mass bound, which is shown in thick dashed red lines.

In our flavour models, RVV1 and RVV2, we have |(δd12)RR| ∼ ε̄3 ≃ 0.003 and |(δd12)LL| ∼
ε2ε̄ ≃ 0.0004 with different phases in the two models, ωus ∼ O(ε̄) and ω′

us ∼ O(1) respectively,

as can be seen from Eq. (9) and the paragraph following Eq. (12). Therefore, we can expect that

the supersymmetric contribution to ǫK can easily be comparable to ǫexp
K , in particular from the

contribution in the second term in Eq. (24). The additional contribution might well be just what

we need to fill the gap between ǫSM
K and ǫexp

K , which could amount to 18% or more. In Figs. 2, we

present contours of ǫK on the (m0,M1/2) plane for RVV1. The left and the right figures are for

positive and negative O(1)’s for M2
d̃c

R

, respectively.

The phase of ǫSUSY
K can be either 43.51◦ or −136.49◦ which are respectively marked in black

and gray in Figs. 2. Note that the phase of ǫSM
K is 43.51◦ and that ǫSUSY

K and ǫSM
K should interfere

constructively to fit the experimental value. Therefore, gray contours worsen compatibility between

the theoretical and the experimental values of ǫK by increasing their discrepancy. The phase of

ǫSUSY
K is determined by the sign of Eq. (24). It is often dominated by the term proportional to

Im[(δd12)LL(δd12)RR]. In this case, the phase of ǫSUSY
K can be shifted by π if one multiplies either

(δd12)LL or (δd12)RR by −1 (of course, the modulus |ǫSUSY
K | does not remain exactly the same due

to the first term). For example, we can flip the sign of the RR insertion by changing the signs of

the O(1) coefficients in M2
d̃c

R

. This is the reason why the region with gray contours on the left plot

turns to black on the right.

For RVV2, the phase in (δd12)LL is much larger than that in RVV1, as we can see in Eq. (12). This
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makes the SUSY (δd12)RR(δd12)LL contribution to ǫSUSY
K dominant in all of the evaluated parameter

space, so only one of the two possible phases for (δd12)RR solves the ǫK tension. Furthermore, each

of the contours in Figure 2 would be scaled roughly by a factor 1/ε̄ ≃ 6.

The requirement that the supersymmetric contribution solves the ǫK puzzle would define a strip

in this plane which will be shown in all of the following plots, for both RVV1 and RVV2. One

virtue of such a strip is that the parameter space therein will lead to a definite correlation between

observables which are not apparently related to each other. We will elaborate on this in Sec. IV.

Another important quantity in kaonic CP violation is ǫ′/ǫ. It is specially sensitive to chirality-

flipping mass insertions, (δd12)LR and (δd12)RL [30]. Using the formulae in Ref. [71], one can write

the supersymmetric contribution to ǫ′/ǫ in the form,

(ǫ′)SUSY

(ǫ′)exp
= Im

[
(δd12)LR − (δd12)RL

1.6 × 10−5
×BG

](
500 GeV

mq̃

)
, (25)

which has been derived for m2
g̃/m

2
q̃ = 1. The O(1) constant BG parameterizes the uncertainty in

the hadronic matrix element of the chromomagnetic operator. We have suppressed other factors

that can change by O(1) for m2
g̃/m

2
q̃ 6= 1, since the following argument depends only on the order

of magnitude of ǫ′/ǫ.

In this model, there can be flavor-violating A-terms arising from mismatch of the O(1) co-

efficients between the Yukawas and the A-terms. To estimate their possible effects, we define

A0 ≡ a0 m0, with A0 being the overall dimensionful coefficient of the A-terms. Using Eq. (14b)

and (9b), one can get rough relationships among different 1–2 mass insertions,

(δd12)LR ∼ (δd12)RL ∼ a0
mb

m0
× (δd12)RR ∼ a0

ε̄2

ε2
mb

m0
× (δd12)LL, (26)

where mb is the b-quark mass at the GUT scale. If we require that the size of the second term in

Eq. (24) does not exceed unity, we find that the extra contribution to ǫ′/ǫ has an upper limit like

∣∣∣∣
(ǫ′)SUSY

(ǫ′)exp

∣∣∣∣ <∼ 8.1 × ε̄

ε
a0

mb

m0
, (27)

for purely imaginary (δd12)LR or (δd12)RL. In this case, the supersymmetric fraction within ǫ′/ǫ

should be lower than 40% for a reasonably high m0
>∼ 100 GeV. In fact, the phases of these flavor

and chirality changing insertions are ±ωus which are smaller than maximal, as can be seen from

Eq. (A5). Thus their effects on ǫ′/ǫ are smaller than the above estimate. We have numerically

checked that the gluino-squark loop contribution to ǫ′/ǫ is less than 15% on the strip compatible

with ǫK . Given the large theoretical uncertainty in ǫ′/ǫ, this amount of contamination by new

physics should be hard to disentangle.
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Another process that could, in principle, be interesting is the decay KL → π0νν̄ [72, 73, 74]. The

dominant contribution to this process requires the presence of CP violating phases, and therefore

we could expect to have a contribution in our model. As, due to gauge invariance, this decay

depends on SU(2)L-breaking, it requires the presence of two Higgs vevs, either within δLR insertions

in the squark sector, or within gaugino-higgsino mixing on the neutralino and chargino sectors.

At moderate tan β, this disfavours the gluino contribution, since δdLR insertions are, at most,

proportional to the bottom mass. Of much more interest is the chargino contribution, as the

(δu33)LR insertions are proportional to the top mass. Nonetheless, the required (δu23)LL and (δu31)RR

insertions depend on powers of ε, instead of ε̄, which constrains greatly any chargino contribution

dependent on the SU(3) structure. The chargino contribution will then be dominated by the

flavour-changing of the CKM matrix, and thus cannot present any larger deviations than those

predicted by MFV models.

C. B physics

Let us now discuss new physics effects on Bs mixing. For this, it is convenient to adopt the

following parametrization [75]:

CBse
2iφBs =

MSM
s12 +MSUSY

s12

MSM
s12

. (28)

The Bs–Bs transition amplitude is divided into two parts, one arising from the SM loops and the

other from the gluino-squark which are the largest SUSY contributions in our model:

MSM
s12 = 〈Bs|HSM

eff |Bs〉, MSUSY
s12 = 〈Bs|HSUSY

eff |Bs〉. (29)

Here, we focus on the phase φBs rather than on CBs , since the hadronic uncertainty in the latter

is larger than the extra contributions that can be expected in this model.

The current data of Bs mixing phase is showing an interesting deviation from the SM prediction.

A constrained fit, performed by HFAG, results in [76]:

φBs = −0.36+0.19
−0.17 or −1.17+0.17

−0.19. (30)

Recall that non-vanishing φBs is an indication of new physics. The above fit is away from the SM

at the level of 2.4 σ, and the 90% CL range is:

φBs ∈ [−0.61,−0.045] ∪ [−1.48,−0.92]. (31)
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It would be amusing to see whether or not our model could push this phase close to its best fit

value.

In order to estimate maximal size of φBs within this model, one should consider the ratio of

MSUSY
s12 to MSM

s12 appearing in Eq. (28). We follow Ref. [77] to express the supersymmetric amplitude

in terms of mass insertions. The SM amplitude is available in Ref. [78] for instance. For this, we

use Vts and Vtb from the full fit by the UTfit collaboration [79]. The result can be written in the

form,

MSUSY
s12

MSM
s12

= e2iβs

[
(δd23)

2
LL + (δd23)

2
RR

0.712
− (δd23)LL(δd23)RR

0.0622

](
500 GeV

mq̃

)2

, (32)

where we have taken the ratio m2
g̃/m

2
q̃ = 1, since we need only the order of magnitude of the above

ratio.

The first factor on the right hand side comes from the phase of MSM
s12 which is equal to −2βs =

−0.04. Now, from Eq. (28), it is clear that a change in the Bs phase, Arg
[
MSM
s12 +MSUSY

s12

]
, would

require |MSUSY
s12 /MSM

s12 | ≃ O(1) and a sizeable phase φSUSY
Bs

≡ Arg
[
MSUSY
s12 /MSM

s12

]
. This fact has

strong implications on the size and phases of the mass insertions appearing above. These mass

insertions differ in different variations of our model, for instance, that largest MIs can be expected in

RVV2. In this model, the mass insertions are (δd23)LL ∼ ε ≃ 0.05 and (δd23)RR ∼ ε̄y0.5
b ≃ 0.015

√
secβ,

as one can find in Eqs. (11). The size of the RR insertion depends on tan β and taking tanβ = 10

for example, we have (δd23)RR ∼ 0.05. These values appear to be large enough to make a significant

change in the Bs phase from the second term of Eq. (32). Moreover, the product of these two

insertions can have an O(1) phase. Notice that this is possible only in RVV2 where the leading

terms in these mass insertions have phases. In Fig. 3, we show the different contours of φBs .

Indeed, in model RVV2 there is a region on the (m0,M1/2) plane where it is possible to shift

φBs into the interval in Eq. (31), at relatively high m0 and low M1/2 [80, 81]. However, these

regions of large SUSY contributions to φBs are excluded by LFV and tend to have a too large

contribution to ǫK as well. If we confine ourselves on a strip allowed by ǫK , the maximal value

of φBs is around 10−4. From the plots we can see that, in the case of RVV1, we are again in the

same situation and for the strips allowed by ǫK we always have φBs
<∼ 10−4. Although these values

could in principle vary due to the unknown O(1) coefficients in the soft terms, we can not expect

variations in the order of magnitude. Thus, for low and moderate tan β, our models are not able

to provide a solution to the φBs anomaly, and, in this situation, we would expect this anomaly to

disappear with the inclusion of further data5. If this is the case, our predicted deviation should

5 The authors of [83] claim to be able to satisfy the ΦBs
anomaly and the ǫK tension in RVV2. We believe these
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FIG. 3: Contours of φBs
for RVV1 (left) and RVV2 (right) in the m0-M1/2 plane for tanβ = 10 and A0 = 0

(top) and A0 = m0 (bottom). The color of an area indicates the size of φBs
, which decreases as one moves in

the order of dark to light blue. Each line between two adjacent areas is one of φBs
= 10−2, 10−3, 10−4, 10−5

(the contour corresponding to φBs
= −0.045, which would solve the discrepancy, is within the LFV excluded

region in RVV2, and forbidden by direct bounds in RVV1). As in previous plots, green areas correspond to

the currect LFV constraints and yellow area to the (g − 2)µ favoured region. The area between the dashed

black lines solve the ǫK tension, and the dark brown region show areas excluded by having a charged LSP

or by LEP, excepting the Higgs mass bound, which is shown in thick dashed red lines.

also be hard to observe at LHCb since it is much smaller than the precision of φBs attainable after

5 years of run (10 fb−1), which is estimated to be 5 × 10−3 [82].

Similarly, we can repeat a parallel discussion on Bd mixing with the following parameterization,

CBd
e2i∆β =

MSM
d12 +MSUSY

d12

MSM
d12

, (33)

where each Md12 is the same as that in Eqs. (29) with the replacement s→ d. The supersymmetric

to SM contribution ratio is given by

MSUSY
d12

MSM
d12

= e−2iβ

[
(δd13)

2
LL + (δd13)

2
RR

0.152
− (δd13)LL(δd13)RR

0.0132

](
500 GeV

mq̃

)2

. (34)

points correspond to a large value of tan β >
∼

50. Moreover, we checked that the parameters can conspire to give
ΦBs

of O(0.1), even for moderate values of tan β.
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One can get this result in the same way as for Eq. (32).

In this case, each denominator in the square brackets is smaller than the corresponding one in

Eq. (32) by the factor |Vtd/Vts|2. Again, we use the CKM matrix elements from the full fit by the

UTfit collaboration [79]. In RVV2, we have (δd13)LL(δd13)RR ∼ εε̄3 y0.5
b ∼ 1.7×10−5

√
secβ, and thus

we could expect a sizeable effect on SψK if it were not for ǫK . However, ∆SψK is suppressed below

1×10−3 on an ǫK strip in the same way as φBs is. This is below the sensitivity of a super B factory

to SψK whose estimate is around 5 × 10−3 [60]. In RVV1, the new physics effect is even smaller,

since the phases are suppressed. In the end, Bd–Bd mixing is not very much affected in both

models. This fact, a posteriori, justifies the way we determine the O(1) coefficients in Yukawas: we

tune the coefficients so that they reproduce the CKM matrix elements which were obtained under

the assumption of no new physics.

Let us come back to the alternative solutions of the ǫK puzzle that we mentioned in the previous

subsection. If one is to blame the UT fit tension on SψK , one would need a change due to new

physics of the amount ∆SψK ∼ 0.07 [68]. However, this is two orders of magnitude bigger than

what can be maximally expected in our models when ǫSUSY
K is at the level of 18%, as we have

seen above. In an alternative solution, ǫSUSY
K should be more suppressed, which in turn suppresses

∆SψK as well, thereby making it far less sufficient. The other possibility of invoking modification

of ∆MBs/∆MBd
does not work for a similar reason. The authors of Ref. [83] need a new physics

contribution to this ratio at the level of −22% in order to get an exact agreement. In our models

however, the fractional change is about 0.5% at most, which is too small compared to what is

needed.

Finally, we can look to the expected values in our model for the decays b→ sµ+µ− and b→ sνν̄

that are similar to KL → π0νν̄ in the B sector. We find that the values of the branching ratios

for these processes, in both RVV1 and RVV2 models for A0 = 0 and A0 = m0, do not produce

deviations from the SM values larger than the per cent level, in spite of the presence of sizeable

flavour changing mass insertions. Therefore, these proceses are not interesting tests of new physics

in our scenario. This is consistent with the work in [84], where it was found that the deviation

from the SM prediction is small once the constraints from b→ sγ and Bs → µ+µ− are taken into

account.
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D. Electric Dipole Moments

The EDMs of fermions, such as the electron and the neutron, provide very stringent constraints

on CP-violation in new physics. In the SM, the electron EDM from the Kobayashi-Maskawa

phase is predicted to be <∼ O(10−40) e cm−1 [85]. The SM expectation for the neutron EDM is of

O(10−31) e cm−1 [86], assuming a vanishing θQCD. We can see that EDMs are highly suppressed

in the SM, and thus they are excellent observables where to look for new physics.

The electron EDM was studied in [4] within the context of RVV1. In these models CP is spon-

taneously broken in the flavour sector. Therefore, the phases in the µ parameter and diagonal

Af terms are very suppressed and can be neglected. In such a case, the imaginary parts required

for EDMs only appear from flavour-changing mass insertions [89]. For the electron EDM, only

neutralino-mediated diagrams contribute. The most important contribution to de, when A0 = 0,

comes from a bino-mediated diagram proportional to ℑm [(δe13)LL(δe33)LR(δe31)RR], which is en-

hanced by mτ tan β.

In this work, we have updated our analysis on the electron EDM, taking into account the

constraints on the β3 and χ phases imposed by the fit of CKM matrix and the O(1) coefficients

in Ye (see the Appendix for details). The results are shown for the RVV1 and RVV2 models in

Figure 4. An inspection of the slepton soft mass matrices indicates that, for RVV1, the leading

phases in the product (δe13)LL(δe33)LR(δe31)RR cancel and only subleading phases contribute, while

RVV2 has non-vanishing leading phases. We then have the following predictions:

(de)RVV1 ∼ ε̄6 yb yt sin(2(χ − β3)) (35)

(de)RVV2 ∼ εε̄3
(yb yt)

9

0.5

sin(χ− 2β′2) (36)

In Figure 4 we present the sensitivity of current [90] and future [91, 92] de experiments, for the

two models. In this Figure, current constraints do not impose any restrictions on the parameter

space of either RVV1 or RVV2. Nevertheless, electron EDM predictions are large enough to be

probed at future EDM experiments. For relatively light SUSY masses we obtain de ∼ 10−29 e cm−1

and de ∼ 10−28 e cm−1, for RVV1 and RVV2, respectively. The latter predicts a value of de about

one order of magnitude larger than the former for any particular value of m0 and M1/2 due to the

larger ε suppresion as seen in Eq. (35). This means that by reaching de ∼ 10−29 e cm−1 one could

probe a much larger part of the evaluated parameter space, with m0
<∼ 1500 GeV, M1/2

<∼ 2000

GeV. In particular, for RVV2, observation of SUSY at the LHC and solving the ǫK tension would

force de to be larger than 10−29 e cm−1. However, we have to take into account that these values
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FIG. 4: Contours of |de| = 1×10−28 e cm (dark red), |de| = 5×10−29 e cm (light red) and |de| = 1×10−29 e

cm (brown) in the m0-M1/2 plane for tanβ = 10 and A0 = 0 (top), A0 = m0 (bottom). We show predictions

for RVV1 (left) and RVV2 (right). Current LFV bounds are also shown in green, and the (g− 2)µ favoured

region is shown hatched in yellow. The area between the dashed black lines solve the ǫK tension, and the

dark brown region show areas excluded by having a charged LSP or by LEP, excepting the Higgs mass

bound, which is shown in thick dashed red lines.

will vary by factors O(1) because of the unknown O(1) coefficients to the different MIs.

We now turn to the neutron EDM, dn. In this observable we have an additional difficulty, since

its calculation as a function of partonic EDMs is not straightforward. Here we use two different

approaches to this problem, the quark-parton [93] and chiral quark [94] models for dn.

In the quark-parton model [93], dn is expressed in terms of the up, down and strange quark

EDMs, weighed by the fractional contribution ∆q
n of each quark to the spin of the neutron:

dQPn = ηE
(
∆u
ndu + ∆d

ndd + ∆s
nds

)
(37)

where ηE = 0.61 is a QCD correction factor [95] and typical values for ∆q
n are ∆u

n = −0.508,

∆d
n = 0.746 and ∆s

n = −0.226.

The chiral quark model [94] uses naive dimensional analysis to establish:

dCQn =
4

3
d̃d −

1

3
d̃u (38)
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where d̃q is the Wilson coefficient of the EDM operator at the hadronic scale. d̃q differs from dq,

which is calculated at the SUSY-breaking scale, since the former receives contributions from the

quark chromo-electric dipole moment, dcq, and Weinberg’s gluonic dimension-six operator, dG [96,

97]:

d̃q = ηEdq + ηC
e

4π
dcq + ηG

eΛ

4π
dG (39)

These contributions arise from the operator mixing ocurring in the running from the electroweak

scale to the hadronic scale. In our estimates, we take the QCD correction factor ηC = 3.4 [96], and

ignore dG, since it can be at most of the same order of dq and dcq and we do not expect it to make

big changes in our order of magnitude prediction.

The (C)EDM of each quark has contributions from diagrams with gluinos dg̃q , charginos dχ̃
±

q and

neutralinos dχ̃
0

q . For gluinos and neutralinos, we can use the same arguments as in [4] to establish

that the main part of each contribution will come from ℑm [(δqi3)LL(δq33)LR(δq3i)RR] insertions.

Chargino contributions come from both pure higgsino and wino-higgsino diagrams. The mixed

wino-higgsino diagrams require no LR flip on the squark line. Contrary to the case with leptons, it

is possible to have only one δLL insertion, provided that the CKM matrix element Vij is not flavour-

diagonal. For instance, the largest contributions to the down quark (C)EDM are proportional to

ℑm
[
Vqd(δ

u
qq′)LLV

∗
q′dYd

]
. Pure higgsino diagrams require a LR flip on the squark line. One would

expect this contribution to be strongly suppressed, as there are two Yukawa couplings on the

vertices. However, it is possible to exchange one of the small Yukawa couplings for a yt or yb

coupling through a CKM off-diagonal term. As an example, the main contribution to the pure

higgsino diagram for dχ̃
±

d is proportional to ℑm [Vtd yt(δ
u
33)RL(δu32)LLV

∗
cd yd]. Given the flavour

structure of the SU(3) models, we find that the pure higgsino part shall be larger than the mixed

wino-higgsino part, and will dominate the chargino contribution to d
(c)
q .

It was noticed in [87] that, in addition to these contributions, it is important to consider

beyond-leading-order (BLO) effects. These effects can be represented as new complex effective

couplings [88], and although these are noticeable mainly for large values of tan β, for EDMs they can

also give significant contributions for moderate and small values of tan β. In particular, diagrams

with no imaginary part at LO can become complex from these effective vertices [89].

The most important BLO effect for the down quark EDM, for the values of tan β we are using,

has been found to be theH± contribution [89]. Although the BLO corrections also affect the gluino,

neutralino, chargino and neutral Higgs loops, these contributions represent only small corrections

and do not play an important role. Therefore, the only BLO effects we shall include will come
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from the H± diagrams.

The BLO effects can also enhance the coupling between the H± and fermions. At LO, the

flavour suppression for an H±-mediated dipole operator would be of order
[
ydV

∗
td y

2
t Vtd

]
∼ ε̄10.

The BLO vertex allows us to change the yd V
∗
td term for a (δd13)RR yb V

∗
tb term, having then a total

flavour suppression of order
[
(δd13)RR yb V

∗
tb y

2
t Vtd

]
∼ ε̄6. This is comparable to the gluino flavour

suppression at LO.

Even though the flavour suppression of the BLO H± contribution is of an order of magnitude

comparable to the LO gluino contribution, the question that needs to be answered is how much

does the extra loop suppression affect the H± diagram. This calculation has been done in [87], for

equal SUSY masses and moderate tan β, giving:

dH
±

d

dg̃d
∼
[
α2

9π

m2
t

m2
W

][
m2
q̃

m2
H±

][
ℑm

[
V ∗
td(δ

d
31)RR

]

ℑm
[
(δd13)LL(δd31)RR

]
]
f

(
m2
t

m2
H±

)
(40)

The first square bracket gives a factor of O(0.1), which is compensated by the loop function

f(m2
t/m

2
H±), which is of O(10). The third bracket is the flavour suppression ratio, which is of

O(1). Thus, in this approximation, the importance of the H± contribution with respect to the

gluino contribution depends mainly on the ratio between the squark and charged Higgs masses

squared. Higgs bosons decouple differently from squarks and gauginos, as gluino and squark

masses increase faster than the H± mass for increasing m0 and M1/2, the BLO contributions shall

be more important for large values of these parameters.

We shall include the H± contribution through the mass-insertion formulae of [89]. Such an

approach contemplates three types of contributions. Two of them involve the CKM matrix, and

are of the type ℑm
[
V ∗

3i(δ
d
3i)LL

]
and ℑm

[
V ∗

3i(δ
d
3i)RR

]
. The third one is similar to that for the

gluino loops: ℑm
[
(δdi3)LL(δd3i)RR

]
. The latter two shall be the ones that will allow us to avoid

the yd suppression. The second term shall be particularly important for RVV1, where the gluino

contribution has a cancellation between (δdi3)LL and (δd3i)RR.

The SU(3) predictions for tan β = 10 and A0 = 0 are shown in Figure 5 for the quark-parton

and chiral quark EDMs, respectively. The EDMs receive a significant contribution from the H±

loop in dd. Furthermore, dQPn is also dominated by gluino and H± contributions to ds, while dCQn

is influenced by their contribution to dcd, for both RVV1 and RVV2. The other contributions are

smaller by at least half an order of magnitude. We can see that current bounds are always weaker

than the LEP and LFV constraints and do not appear in the Figure.

The observation of dn in the near-future experiments is not always compatible with the solution

of the ǫK tension. In RVV1, which is mostly dominated by the H± loops, a dn of order 10−29
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FIG. 5: Quark-parton (top) and chiral quark (bottom) contours of |dn| = 1 × 10−27 e cm (yellow) |dn| =

1 × 10−28 e cm (orange) and |dn| = 1 × 10−29 e cm (red) in the m0-M1/2 plane for tanβ = 10 and A0 = 0.

We show predictions for RVV1 (left) and RVV2 (right). Current LFV bounds are also shown in green, and

the (g − 2)µ favoured region is shown hatched in yellow.

e cm−1 is usually favoured, one order of magnitude under the reach of the next experiments [98].

In RVV2, both gluino and H± effects are comparable, the former dominating in the chiral-quark

and the latter in the quark-parton models. In both situations it is possible to obtain an observable

dn which is compatible with the solution of the ǫK tension.

It is interesting to see that in some regions of the parameter space we have a cancellation. A

careful analysis proves that close to these regions the phase of the (δd13)LL term vanishes, and that

can only be due to a cancellation between the initial term at MGUT and the contributions from

the running. This causes a change of sign in the gluino contribution, such that it can interfere

destructively with the H± part. We can avoid the cancellations by changing the sign of the O(1)

terms at MGUT , in which case the interference is constructive. This, of course, will turn the

cancellation into a small enhancement, but in any case, dn never exceeds its current bounds.

Finally, Figure 6 shows the same information for A0 = m0. In this situation, the inclu-

sion of the off-diagonal (δdij)LR terms allow dn contributions of the type ℑm
[
(δdij)LL(δdji)LR

]
and

ℑm
[
(δdij)LR(δdji)RR

]
. These are always proportional to mb, although they do not receive a tanβ
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FIG. 6: Quark-parton (top) and chiral quark (bottom) contours of |dn| = 1 × 10−27 e cm (yellow) |dn| =

1× 10−28 e cm (orange) and |dn| = 1× 10−29 e cm (red) in the m0-M1/2 plane for tanβ = 10 and A0 = m0.

We show predictions for RVV1 (left), RVV2 (right). Current LFV bounds are also shown in green, and the

(g − 2)µ favoured region is shown hatched in yellow.

enhancement. It was shown in [4] that these terms could be important, but they at most remained

within the order of magnitude of the ℑm
[
(δdi3)LL(δd33)LR(δd3i)RR

]
terms. Notice that for dn the

(δuij)LR insertions are of no interest: although RGE effects can make the off-diagonal terms as large

as the (δdij)LR terms, they will usually enter the observables accompanied by a (δuij)LL or (δuij)RR

insertion, which are proportional to powers of ε.

An important contribution that appears when A0 6= 0 comes from flavour-diagonal subleading

phases in (Ad)11. Although the rotation to the SCKM basis removes the leading phases in the

flavour-diagonal elements of the trilinear couplings, the different O(1) terms makes it impossible

to remove the subleading phases in these terms. These phases are suppressed, but they still give

important contributions, especially in RVV1, where the leading phases in the contributions from

off-diagonal terms cancel. Such an effect is enhanced by the RGE evolution, and is particuarly

relevant for the squark sector.

In Figure 6 we can see that, barring the cancellations of the mass-insertion phases, both quark-

parton and chiral quark EDMs are similar in magnitude. Although both RVV1 and RVV2 are still
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not constrained by current bounds, the magnitude of the dn within the ǫK strip is now larger by an

order of magnitude, enough to be observed in the near future. The main reason for the similarity

in the order of magnitude between models lies in an enhancement of the gluino contribution, due

to the (Ad)11 subleading phase mentioned in the previous paragraph. For RVV2, this contribution

mostly presents a correction to the off-diagonal contributions, but for RVV1 it becomes the main

source for dn.

IV. COMBINED ANALYSIS IN THE SUSY PARAMETER SPACE

In this Section, we are going to present the results of a combined analysis of the observables

studied in the previous sections. In particular, we will show the predictions of the model for LFV

decays and EDMs in the regions of the parameter space where the SUSY contribution to ǫK can

account for the possible tension between the measured value and the SM prediction, as discussed in

[64]. Such a requirement, and always up to possible variations of O(1) coefficients, is fulfilled in a

restricted portion of the parameter space and allows, as we will see, to do quite definite predictions

for the other flavour observables. If we require in addition that the (g − 2)µ discrepancy between

SM and data is explained by SUSY, we are restricted in a region of rather light SUSY masses, where

most of the observables are expected to be close to the present experimental bounds. Given both

the presence of unknown O(1) coefficients and the large theoretical uncertainties in the calculation

which don’t allow us to speak of a real failure of the SM, we cannot take what outlined above too

seriously. Nevertheless, we think this can be a useful exercise in order to show how the interplay

of various flavour observables can be used for testing this kind of flavour models.

In order to understand the impact of the O(1) coefficients, in the following plots we shall set

all of the O(1)s in the soft mass matrices equal to unity. The O(1)s of the trilinears shall be kept

random, but fixed, since setting them to one aligns them with the Yukawas. At the end of this

section we analyze the impact of varying the O(1) coefficients, in order to understand how much

they affect our correlations.

As explained in Section IIIB, the SUSY contribution to ǫK depends on the sign of the O(1)

coefficient of the entry (δdRR)12, since a negative sign can induce a partial cancellation between the

contributions proportional to (δdRR)212 and (δdRR)12(δ
d
LL)12. Therefore, we have to take into account

both the possible signs for (δdRR)12. In Fig. 7, we show the leptonic observables as functions of

the lightest slepton mass for the model RVV2 with tan β = 10, A0 = 0, 0 < m0 < 2.5 TeV,

0 < M1/2 < 1.5 TeV. The green band corresponds to the points of the parameter space for which
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FIG. 7: Leptonic observables for model RVV2, tanβ = 10, A0 = 0, as functions of the lightest slepton mass.

See the text for details.

(|ǫSM
K + ǫsusy

K | − |ǫexp
K |) < σth, where we have checked that the correct sign has been obtained. For

the SM contribution we took the central value computed in [63], |ǫSM
K | = 1.78 × 10−3, and σth is

the corresponding theoretical error, σth = 0.25 × 10−3. The blue band represents the same for the

case of negative (δdRR)12. The black and purple strips correspond to the more strict requirement

(|ǫSM
K +ǫsusy

K |−|ǫexp
K |) < 3σexp, with σexp being the experimental error, 0.012×10−3 (in other words

for the strips we assume |ǫSM
K | to take precisely to the central value in [63]). The shaded regions

are ruled out by experiment, and the red lines indicate the future experimental sensitivity. For

(g − 2)µ, the area between the yellow lines solve the tension below 2σ.

The leptonic predictions in these “ǫK -favoured” regions are quite interesting. We see that

BR(µ → eγ) (top-left panel) gives at present practically no constraint, while the final MEG sensi-

tivity (∼ 10−13), will test the model up to slepton masses around 0.5-1.2 TeV. Very interestingly,

the sensitivity of a Super Flavour Factory reaching BR(τ → µγ) ≃ 10−9 can be rather similar

(top-right panel). The reason for this is that the “ǫK -favoured” region selects rather low values of

M1/2, where the future bounds of MEG and the Super Flavour Factory are comparable (see Fig. 1

in Section IIIA). Concerning eEDM (bottom-left panel), we see that reaching de ∼ 10−29 e cm−1

would test this case up to ml̃1
≃ 1.5 TeV, well beyond the reach of the LFV experiments. Finally,
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FIG. 8: Leptonic observables for model RVV2, tanβ = 30, A0 = 0, as functions of the lightest slepton mass.

requiring that the SUSY contribution to (g − 2)µ (bottom-right panel) lowers the tension with

the experiments below 2σ, a rather light spectrum is selected, ml̃1
<∼ 250 − 500 GeV, so that all

the other observables should be in the reach of running/future experiments, with, in particular,

branching ratios of LFV decays being just below the present experimental limits. We checked that

model RVV1 gives results for LFV decays and (g − 2)µ which are similar to the ones of RVV2,

while de is suppressed by approximately one order of magnitude: in this case, the future sensitivity

on de will test the parameter space up to slepton masses around 500-750 GeV.

The predictions of Fig. 7 are rather stable also for a0 = 1. In this case, both for RVV1 and

RVV2, only BR(µ → eγ) and de gets slightly increased. For larger values of tan β (∼ 30) we expect,

both for RVV1 and RVV2, the future sensitivities for LFV decays and de to completely test the

parameter space in the range of parameters we considered, 0 < m0 < 2.5 TeV, 0 < M1/2 < 1.5

TeV. This is shown in Fig. 8 for RVV2. Notice that, also in this case, it is possible to account

for the (g − 2)µ and the ǫK discrepancies at the same time, even if the leptonic observables are in

general predicted to be very close to the present experimental bounds.

In Fig. 9, we compare the discovery potential of the two most promising leptonic observables,

µ → eγ and the electron EDM. The correlation of BR(µ → eγ) vs. |de| is plotted for both RVV1

and RVV2, in the case tanβ = 10, a0 = 0 (left), tan β = 10, a0 = 1 (center) and tan β = 30, a0 = 0
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FIG. 9: BR(µ→ eγ) vs. |de| for different scenarios. See the text for details.

FIG. 10: Leptonic observables for model RVV2, tanβ = 10, A0 = 0, as functions of the lightest slepton

mass, for a random variation of the O(1) coefficients (red dots). See the text for details.

(right). As before we studied the mass range: 0 < m0 < 2.5 TeV, 0 < M1/2 < 1.5 TeV. In the

figures, only the “ǫK -favoured” region with positive (δdRR)12 has been plotted. The horizontal line

corresponds to the final sensitivity of MEG, the vertical line to the sensitivity on |de| of the running

Yale-PdO experiment. We see that, for RVV1, µ → eγ should be able to constrain the parameter

space more strongly than eEDM, while for RVV2 it is |de| the most sensitive observable (except for

the large tan β case). These features could be useful in the future, in order to discriminate among

different models and, more in general, shed light on the structure of mixings and phases in the

slepton mass matrix.

Finally, let us briefly comment about the impact of the unknownO(1) coefficients on the analysis
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FIG. 11: Same as Fig. 9, but with a random variation of the O(1) coefficients (red dots). See the text for

details.

outlined above. In Fig. 10, we plot the same observables of Fig. 7 (RVV2, tan β = 10, a0 = 0)

in red, performing a random variation of all the O(1) coefficients between 0.5 and 2 (in absolute

value). For comparison, we superimpose to the scatter plot the green and blue bands of Fig. 7. We

do the same for Fig. 9 in Fig. 11, only for RVV2, in yellow, superimposing the green bands.

From these Figures we see that, although the lines are broadened by the variation of O(1)s,

as expected, the correlations are roughly mantained. In some cases we can see variations of even

several orders of magnitude for the predictions. This is due to two different sources. On one hand,

for fixed values of m0 and M1/2 we can have a variation of a factor 4 or 1/4 in the product of two

sleptonic O(1) coefficients. On the other hand, if we allow the variation of O(1) coefficients in ǫK ,

the lines in the (m0, M1/2) plane of Figure 2 become broad bands, increasing in turn the width of

the bands of the sleptonic observables. Still, our predictions remain stable enough, especially for

some observables such as BR(µ → eγ), to conclude that the main qualitative features discussed

above are not affected too much by the unknown O(1) coefficients.

V. CONCLUSIONS

In this work, we have studied the phenomenology of a MSSM with a SU(3) flavour symmetry

and spontaneous CP violation. We have shown that in this framework it is possible to fit the

observed fermionic masses and mixings simultaneously solving the so-called SUSY flavour and CP

problems. As a proof of existence, we have analyzed an explicit example based in the model of Ross,

Velasco and Vives [3] that successfully overcomes the present FCNC and CP-violation constraints.

At the same time, this model predicts a non-trivial flavour structure in the SUSY soft-breaking

terms that will show up in near-future CP-violation, LFV and hadronic FCNC experiments. We

have analyzed a model that includes the minimal set of contributions to the soft-breaking terms

and we have presented two possible variations with additional contributions to soft-breaking terms.
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In these models, we naturally expect to be able to observe the µ → eγ decay at MEG for

sfermion masses within LHC reach. Similarly, it is also possible to measure the τ → µγ branching

ratio at the future Super Flavour Factory. In the hadronic sector the main effect of the model is a

sizeable contribution to ǫK that could explain the recently observed discrepancy between the SM

and the measured value taking the latest lattice values for the BK factor [63]. The electric dipole

moment of the electron is also probably to be within reach of the present experiments while the

neutron EDM will be just beyond the planned sensitivity of the experiments. It is unfortunate

that, at low tanβ and without any conspiration of O(1) parameters, the evaluated versions of this

model cannot provide the required contribution to φBs in order to solve the discrepancy reported

in [75]. This means that if the future data confirms the discrepancy, non-minimal versions of the

model shall be required.

We have made a combined analysis of all the observables if we require that the ǫK discrepancy is

solved by the SUSY contributions of the model. In this case we are able to relate the values of the

different observables and again µ→ eγ, τ → µγ and de can be measured in the future experiments

if SUSY is to be found at LHC.
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APPENDIX A: CKM FIT

The SU(3) model generates the following leading structure for the Yukawa matrices, in terms

of ε and ε̄:

Yd =





0 xd12 ε̄
3 eiδd xd13 ε̄

3 eiδd+β3

xd12 ε̄
3 eiδd Σdε̄

2 xd23 Σd ε̄
2 eiβ3

xd13 ε̄
3 eiδd+β3 xd23 Σd ε̄

2 eiβ3 e2iχ




yb (A1)

Yu =





0 xu12 ε
3 eiδu xu13 ε

3 eiδu+β3

xu12 ε
3 eiδu Σuε

2 xu23 Σu ε
2 eiβ3

xu13 ε
3 eiδu+β3 xu23 Σu ε

2 eiβ3 1




yt (A2)

where δf = 2αf + β3 + β′2. It is necessary to fix the values for the xαij parameters and the flavon

phases. In the quark sector, this means that we need to reproduce the quark masses and CKM

matrix and, in fact, we will see that the CKM matrix is the main source of constraints on xuij and

xdij .

After diagonalizing the Yukawas, keeping terms up to order ε̄3, ε2 and εε̄2, and rephasing fields

such that Vud, Vus, Vcs, Vcb and Vtb are real, we get the following CKM matrix:

VCKM =





∣∣∣∣1 − 1
2

(
xd
12

Σd

)2
Λud ε̄

2

∣∣∣∣
xd
12

Σd
|Λus| ε̄ xd13 |Λub| ε̄3 ei(ωub−ωus−ωcb−ωud)

−xd
12

Σd
|Λus| ε̄

∣∣∣∣1 − 1
2

(
xd
12

Σd

)2
Λud ε̄

2

∣∣∣∣ xd23Σd |Λcb| ε̄2

(xd12x
d
23 − xd13) ε̄

3 ei(ωcb+ωus) −xd23Σd |Λcb| ε̄2 eiωud 1





(A3)

where Λα are complex corrections due to subleading terms, with effective phase ωα. These sub-

leading terms play a very important role in the CKM phase δCKM which consists on a combination

of subleading phases, the largest of these being ωub:

ωub = arg(Λub)

= arg

(
1 − xd23

(
xu12
xd13

)(
Σd

Σu

)
ε

ε̄
e−i(δu−δd)

)
, (A4)

followed by ωus:

ωus = arg

(
1 −

(
xu12
xd12

)(
Σd

Σu

)
ε

ε̄
e−i(δu−δd) + (xd12x

d
23 − xd13)x

d
23 ε̄

2 e2i(β3−χ) + . . .

)
(A5)
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Other Λα coefficients are Λud,Λcb ≃ 1+O(ε̄2) and do not play an important role in the fit. However,

it is important to point out that the structure of these subleading terms is highly model dependent,

and that the values we get for them shall be valid only in this model. Other SU(3) models can

have a completely different subleading structure.

The phenomenological fit of [36], based on structures similar to those in Eq. (A1), was used in

previous works [3, 4] to fix the O(1) parameters of the Yukawa matrices. In this work we make

a new fit specifically for the SU(3) model, taking into account also flavon phases. Although the

variation of the latter make very small changes in the CKM elements, such variations could make

these elements exceed the 3σ bounds in [37].

The values found in [37] for the CKM matrix are connected to a large number of flavour

observables. The analysis assumes that the SM is the only source of flavour and CP violation.

Nonetheless, the strong consistency in the SM between all flavour observables, in particular those

participating in the construction of the unitarity triangle, suggests that new physics effects are

small, and that the main source of the registered flavour and CP violation still lies in the CKM

matrix. Thus, we shall adjust the O(1) parameters in Yu and Yd such that the CKM matrix of [37]

is reproduced, assuming that SUSY contributions do not affect the fit significantly.

To make a fit of the 11-dimensional parameter space of Eq. (A1), the Powell minimization

method was used. The function to minimize was defined as a χ2 on the quark masses and on the

four CKM parameters in the Wolfenstein parametrization: λ, A, ρ̄ and η̄, as in [37]. We required

the O(1) parameters not to be larger than 2, and not smaller than 0.4. We found that the following

values give a very good fit on the masses and mixings:




xd12

xd13

xd23




=





1.67

0.4

1.84




;





xu12

xu13

xu23




=





1.42

2.0

2.0




(A6a)

αu − αd = −0.69 (A6b)

with β′2, β3 and χ non-uniquely determined. The results for xdij are similar to those in [36], with

a larger discrepancy in xd23. The value of (αu − αd) is mainly fixed by the CKM phase and |Vus|,
as reported in [3]. To leading order, we can extract a 1σ uncertainty σdij on the xdij constants

from the errors on the CKM parameters [37]. We roughly expect σd12 ≈ 7 × 10−3, σd13 ≈ 5 × 10−2

and σd23 ≈ 4 × 10−2. As the xuij parameters participate only in subleading terms, such a rough

estimation is not possible. However, by fixing these constants at the above values, we can estimate

the uncertainty on αu − αd, being σ(αu−αd) ∼ 0.04.



41

-150

-100

-50

0

50

100

150

-150 -100 -50 0 50 100 150

FIG. 12: Fit to Quark Masses and CKM matrix at one (red), two (blue) and three (green) sigma. There is

a strong correlation between β3 and χ, but β′

2 does not affect CKM elements.

mu mc mt md ms mb

SU(3) (GeV) 2.9 × 10−3 0.57 172.0 4.1 × 10−3 71 × 10−3 2.85

Reference (GeV) (1.4 ± 0.5)× 10−3 0.63 ± .08 170.3 ± 2.4 (3 ± 1.2) × 10−3 (56 ± 16) × 10−3 2.89 ± 0.11

TABLE VII: SU(3) predictions for quark masses at mZ and corresponding values obtained by running to

the same scale [99].

After fixing the determined O(1)s at these values, and taking αd = 0, we make a grid-based

χ2 analysis on the remaining three phases. We find out that the CKM matrix is completely

independent of β′2, as expected from Eq. (A3). The result of the scan for β3 and χ is shown in

Figure 12. These two phases enter through subleading terms in the CKM matrix, and are severly

constrained due to the precise determination of |Vus|, |Vcb| and the diagonal elements. We are thus

forced to place (β3, χ) around (−20◦, 20◦), or on any of four degenerate spots obtained by adding

180◦ to each. For definiteness, in the following we set (β3, χ) = (−20◦, 20◦), and β′2 = 0◦.

Using these values, we compare the results of the fit with the measured values for the CKM

matrix and quark masses at mZ [99]. The results are shown in Tables VII and VIII. We can see

that the fit is very good and almost all of the SM parameters lie within their 1σ values.

Regarding the lepton sector, we shall unify the structure of quark and lepton flavoured matrices,
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λ A ρ̄ η̄

SU(3) 0.2250 0.805 0.156 0.327

Reference 0.2257+0.0009
−0.0010 0.814+0.021

−0.022 0.135+0.031
−0.016 0.349+0.015

−0.017

TABLE VIII: SU(3) predictions for CKM elements and corresponding measured values, taken from [37].

me mµ mτ

SU(3) (GeV) 4.867808× 10−4 104.47907× 10−3 1.77634

Reference (GeV) 4.866613(36)× 10−4 102.72899(44)× 10−3 1.74645+.00029
−.00026

TABLE IX: SU(3) predictions for lepton masses at mZ and corresponding values obtained by running to

the same scale [99].

so the Yukawas can be written as:

Ye =





0 xe12 ε̄
3 eiδd xe13 ε̄

3 eiδd+β3

xe12 ε̄
3 eiδd Σeε̄

2 xe23 Σe ε̄
2 eiβ3

xe13 ε̄
3 eiδd+β3 xe23 Σe ε̄

2 eiβ3 e2iχ




yb, (A7)

Yν =





0 xu12 ε
3 eiδu xu13 ε

3 eiδu+β3

xu12 ε
3 eiδu 0 0

xu13 ε
3 eiδu+β3 0 1



 yt (A8)

with and Σe = 3Σd and Σν = 0. Notice that in Yν the zeroes are actually terms of order higher

than ε3. We use the same O(1)s in Yu for Yν and we find that the O(1)s that fit best the charged

lepton masses are:





xe12

xe13

xe23



 =





1.31

2.0

2.0



 (A9)

which give the values in Table IX. Note that lepton masses are known very precisely and thus

subleading contributions will play an important role in the fit. For this reason, we did not try to

fit exactly the reference values in Table IX.

For more details on how the SU(3) model accomodates neutrino mixing, we refer the interested

reader to [3].
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APPENDIX B: O(1) COEFFICIENTS IN THE SCKM BASIS AT THE GUT SCALE

In general, flavour symmetry models contain unknown O(1) coefficients at the flavour scale.

In CPV and FCNC studies we are interested in the leading real and imaginary contributions.

However, we find that in some particular observables, leading phases might cancel. In such a

situation it is important to know the structure of subleading complex terms in order to make

verifiable predictions. For this purpose, we present here the structure of the O(1) coefficients for

the leading terms after the SCKM rotation.

In the following, we shall define xfδ = (xf12x
f
23 − xf13), with f = u, d, e.

1. RVV1

Our soft matrices in the flavour basis have the following structure at the GUT scale:

M2
Q̃

=





1 +Q1 ε
2 yt 0 0

0 1 +Q2 ε
2 Q3 ε

2 eiβ3

0 Q3 ε
2 e−iβ3 1 +Q4 yt



m2
0,

with exactly the same structure, but different O(1) constants Ui and Li, for M2
ũc

R
and M2

L̃
, respec-

tively. For M2
d̃c

R

and M2
ẽc
R

we have an analogous structure, with ε replaced by ε̄, yt replaced by yb,

and different O(1) constants Di and Ei. This shall be true for all variations of the model, so in

following subsections we shall only show M2
Q̃

without repeating these specifications.

Rotation into the SCKM basis gives Eq (9), with the following O(1) coefficients:

M2
ũc

R
(2, 1) = (U2 − U1 yt)(x

u
12/Σu) (B1a)

M2
ũc

R
(3, 1) = U3(x

u
12/Σu) − U4 x

u
δ yt e

2iβ3 (B1b)

M2
ũc

R
(3, 2) = U3 − U4 x

u
23Σu yt e

2iβ3 (B1c)

M2
d̃c

R

(2, 1) = (D2 −D1 yb)(x
d
12/Σd) (B2a)

M2
d̃c

R

(3, 1) = D3(x
d
12/Σd) −D4 x

d
δ yb e

−2i(χ−β3) (B2b)

M2
d̃c

R

(3, 2) = D3 −D4 x
d
23Σd yb e

−2i(χ−β3) (B2c)
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M2
Q̃
(2, 1) = (Q2 −Q1 yt)(x

d
12/Σd) (B3a)

M2
Q̃
(3, 1) = −Q4 x

d
δ +

ε2

ε̄2
Q3

yt
(xd12/Σd) e

2i(χ−β3) (B3b)

M2
Q̃
(3, 2) = Q4 x

d
23 Σd −

ε2

ε̄2
Q3

yt
e2i(χ−β3) (B3c)

M2
ẽc
R
(2, 1) = (E2 −E1 yb)(x

e
12/Σe) (B4a)

M2
ẽc
R
(3, 1) = E3(x

e
12/Σe) −E4 x

e
δ yb e

−2i(χ−β3) (B4b)

M2
ẽc
R
(3, 2) = E3 − E4 x

e
23Σe yb e

−2i(χ−β3) (B4c)

M2
L̃
(2, 1) = (L2 − L1 yt)(x

e
12/Σe) (B5a)

M2
L̃
(3, 1) = −L4 x

e
δ +

ε2

ε̄2
L3

yt
(xe12/Σe) e

2i(χ−β3) (B5b)

M2
L̃
(3, 2) = L4 x

e
23 Σe −

ε2

ε̄2
L3

yt
e2i(χ−β3) (B5c)

2. RVV2

The Kähler potential in RVV2 has got the minimal terms with the addition of the θ3θ̄23 flavon

vevs. This modifies the (2, 3) and (3, 2) elements of the soft mass matrices, giving them the

following structure at the GUT scale:

M2
Q̃

=





1 +Q1 ε
2 yt 0 0

0 1 +Q2 ε
2 Q5 ε y

0.5
t eiβ

′
2

0 Q5 ε y
0.5
t e−iβ

′
2 1 +Q4 yt




m2

0.

For simplicity, we have omitted the minimal X3 (X = U,D,Q,E,L) O(1)s, replacing them by

the corresponding X5 that accompany the θ3θ̄23 flavon vev. The O(1) coefficients are:

M2
ũc

R
(2, 1) = (U2 − U1 yt)(x

u
12/Σu) (B6a)

M2
ũc

R
(3, 1) = U5(x

u
12/Σu) − εU4 x

u
δ y

0.5
t ei(β3+β′

2
) (B6b)

M2
ũc

R
(3, 2) = U5 − εU4 x

u
23 Σu y

0.5
t ei(β3+β′

2
) (B6c)
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M2
d̃c

R

(2, 1) = (D2 −D1 yb)(x
d
12/Σd) (B7a)

M2
d̃c

R

(3, 1) = D5(x
d
12/Σd) − ε̄ D4 x

d
δ y

0.5
b e−i(χ−β3−β′

2
) (B7b)

M2
d̃c

R

(3, 2) = D5 − ε̄ D4 x
d
23 Σd y

0.5
b e−i(χ−β3−β′

2
) (B7c)

M2
Q̃
(2, 1) = (Q2 −Q1 yt)(x

d
12/Σd)

− ε̄
2

ε
Q5 y

0.5
t

(
xdδ e

i(−2χ+β3+β′
2
) + xd12x

d
23 e

−i(−2χ+β3+β′
2
)
)

(B8a)

M2
Q̃
(3, 1) = Q5(x

d
12/Σd) −

ε̄2

ε
Q4 x

d
δ y

0.5
t ei(−2χ+β3+β′

2
) (B8b)

M2
Q̃
(3, 2) = Q5 −

ε̄2

ε
Q4 x

d
23 Σd y

0.5
t ei(−2χ+β3+β′

2
) (B8c)

M2
ẽc
R
(2, 1) = (E2 − E1 yb)(x

e
12/Σe) (B9a)

M2
ẽc
R
(3, 1) = E5(x

e
12/Σe) − ε̄ E4 x

e
δ y

0.5
b e−i(χ−β3−β′

2
) (B9b)

M2
ẽc
R
(3, 2) = E5 − ε̄ E4 x

e
23 Σe y

0.5
b e−i(χ−β3−β′

2
) (B9c)

M2
L̃
(2, 1) = (L2 − L1 yt)(x

e
12/Σe)

− ε̄
2

ε
L5 y

0.5
t

(
xeδ e

i(−2χ+β3+β′
2
) + xe12x

e
23 e

−i(−2χ+β3+β′
2
)
)

(B10a)

M2
L̃
(3, 1) = L5(x

e
12/Σe) −

ε̄2

ε
L4 x

e
δ y

0.5
t ei(−2χ+β3+β′

2
) (B10b)

M2
L̃
(3, 2) = L5 −

ε̄2

ε
L4 x

e
23 Σe y

0.5
t ei(−2χ+β3+β′

2
) (B10c)

3. RVV Model 3

The addition of an effective term with the antisymmetric (θ3θ23)θ3 flavon vevs gives the soft

matrices the following structure, in the flavour basis, at the GUT scale:

M2
Q̃

=





1 +Q1 ε
2 yt 0 Q6 ε yt

0 1 +Q2 ε
2 Q3 ε

2 eiβ3

Q6 ε yt Q3 ε
2 e−iβ3 1 +Q4 yt




m2

0.
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The additional term in the (1, 3) and (3, 1) sectors of the mass matrices induce large terms in

the (1, 2) and (2, 1) sectors of the mass matrices, and have a moderate influence on the (2, 3) and

(3, 2) sectors. The structure of the O(1) coefficients follow:

M2
ũc

R
(2, 1) = (U2 − U1 yt)(x

u
12/Σu) + U6 x

u
23 Σu yt e

−i(β3+δu) (B11a)

M2
ũc

R
(3, 1) = U6 (B11b)

M2
ũc

R
(3, 2) = U3 − U4 x

u
23Σu yt e

2iβ3 + U6 yt (x
u
12/Σu) e

i(β3−δu) (B11c)

M2
d̃c

R

(2, 1) = (D2 −D1 yb)(x
d
12/Σd) +D6 x

d
23 Σd yb e

i(2χ−β3−δd) (B12a)

M2
d̃c

R

(3, 1) = D6 (B12b)

M2
d̃c

R

(3, 2) = D3 −D4 x
d
23 Σd yb e

−2i(χ−β3) +D6 yb (xd12/Σd) e
i(β3−δd) (B12c)

M2
Q̃
(2, 1) = Q6 x

d
23 Σd +

ε

ε̄

(Q2 −Q1 yt)

yt
(xd12/Σd) e

i(−2χ+β3+δd) (B13a)

M2
Q̃
(3, 1) = Q6 (B13b)

M2
Q̃
(3, 2) = Q4 x

d
23 Σd −

ε

ε̄

[
Q6(x

d
12/Σd)e

−iδd +
ε

ε̄

Q3

yt
e−iβ3

]
ei(2χ−β3) (B13c)

M2
ẽc
R
(2, 1) = (E2 − E1 yb)(x

e
12/Σe) + E6 x

e
23 Σe yb e

i(2χ−β3−δd) (B14a)

M2
ẽc
R
(3, 1) = E6 (B14b)

M2
ẽc
R
(3, 2) = E3 − E4 x

e
23 Σe yb e

−2i(χ−β3) + E6 yb (xe12/Σe) e
i(β3−δd) (B14c)

M2
L̃
(2, 1) = L6 x

e
23 Σe +

ε

ε̄

(L2 − L1 yt)

yt
(xe12/Σe) e

i(−2χ+β3+δd) (B15a)

M2
L̃
(3, 1) = L6 (B15b)

M2
L̃
(3, 2) = L4 x

e
23 Σe −

ε

ε̄

[
L6(x

e
12/Σe)e

−iδd +
ε

ε̄

L3

yt
e−iβ3

]
ei(2χ−β3) (B15c)
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4. A-Terms

For all of the evaluated models, the A-Terms will have the same structure the Yukawas have,

but with different O(1) constants. We parametrize them in the following way:

Ad =





0 Ad1 x
d
12 ε̄

3 eiδd Ad2 x
d
13 ε̄

3 ei(β3+δd)

Ad1 x
d
12 ε̄

3 eiδd Ad3 Σd ε̄
2 Ad4 x

d
23 Σd ε̄

2 eiβ3

Ad2 x
d
13 ε̄

3 ei(β3+δd) Ad4 x
d
23 Σd ε̄

2 eiβ3 Ad5 e
2iχ




A0 yb (B16)

and similarly for Au and Ae.

The A-Terms are rotated into the SCKM basis using the same unitary matrices that diagonalize

the Yukawas. However, as the O(1) constants in each entry are different from the ones in the

Yukawas, the A-Terms are not diagonalized, and mantain the same structure. For squarks, the

remaining off-diagonal terms are then affected by the rephasings, and we obtain:

Au =





0 A′u
2 xu12 ε

3 e−iω
′

A′u
2 x

u
13 ε

3 ei(2χ−ω
′)

A′u
1 x

u
12 ε

3 eiω
′

Au3 Σu ε
2 A′u

4 xu23 Σu ε
2 e2iχ

A′u
2 x

u
13 ε

3 ei(ω
′+2β3−2χ) A′u

4 xu23 Σu ε
2 e2i(β3−χ) Au5



A0 yt (B17)

Ad =





0 A′d
2 x

d
12 ε̄

3 e−iωus A′d
2 x

d
13 ε̄

3 e−iωus

A′d
1 x

d
12 ε̄

3 e−iωus Ad3 Σd ε̄
2 A′d

4 x
d
23 Σd ε̄

2

A′d
2 x

d
13 ε̄

3 ei(ωus+2β3−2χ) A′d
4 x

d
23 Σd ε̄

2 e2i(β3−χ) Ad5




A0 yb (B18)

Ae =





0 A′e
2 x

e
12 ε̄

3 A′e
2 x

e
13 ε̄

3 ei(β3−χ)

A′e
1 x

e
12 ε̄

3 Ae3 Σe ε̄
2 A′e

4 x
e
23 Σe ε̄

2 ei(β3−χ)

A′e
2 x

e
13 ε̄

3 ei(β3−χ) A′e
4 x

e
23 Σe ε̄

2 ei(β3−χ) Ae5




A0 yb (B19)

with:

A′f
1 = (Af1 −Af3) (B20a)

A′f
2 = (Af2 −Af5) − (Af4 −Af5)(xf12x

f
23/x

f
13) (B20b)

A′f
4 = (Af4 −Af5) (B20c)

with no subleading phases generated by the SCKM rotation. Notice that if the initial Afi = 1, the

A-terms are aligned with the Yukawas. Thus, the new A′f
i go to zero, and the A-terms are diagonal

at the SCKM basis.
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APPENDIX C: O(1) CONSTANTS DUE TO RGES

Using the leading log approximation, we can estimate the effect of the running on the flavoured

matrices. For this we define the negative parameter ∆, such that:

|∆| =
1

16π

∣∣∣∣log
MSUSY

MGUT

∣∣∣∣ >∼ O(ε̄)

The rotation to the SCKM basis must be done at MW . However, since the off-diagonal RGE

contributions to the Yukawa matrices are negligible, we can perform the rotation at the GUT

scale, and then apply the corrections from the running.

ForML̃, one must take into account that only the (3, 3) term of Yν gives a significant contribution

to the running. This parameter only participates until the heavy (νcR)3 decouples, at the scale M3.

To take into account this effect, we introduce the parameter:

∆ν =
1

∆

1

16π
log

M3

MGUT

With the exception of the A-Terms, the general result for all models is that the structure in

terms of ε and ε̄ remains unchanged. Even though the generated parameters are not necessarily of

O(1), the ∆ parameter provides an additional suppression, which approximately keeps the matrix

structure very similar to the one at the GUT scale.

These induced coefficients can have two parts: one independent of the flavour structure of the

soft masses (the MFV contribution, generated by the misalignment of the Yukawa matrices), and

one dependent on the flavour structure. In the following equations, those parts independent of the

soft mass flavour structure can be distinguished because they do not vanish when the Xi terms

(X = U,D,Q,E,L) are set to zero and when the Ai terms are set to one (this also sets all primed

variables to zero). They are only present in the M2
Q̃
, M2

L̃
and Ai matrices.

In the following, we shall denote M2
X̃

(i, j), at the scale µ, as Xµ
ij , with X = U,D,Q,E,L. For all

soft mass terms, we shall factorize the ε̄ and ε factors that appear in the mass matrices presented

in Eq. (9), as well as the leading phase. Since we shall also factorize m2
0, we define a0 = A0/m0.

1. RVV Model 1

UEW21 = UGUT21 (C1a)

UEW31 = UGUT31 + 2
{
UGUT31 − 2a2

0A
′u
2 A

u
5 x

u
13 e

2iβ3

}
y2
t ∆ (C1b)

UEW32 = UGUT32 + 2
{
UGUT32 + 2a2

0A
′u
4 A

u
5 x

u
23 Σu e

2iβ3

}
y2
t ∆ (C1c)



49

DEW
21 = DGUT

21 (C2a)

DEW
31 = DGUT

31 + 2
{
DGUT

31 − 2a2
0A

′d
2 A

d
5 x

d
13 e

−2i(χ−β3)
}
y2
b ∆ (C2b)

DEW
32 = DGUT

32 + 2
{
DGUT

32 + 2a2
0A

′d
4 A

d
5 x

d
23 Σd e

−2i(χ−β3)
}
y2
b ∆ (C2c)

QEW21 = QGUT21 − 2
ε̄4

ε2
(3 + a2

0(A
u
5 )2)xdδ x

d
23 Σd y

2
t ∆

+
ε̄4

ε2

{
2(Q4 yt + U4 yt)x

d
δ x

d
23 y

2
t + 2a2

0(A
′d
2 A

′d
4 x

d
13x

d
23 +A′d

1 A
d
3x

d
12)y

2
b

}
Σd∆ (C3a)

QEW31 = QGUT31 − 2(3 + a2
0 (Au5 )2)xdδ yt∆ + 2

ε2

ε̄2
(3 + a2

0A
u
4A

u
5)(xd12/Σd)x

u
23 Σu yt e

2iχ ∆

−
{
QGUT31 (y2

b + y2
t ) + (Q4 + 2U4)x

d
δy

2
t + 2a2

0A
′d
2 A

d
5 x

d
13

y2
b

yt

}
∆

+
ε2

ε̄2
(Q4 + 2U4)(x12/Σd)x

u
23Σu y

2
t e

2iχ ∆ (C3b)

QEW32 = QGUT32 + 2(3 + a2
0 (Au5 )2)xd23 Σd yt ∆ − 2

ε2

ε̄2
(3 + a2

0A
u
4A

u
5 )xu23 Σu yte

2iχ∆

+

{
QGUT32

xd23Σd
(y2
b + y2

t ) + (Q4 + 2U4)

(
1 − ε2

ε̄2
xu23Σu

xd23Σd
e2iχ

)
y2
t − 2a2

0A
′d
4 A

d
5

y2
b

yt

}
xd23Σd∆(C3c)

EEW21 = EGUT21 (C4a)

EEW31 = EGUT31 + 2
{
EGUT31 − 2a2

0A
′e
2 A

e
5 x

d
13 e

−2i(χ−β3)
}
y2
b ∆ (C4b)

EEW32 = EGUT32 + 2
{
EGUT32 + 2a2

0A
′e
4 A

e
5 x

e
23 Σe e

−2i(χ−β3)
}
y2
b ∆ (C4c)

LEW21 = LGUT21 − 4
ε̄4

ε2
xeδ x

e
23 Σe y

2
t ∆ν ∆

+
ε̄4

ε2
{
2(L4 yt)x

e
δ x

e
23 y

2
t ∆ν + 2a2

0(A
′e
2 A

′e
4 x

e
13x

e
23 +A′e

1 A
e
3x
e
12)y

2
b

}
Σe∆ (C5a)

LEW31 = QGUT31 − 4xeδ yt∆ν ∆

−
{
QGUT31 (y2

b + y2
t ∆ν) + L4x

e
δy

2
t ∆ν + 2a2

0A
′e
2 A

e
5 x

e
13

y2
b

yt

}
∆ (C5b)

LEW32 = QGUT32 + 4xe23 Σe yt ∆ν ∆

+

{
QGUT32

xe23Σe
(y2
b + y2

t ∆ν) + L4y
2
t ∆ν − 2a2

0A
′e
4 A

e
5

y2
b

yt

}
xe23Σe∆ (C5c)



50

2. RVV Model 2

UEW21 = UGUT21 (C6a)

UEW31 = UGUT31 + 2

{
UGUT31 − 2a2

0

ε

y0.5
t

A′u
2 Au5 x

u
13 e

i(β3+β′
2
)

}
y2
t ∆ (C6b)

UEW32 = UGUT32 + 2

{
UGUT32 + 2a2

0

ε

y0.5
t

A′u
4 Au5 x

u
23 Σu e

i(β3+β′
2
)

}
y2
t ∆ (C6c)

DEW
21 = DGUT

21 (C7a)

DEW
31 = DGUT

31 +

{
2DGUT

31 − 2a2
0

ε̄

y0.5
b

A′d
2 A

d
5 x

d
13 e

−i(χ−β3−β′
2
)

}
y2
b∆ (C7b)

DEW
32 = DGUT

32 + 2

{
DGUT

32 + 2a2
0

ε̄

y0.5
b

A′d
4 A

d
5 x

d
23 Σd e

−i(χ−β3−β′
2
)

}
y2
b ∆ (C7c)

QEW21 = QGUT21 + 2
ε̄4

ε2
(3 + a2

0(A
u
5 )2)xdδ x

d
23 Σd y

2
t ∆

+
ε̄4

ε2

{
2(Q4 yt + U4 yt)x

d
δ x

d
23 y

2
t + 2a2

0(A
′d
2 A

′d
4 x

d
13x

d
23 +A′d

1 A
d
3x
d
12)y

2
b

}
Σd∆

− ε̄
2

ε
Q5 y

0.5
t

(
xdδ e

i(−2χ+β3+β′
2
) + xd12x

d
23 e

i(2χ−β3−β′
2
)
)
y2
t∆ (C8a)

QEW31 = QGUT31 + 2
ε̄2

ε
(3 + a2

0(A
u
5 )2)

xdδ
y0.5
t

y2
t e
i(−2χ+β3+β′

2
)∆

−
{
QGUT31 (y2

t + y2
b ) −

ε̄2

ε

(
(Q4 + 2U4)x

d
δy

0.5
t y2

t + 2a2
0A

′d
2 A

d
5x

d
13

y2
b

y0.5
t

)
ei(−2χ+β3+β′

2
)

}
∆

(C8b)

QEW32 = QGUT32 − 2
ε̄2

ε
(3 + a2

0 (Au5)2)
xd23 Σd

y0.5
t

y2
t ∆

+

{
QGUT32 (y2

t + y2
b ) −

ε̄2

ε

(
(Q4 + 2U4)y

0.5
t y2

t + 2a2
0A

′d
4 A

d
5

y2
b

y0.5
t

)
xd23Σde

i(−2χ+β3+β′
2
)

}
∆

(C8c)

EEW21 = EGUT21 (C9a)

EEW31 = EGUT31 +

{
2EGUT31 − 2a2

0

ε̄

y0.5
b

A′e
2 A

e
5 x

e
13 e

−i(χ−β3−β′
2
)

}
y2
b∆ (C9b)

EEW32 = EGUT32 + 2

{
EGUT32 + 2a2

0

ε̄

y0.5
b

A′e
4 A

e
5 x

e
23 Σe e

−i(χ−β3−β′
2
)

}
y2
b ∆ (C9c)
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3. RVV Model 3

UEW21 = UGUT21 (C11a)

UEW31 = UGUT31 + 2UGUT31 y2
t∆ (C11b)
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EEW21 = EGUT21 (C14a)

EEW31 = EGUT31 + 2EGUT31 y2
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4. A-Terms

To write the RGE contribution for the A-Terms, we shall first denote:

κAd = − 7

15
g2
1 − 3g2

2 − 16

3
g2
3 + 3y2

b + y2
τ (C16a)

κYd =
7

15
g2
1M1 + 3g2

2M2 +
16

3
g2
3M3 + (3y2

bA
d
5 + y2

τA
e
5)A0 (C16b)

κAu = −13

15
g2
1 − 3g2

2 − 16

3
g2
3 + 3y2

t +
∑

i

y2
ν,i (C16c)

κYu =
13

15
g2
1M1 + 3g2

2M2 +
16

3
g2
3M3 + 3y2

tA
u
5A0 (C16d)

κAe = −9

5
g2
1 − 3g2

2 + 3y2
b + y2

τ (C16e)

κYe =
9

5
g2
1M1 + 3g2

2M2 + (3y2
bA

d
5 + y2

τA
e
5)A0 (C16f)

As the A-Terms are not hermitian matrices, the RGE evolution is different for each off-diagonal

term. For each element, we shall factorize in Eq. (B17) the leading order of magnitude in terms of
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ε or ε̄, the phase, and the global term A0 yi. Then, after the running, we get:

Ad(1, 1) = O(ε̄4) (C17a)

Ad(1, 2) = (1 + κAd ∆)A′d
1 x

d
12 (C17b)

Ad(1, 3) =
(
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)
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2 x
d
13 (C17c)

Ad(2, 1) = Ad(1, 2) (C17d)
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(C17j)

Au(1, 1) = O(ε4) (C18a)
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1 x
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with:
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We see that the running can generate subleading phases, which are contained within the Af,runij

terms. In particular, it is noticeable that these phases do not vanish when aligning the A-Terms

with the Yukawas (setting all A′f
i → 0), which means they belong to a MFV contribution.

It is also important to remark the fact that Au,run13 and Au,run23 contain terms of order (ε̄/ε)3

and (ε̄/ε)2, which are enhancement factors. Again, these are due to MFV contributions. Thus, the

RGE evolution has the potential of changing the structure of Au noticeably.

We do not list the Ae matrices, since their structure is identical to Ad, with the replacements

y2
t → y2

t ∆ν , κ
α
d → καe , xdi → xei , A

d
i → Aei and Aui → 0. One must also consider Σe = 3Σd and

Σν = 0.
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