
ar
X

iv
:0

80
6.

03
40

v1
  [

nu
cl

-t
h]

  2
 J

un
 2

00
8

June 3, 2008 0:16 WSPC/INSTRUCTION FILE lectures

International Journal of Modern Physics E
c© World Scientific Publishing Company

CHIRAL UNITARY DYNAMICS OF HADRONS AND HADRONS

IN A NUCLEAR MEDIUM
∗

E. OSET, L. S. GENG, D. GAMERMANN, M.J. VICENTE VACAS, D. STROTTMAN, K. P.
KHEMCHANDANI, A. MARTINEZ TORRES †
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In this talk I summarize recent findings around the description of axial vector mesons
as dynamically generated states from the interaction of pseudoscalar mesons and vector
mesons, dedicating some attention to the two K1(1270) states. Then I review the gener-

ation of open and hidden charm scalar and axial states, and how some recent experiment
supports the existence of the new hidden charm scalar state predicted. I present recent
results showing that the low lying 1/2+ baryon resonances for S=−1 can be obtained
as bound states or resonances of two mesons and one baryon in coupled channels. Then
show the differences with the S=0 case, where the N∗(1710) appears also dynamically
generated from the two pion one nucleon system, but the N∗(1440) does not appear, in-
dicating a more complex structure of the Roper resonance. Finally I shall show how the
state X(2175), recently discovered at BABAR and BES, appears naturally as a resonance
of the φKK̄ system.

1. Introduction

The combination of nonperturbative unitary techniques in coupled channels with

the QCD information contained in the chiral Lagrangians has allowed one to ex-

∗chiral unitary dynamics of hadrons and hadrons in a nuclear medium
†oset@ific.uv.es
‡
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tend the application domain of traditional Chiral Perturbation theory to a much

larger range of energies where many low lying meson and baryon resonances ap-

pear. For instance, for the interactions between the members of the lightest octet

of pseudoscalars, one starts with the chiral Lagrangian of ref. 1,2 and selects the

set of channels that couple to certain quantum numbers. Then, independently of

using either the Bethe-Salpeter equation in coupled channels 3, the N/D method
4 or the Inverse Amplitude Method 5, the well known scalar resonances σ(600),

f0(980), a0(980) and κ(800) appear as poles in the obtained L=0 meson-meson

partial waves. These resonances are not introduced by hand, they appear naturally

as a consequence of the meson interaction and they qualify as ordinary bound states

or resonances in coupled channels. These are states that we call dynamically gen-

erated, by contrast to other states which would rather qualify as qq̄ states, such as

the ρ 6. Similarly, in the baryon sector, the interaction of the pseudoscalar mesons

with baryons of the octet of the proton generates dynamically 1/2− resonances
7,8,9,10,11,12 and the interaction of the pseudoscalar mesons with baryons of the

decuplet of the ∆ generates 3/2− resonances 13,14. These last two cases can be

unified using SU(6) symmetry as done in 15. This field has proved quite produc-

tive and has been further extended by combining pseudoscalar mesons with vector

mesons, which lead to the dynamical generation of axial vector mesons like the

a1(1260), b1(1235), etc 16,17. Also in the charm sector one has obtained in this

way scalar mesons with charm, like the Ds0(2317) 18,19,20,21, axial vector mesons

with charm like the Ds1(2460) 16,22,23, or hidden charm scalars like a predicted

X(3700) state and two hidden charm axial states, with opposite C-parity, one of

which corresponds to the X(3872) state. In what follows we briefly discuss these

latter cases.

Paralelly with these developments investigation has started regarding systems

with three hadrons not studied so far, like two mesons and a baryon, or three

mesons. A new formalism is developed, based on the Faddeev equations and the

on shell scattering amplitudes of the different components. This can be done be-

cause one can prove that there are cancellations between the off shell part of these

amplitudes and the three body contact forces that originate from the same chiral

lagrangians. This novel finding should stimulate thoughts around conventional Fad-

deev equations which rely upon the full off shell extrapolation of the amplitudes,

and eventually require some three body forces that must be put by hand to repro-

duce the data. I shall report on several states which are obtained within this new

formalism and which can be associated to well known resonances.

2. Axial vector mesons dynamically generated

As shown in detail in 16,17, starting from a standard chiral Lagrangian for the

interaction of pseudoscalar mesons of the octet of the π and vector mesons of

the octet of the ρ, and unitarizing in coupled channels solving the coupled Bethe-

Salpeter equations, one obtains the scattering matrix for pseudoscalar mesons with
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vectors for different quantum numbers, which contains poles that can be associated

to known resonances like the a1(1260), b1(1235), etc. The SU(3) decomposition of

8 × 8

8 × 8 = 1 + 8s + 8a + 10 + 10 + 27 (1)

leads here to two octets, unlike in the case of the interaction of pseudoscalars among

themselves where there is only room for the 8s representation. This is why here one

finds different G-parity states like the a1 and b1, the f1(1285), h1(1380), plus an

extra h1(1170) that one can identify with the singlet state. One should then find two

K1 states, which do not have defined G-parity. One might think that these states are

the K1(1270) and the K1(1400) states. However the theory fails to predict a state

with such a large mass as the K1(1400) and with its decay properties. Instead, in 17

two states were found with masses close by, given, after some fine tuning, by 1197

MeV and 1284 MeV, and widths of about 240 MeV and 140 MeV, respectively 24.

The interesting thing about these states is that the first one couples most strongly

to K∗π, while the second state couples most strongly to Kρ. One could hope that

these two states could be observed experimentally. Indeed, this is the case as was

shown in the recent work 24 by looking at two reactions which have either K∗π or

Kρ in the final state and which clearly show the peak at different positions, as one

can observe in fig. 1.

It is interesting to recall that in the experimental analysis done in 25 only one

K1(1270) resonance was included (together with the K1(1400) which shows up at

higher energies), but the background was very large and the peaks appeared from

interference of large background terms rather than from the effect of the resonance.

Instead in 24, with the introduction of the two resonances obtained in our approach

and the background generated by the same chiral unitary approach, together with

a contribution from the K1(1400) considered phenomenologically, the description

of all data in fig. 1 follows in a natural way.

3. Dynamically generated scalar mesons with open and hidden

charm

A generalization to SU(4) of the SU(3) chiral Lagrangian for meson-meson interac-

tion is done in 21 to study meson-meson interaction including charm. The breaking

of SU(4) is done as in 26,27, where the crossed exchange of vector mesons is em-

ployed as it accounts phenomenologically for the Weinberg-Tomozawa term in the

chiral Lagrangians. With this in mind, when the exchange is due to a heavy vector

meson the corresponding term is corrected by the ratio of square masses of the

light vector meson to the heavy one (vectors with a charmed quark). We also use a

different pattern of SU(4) symmetry breaking by following the lines of a chiral mo-

tivated model with general SU(N) breaking 28. The picture generalizes the model

used in 18,19,20, where only the light vector mesons are exchanged. The same states

generated in 13,20 are also generated in 21 with some changes, but in addition one
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Fig. 1. Results for the ππK invariant mass distribution in the K−p→ K−π+π−p reaction. Data
in the upper panels are for 0 ≤ |t′| ≤ 0.05 GeV 2 and those in the middle and bottom panels
for 0.05 ≤ |t′| ≤ 0.7 GeV 2, where t′ is the four momentum transfer squared to the recoiling
proton. The data are further grouped by JPLMη followed by the isobar and odd particle. J is the
total angular momentum, P the parity, L the orbital angular momentum of the odd particle. Mη

denotes the magnetic substate of the Kππ system and the naturality of the exchange.

obtains states with hidden charm. The changes refer to the states of the sextet,

which in 21 appear rather broad, while these are narrow in other works. In table 1

we show the states with charm or hidden charm obtained in the present approach.

As we can see, the Ds0(2317) and D0(2400) appear in the approach, the last

one at a lower energy than in experiment, but consistent with the data considering
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Table 1: Pole positions for the model. The column Irrep shows the results in the

SU(3) limit.

C Irrep S I(JP ) RE(
√
s) (MeV) IM(

√
s) (MeV) Resonance ID

Mass (MeV)

1 3̄ 1 0(0+) 2317.25 0 D∗

s0(2317)

2327.96 0 1

2
(0+) 2129.26 -157.00 D∗

0(2400)

6 1 1(0+) 2704.31 -459.50 (?)

2394.87 0 1

2
(0+) 2694.69 -441.89 (?)

-i219.33 -1 0(0+) 2709.39 -445.73 (?)

0 1 0 0(0+) 3718.93 -0.06 (?)

the large width of the state and the theoretical and experimental uncertainties on

the mass. The other three charm states in the table come from a sextet and they

are very broad in our approach (Γ ∼ IM(
√
s)).

The very interesting and novel aspect with respect to other theoretical works is

the heavy state with zero charm. It is a hidden charm state mostly built from DD̄

andDsD̄s. The fact that this state has such a narrow width in spite of having all the

meson-meson states of the light sector open for decay, is an interesting consequence

of the work, which largely decouples the light sector from the heavy one respecting

basic OZI rules. There is no experimental information on this state presently, but an

enhancement of the cross section of the e+e− → J/ψDD̄ close to the DD̄ threshold

seen in 29 could be interpreted 30 as a consequence of the effect of the X(3700),

which is a bound state below, but close to, the DD̄ threshold. I show this in detail

in the next section.

4. Experimental hints of the X(3700) hidden charm state

The reaction e+e− → J/ψDD̄ can be described by the diagram in fig. 2 if one

assumes that the DD̄ pair comes from a resonance.
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Fig. 2. Feynman diagram for the process e+e− → J/ψDD̄
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Close to threshold the only part of this amplitude which is strongly energy

dependent is the X propagator and all other parts can be factorized, so that we

can write

T = C
1

M2
inv(DD̄) −M2

X + iΓXMX
(2)

if we describe the X resonance as a Breit-Wigner type.

The cross section would then be given by an integral over the phase space of

the three particles in the final state 30.

Assuming that T depends only on the DD̄ invariant mass, one can evaluate the

differential cross section:

dσ

dMinv(DD̄)
=

1

(2π)3
m2
e

s
√
s
|−→k ||−→p ||T |2 (3)

where s is the center of mass energy of the electron positron pair squared and |−→k |
and |−→p | are given by:

|−→p | =
λ1/2(s,M2

J/ψ,M
2
inv(DD̄))

2
√
s

(4)

|−→k | =
λ1/2(M2

inv(DD̄),M2
D,M

2

D̄
)

2Minv(DD̄)
(5)

Where λ1/2(s,m2,M2) is the usual Källen function.

In the following we explain how we compare our results to Belle’s data.

Belle has measured the differential cross section for J/ψDD̄, J/ψDD̄∗ and

J/ψD∗D̄∗ production from electron positron collision at center of mass energy√
s=10.6 GeV 29. We are going to study the first case, where the scalar hidden

charm state generated in the model of 21 plays a special role. The Belle’s measure-

ment produces invariant mass distributions for the DD̄ that range from threshold

up to 5.0 GeV. Our model is in principle reliable for energies within few hundreds

of MeV from the thresholds, so we compare numerically our results with the data

up to 4.2 GeV.

The experiment measures counts per bin. In the case of a DD̄ pair, the bins have

50 MeV width, while for the DD̄∗ pair they have 25 MeV. To compare the shape of

our theoretical calculation with the experimental data we integrate our theoretical

curve in bins of the same size as the experiment and normalize our results so that

the total integral of our curve matches the total number of events measured in the

invariant mass range up to 4.2 GeV. The comparison is made by the standard χ2

test.

As described in 21,23, in the heavy sector the model to evaluate the scattering T-

matrix has one free parameter, αH which is the subtraction constant in the loop for

channels with at least one heavy particle. In these previous papers this parameter
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Table 1. Results of MX and χ2 for different values of αH .

αH MX(MeV) χ2

d.o.f

-1.4 3701.93-i0.08 0.96

-1.3 3718.93-i0.06 0.85

-1.2 3728.12-i0.03 0.92

-1.1 Cusp 1.11

has been fitted so that the pole in the C=1, S=1, I=0 sector matches the observed

state with these quantum numbers (Ds0(2317) and Ds1(2460) for scalar and axial

states, respectively). The channels in this sector have always one heavy and one

light meson, and in principle one could fit a different α for channels with two heavy

particles. Here we are going to present results for different values of α in channels

with hidden charm (doubly heavy channels). Since we are working with the C=0

sector, we have also channels involving only light mesons. These have negligible

influence in the pole position of the hidden charm poles as shown in 21, so we

leave αL constant. The values chosen for αH correspond to the natural size 9. In

terms of an equivalent cut off to regularize the loop functions, the value αH = −1.3

corresponds to qmax ∼850 MeV, for two D mesons in a loop. As mentioned above,

the values of αH taken in the calculation correspond to those taken in 23,21. We

have taken a range of αH roughly around the values αH = −1.3 chosen for the

scalar mesons 21.

In table 1 we show results, for different values of αH , of the pole position of

the hidden charm resonance in the scalar sector, and the value of χ2 calculated

with the data from Belle, with combinatorial background already subtracted, for

all points below 4.2 GeV in the J/ψDD̄ production. Fig. 3 shows plots of our

theoretical histograms compared with experimental data 29. Note that although

we are plotting all points until 5.0 GeV, only the ones below 4.2 have been used in

the calculation of χ2 and in the normalization of the theoretical curves.

The χ2 values obtained in table 1 are around 1 or below, indicating a good fit

to the data in all curves. This is in part due to the large experimental errors, but

the clear message is that the presence of a pole below the DD̄ threshold is enough

to reproduce the observed enhancement of the cross section for this reaction in the

DD̄ invariant mass above threshold. The results of table 1 and inspection of fig. 3

show some preference for values of αH=-1.3, -1.2, which would correspond to the

hidden charm scalar with mass slightly above 3700 MeV.

The peak seen in the experiment has been fitted with a Breit-Wigner like res-

onance in 29, suggesting a new resonance. In order to make the results obtained

here more meaningful, we also perform such a fit and compare the results. We take

the same Breit-Wigner parameters suggested in the experimental paper, MX=3878

MeV and ΓX=347 MeV. We show the results obtained by fitting a Breit-Wigner
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Fig. 3. Theoretical histograms compared with data for DD̄ invariant mass distribution.

form from eq. (2) in T of eq. (3) in fig. 4. Additionally we calculate χ2 and find

χ2/d.o.f=2.10 for the DD̄ distribution. The value of χ2 for the DD̄ distribution can

be improved if we take different parameters for the Breit-Wigner resonance. Taking

for the fit MX=3750 MeV and ΓX=250 MeV we obtain a value of χ2/d.o.f=1.12,

still slightly bigger than those obtained in our previous analysis assuming the mech-

anism of fig. 2 driven by the X(3700) scalar state.
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As a consequence of the discussion, our conclusions would be that for the case

of the broad peak seen in DD̄, the weak case in favor of a new state around 3880

MeV discussed in 29 is further weakened by the analysis done here, showing that

the results are compatible with the presence of a scalar hidden charm state with

mass around 3700 MeV.
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Fig. 4. Histograms calculated with Breit-Wigner resonance with mass MX=3880 MeV compared
to data.

5. Dynamically generated axial vector mesons with open and

hidden charm

With the interaction of pseudoscalar mesons with vector mesons in 23 one obtains

the results shown in Table 2. In addition to the well known Ds1(2460), D1(2430),

Ds1(2536) and D1(2420) (and all those in the light sector already found in 16,17)

one obtains new states, which could be observed, although some of them are either

too broad or correspond to cusps.

Very interesting and novel in the present approach is the generation of the

X(3872) with positive C-parity and another state nearly degenerate with negative

C-parity. It would be interesting to see if a state with negative C-parity is observed,

but the large branching fraction

B(X → π+π−π0J/ψ)

B(X → π+π−J/ψ)
= 1.0 ± 0.4 ± 0.3 (6)

indicates either a very large G-parity (isospin) violation (quite unlikely), or the

existence of another state with different C-parity (G-parity also in this case).
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Table 2: Pole positions for the model. The column Irrep shows the results in the

SU(3) limit. The results in brackets for the Im
√
s are obtained taking into account

the finite width of the ρ and K∗ mesons.

C Irrep S IG(JPC) RE(
√
s) IM(

√
s) Resonance ID

Mass (MeV) (MeV) (MeV)

1 3̄ 1 0(1+) 2455.91 0 Ds1(2460)

2432.63 0 1

2
(1+) 2311.24 -115.68 D1(2430)

6 1 1(1+) 2529.30 -238.56 (?)

2532.57 0 1

2
(1+) Cusp (2607) Broad (?)

-i199.36 -1 0(1+) Cusp (2503) Broad (?)

3̄ 1 0(1+) 2573.62 -0.07 [-0.07] Ds1(2536)

2535.07 0 1

2
(1+) 2526.47 -0.08 [-13] D1(2420)

-i0.08

6 1 1(1+) 2756.52 -32.95 [cusp] (?)

Cusp (2700) 0 1

2
(1+) 2750.22 -99.91 [-101] (?)

Narrow -1 0(1+) 2756.08 -2.15 [-92] (?)

0 1 0 0+(1++) 3837.57 -0.00 X(3872)

3867.59

1 0 0−(1+−) 3840.69 -1.60 (?)

3864.62

6. Dynamically generated 1/2+ baryon states from the interaction

of two mesons and one baryon

We discussed before how the low lying 1/2− baryon resonances appear dynamically

generated in the chiral unitary approach. The low lying 1/2+ resonances are not less

problematic and quark models have difficulties in reproducing them 31. Experimen-

tally some of them are poorly understood and few of them possess four-star status.

Among the rest some resonances are listed with unknown spin parity and two are

controversial in nature. The situation is slightly better with the Λ resonances in the

same energy region, except for the Λ(1600) and Λ(1810), where the peak positions

and widths, obtained by different partial wave analysis groups, vary a lot. Many

of these S=−1 states seem to have significant branching ratios for three-body, i.e.,

two meson-one baryon, decay channels. However, no theoretical attempt has been

made to study the three body structure of these resonances, until recently when a

coupled channel calculation for two meson one baryon system was carried out using

chiral dynamics 32,33.
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7. Formalism for the three body systems

We take advantage of the fact that there are strong correlations in the meson baryon

sector in L=0, and with S=−1 one obtains many 1/2− resonances. The Λ(1405)S01

(JP = 1/2−) couples strongly to the π − Σ and its coupled channels. Considering

this we build the three body coupled channels by adding a pion to combinations

of a pseudoscalar meson of the 0− SU(3) octet and a baryon of the 1/2+ octet

which couple to S = −1. For the total charge zero of the three body system we get

twenty-two coupled channels. Details can be seen in 32,33.

To solve the Faddeev equations we write the two body t-matrices using unitary

chiral dynamics. These t-matrices can be split into an on-shell part, depending only

on the respective center of mass energy, and an off-shell part, which is inversely

proportional to the propagator of the off-shell particle. This off-shell part cancels

a propagator in the three body scattering diagrams, leading to a diagram with a

topological structure equivalent to that of a three body force 32,33. To this, one

must add the three body forces originating directly from the chiral Lagrangians.

Interestingly, in our case, we find that the three body forces from the two sources

cancel in the SU(3) limit. In a realistic case, we find them to sum-up to merely 5 %

of the total on-shell contribution of the t-matrices to the Faddeev equations. The

formalism is thus developed further in terms of the on-shell parts of the two body

t-matrices.

We begin with Faddeev equations

T i = tiδ3(~k ′

i − ~ki) + tigijT j + tigikT k, (7)

which, if iterated while neglecting the terms with δ3(~k ′

i −~ki), corresponding to the

disconnected diagrams, will give

T i = tigijtj + tigiktk + tigijtjgjktk + tigijtjgjiti + tigiktkgkjtj + tigiktkgkiti + ....

In order to convert the Faddeev equations into a set of algebraic equations one

writes the terms with three successive interactions explicitly, which already involve

a loop evaluation. One finds technically how to go from the diagrams with two

interactions to those with three interactions and the algorithm found is then used

for the next iterations, leading thus to a set of algebraic equations, which are solved

within twenty two coupled channels.

The resulting Faddeev equations have been solved with the input two body t-

matrices obtained by solving the Bethe-Salpeter equation as in 3,8,34. We find four

Σ and two Λ states as dynamically generated resonances from a two meson-one

baryon system, which we associate to known resonances of the PDG 35, implying

a strong coupling of the S=−1 resonances, in this region, to the three body decay

channels. In Fig. 5 we plot the modulus square of the T-matrix as a function of two

variables, the total energy and the invariant mass of particles two and three. We

show results for one of the resonances, corresponding to the Σ(1660) 35 found in

our study in the squared amplitude for the π0π0Σ0 channel, and in fig. 6 we show

the results for the Λ(1600). In addition to this, we find evidence for (1) another



June 3, 2008 0:16 WSPC/INSTRUCTION FILE lectures

12 Oset et al.

1/2+ resonance, i.e., the Σ(1770), (2) for the controversial Σ(1620) and (3) for the

Σ(1560), which is listed with unknown spin-parity 35. In the isospin 0 sector we

find evidence for the Λ (1600) and Λ (1810).

In a recent paper 36 the work has been extended to the sector with S = 0.

There one finds neatly the N∗(1710) as a resonant state of ππN , but the Roper

N∗(1440) does not show up, indicating a far more complicated structure, as one may

guess from the study of 37, where the πN , π∆ and σN channels, with interactions

additional to those used in the approach of 36 are considered. In this paper one can

find in detail the cancellations between the off shell parts of the amplitudes and

the three body forces coming from the chiral Lagrangians that we have mentioned

above. The signal for the N∗(1710) is seen in fig. 7.

 1580  1600  1620  1640  1660  1680  1700

√ s (MeV)

 1435

 1440

 1445

 

√ s23 (MeV)

 0.2

 0.6

1.0

 1.4

 1.8

|TR|2 (10-9 MeV-6)

Fig. 5. The Σ (1660) resonance in the π0π0Σ0 channel.

Finally we would like to report on the recent work on the generation of the

X(2175) resonance found at BABAR in the e+e− → φf0(980) 38,39 and also con-

firmed at BES in the study of the J/ψ → ηφf0(980) decay mode 40. The work has

been done in 41 with the same three body scheme using the particles φKK̄. A neat

resonance is found around 2150 MeV with a width compatible with experiment,

see fig. 8. As mentioned above, we plot the modulus square of the T matrix as a

function of two variables, the total energy and the invariant mass of the KK̄ sub-

system. We not only find the mass on the right place, but we also find the peak of

the KK̄ invariant mass at the f0(980) position, indicating that the system of three

particles is strongly correlated in a φ and the f0(980) as found in the experiment.
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√ s (MeV)

√ s23 (MeV)

 1

 2

|T*
R|2 (10-10 MeV-6)

 1430 1480 1530 1580 1630  1300
 1325

 1350
 1375

 1400

|T*
R|2 (10-10 MeV-6)

Fig. 6. A Λ resonance in the πK̄N amplitude at 1568 MeV in I = 0, IπK̄ = 1/2.
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Fig. 7. The squared amplitude for the ππN system in isospin 1/2 configuration as a function of√
s and

√
s23.
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Fig. 8. The φKK̄ squared amplitude in the isospin 0 configuration.

In this latter work we also evaluated the quantitative effect of cancellation of the

off-shell part of the amplitudes with the three body forces. If the later are omitted,

keeping the off shell dependence of the amplitudes, the peak still appears but shifted

by 40 MeV at lower energies. The cancellation between the off shell terms of the

amplitudes and the three body forces has thus a nontrivial consequence if omitted.

If we look at it from a different perspective, we can say that should one had used

the full off shell extrapolation of the amplitudes one would have to add the effects

of the three body force, which in this case would induce a shift of 40 MeV in the

mass of the resonance.

To conclude, we are finding a new picture for the low lying 1/2+ baryon states

with S = −1, which largely correspond to bound states or resonances of two mesons

and a baryon. In the S = 0 sector we find a clear signal for the N∗(1710), which

has a very large branching ratio for decay into ππN in the PDG, but not for the

N∗(1440). This negative result for the Roper should rather be interpreted in positive

terms as a clear indication that the ππN that we study is not the most important

component of the Roper structure, hinting, together with the study of 37, at a very

complex structure for the N∗(1440). In the three meson sector a clear peak could

be seen for the three body interacting system φKK̄, strongly correlated around the

φf0(980), reflecting the strong coupling of the f0(980) resonance to KK̄, the main

building block of the f0(980) as a dynamically generated resonance.
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