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ABSTRACT 
 
We make an attempt to develop a novel approach to describing the initial stage of the active mode-locking in 
semiconductor laser structures based on analyzing the properties of dispersion relations in terms of stability for small 
initial perturbations. Nonlinear process of shaping optical pulses is interpreted as manifesting instability of diffusion 
type. For the purposes of experimental investigations, the auto-manual opto-electronic measuring system detecting 
average time parameters inherent in ultra-short optical pulse trains has been designed. This system is able to register 
auto-correlation functions of the second order exploiting the interferometric technique as well as to identify a pulsed 
character of the incoming light radiation. Experimental confirmations of appearing the diffusive instability within the 
active mode-locking process in semiconductor laser structures operating in the near infrared range are presented. 
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1. INTRODUCTION 

 
A novel approach to describing the initial stage of the active mode-locking in semiconductor heterolasers is proposed. 
It is based on analyzing properties of dispersion relations in terms of stability for small initial perturbations. Due to the 
light field in active medium is governed by the nonlinear Ginzburg-Landau diffusive equation, the dispersion relation 
between the wave number k  and the frequency ω  involves the light amplitude and has the simple root, including 
additional controlling parameter μ . When 0),(kIm ≠μω , one can observe the diffusive instability accompanied by 
the growth ( 0kIm < ) or attenuation ( 0kIm > ) of light field; with 0kIm = , the neutral stability appears. Because 

kIm  exceeds zero with one set of μ  or it is under zero for the other set of μ , one can consider the dependence 
)(G ω=μ  that gives a boundary curve dividing the areas of stability and instability in the )k;(ω -space. If each 

optical pulse, incoming into the active medium, is coinciding with maximum gain, one can find 210 α−α+α−=μ , 
where 0α , 1α , and 2α  are the factors of attenuation, gain, and absorption. Then, μ  has meaning of the pure gain at a 
center of optical pulse and gives a parabolic boundary curve in the )k;(ω -space. The point ),( CC ωμ  of a minimum 
on that boundary curve is a critical point. Exceeding the critical value 0C =μ , the parameter μ  determines the band 
of unstable frequencies near a critical frequency 0C ω=ω . Originating unstable frequencies, extracting energy from 
the medium, governs growing the amplitude of initial perturbation. Therefore, a condition of smallness for the 
amplitude no longer obeys, that nonlinearity comes into force and competes with dispersion effects, restricting the 
amplitude and shaping the optical pulse with rather stable envelope. The frequency Cω  is preferable and plays a role 
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of the resonant frequency, because just it is the first, which turns to be unstable. Thus, nonlinear process of shaping 
optical pulses is interpreted as manifesting instability of diffusion type. Experimental confirmations of appearing the 
diffusive instability within the active mode-locking process in InGaAsP/InP structures are presented. There are two 
thresholds in semiconductor heterolasers operating in the active mode-locking regime, namely, one can recognize the 
threshold of spike-mode oscillation and the threshold of pulse shaping. 

 
2. GENERAL THEORETICAL CONSIDERATION 

 
Together with the spectral description 1 for a process of the active mode-locking in semiconductor laser structures, 
recently rather adequate models, based on considering the pulse evolution during sequential passing through the 
domains with optical gain and absorption 2- 4, have been proposed. This paper is devoted to describing the initial stage 
of the above-mentioned processes via studying the properties of dispersion relations in terms of stability for small 
initial perturbations. For a slowly varying wave packet 
 

( ) ( ) ( )[ ]t,ziexpt,zAt,zA 0 θ=                                                                  (1) 
 
one can introduce the local angular frequency ( ) tt,z ∂θ∂−=ω  and the local wave number ( ) zt,zk ∂θ∂=  5. 
Because the field ( )t,zA  in a medium is governed by some evolution equation, the functional dependence between k  
and ω  can be found; and this functional dependence represents the dispersion relation, which can be written generally 
as 0)k;(P =ω . If a medium exhibits nonlinearity, the corresponding dispersion relation includes the dependence on 
the amplitude A 0 of wave packet 
 

0)A;k;(P 0 =ω .                                                                         (2) 
 
The physical system under consideration, i.e. semiconductor laser structure, includes the optical gain, so that Eq.(2) 
represents the complex-valued relation between k  and ω , which has the simple complex-valued root 
 

),(ki),(k),(k IR μω+μω=μω  ,                                                           (3) 
 
where μ  is an additional controlling parameter 6. With exploiting Eq.(3), Eq.(1) for a wave packet takes the form. 
 

( ) ( ) ( )[ ] .c.c)zk(exptzkiexpt,zAt,zA IR0 +−ω−=                                      (4) 
 
Evolution equation, which governs the field ( )t,zA  described by Eq.(4), has the character of diffusion equation. 
When 0),(k I ≠μω , one can observe the diffusive instability being accompanied by exponentional growth (with 

0),(k I <μω ) or attenuation (with 0),(k I >μω ) of field amplitude. In the case of 0),(k I =μω , the neutral 
stability can be observed. Because ),(k I μω  can exceed zero with one set of values of the parameter μ  as well as it 
can be under zero for the other set of μ , one can formally consider the frequency dependence )(G ω=μ , which gives 
a boundary curve dividing areas of stability and instability in the )k;(ω -space. To analyze the behavior of systems 
under consideration from the viewpoint of their stability relative to small initial perturbations let us exploit an 
approximation of one-directional (along, for example, positive direction of the z-axis) traveling for the light wave. This 
process is described by the following inhomogeneous evolution equation 
 

( )t,z,Af
t
A

c
1

z
A

=
∂
∂

+
∂
∂  ,                                                                (5) 
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where c  is the group velocity, while ( )t,z,Af  is some function reflecting possible contributions from the gain, 
dispersion, and nonlinearity. Now, one can provide the analysis of dispersion relations for the solutions to Eq.(5) in the 
form of 
 

( ) [ ] [ ]{ } .c.ctz)(kkiexpbt,zA 00 +ω−ω−ω−=  ,                                               (6) 
 
where b  and 0ω  is small amplitude and the current frequency of a wave packet. To illustrate the proposed approach 
let us consider an example of the Ginzburg-Landau diffusive evolution equation, which appears usually during the 
analysis of various mode-locking problems 7. In similar particular cases, the right side of Eq.(5) takes the form 
 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
γ+

∂

∂
β−α−= AA

t
AiAt,z,Af 2
2

2
 ,                                                    (7) 

 
where α , β , and γ  are the factors of the gain (losses), dispersion, and nonlinearity, respectively. Substitution of 
Eq.(6) into Eq.(5) with the right side of Eq.(7) leads to the complex-valued dispersion relation 
 

α+γ−ω−ωβ+
ω−ω

+ω= ib)(
c

)(kk 22
0

0
0  ,                                           (8) 

 
which represents by it self an explicit function k  of ω  being similar to Eq.(3). In Eq.(8), one can separate the 
controlling parameter α=μ  that determines the boundary curve, namely, the abscises axis in the )k;(ω -space. It is 
seen from Eq.(8) that the system becomes to be diffusively unstable with 0≠α . 
 
Now, let us turn our attention to the process of active mode-locking in semiconductor laser at the approximation that 
each ingoing the optical pulse into an active medium is coinciding with a maximum of gain. In this case 2, the right 
hand side of Eq.(5) takes the form 
 

( ) ( )[ ] A
t

11tcos1M1t,z,Af
2
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where M  and mω  are the depth and frequency of modulation; 0α , 1α , and 2α  are the factors of the attenuation, 
gain, and saturable absorption, respectively; Sω  is the amplification (absorption) bandwidth. In so doing, smallness of 
the amplitude inherent in the initial perturbation is taken into account through exploiting the weak mode-locking 
approximation within deriving Eq.(9). Similar to the above-considered example, the dispersion relation, corresponding 
Eq.(5) with the right hand side in the form of Eq.(9), represents an explicit complex-valued function 
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where 0ω−ω=ωΔ . It follows straightly from Eq.(10) that within the regime of active mode-locking the combined 
system “field-medium” allows appearing the diffusive instability with the controlling parameter 
 

210 α−α+α−=μ  .                                                                      (11) 
 
Thus, one can separate the controlling parameter μ , which has a meaning of the pure gain at a center of the incoming 
optical pulse and determine a parabolic-like boundary curve in the )k;(ω -space, see Fig.1a. The point of a minimum 
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),( CC ωμ  on that boundary curve is a critical point. Exceeding the critical value 0C =μ  by the controlling parameter 
determines the band of unstable frequencies in the vicinity of a critical frequency 0C ω=ω . Originating the band of 
unstable frequency components, which are able to extract energy from active medium, governs growing the amplitude 
of initial perturbation. By this is meant that the condition of smallness for the amplitude no longer obeys, and the 
nonlinearity comes into force and competes with dispersion effects, resulting in the restriction of growing the 
amplitude and in shaping the optical pulse with rather stable envelope. The frequency Cω  (or the mode Cω , if 
periodic boundary conditions are introduced) is preferable, because just this frequency component is the first, which 
turns to be unstable. Physically, just this frequency plays a role of the resonant frequency (or mode) in the system 
under consideration. Figure 1b presents the results of computer simulation illustrating the development of initially low-
power seeding optical fluctuation in semiconductor laser structure with the diffusive instability.  
 

  
 
                                                 a.                                                                                               b. 
 

Figure 1. Exhibiting the diffusive instability. (a) The boundary curve )(G ω  ; an area lying above )(G ω  corresponds 
to growing the initial perturbation, while an area placing below is associated with attenuating the initial perturbations; 

(b) The evolution of an initial perturbation, i.e. the dynamics of pulse growing and stabilizing. 
 
The parameters inherent in active medium had been chosen in such a way that the magnitude of the controlling 
parameter exceeded a critical value. One can see a stage of growing the seeding fluctuation amplitude at the expense of 
the energy from active medium as well as a stage of stabilizing the optical pulse envelope due to a balance between 
contributions of the dispersion and the nonlinearity. 
 

3. DETECTION SYSTEM OF AVERASGE TIME PARAMETERS FOR CONTINUOUS TRAINS 
OF ULTRA-SHORT OPTICAL PULSES IN NEAR-INFRARED RANGE 

 
To study continuous trains of ultra-short optical pulses the auto-correlation approach in parallel light beams was used. 
For this purpose an auto-manual opto-electronic system for detecting train-average time parameters had been created. 
The scheme of this detection system consists of optical auto-correlator 1, electronic controller 2, and a pair of the 
checking units 3, see Fig.2. The computer soft admits several regimes for the scheme operation: a) calibration of 
optical auto-correlator, b) the measuring cycle, and c) data processing, i.e. pulse width calculation, and data display. A 
high-repetition-rate ultra-short pulse trains arrive at the optical auto-correlator, i.e. at a two-beam scanning Michelson 
interferometer, which is formed by two total internal reflection prisms and a 50%-mirror. The selection of prisms as the 
reflecting components leads to an opportunities of both to control the time distribution of light radiation 
simultaneously and to analyze the auto-correlation functions of the second order inherent in optical pulse trains. 
Moreover, this prismatic optical circuit permits keeping out the backward scattering from basic reflecting planes of the 
optical auto-correlator. The rays trace difference in the scanning interferometer is determined by relative disposition of 
the stationary prism as well as the moving prism, which is fixed on a long-path speaker. During the measuring cycle, 
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the moving prism changes its position step-by-step in relation to one another. The scheme utilizes an interferometric 
technique of detection: the reflected optical signals form an interferogram, which is registered by a slow-speed 
photodetector. The obtenied photodetector output signal is amplified, then is converted into digital code, and finally 
goes into computer that controls the whole process. As a result, all the data related to cycle time-average auto-
correlation function of pulse trains is stored in the computer memory and the train-average pulse width is calculated.  
 

 
 
Figure 2. Scheme of the auto-manual opto-electronic detecting system for detecting average time parameters inherent in continuous 

high repetition rate trains of ultra-short optical pulses in near-infrared range 
 

For an additional visual displaying of auto-correlation function the detected electronic signal arrives at an external 
memory oscilloscope. The checking units receive another part of pulsed radiation after interferometer. By using a high-
speed photodetector and a sampling oscilloscope, one can observe the character of light radiation. The temporal picture 
is characterized by the fact that optical pulse interval is true, but the pulse envelope is determined by the response time 
inherent in a high-speed photodetector, whose bandwidth was about 3.5 GHz, so that adequate pulse width measuring 
was possible only when auto-correlation responses were exploited. This auto-manual opto-electronic scheme is 
acceptable for ultra-short pulse width measurements within the range from one to a few tens picoseconds, and the 
record time for an individual interferogram is no more than 1 second. 

 
4. THE ALGORITHM OF OPERATION 

 
The correlation methods of signal processing are successfully in use for a long time. In the simplest case of the second 
order correlations similar technique is based on the following rather general algorithm see Fig.3. The initial signal 

)t(S  is applied to the input port 1 of a multiplier. The input port 2 is activated by either the additional signal )t(H  or 
the same initial signal )t(S , but they both have some variable temporal shift τ  due to passing through a delay line and 
take the forms of )t(H τ+  and )t(S τ+ , respectively. The product of a pair of the input signals is integrated with 
respect to time by the integrator. Thus, the auto- and cross-correlation functions are given by 
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a) ( ) ( ) ( )τ+=τ ∫
∞

∞−

tStStdG ,                          b) ( ) ( ) ( )τ+=τ ∫
∞

∞−

tHtStdK  .                     (12) 

 
These formulas represent the correlation functions of just the above-mentioned lowest possible order, i.e. the second 
one. Under some additional conditions, but definitely not always, the availability, for example, of the function )(G τ  
makes it possible to identify the time dependence of the input signal )t(S . If )t(H  is extremely short pulse, which 
can be approximated by the Dirac δ -function, and an area of this function )t(H  is normalized to unity, one can find 
that )t(S)t(K = . 
 

 
 

Figure 3. Principle scheme for shaping both auto- and cross-correlation functions. 
 
The simplest optical auto-correlator, which can be exploited for estimating time parameters of ultra-short optical pulses 
in high-repetition-frequency trains, is a two-beam scanning Michelson interferometer with a slow-speed photodetector, 
see Fig.2 (part 1). In principle, it makes possible detecting the auto-correlation function for the light field strength and, 
after conversion, the Fourier spectral density of light radiation and find the train-average spectral width of radiation. 
Two fields )t(E)t(E1 =  and )t(E)t(E2 τ+=  related to ultra-short optical signals reflected from the stationary and 
moving mirrors, respectively, are summarized by a slow-speed photodetector. The delay time τ  from pulse to pulse is 
varied by scanning the moving mirror under electronic control. The output signal is proportional to the energy W  on a 
slow-speed photodetector under condition that the time of integration is long enough. This energy can be estimated as 
 

a) [ ]∫
∞

∞−

τ+≈+∝ )(G)0(G)EE(tdW EE
2

21  , b) ∫∫
∞

∞−

τω−
∞

∞−

ωω
π

=τ+=τ i2
E e)(Ed

2
1)t(E)t(Etd)(G  ,    (13) 

 

where )(GE τ  is the auto-correlation function of the field strength, while 2)(E ω  is proportional to the Fourier 
spectral density of light radiation. However, during such a measurement (as well as with exploiting another Fourier 
spectrometers) the information about the phase of the field )(E ω  becomes to be lost. That is why one cannot make 
correct (unambiguous) conclusion about the train-average pulse width. The ultra-short optical pulse width can be 
determined from the spectral width rather accurately only if it is known in advance that optical pulse is spectrally 
(transform) limited, i.e. it does not include any internal frequency modulation. This takes place when the phase of field 
strength along the pulse width grows linearly, so that only the shape of optical pulse envelope determines the spectrum 
width. The half-width ωΔ  of the spectrum of power density for spectrally limited pulses and the half-width Lτ  for 
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the dependence of power on time inherent in the spectrally (transform) limited pulses are connected by 
BL C)2( =πτ⋅ωΔ  , where CB is the constant determined by the pulse shape. In general case, when pulse is not 

transform (spectrally) limited, the left hand side of the last formula exceeds CB. To determine the train-average ultra-
short optical pulse width, one needs two independent measures of the spectrum width and the internal frequency 
modulation. Within the direct photodetection, the time resolution is restricted by inertia of various components and an 
effect of storage associated with this inertia. The response function )t(R , inherent in even rather high-speed 
photodetector , is not perfectly identical to the incoming optical signal )t(S , because this response is conditioned by a 
transfer function )t(B . As a result, one has to write 
 

( ) ( ) ( )ttBtStdtR 111 −= ∫
∞

∞−

                                                                (14) 

 
in linear systems. Moreover, 0)tt(B 1 =−  with tt1 >  due to the causality principle. One can see that the response 
function )t(R  is coinciding with the signal )t(S  again only if the transfer function )t(B  is the Dirac δ -function. 
Usually, the normalized transfer functions of high-speed photodiodes can be mathematically approximated by 
functions of two kinds, namely, by the exponential function )Tt(exp −  or the hyperbolic-like function 

é ùê úë û
 - 1m1 + (t / T)  with the power [ ]m 1, 2∈ , where the characteristic parameter T  is determined by properties of each 

individual type of photodetector. Figure 4 illustrates principally appearing the response function conditioned by the 
incoming Gaussian optical pulse and the exponential transfer function. 
 

 
 

Figure 4. Shaping the response function (solid line) conditioned by the incoming ultra-short Gaussian optical pulse 
(dashed line) and the exponential transfer function (dotted line); the scales of curves are changed to illustrate better. 

 
5. EXPERIMENTAL RESULTS 

 
Within using this detection system some measurements of ultra-short pulse continuous trains generated by single-mode 
semiconductor laser structures at the wavelength of 1320 nm and 1550 nm were done. Our experimental studies have 
demonstrated that within mode-locking single-mode InGaAsP-laser heterostructures at a threshold of self-excitation 
(practically, it was realized at a pump current of about 50 mA), only a spike-mode free oscillation regime had been 
observed with an individual spike width of about 0.7 – 0.9 ps. The investigation of these spikes has shown that each 
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individual spike includes an irregular set of intensity fluctuations. Figure 5 represents an example of the digitized 
oscilloscope trace for the auto-correlation function related to a spike-mode free oscillation when an average spike 
width is close to 0.7 ps. 
 

 
 

Figure 5. The digitized oscilloscope trace for the auto-correlation function 
for a spike-mode free oscillation with an average spike width of about 0.7 ps. 

 
Shaping a continuous sequence of stable regular ultra-short optical pulses with duration of about 2 –10 ps can be 
achieved only after exceeding a threshold of self-excitation by 10 – 20 %. In so doing, one can observe increasing the 
energy of oscillation about 10 times, so that the peak-power of regular optical pulses approaches 0.2 – 1.0 W.  
 
Figure 6 demonstrates an example of the digitized oscilloscope trace for the auto-correlation function related to a 
regular pulse sequence when an average pulse width is about 6.3 ps. 
 

     
 
                                                     a.                                                                                         b. 
 

Figure 6. The digitized oscilloscope traces related to a regular pulse train: (a) the auto-correlation function for an average pulse 
width of about 6.3 ps; (b) the output signal from a high-speed photodetector. 
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6. CONCLUSION 
 
Evidently, the proposed approach makes it possible to consider the initial stage of the active mode-locking in 
semiconductor laser structures through analyzing the properties of dispersion relations in terms of stability for small 
initial perturbations. Within such an analysis, the nonlinear process of shaping optical pulses can be interpreted as 
manifesting instability of diffusion type. We have observed both the stage of spike-mode oscillation and the stage of 
pulse shaping. Results of the performed analysis are in coincidence with both the data of numerical simulations and the 
obtained experimental data 
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