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Abstract

T
his thesis based on the study of the stochastic maximum principle with risk-sensitive

for two different systems. We obtain these systems by generalizing the results of Chala

[10, 11], and by using the paper of Djehiche et al. in [13]: The first system is driven by

a backward doubly stochastic differential equation. We use the risk-neutral model for which an

optimal solution exists as a preliminary step, this is an extension of the initial control problem.

Our goal is to establish necessary and sufficient optimality conditions for the risk-sensitive per-

formance functional control problem. We show for the second system which is driven by a fully

coupled forward-backward stochastic differential equation of mean-field type, by using the same

technique as in the first case, we get the necessary and sufficient optimality conditions for the

risk-sensitive, where the set of admissible controls is convex in all the cases. Finally, we illustrate

our main results by giving applied examples of risk-sensitive control problems.

Key words: Backward doubly stochastic differential equation, fully coupled forward-backward

stochastic differential equation of mean-field, risk-sensitive, stochastic maximum principle,

variational principle, Logarithmic transformation.
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Résumé

C
ette thèse est intéressée par étude le principe du maximum stochastique avec sensible

au risque pour deux systèmes différents. Nous obtenons ces systèmes par la général-

isation des résultats de Chala [10, 11], et en utilisant le papier de Djehiche et al. dans

[13]: Le premier système est basé sur une équation différentielle stochastique doublement rétro-

grade. Nous utilisons le modèle sans risque pour lequel une solution optimale existe comme une

phase préliminaire, il s’agit d’une étape du système de contrôle initial pour ce type de problème.

Notre objectif est d’établir les conditions d’optimalité nécessaires ainsi que suffisantes pour prob-

lème du contrôle fonctionnel de la performance sensible au risque. De plus, nous montrons que

le deuxième système est basé sur une équation différentielle stochastique progressivement rétro-

grade totalement couplée de type champ moyen, en appliquant la même technique qui a utilisé

dans le premier cas, nous obtenons les conditions d’optimalité nécessaires ainsi que suffisantes

pour le sensible au risque, où un ensemble de contrôles admissibles est convexe dans les deux

cas. Finalement, nous illustrons nos principaux résultats en donnant des exemples appliqués des

problèmes de contrôle sensible au risque.

Mots clés: Équation différentielle stochastique doublement rétrograde, équation différentielle

stochastique progressivement rétrograde totalement couplée de type champ moyen, sensible

au risque, principe du maximum stochastique, transformation Logarithmique.
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Symbols and Abbreviations

The different symbols and abbreviations used in this thesis

Symbols

R : Real numbers.

(Ω,F ,P) : Probability space.

{Ft}t∈[0,T ] : Filtration.(
Ω,F , {Ft}t∈[0,T ] ,P

)
: Filtered probability space.

P : Probability measure with respect to risk-neutral.

Pθ : Probability measure with respect to risk-sensitive.

E (· | Gt) : Conditional expectation.

W,B : Brownian motion.

W θ, Bθ : Pθ − Brownian motion.

M : Vectoriel Brownian motion.

Mθ : Pθ − Vectoriel Brownian motion.

m (dλ) dt : The compensator of N.

N : A Poisson random measure.

N : The totality of the P−null sets.

θ : Risk-sensitive index.
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Symbols and Abbreviations

U : The set of admissible strict controls.

U : The set of values taken by the strict control v.

v : Admissible control.

u : Optimal strict control.

Jθ (.) : The cost function with risk-sensitive.

H̃θ : Represent the risk-neutral Hamiltonian.

Hθ : Represent the risk-sensitive Hamiltonian.

Abbreviations

SDEs : Stochastic differential equations.

BSDEs : Backward stochastic differential equations.

FBSDEs : Forward-backward stochastic differential equations.

BDSDEs : Backward doubly stochastic differential equations.

cadlàg : Right continuous with left limits

HARA : Hyperbolic absolute risk aversion.

SMP : Stochastic maximum principle.

a.e : Almost everywhere.

a.s : Almost surely.

e.g : For example.

i.e : It means.
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General Introduction

T
he application of stochastic processes is mainly inspired by the subject of physics, econ-

omy, biology, games theory...

The history can be traced too early, in 1827 botanist Brown [5] published his observa-

tion about micro objects that pollen particles suspended on the surface of the water will traverse

continuously in an unpredictable way.

After that, in 1905 Einstein [14] developed a physics model to support his statement that atoms

exist, that means he used the notion of Brownian motion to describe the physics investigation and

proved that the position of a particle can be followed by some normal distribution. Unfortunately,

the mathematical description is not very correct given because of mathematicians.

Besides the works of Einstein, in 1923 Wiener [37] did provide a correct mathematical definition

of the stochastic process observed by Brown and described by Einstein, which is the Brownian

motion that we used.

In probability theory, in 1960 the Girsanov’s Theorem (named after Igor Vladimirovich Girsanov)

describes how the dynamics of stochastic processes change when the original measure is changed

to an equivalent probability measure see [16]. The theorem is especially important in the theory

of financial mathematics as it tells how to convert from the physical measure, which describes

the probability that an underlying instrument (such as a share price or interest rate) will take
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General Introduction

a particular value or values, to the risk-neutral measure which is a very useful tool for pricing

derivatives on the underlying instrument.

Let U be a nonempty subset of R. An admissible control v is a measurable process with values in

U such that E
∫ T

0

|vt|2 dt <∞. We denote by U the set of all admissible controls.

The adapted solution for a linear backward stochastic differential equation (BSDE in short) which

appears as the adjoint process for a stochastic control problem was first investigated by Bismut

[4] in 1973, then by Bensoussan [3] in 1982, and others, while the first result for the existence of an

adapted solution to a continuous nonlinear BSDE with Lipschitzian coefficient was obtained by

Pardoux and Peng [30] in 1990. Later Peng and Pardoux developed the theory and applications

of continuous BSDEs in a series of papers [31, 32, 33] under the assumption that the coefficients

satisfy the globally or locally Lipschitzian condition but with some additional conditions.

Concerning mean-field backward stochastic differential equations (mean-field BSDEs), have been

first studied by Buckdahn et al. in 2009, the interested reader is referred to [7, 8], the purpose

of paper Carmona and Delarue [9] in 2013 was to provide an existence result for the solution of

fully coupled FBSDE of the mean-field type. Mathematical mean-field approaches play a crucial

role in diverse areas, such as physics, chemistry, economics, finance, and game theory, see for

example Lasry and Lions [23] in 2007. Many papers have been studying the problem of mean-

field and established the stochastic maximum principle, we can cite here some of them, the first

work gave the necessary optimality conditions was Bukdahn et al. [6] in 2011, after this work

many authors have generalized this problem into the other fields of applications, as the paper of

Anderson et al. [1] in 2011 they have studied the problem of the mean-field type of SDE under

the assumptions of convex action space. Besides, the problem of mean-field has been derived also

via Malliavin calculus, by Meyer-Brandis et al. [26] in 2010 the stochastic maximum principle of

mean-field have been obtained, also to the problem of singular mean-field with a good application

2



General Introduction

to finance we can have the paper of Hu et al. [22] in 2014. The paper of Li [24] in 2012, she has

investigated a large extension that is different from the classical ones to the mean-field system

with an application to the linear quadratic problem.

In this thesis, we aim by using the Pontryagin’s maximum principle to prove a necessary and suf-

ficient optimality conditions for risk-sensitive control problem associated with dynamics driven

by many systems. We solve these problems by using the approach developed by Djehiche et al.

[13] in 2015, and the results of Chala [10, 11] in 2017. Our contribution can be summarized as

follows, in the first paper they have established a stochastic maximum principle for a class of

risk-sensitive mean-field type control problems, where the distribution enters only through the

mean of state process, it means that the drift, diffusion, and terminal cost functions depend on

the state, the control and the means of state process. Their work extends the results of Lim and

Zhou [25] in 2005 to risk-sensitive control problems for dynamics that are non-Markovian and

without mean-field term. An SMP for risk-sensitive optimal control problems for Markov diffu-

sion processes with an exponential of integral performance functional was obtained by Lim and

Zhou [25] in 2005, by making the relationship between the SMP and the Dynamic Programming

Principle, the authors have used the first order adjoint process as the gradient of the value func-

tion of the control problem. This relationship holds only when the value function is smooth (see

Lim and Zhou [25] in 2005 Assumption B4). By using the smoothness assumption (see the papers

of [35, 36]), have been using the approach used above, but extended it into the jump diffusion.

In the first work published [19]: Nonlinear backward doubly stochastic differential equations (in

short BDSDEs) has been introduced by Pardoux and Peng [31] in 1994, they have considered a new

kind of BSDEs, that is a class of BDSDEs with two different directions of stochastic integrals, i.e.,

the equations involve both a standard (forward) stochastic Itô integral and a backward stochastic

Itô integral.

3



General Introduction

About the system is governed by BDSDE, we will generalize the results obtained by Chala [10, 11]

in 2017, to the BDSDE. The idea here is to reformulate in the first step the risk-sensitive control

problem in terms of an augmented state process and terminal payoff problem. An intermediate

stochastic maximum principle (SMP in short) is then obtained by applying the SMP of [2, 21] for

loss functional without running cost, and for the same particular cases see [18] in 2019. Then, we

transform the intermediate adjoint processes to a simpler form by using the fact that the set of

controls is convex. Then, we establish necessary and sufficient optimality conditions see Chapter

2.

We note that necessary and sufficient optimality conditions for risk-sensitive controls, where the

systems are governed by a stochastic differential equation (SDE in short), has been studied by

Lim and Zhou [25] in 2005. We also note that necessary and sufficient optimality conditions for

stochastic controls, where the systems are governed by nonlinear forward stochastic differential

equation with jumps, have been studied by Shi and Wu [35] in 2011, in the case where the set

of admissible controls is convex, and Shi and Wu [36] in 2012, in general case with application

to finance. Furthermore, the systems are governed by a mean-field SDE, have been studied by

Djehiche et al. [13] in 2015.

In the second work published [20]: We will generalize the results obtained by Chala [10, 11] in

2017, to the system governed by the fully coupled forward-backward stochastic differential equa-

tion of mean-field type (fully coupled FBSDE of mean-field type in short). The existence of an

optimal solution for this problem has been solved to achieve the objective of this work and estab-

lish necessary and sufficient optimality conditions for this model.

Firstly, we give -without proof- the optimality conditions for risk-neutral controls as a prelimi-

nary step. The idea is to use an auxiliary state process which is a solution of some SDE, and we

will transfer our system with two equations the first one is SDE, whereas the second is BSDE, into

4



General Introduction

the system governed by three stochastic differential equations that the set of risk-neutral controls

is convex. Then, the adjoint equations with respect to these three equations were given, the proof

is a combination between the work of Min et al. [27] in 2014 and the work of Yong and Zhou

[38, 39], the transformation of the adjoint equations will be use as the best approach, we suggest

this transformation to remove the first adjoint equation. Necessary and sufficient optimality con-

ditions have been established with respect only of the second and the third adjoint equations by

using the classical way of the Logarithmic transformation method see Chapter 1, the necessary

optimality conditions are obtained directly in the global form.

This thesis is organized as follows:

In the first chapter, the project of this chapter has been considered as a published paper by [12],

we introduce basic notations of expected exponential utility and related field.

In the second chapter, the project of this chapter has been considered as a published paper by

[19]. We establish necessary and sufficient optimality conditions where the system is given by

a BDSDEs, to find necessary and sufficient optimality conditions for risk-sensitive. Finally, we

improve the quality of the chapter by given two applications to linear quadratic stochastic control

problem, the method which used the Riccati equations is applied in the second example.

In the third chapter, the project of this chapter has been considered as a published paper by [20].

We shall study our system of fully coupled FBSDEs of mean-field type, to find necessary and suf-

ficient optimality conditions for risk-sensitive. We finish this chapter by given two applications,

the linear quadratic stochastic control problem with risk-sensitive performance function is the

first application a financial model of mean-variance with risk-sensitive performance functional is

the best application for our problem.
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(2) D. Hafayed and A. Chala, A general maximum principle for a mean-field forward-backward

doubly stochastic differential equations with jumps processes, Random Operators and Stochas-

tic Equations 27 (1) (2019) , 9− 25.

(3) D. Hafayed and A. Chala, An optimal control of a risk-sensitive problem for backward dou-

bly stochastic differential equations with applications, Random Operators and Stochastic
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CHAPTER 1

Basic Notations of Expected

Exponential Utility and Related Field
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ER 1
Basic Notations of Expected Exponential Utility and

Related Field

I
n this chapter, we develop the general framework used in our papers [10, 11, 12, 19, 20].

We will demonstrate in detail our important lemma which explains the relation between

the expected exponential utility and the quadratic backward stochastic differential equa-

tion, and this result plays an important role in my thesis. The next point for the discussion will be

the standard risk-sensitive structures, and how constructions of this kind can be given a rigorous

treatment. We investigate in this chapter the financial market of risk-sensitive for the dynamic

diffusion, by using Girsanov’s Theorems, and in virtue of Itô’s formula.
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Chapter 1. Basic Notations of Expected Exponential Utility and Related Field

1.1 Problem Formulation

Let T be a positive real number. Let
(

Ω,F ,
(
FWt

)
t∈[0,T ]

,P
)

be a probability space satisfying the

usual conditions, in which a one−dimensional Brownian motion W = (Wt, 0 ≤ t ≤ T ) is defined.

We assume that
(
FWt

)
t∈[0,T ]

is defined by ∀t ≥ 0, FWt = σ (Ws, for any s ∈ [0, t]) ∨N , where N

denote the totality of P−null sets.

LetM2 ([0, T ] ,R) denote the set of one−dimensional jointly measurable random processes

{ϕt, t ∈ [0, T ]}which satisfy the following conditions:

(i) : ‖ϕ‖M2([0,T ],R) = E

[∫ T

0

|ϕt|2 dt

]
<∞, (ii) : ϕt is FWt −measurable for any t ∈ [0, T ] .

We denote similarly by S2 ([0, T ] ,R) the set of continuous one−dimensional random processes

which satisfy the following conditions:

(i) : ‖ϕ‖S2([0,T ],R) = E
[

sup
0≤t≤T

|ϕt|2
]
<∞, (ii) : ϕt is FWt −measurable for any t ∈ [0, T ] .

Let U be a nonempty subset of R.

1.2 Expected Exponential Utility

In this part, we want to prove the relationship between the expected exponential utility and the

quadratic backward stochastic differential equation.

We require the following condition

Aθt,T := exp θ

{
Ψ (yv0) +

∫ T

t

l (s, yvs , vs) ds

}
,

9



Chapter 1. Basic Notations of Expected Exponential Utility and Related Field

where l : [0, T ]× R× U → R, Ψ : R→ R .

We assume the following

(N1)

i) l and Ψ are continuously differentiable with respect to (yv, v) .

ii) The derivative of l is bounded by C (1 + |yv|+ |v|) .

iii) The derivative of Ψ is bounded by C (1 + |yv|) .

We denote by l (t) := l (t, yvt , vt) .

First of all, it is very important to write the expected exponential utility under this form

exp
(
θΛθt

)
= E

[
Aθt,T | FWt

]
= E

[
exp θ

{
Ψ (yu0 ) +

∫ T

t

l (s) ds

}
| FWt

]
, (1.1)

where θ is the risk-sensitive index, the process Λθ is the first component of the FWt −adapted pair

of processes
(
Λθ,D

)
which is the unique solution to the following quadratic backward stochastic

differential equation 
dΛθt = −

(
l (t) +

θ

2
|D (t)|2

)
dt+D (t) dWt,

ΛθT = Ψ (yu0 ) ,

(1.2)

where E

[∫ T

0

|D (t)|2 dt

]
<∞.

We also assume the following

(N2)

i) The process D (t) is FWt −measurable with value in R such that E

[∫ T

0

|D (t)|2 dt

]
<∞.

ii) The process
(
Λθt
)
t≥0

is P−measurable uniformly bounded i.e. there exists a constant C ≥ 0

such that P− a.s.,E

[
sup
t∈[0,T ]

∣∣Λθt ∣∣
]
≤ C.

10



Chapter 1. Basic Notations of Expected Exponential Utility and Related Field

The following Lemma shows the relationship between the expected exponential utility and the

quadratic backward stochastic differential equation.

Lemma 1.2.1 We assume that N1 − N2 hold. The necessary and sufficient condition for the expected

exponential utility (1.1) to be hold, is the quadratic backward stochastic differential equation (1.2).

Proof. We assume that (1.1) holds, then we have

exp θ

{
Λθt +

∫ t

0

l (s) ds

}
= E

[
exp θ

{
Ψ (yu0 ) +

∫ T

t

l (s) ds+

∫ t

0

l (s) ds

}
| FWt

]

= E

[
exp θ

{
Ψ (yu0 ) +

∫ T

0

l (s) ds

}
| FWt

]

= E
[
AθT | FWt

]
.

By Assumption (N1), we know that AθT is the square integrable and E
[
AθT | FWt

]
is a square inte-

grable martingale, such that FWt = σ (Ws, for any s ∈ [0, t]) , by using the martingale representa-

tion Theorem, there exist a unique square integrable process ϕ with respect to norm ‖.‖M2([0,T ],R)

such that

E
[
AθT | FWt

]
− E

[
AθT
]

=

∫ t

0

ϕ (s) dWs.

Putting E
[
AθT
]

= exp θ
{

Λθ0
}

, we get

exp θ

{
Λθt +

∫ t

0

l (s) ds

}
− exp θ

{
Λθ0
}

=

∫ t

0

ϕ (s) dWs.

By applying Itô’s formula to exp θ

{
Λθt +

∫ t

0

l (s) ds

}
, we obtain

d

(
exp θ

{
Λθt +

∫ t

0

l (s) ds

})
= θl (t) exp θ

{
Λθt +

∫ t

0

l (s) ds

}
dt+ θ exp θ

{
Λθt +

∫ t

0

l (s) ds

}
dΛθt

+
θ2

2
exp θ

{
Λθt +

∫ t

0

l (s) ds

}〈
dΛθt , dΛθt

〉
= ϕ (t) dWt.

11



Chapter 1. Basic Notations of Expected Exponential Utility and Related Field

Then

l (t) dt+ dΛθt +
θ

2

〈
dΛθt , dΛθt

〉
=

1

θ
ϕ (t) exp θ

{
−Λθt −

∫ t

0

l (s) ds

}
dWt. (1.3)

Hence,

〈
dΛθt , dΛθt

〉
=

[
1

θ
ϕ (t) exp θ

{
−Λθt −

∫ t

0

l (s) ds

}]2

dt := |D (t)|2 dt. (1.4)

Then, by replacing (1.4) in (1.3), we have the quadratic backward stochastic differential equation

as the following expression
dΛθt = −

(
l (t) +

θ

2
|D (t)|2

)
dt+D (t) dWt,

ΛθT = Ψ (yu0 ) ,

where

D (t) =
1

θ
ϕ (t) exp θ

{
−Λθt −

∫ t

0

l (s) ds

}
.

On the other hand, we assume that (1.2) holds, and by applying Itô’s formula to exp
(
θΛθt

)
, we

get

d
(
exp θ

{
Λθt
})

+ θl (t) exp θ
{

Λθt
}
dt = θD (t) exp θ

{
Λθt
}
dWt.

Multiply with exp θ

{∫ t

0

l (s) ds

}
to both sides, we get

exp θ

{∫ t

0

l (s) ds

}
d
(
exp θ

{
Λθt
})

+ θl (t) exp θ

{∫ t

0

l (s) ds

}
exp θ

{
Λθt
}
dt

= θD (t) exp θ

{∫ t

0

l (s) ds

}
exp θ

{
Λθt
}
dWt.

The right side is the same as the d
(

exp θ

{
Λθt +

∫ t

0

l (s) ds

})
, then we have

d

(
exp θ

{
Λθt +

∫ t

0

l (s) ds

})
= θD (t) exp θ

{
Λθt +

∫ t

0

l (s) ds

}
dWt.

By making the integral
∫ T

t

. in both sides, we have

∫ T

t

d

(
exp θ

{
Λθs +

∫ s

0

l (r) dr

})
= θ

∫ T

t

D (s) exp θ

{
Λθs +

∫ s

0

l (r) dr

}
dWs.

12



Chapter 1. Basic Notations of Expected Exponential Utility and Related Field

Then

exp θ

{
ΛθT +

∫ T

0

l (r) dr

}
= exp θ

{
Λθt + θ

∫ t

0

l (r) dr

}
+θ

∫ T

t

D (s) exp θ

{
Λθs +

∫ s

0

l (r) dr

}
dWs.

By taking conditional expectation in above equality, we have

E

[
exp θ

{
ΛθT +

∫ T

0

l (r) dr

}
| FWt

]
= E

[
exp θ

{
Λθt +

∫ t

0

l (r) dr

}
| FWt

]

+ θE

[∫ T

t

D (s) exp θ

{
Λθs +

∫ s

0

l (r) dr

}
dWs | FWt

]
,

such that E

[∫ T

t

D (s) exp θ

{
Λθs +

∫ s

0

l (r) dr

}
dWs | FWt

]
= 0, then

E

[
exp θ

{
ΛθT +

∫ T

0

l (r) dr

}
| FWt

]
= exp θ

{
Λθt +

∫ t

0

l (r) dr

}
.

As we now that ΛθT = Ψ (yu0 ), we can write

E

[
exp θ

{
Ψ (yu0 ) +

∫ T

t

l (s) ds

}
| FWt

]
= exp θ

{
Λθt
}
.

1.3 Financial Market of the Risk-Sensitive

Next, we will discuss a result, which called Girsanov’s Theorem, which plays an important role in

the application especially in economics, and optimal control. In Girsanov’s Theorem application,

we can visit the papers [10, 13, 15, 19]. We can now show the versions of the Girsanov’s Theorem.

In the application of Itô calculus, Girsanov’s Theorem get used frequently since it transforms a

class of process to Brownian motion with an equivalent probability measure transformation see

[16].

13



Chapter 1. Basic Notations of Expected Exponential Utility and Related Field

Definition 1.3.1 Let
(

Ω,F ,
(
FWt

)
t∈[0,T ]

,P
)

be a probability space satisfying the usual conditions. Let

Q be another probability measure on FT . We say that Q is equivalent to P | FT if P | FT � Q and

Q� P | FT , or equivalently, if P and Q have the same zero sets in FT .

Remark 1.3.2 By the Radon-Nikodym Theorem this is the case if and only if we have

dQ (w) = Z (T ) dP (w) on FT , and dP (w) = Z−1 (T ) dQ (w) on FT .

Theorem 1.3.3 (Girsanov, 1960, [16]): Assume that Wt is a Brownian motion on the probability space

(Ω,F ,P) with underlying filtration
(
FWt

)
t∈[0,T ]

. Let f be a square integrable stochastic process adapts to

(
FWt

)
t∈[0,T ]

, such that

E

[
exp

{
1

2

∫ T

0

f2 (t) dt

}]
<∞, (1.5)

for all t ∈ [0, T ] , then WQ
t = Wt −

∫ t

0

f (s) ds is a Brownian motion with respect to the equivalent

probability measure Q given by

dQ
dP

= Z (T ) =: exp

{∫ T

0

f (t) dWt −
1

2

∫ T

0

f2 (t) dt

}
.

Remark 1.3.4 Using differential form, we can also say, if dWQ
t = dWt−f (t) dt. ThenWQ

t is a Brownian

motion with respect to the probability measure Q.

Remark 1.3.5 The condition E

[
exp

{
1

2

∫ T

0

f2 (t) dt

}]
< ∞ is sufficient and not necessary, called the

Novikov’s condition.

For more details the reader can see the Øksendal’s book [29] pages 155− 160.

We modeled the dynamics of the investor with diffusion process as a following SDE

dxvt = b (t, xvt ) dt+ ΛdWt, and xv0 = x. (1.6)

14



Chapter 1. Basic Notations of Expected Exponential Utility and Related Field

We consider a financial market in which two assets (securities) can be investment choices, the first

one is risk-free is called also bond (foreign currency deposit for example), whose price S0 (t) at

time t is given by

dS0 (t)

S0 (t)
= r (t) dt or (= r (t, xvt ) dt) .

The second risky asset is called stock, whose price S1 (t) at time t is given by

dS1 (t)

S1 (t)
= µ (t) dt+ σ (t) dWt or (= µ (t, xvt ) dt+ σ (t, xvt ) dWt) ,

where r (t, xvt ) is bond function interest rate, σ (t, xvt ) is function stock price volatility rate, and

µ (t, xvt ) is called the expected rate of return.

Now let us consider an investor who wants to invest in the risk-free (foreign currency deposit for

example) and the stock, and whose decisions cannot affect the prices in the financial market.

We denote here that Wt is the Brownian motion given in measurable space (Ω,F) .

Definition 1.3.6 (Self-Financial) The market is called self-financial if there is no infusion or withdrawal

of funds over [0, T ] .

We assume also that our market is to be self-financial, we denote by Vt the amount of the in-

vestor’s wealth, and πt is the proportion of the wealth invested in the stock at time t, then

vt = πtVt is the amount stock and (1− πt)Vt is the amount in the bond, that means the investor

has Vt − πtVt = Vt − vt savings in bank.

Then wealth dynamics of the investor who wants invests in the financial market has the following

form

dVt
Vt

= (Vt − vt)
dS0 (t)

S0 (t)
+ vt

dS1 (t)

S1 (t)
.

15



Chapter 1. Basic Notations of Expected Exponential Utility and Related Field

Honestly, the wealth of the investor is described by

dVt
Vt

= (Vt − vt) r (t, xvt ) dt+ vt (µ (t, xvt ) dt+ σ (t, xvt ) dWt) (1.7)

= (Vt − vt) r (t, xvt ) dt+ vtµ (t, xvt ) dt+ vtσ (t, xvt ) dWt

= Vtr (t, xvt ) dt− vtr (t, xvt ) dt+ vtµ (t, xvt ) dt+ vtσ (t, xvt ) dWt

= {Vtr (t, xvt ) + (µ (t, xvt )− r (t, xvt )) vt} dt+ vtσ (t, xvt ) dWt.

Definition 1.3.7 An admissible strategy is an
(
FWt

)
t≥0
−adapted square integrable with R−valued pro-

cess v such that (1.7) has a strong solution (Vt)t∈[0,T ] that satisfies E
∫ T

0

|Vt|2 dt < ∞, the set of all the

admissible strategies is denoted by U .

The investor wants to minimize his (or her) expected utility (HARA type) over the set U in some

terminal time T > 0 :

Jθ (v (.)) =
1

θ
E
(
V θT
)
. (1.8)

By choosing an appropriate portfolio choice strategy v (.), where the exponent θ > 0 is called

risk-sensitive parameter. If we put θ = 1 the utility (1.8) reduced to the usual risk-neutral case,

the expectation under the probability measure P is denoted by E.

Lemma 1.3.8 We can rewrite the expectation E
(
V θT
)

(1.8) in term of the exponential expected of integral

criterion as

Jθ (v (.)) =
1

θ
V θ0 Eθ

[
exp

(
θ

∫ T

0

l (t, xvt , vt) dt

)]
,

where Eθ is the new expectation with respect to probability measure Pθ, and the function l is given by

l (t, xvt , vt) =
1

2
(θ − 1) v2

t σ
2 (t, xvt ) + Vtr (t, xvt ) + (µ (t, xvt )− r (t, xvt )) vt.
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Chapter 1. Basic Notations of Expected Exponential Utility and Related Field

Proof. Applying the Itô’s formula to Logarithmic wealth value lnV θt = θ lnVt = θf (t, Vt) , we

have

θd (f (t, Vt)) = θd (lnVt)

= θ
∂f

∂t
(t, Vt) dt+ θ

∂f

∂x
(t, Vt) dVt + θ

1

2

∂2f

∂x2
(t, Vt) 〈dVt, dVt〉

= θ
1

Vt
dVt + θ

1

2

(
− 1

V 2
t

)
v2
t σ

2 (t, xvt )V
2
t dt

= θ ({Vtr (t, xvt ) + (µ (t, xvt )− r (t, xvt )) vt} dt+ vtσ (t, xvt ) dWt)−
1

2
θv2
t σ

2 (t, xvt ) dt.

Then, by taking the integral from zero into T with respect to time, the exponential expectation

gets the form

Jθ (v (.)) =
1

θ
E
(
V θT
)

=
1

θ
E
[
exp

(
lnV θT

)]
=

1

θ
E [exp (θ lnVT )]

=
1

θ
E

[
exp

(
θf (V0) + θ

∫ T

0

{Vtr (t, xvt ) + (µ (t, xvt )− r (t, xvt )) vt} dt

+ θ

∫ T

0

vtσ (t, xvt ) dWt −
1

2
θ

∫ T

0

v2
t σ

2 (t, xvt ) dt

)]

=
1

θ
E

[
exp

(
lnV θ0 + θ

∫ T

0

{Vtr (t, xvt ) + (µ (t, xvt )− r (t, xvt )) vt} dt

+ θ

∫ T

0

vtσ (t, xvt ) dWt −
1

2
θ

∫ T

0

v2
t σ

2 (t, xvt ) dt

)]

=
1

θ
exp

(
lnV θ0

)
E

[
exp

(
θ

∫ T

0

{Vtr (t, xvt ) + (µ (t, xvt )− r (t, xvt )) vt} dt

+ θ

∫ T

0

vtσ (t, xvt ) dWt −
1

2
θ

∫ T

0

v2
t σ

2 (t, xvt ) dt

)]
.
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Then, we get

Jθ (v (.)) =
1

θ
V θ0 E

[
exp

(
θ

∫ T

0

{Vtr (t, xvt ) + (µ (t, xvt )− r (t, xvt )) vt} dt

+ θ

∫ T

0

vtσ (t, xvt ) dWt −
1

2
θ

∫ T

0

v2
t σ

2 (t, xvt ) dt

− 1

2
θ2

∫ T

0

v2
t σ

2 (t, xvt ) dt+
1

2
θ2

∫ T

0

v2
t σ

2 (t, xvt ) dt

)]

=
1

θ
V θ0 E

[
exp

{(
−1

2
θ2

∫ T

0

v2
t σ

2 (t, xvt ) dt+ θ

∫ T

0

vtσ (t, xvt ) dWt

)

− 1

2
θ

∫ T

0

v2
t σ

2 (t, xvt ) dt+
1

2
θ2

∫ T

0

v2
t σ

2 (t, xvt ) dt

+ θ

∫ T

0

{Vtr (t, xvt ) + (µ (t, xvt )− r (t, xvt )) vt} dt

}]

=
1

θ
V θ0 E [I1 × I2] ,

where

I1 = exp

(
−1

2
θ2

∫ T

0

v2
t σ

2 (t, xvt ) dt+ θ

∫ T

0

vtσ (t, xvt ) dWt

)
,

I2 = exp

(
−1

2
θ

∫ T

0

v2
t σ

2 (t, xvt ) dt+
1

2
θ2

∫ T

0

v2
t σ

2 (t, xvt ) dt

+ θ

∫ T

0

{Vtr (t, xvt ) + (µ (t, xvt )− r (t, xvt )) vt} dt

)

= exp

(
θ

∫ T

0

1

2
(θ − 1) v2

t σ
2 (t, xvt ) dt+ θ

∫ T

0

{Vtr (t, xvt ) + (µ (t, xvt )− r (t, xvt )) vt} dt

)

= exp

(
θ

∫ T

0

l (t, xvt , vt) dt

)
,

where

l (t, xvt , vt) =
1

2
(θ − 1) v2

t σ
2 (t, xvt ) + Vtr (t, xvt ) + (µ (t, xvt )− r (t, xvt )) vt.

In virtue of Noviko’s condition (1.5) from Girsanov’s Theorem 1.3.3, we get

E
(
expαv2

t

)
≤ C, (1.9)
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where some constants α, C are positive.

By applying Girsanov’s transformation (see the Theorem 1.3.3), the stochastic integral term can

be deleted, and according to the condition (1.9) , we get

dPθ

dP
= exp

(
−1

2
θ2

∫ T

0

v2
t σ

2 (t, xvt ) dt+ θ

∫ T

0

vtσ (t, xvt ) dWt

)
.

Hence

Jθ (v (.)) =
1

θ
E
(
V θT
)

=
1

θ
V θ0 E [I1 × I2]

=
1

θ
V θ0 E

[
dPθ

dP
× exp

(
θ

∫ T

0

l (t, xvt , vt) dt

)]

=
1

θ
V θ0 Eθ

[
exp

(
θ

∫ T

0

l (t, xvt , vt) dt

)]
,

we denote by

W θ
t = Wt − θ

∫ t

0

vsσ (s, xvs) ds,

is a standard Brownian motion under the probability measure Pθ.

As a conclusion, for every 0 ≤ s ≤ t ≤ T, our dynamics (1.6) satisfies the SDE

dxvt = b (t, xvt ) dt+ ΛdWt = b (t, xvt ) dt+ Λd

(
W θ
t + θ

∫ t

0

vsσ (s, xvs) ds

)
= b (t, xvt ) dt+ ΛdW θ

t + Λθvtσ (t, xvt ) dt

= (b (t, xvt ) + Λθvtσ (t, xvt )) dt+ ΛdW θ
t .

An auxiliary criterion function of the expected utility, whose wants the investor minimized, is

given by

Jθ (v (.)) =
1

θ
V θ0 Eθ

[
exp

(
θ

∫ T

0

l (t, xvt , vt) dt

)]
.

The proof is completed.
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1.4 Mean-Variance of Loss Functional

We require the following condition

AθT := exp θ

{∫ T

0

l (t, xvt , vt) dt

}
,

and we can put also

Ψ (T ) :=

∫ T

0

l (t, xvt , vt) dt, (1.10)

the risk-sensitive loss functional is given by

Φ (θ) :=
1

θ
log

[
E

(
exp θ

{∫ T

0

l (t, xvt , vt) dt

})]
=

1

θ
log [E (exp θΨ (T ))] . (1.11)

Lemma 1.4.1 Let Φ (θ) be the loss functional has written as (1.11) , where Ψ (T ) is given by (1.10) .

Then, if the risk-sensitive index θ is small, the loss functional Φ (θ) can be expanded as

E (Ψ (T )) +
θ

2
Var (Ψ (T )) +O

(
θ2
)
.

Proof. The limited development of the function f (x) = exp (θx) with rang two in the neighbor-

hood of zero is given by

f (x) = exp (θx) =
∑2
k=0

(θx)
k

k!
= 1 + θx+

1

2
(θx)

2
+O

(
θ2
)
.

Then, by replacing x by Ψ (T ), we get

exp (θΨ (T )) = 1 + θΨ (T ) +
1

2
(θΨ (T ))

2
+O

(
θ2
)
.

By taking expectation, we have

E (exp (θΨ (T ))) = E
[
1 + θΨ (T ) +

1

2
(θΨ (T ))

2
+O

(
θ2
)]

= 1 + θE (Ψ (T )) +
θ2

2
E
(
Ψ2 (T )

)
+O

(
θ2
)
.
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Then

logE (exp (θΨ (T ))) = log

(
1 + θE (Ψ (T )) +

θ2

2
E
(
Ψ2 (T )

)
+O

(
θ2
))

.

If we take X = θE (Ψ (T )) +
θ2

2
E
(
Ψ2 (T )

)
+O

(
θ2
)
, and by using the limited development of the

function g (X) = ln(1 +X) , with rang two in neighborhood of zero

g (X) = ln(1 +X) =
∑2
k=1

(−1)
k−1

k
Xk.

Then

logE (exp (θΨ (T ))) = θE (Ψ (T )) +
θ2

2
E
(
Ψ2 (T )

)
+O

(
θ2
)

+ (−1)
1

2

[
θE (Ψ (T )) +

θ2

2
E
(
Ψ2 (T )

)
+O

(
θ2
)]2

+O(θ2)

= θE (Ψ (T )) +
θ2

2
E
(
Ψ2 (T )

)
− θ2

2
(E (Ψ (T ))) 2 − θ4

4

(
E
(
Ψ2 (T )

))
2 + ...+O

(
θ2
)

= θE (Ψ (T )) +
θ2

2

[
E
(
Ψ2 (T )

)
− (E (Ψ (T ))) 2

]
+O

(
θ2
)

= θE (Ψ (T )) +
θ2

2
Var (Ψ (T )) +O

(
θ2
)
.

This implies that

Φ (θ) =
1

θ
logE (exp (θΨ (T ))) = E (Ψ (T )) +

θ

2
Var (Ψ (T )) +O

(
θ2
)
.

The proof is complete.
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Backward Doubly Stochastic Differential Equations with

Application

I
n this chapter, we concern on an optimal control problem where the system is driven

by a backward doubly stochastic differential equation with risk-sensitive performance

functional. We generalized the result of Chala [10] to a backward doubly stochastic dif-

ferential equation by using the same contribution of Djehiche et al. in [13]. We use the risk-neutral

model for which an optimal solution exists as a preliminary step. This is an extension of an initial

control system to this type of problem, where the admissible controls set is convex. We estab-

lish necessary and sufficient optimality conditions for the risk-sensitive performance functional

control problem. We illustrate the chapter by given two different examples for a linear quadratic

system.
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Chapter 2. A Risk-Sensitive Stochastic Maximum Principle for BDSDE with Application

2.1 Formulation of the Problem

Let T be a positive real number. Let (Ω,F ,P) be a probability space in which one−dimensional

Brownian motions

W = (Wt, 0 ≤ t ≤ T ) and B = (Bt, 0 ≤ t ≤ T ) are defined, where W and B are two mutually

independent standard Brownian motions processes. Let N denote the class of P−null sets of F .

For each t ∈ [0, T ], we define F (W,B)
t = FWt ∨ FBt,T , where for any process {Lt}t∈[0,T ], one has

FLs,t = σ {Lr − Ls, s ≤ r ≤ t} ∨ N and FLt = FL0,t.

Note that the collection
{
F (W,B)
t , t ∈ [0, T ]

}
is neither increasing nor decreasing, and it does not

constitute a filtration. We may define the subfiltration (Gt)t∈[0,T ] such as Gt ⊂ F (W,B)
t , ∀t ∈ [0, T ] .

LetM2 ([0, T ] ,R) denote the set of one−dimensional jointly measurable random processes

{ϕt, t ∈ [0, T ]}which satisfy the following conditions:

(i) : ‖ϕ‖M2([0,T ],R) = E

[∫ T

0

|ϕt|2 dt

]
<∞, (ii) : ϕt is F (W,B)

t −measurable for any t ∈ [0, T ] .

Similarly, we denote by S2 ([0, T ] ,R) the set of one−dimensional continuous random processes

which satisfy the following conditions:

(i) : ‖ϕ‖S2([0,T ],R) = E

[
sup
t∈[0,T ]

|ϕt|2
]
<∞, (ii) : ϕt is F (W,B)

t −measurable for any t ∈ [0, T ] .

Let U be a nonempty subset of R.

Definition 2.1.1 An admissible control v is a measurable process with values in U such that

E
∫ T

0

|vt|2 dt <∞. We denote by U the set of all admissible controls.
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For any v ∈ U , we consider the following BDSDE system
dyvt = −f (t, yvt , z

v
t , vt) dt− g (t, yvt , z

v
t , vt)

←−
dBt + zvt dWt,

yvT = ξ,

(2.1)

where f : [0, T ] × R × R × U → R, g : [0, T ] × R × R × U → R are jointly measurable and

such that for any (yv, zv, v) ∈ R × R × U one has f (., yv, zv, v) ∈ M2 ([0, T ] ,R) , g (., yv, zv, v) ∈

M2 ([0, T ] ,R) , and zvt is square integrable and the terminal condition ξ is a FWT −measurable and

square integrable random variable.

Note that the integral with respect to (Bt)t∈[0,T ] is a "backward" Itô integral, while the integral

with respect to (Wt)t∈[0,T ] is a standard forward Itô integral. These two types of integrals are

particular cases of the Itô-Skorohod integral; for more details we refer to [28].

We define the criterion to be minimized, with initial risk-sensitive performance functional cost, as

follows

Jθ (v (.)) = E

[
exp θ

{
Ψ (yv0) +

∫ T

0

l (t, yvt , z
v
t , vt) dt

}]
, (2.2)

where Ψ : R→ R and l : [0, T ]×R×R× U → R are jointly measurable and θ is the risk-sensitive

index.

The optimal control problem is to minimize the functional Jθ over U if u ∈ U is an optimal control

(solution), that is,

Jθ (u) = inf
v∈U

Jθ (v) . (2.3)

We assume the following

(H1) There exist constants c > 0 and 0 ≤ λ < 1, such that for any

(w, t) ∈ Ω× [0, T ] , and (y1, z1) , (y2, z2) ∈ R× R, we have
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|f (t, y1, z1)− f (t, y2, z2)|2 ≤ c
(
|y1 − y2|2 + |z1 − z2|2

)
,

|g (t, y1, z1)− g (t, y2, z2)|2 ≤ c |y1 − y2|2 + λ |z1 − z2|2 .

Theorem 2.1.2 For any given admissible control v (.), suppose that Assumption (H1) holds. Then the

BDSDE (2.1) has a unique solution (yvt , z
v
t ) ∈ S2 ([0, T ] ,R)×M2 ([0, T ] ,R).

Proof. See [31] (Theorem 1.1 page 212).

A control that solves the problem {(2.1) , (2.2) , (2.3)} is called optimal. Our objective is to es-

tablish risk-sensitive necessary and sufficient optimality conditions, satisfied by a given optimal

control, in the form of risk-sensitive SMP.

We also assume the following

(H2)

i) f, g, l and Ψ are continuously differentiable with respect to (yv, zv, v) .

ii) All the derivatives of f, g and l are bounded by C (1 + |yv|+ |zv|+ |v|) .

iii) The derivative of Ψ is bounded by C (1 + |yv|) .

Under the above Assumptions (H1) − (H2), for each v ∈ U equation (2.1) has a unique strong

solution, and the cost function Jθ is well defined from U into R.

For more details the reader can see the paper of Han et al. [21].

Remark 2.1.3 We use the Euclidean norm |.| in R,> is a matrix transpose and Tr is the trace of a matrix.

All the equalities and inequalities mentioned in this chapter are in the sense of dt × dP almost surely on

[0, T ]× Ω.
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2.2 Risk-Sensitive Stochastic Maximum Principle of Back-

ward Doubly Type Control

The proof of our risk-sensitive stochastic maximum principle necessitates a certain auxiliary state

process xvt , which is the solution of the following forward SDE

dxvt = l (t, yvt , z
v
t , vt) dt, x

v
0 = 0.

Our control problem of {(2.1) , (2.2) , (2.3)} is equivalent to

inf
v∈U

E [exp θ {Ψ (yv0) + xvT }] = inf
v∈U

E [ϕ (yv0 , x
v
T )] ,

subject to

dxvt = l (t, yvt , z
v
t , vt) dt,

dyvt = −f (t, yvt , z
v
t , vt) dt− g (t, yvt , z

v
t , vt)

←−
dBt + zvt dWt,

xv0 = 0, yvT = ξ.

(2.4)

We require the following notation AθT := exp θ

{
Ψ (yv0) +

∫ T

0

l (t, yvt , z
v
t , vt) dt

}
. If we put

ΘT = Ψ (yv0) +

∫ T

0

l (t, yvt , z
v
t , vt) dt, then the risk-sensitive loss functional is given by

H (θ, v) :=
1

θ
log

[
E

(
exp θ

{
Ψ (yv0) +

∫ T

0

l (t, yvt , z
v
t , vt) dt

})]
=

1

θ
log [E (exp θΘT )] .

When the risk-sensitive index θ is small, by Lemma 1.4.1 the loss functional H (θ, u) can be ex-

panded as

E (ΘT ) +
θ

2
V ar (ΘT ) +O

(
θ2
)
,

where V ar (ΘT ) denotes the variance of ΘT . If θ < 0, the variance of ΘT , as a measure of risk, im-

proves the performanceH (θ, v), in this case the optimizer called risk seeker. But, when θ > 0, the
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variance of ΘT worsens the performanceH (θ, v), in this case the optimizer called risk averse. The

risk-neutral loss functional E (ΘT ) can be seen as a limit of the risk-sensitive functional H (θ, v)

when θ → 0.

Next, let us introduce the following notations

Notation 2.2.1 We denote by Xv :=

 xv

yv

 , Mt :=

 Wt

Bt

 , d−→p (t) :=

 dp1 (t)

dp2 (t)

 ,

F (t, yvt , z
v
t , vt) :=

 l (t, yvt , z
v
t , vt)

−f (t, yvt , z
v
t , vt)

and G (t, yvt , z
v
t , vt) :=

 0 0

zvt −g (t, yvt , z
v
t , vt)

 ,

with these notations the problem (2.4) can be rewritten in the following compact SDE form

inf
v∈U

E [exp θ {Ψ (yv0) + xvT }] = inf
v∈U

E [ϕ (xvt , y
v
t )] ,

subject to

dXv
t = F (t, yvt , z

v
t , vt) dt+G (t, yvt , z

v
t , vt) dMt,

Xv

 0

T

 =

 0

ξ

 .

(2.5)

For convenience, we will use the following notations throughout this chapter. For φ ∈ {f, g, l}, we define

φ (t) = φ (t, yvt , z
v
t , vt) ,

∂φ (t) = φ (t, yvt , z
v
t , vt)− φ (t, yut , z

u
t , ut) ,

φζ (t) =
∂φ

∂ζ
(t, yvt , z

v
t , vt) , ζ = y, z, v,

where vt is an admissible control from U .

We suppose that Assumptions (H1) − (H2) hold. We may combine the SMP for a risk-neutral

controlled BDSDE type from [2, 21] with the result of Yong [38] and with augmented state dynam-

ics (xu, yu, zu) to derive the adjoint equation. There exist unique Gt−adapted pairs of processes
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(p1, q1) and (p2, q2) that solve the following matrix system of BSDEs:

d−→p (t) = −A (t) dt+R (t) dMt, p1 (T )

p2 (0)

 = θAθT

 1

−Ψy (yu0 )

 ,
(2.6)

with

E

[
2∑
i=1

sup
t∈[0,T ]

|pi (t)|2 +
2∑
i=1

∫ T

0

|qi (t)|2 dt

]
<∞,

where

A (t) =

 0 0

ly (t) −fy (t)


 p1 (t)

p2 (t)

+

 0 0

0 −gy (t)


 q1 (t)

q2 (t)

 ,

and

R (t) =

 q1 (t) 0

p3 (t) −q2 (t)

 ,

such that

p3 (t) = −Tr


 lz (t) −fz (t)

0 −gz (t)


 p1 (t) q1 (t)

p2 (t) q2 (t)


 .

Let H̃θ be the Hamiltonian associated with the optimal state dynamics (xu, yu, zu) , and let the

two pairs of adjoint process ((p1, q1) , (p2, q2)) be given by

H̃θ (t) := H̃θ (t, xut , y
u
t , z

u
t , ut,

−→p (t) ,−→q (t)) = l (t) p1 (t)− f (t) p2 (t)− g (t) q2 (t) . (2.7)

Theorem 2.2.2 We suppose that Assumptions (H1)− (H2) hold. If (xu, yu, zu) is an optimal solution of

the risk-neutral control problem (2.5) , then there exist two pairs of Gt−adapted processes ((p1, q1) , (p2, q2))

that satisfy (2.6) such that

H̃θ
v (t, xut , y

u
t , z

u
t , ut,

−→p (t) ,−→q (t)) (ut − vt) ≤ 0, (2.8)

for all u ∈ U, almost every t ∈ [0, T ] and P−almost surely, where H̃θ
v (t) is defined in Notation 2.2.1.
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Proof. We suppose that the Assumptions (H1) − (H2) hold, we may combine the SMP for risk-

neutral of controlled BDSDE type from [2, 21], with the result of Yong [38].

2.3 New Adjoint Equations and Risk-sensitive Necessary

Optimality Conditions

Mentioned Theorem 2.2.2 is a good SMP for the risk-neutral control problem of forward-backward

doubly type. We follow the same approach used in [10, 11, 13], and suggest a transformation of

the adjoint processes (p1, q1) and (p2, q2) in such a way that we can omit the first component

(p1, q1) in (2.6) and express the SMP in terms of only one adjoint process which we denote by

(p̃2, q̃2).

From (2.6) , we note that dp1 (t) = q1 (t) dWt and p1 (T ) = θAθT , the explicit solution of this BSDE

is

p1 (t) = θE
[
AθT | Gt

]
= θV θt , (2.9)

where V θt := E
[
AθT | Gt

]
, 0 ≤ t ≤ T.

In view of (2.9) , it would be natural to choose a transformation of (−→p ,−→q ) into an adjoint process

(p̃, q̃) , where p̃1 (t) =
1

θV θt
p1 (t) = 1.

We consider the following transform

p̃ (t) =

 p̃1 (t)

p̃2 (t)

 :=
1

θV θt

−→p (t) , 0 ≤ t ≤ T. (2.10)
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By using (2.6) and (2.10) , we have

p̃ (.) :=

 p̃1 (T )

p̃2 (0)

 =

 1

−Ψy (yu0 )

 .

The following properties of the generic martingale V θ are essential in order to investigate the

properties of these new process (p̃ (t) , q̃ (t)) .

In this part, we want to prove the relationship between the expected exponential utility and the

quadratic backward stochastic differential equation.

First of all, it’s very important to write the expected exponential utility under this form

exp
(
θΛθt

)
= E

[
Aθt,T | Gt

]
= E

[
exp θ

{
Ψ (yu0 ) +

∫ T

t

l (s) ds

}
| Gt

]
. (2.11)

Lemma 2.3.1 The necessary and sufficient condition for the expected exponential utility (2.11) to be hold,

is the following quadratic backward stochastic differential equation
dΛθt = −

(
l (t) +

θ

2
|D (t)|2

)
dt+D (t) dWt,

ΛθT = Ψ (yu0 ) ,

(2.12)

where E

[∫ T

0

|D (t)|2 dt

]
<∞.

Proof. By the same technique in Lemma 1.2.1, we can prove the Lemma 2.3.1.

The process Λθ is the first component of the Gt−adapted pair of processes
(
Λθ,D

)
which is the

unique solution to the quadratic backward stochastic differential equation (2.12).

Next, we will state and prove the necessary optimality conditions for the system is driven by a

BDSDE with a risk-sensitive performance functional type.

To this end, let us summarize and prove some Lemmas that we will use thereafter.
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Lemma 2.3.2 Suppose that Assumption (H2) holds. Then

E

[
sup
t∈[0,T ]

∣∣Λθt ∣∣
]
≤ CT , (2.13)

where CT is a positive constant that depends only on T and the boundedness of l and Ψ.

In particular, V θ solves the following linear BSDE:

dV θt = θD (t)V θt dMt, V
θ
T = AθT . (2.14)

Hence, the process defined on
(

Ω,F , (Gt)t≥0 ,P
)

by Lθt , where

Lθt :=
V θt
V θ0

= exp

(
θ

∫ t

0

D (s) dMs −
θ2

2

∫ t

0

|D (s)|2 ds
)
, 0 ≤ t ≤ T, (2.15)

is a uniformly bounded Gt−martingale.

Proof. First, we prove (2.13). By Assumption (H2), l and Ψ are bounded by a constant C > 0. We

have

0 < e−(1+T )Cθ ≤ AθT ≤ e(1+T )Cθ. (2.16)

Therefore, V θ is a uniformly bounded Gt−martingale satisfying

0 < e−(1+T )Cθ ≤ V θt ≤ e(1+T )Cθ, 0 ≤ t ≤ T. (2.17)

The sufficient conditions of the Logarithmic transform established in ([13], Proposition 3.1), can

be applied in the martingale V θ as follows:

V θt = exp θ

{
Λθt +

∫ t

0

l (s) ds

}
, 0 ≤ t ≤ T,

and V θ0 = exp θ
{

Λθ0
}

= E
[
AθT
]

. It is very easy to see from (2.17) and the boundedness of l that

E

[
sup
t∈[0,T ]

∣∣Λθt ∣∣
]
≤ CT ,
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where CT is a positive constant that depends only on T and the boundedness of l and Ψ.

Second, we find the explicit form of (2.14). Using the second Itô’s formula to

V θt = exp θ

{
Λθt +

∫
0

t

l (s) ds

}
, we get

dV θt = θD (t)V θt dMt.

Now, we can prove (2.15) by starting from the integral form of (2.14) such that

dV θt = θD (t)V θt dMt, V
θ
T = AθT .

On the other hand, we have

V θt = exp θ

{
Λθt +

∫
0

t

l (s) ds

}
.

Using expression (1.2), we can write

V θt = exp

(
θ

∫ t

0

D (s) dMs −
θ2

2

∫ t

0

|D (s)|2 ds+ θΛθ0

)
.

Then

Lθt :=
V θt
V θ0

= exp

(
θ

∫ t

0

D (s) dMs −
θ2

2

∫ t

0

|D (s)|2 ds
)
, 0 ≤ t ≤ T.

In view of (2.13) the above equality is a uniformly bounded Gt−martingale.

Proposition 2.3.3 The main risk-sensitive of second adjoint equation for (p̃2, q̃2) and
(
V θ,D

)
becomes

dp̃2 (t) = −Hθ
y (t) dt−Hθ

z (t) dW θ
t − {q̃2 (t) + θD2 (t) p̃2 (t)}

←−
dBθt ,

dV θt = θD (t)V θt dMt,

p̃2 (T ) = −Ψy (yv0) , V θT = AθT .

(2.18)

The system (2.18) admits a unique Gt−adapted solution
(
p̃, q̃, V θ,D

)
, such that

E

[
sup
t∈[0,T ]

|p̃ (t)|2 + sup
t∈[0,T ]

∣∣V θ (t)
∣∣2 +

∫ T

0

(
|q̃ (t)|2 + |D (t)|2

)
dt

]
<∞, (2.19)
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where

Hθ (t) := Hθ
(
t, yvt , z

v
t , vt, p̃2 (t) , q̃2 (t) , V θ (t) ,D1 (t)

)
= l (t)− (f (t)− θD1 (t) zvt ) p̃2 (t)− g (t) q̃2 (t) .

(2.20)

Proof. We wish to identify the processes α̃ and β̃ such that

dp̃ (t) = −α̃ (t) dt+ β̃ (t) dMt, (2.21)

where

β̃ (t) =:

 β̃1 (t)

β̃2 (t)

 =:

 β̃11 (t) β̃12 (t)

β̃21 (t) β̃22 (t)

 .

By applying Itô’s formula to the process−→p (t) = θV θt p̃ (t) and using the expression of V θ in (2.14) ,

we obtain

dp̃ (t) = − 1

θV θt


 0 0

ly (t) −fy (t)


 p1 (t)

p2 (t)

+

 0 0

0 −gy (t)


 q1 (t)

q2 (t)


 dt

− θD (t) β̃ (t) dt+
1

θV θt

 q1 (t) 0

p3 (t) −q2 (t)

 dMt − θp̃ (t)D (t)
>
dMt.

By identifying the coefficients of above equation to (2.21), we get the drift term of the process

p̃ (t) :

α̃ (t) =
1

θV θt


 0 0

ly (t) −fy (t)


 p1 (t)

p2 (t)

+

 0 0

0 −gy (t)


 q1 (t)

q2 (t)


+ θD (t) β̃ (t) ,

and the diffusion coefficient of the process p̃ (t) :

β̃ (t) =
1

θV θt

 q1 (t) 0

p3 (t) −q2 (t)

− θp̃ (t)D (t)
>
.
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Using the relation p̃ (t) =
1

θV θt

−→p (t) , the drift term α̃ (t) it will be written as:

α̃ (t) =

 0 0

ly (t) −fy (t)


 p̃1 (t)

p̃2 (t)

+

 0 0

0 −gy (t)


 q̃1 (t)

q̃2 (t)

+ θD (t) β̃ (t) ,

and the diffusion coefficient of the process p̃ (t) :

β̃ (t) =

 q̃1 (t) 0

p̃3 (t) −q̃2 (t)

− θp̃ (t)D (t)
>
. (2.22)

Finally, we obtain

dp̃ (t) = −


 0 0

ly (t) −fy (t)


 p̃1 (t)

p̃2 (t)

+

 0 0

0 −gy (t)


 q̃1 (t)

q̃2 (t)


 dt

+ β̃ (t) [dMt − θD (t) dt] .

It is easily verified that

dp̃1 (t) = β̃1 (t) [dMt − θD (t) dt] , p̃1 (T ) = 1.

In view of (2.15) , we may use Girsanov’s Theorem (see [12], Theorem 2.1 page 115) to claim that

dp̃1 (t) = β̃1 (t) dMθ
t , Pθ − a.s, p̃1 (T ) = 1,

where dMθ
t = dMt − θD (t) dt. By using Notation 2.2.1, dMθ

t can be written as

dMθ
t =

 dWt

dBt

− θ
 D1 (t)

D2 (t)

 dt,

which is a Pθ−Brownian motion, where

dPθ

dP

∣∣∣∣
Gt

:= Lθt = exp

(
θ

∫ t

0

D (s) dMs −
θ2

2

∫ t

0

|D (s)|2 ds
)
, 0 ≤ t ≤ T.
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But according to (2.15) and (2.16) , the probability measures Pθ and P are in fact equivalent.

Hence, noting that p̃1 (t) :=
1

θV θt
p1 (t) is square integrable, we get that

p̃1 (t) = Eθ [p̃1 (T ) | Gt] = 1. Thus, its quadratic variation
∫ T

0

|q̃1 (t)|2 dt = 0. This implies that, for

almost every 0 ≤ t ≤ T, q̃1 (t) = 0, Pθ and P−a.s, we have

dp̃ (t) = −


 0 0

ly (t) −fy (t)


 p̃1 (t)

p̃2 (t)

+

 0 0

0 −gy (t)


 q̃1 (t)

q̃2 (t)


 dt+ β̃ (t) dMθ

t .

(2.23)

Now replacing (2.22) in (2.23) , to obtain

dp̃ (t) = −


 0 0

ly (t) −fy (t)


 p̃1 (t)

p̃2 (t)

+

 0 0

0 −gy (t)


 q̃1 (t)

q̃2 (t)


 dt

+

 β̃11 (t) β̃12 (t)

β̃21 (t) β̃22 (t)


 dW θ

t

←−
dBθt

 ,

where

β̃11 (t) = q̃1 (t)− θD1 (t) p̃1 (t) , β̃12 (t) = −θD2 (t) p̃1 (t) , β̃21 (t) = p̃3 (t)− θD1 (t) p̃2 (t) ,

β̃22 (t) = −q̃2 (t)− θD2 (t) p̃2 (t) , p̃3 (t) = −Tr


 lz (t) −fz (t)

0 −gz (t)


 p̃1 (t) q̃1 (t)

p̃2 (t) q̃2 (t)


 .

From (2.23), we get

dp̃2 (t) = −{ly (t) p̃1 (t)− fy (t) p̃2 (t)− gy (t) q̃2 (t)} dt

− {lz (t) p̃1 (t)− (fz (t)− θD1 (t)) p̃2 (t)− gz (t) q̃2 (t)} dW θ
t − {q̃2 (t) + θD2 (t) p̃2 (t)}

←−
dBθt ,

(2.24)
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We can rewrite (2.14) and (2.24) as the system below

dp̃2 (t) = −Hθ
y (t) dt−Hθ

z (t) dW θ
t − {q̃2 (t) + θD2 (t) p̃2 (t)}

←−
dBθt ,

dV θt = θD (t)V θt dMt,

p̃2 (T ) = −Ψy (yv0) , V θT = AθT .

The system (2.18) admits a unique Gt−adapted solution
(
p̃, q̃, V θ,D

)
, such that

E

[
sup
t∈[0,T ]

|p̃ (t)|2 + sup
t∈[0,T ]

∣∣V θ (t)
∣∣2 +

∫ T

0

(
|q̃ (t)|2 + |D (t)|2

)
dt

]
<∞,

where

Hθ (t) := Hθ
(
t, yvt , z

v
t , vt, p̃2 (t) , q̃2 (t) , V θ (t) ,D1 (t)

)
= l (t)− (f (t)− θD1 (t) zvt ) p̃2 (t)− g (t) q̃2 (t) .

The proof of this Proposition 2.3.3 is completed.

Theorem 2.3.4 (Risk-sensitive necessary optimality conditions)

Assume that Assumptions (H1) − (H2) hold. If (yu, zu, u) is an optimal solution of the risk-sensitive

control problem {(2.1) , (2.2) , (2.3)}. Then there exist two pairs of Gt−adapted processes
(
V θ,D

)
, (p̃, q̃)

which satisfy (2.18) and (2.19) such that

Hθ
v

(
t, yut , z

u
t , ut, p̃2 (t) , q̃2 (t) , V θ (t) ,D1 (t)

)
(ut − vt) ≤ 0, (2.25)

for all u ∈ U , almost every 0 ≤ t ≤ T and P-almost surely.

Proof. We arrive at a risk-sensitive stochastic maximum principle expressed in terms of the adjoint

processes (p̃2, q̃2) and
(
V θ,D

)
which solve (2.18), where the Hamiltonian H̃θ associated with

(2.4), given by (2.7) satisfies

H̃θ (t, xut , y
u
t , z

u
t , ut,

−→p (t) ,−→q (t)) =
{
θV θt

}
Hθ
(
t, yut , z

u
t , ut, p̃2 (t) , q̃2 (t) , V θ (t) ,D1 (t)

)
, (2.26)
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and Hθ is the risk-sensitive Hamiltonian given by (2.20). Hence, since V θ > 0, the variational

inequality (2.8) translates into

Hθ
v

(
t, yut , z

u
t , ut, p̃2 (t) , q̃2 (t) , V θ (t) ,D1 (t)

)
(ut − vt) ≤ 0,

for all u ∈ U , almost every 0 ≤ t ≤ T and P−almost surely. This finishes the proof of Theorem

2.3.4.

2.4 Risk-Sensitive Sufficient Optimality Conditions

In this section, we study when the necessary optimality conditions for risk-sensitive (2.8) become

sufficient.

Theorem 2.4.1 (Risk-sensitive sufficient optimality conditions)

Assume that the functions Ψ and (xvt , y
v
t , z

v
t , vt)→ H̃θ (t, xvt , y

v
t , z

v
t , vt,

−→p (t) ,−→q (t)) are convex and for

any vt ∈ U , yvT = ξ is one dimensional FWT −measurable random variable such that E |ξ|2 < ∞. Then u

is an optimal solution of the control problem {(2.1) , (2.2) , (2.3)} if it satisfies (2.8) .

Proof. Let u be an arbitrary element of U (candidate to be optimal). For any v ∈ U , we have

Jθ (v)− Jθ (u) = E [exp (θ {Ψ (yv0) + xvT })]− E [exp (θ {Ψ (yu0 ) + xuT })] .

By applying the Taylor’s expansion and the convexity of Ψ, we get

Jθ (v)− Jθ (u) ≥ E [θ exp (θ {Ψ (yu0 ) + xuT }) (xvT − xuT )]

+ E [θ exp (θ {Ψ (yu0 ) + xuT }) Ψy (yu0 ) (yv0 − yu0 )] .
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It follows from (2.6), that p1 (T ) = θAθT , p2 (0) = −θAθTΨy (yu0 ) , then we have

Jθ (v)− Jθ (u) ≥ E [p1 (T ) (xvT − xuT )]− E [p2 (0) (yv0 − yu0 )] . (2.27)

Applying Itô’s formula and taking expectation to p1 (t) (xvt − xut ) and p2 (t) (yvt − yut ) , leads to

E [p1 (T ) (xvT − xuT )] = E

[∫ T

0

(l (t, yvt , z
v
t , vt)− l (t, yut , zut , ut)) p1 (t) dt

]
,

and

−E [p2 (0) (yv0 − yu0 )] = −E

[∫ T

0

H̃θ
y (t, xut , y

u
t , z

u
t , ut,

−→p (t) ,−→q (t)) (yvt − yut ) dt

]

− E

[∫ T

0

H̃θ
z (t, xut , y

u
t , z

u
t , ut,

−→p (t) ,−→q (t)) (zvt − zut ) dt

]

− E

[∫ T

0

(f (t, yvt , z
v
t , vt)− f (t, yut , z

u
t , ut)) p2 (t) dt

]

− E

[∫ T

0

(g (t, yvt , z
v
t , vt)− g (t, yut , z

u
t , ut)) q2 (t) dt

]
.

Putting the two above formulas into (2.27), we get

Jθ (v)− Jθ (u) ≥ E

[∫ T

0

H̃θ (t, xvt , y
v
t , z

v
t , vt,

−→p (t) ,−→q (t)) dt

]
(2.28)

− E

[∫ T

0

H̃θ (t, xut , y
u
t , z

u
t , ut,

−→p (t) ,−→q (t)) dt

]

− E

[∫ T

0

H̃θ
y (t, xut , y

u
t , z

u
t , ut,

−→p (t) ,−→q (t)) (yvt − yut ) dt

]

− E

[∫ T

0

H̃θ
z (t, xut , y

u
t , z

u
t , ut,

−→p (t) ,−→q (t)) (zvt − zut ) dt

]
.
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Since the Hamiltonian H̃θ is convex with respect to (yv, zv, v), we have

E

[∫ T

0

H̃θ (t, xvt , y
v
t , z

v
t , vt,

−→p (t) ,−→q (t)) dt

]
− E

[∫ T

0

H̃θ (t, xut , y
u
t , z

u
t , ut,

−→p (t) ,−→q (t)) dt

]

≥ E

[∫ T

0

H̃θ
y (t, xut , y

u
t , z

u
t , ut,

−→p (t) ,−→q (t)) (yvt − yut ) dt

]

+ E

[∫ T

0

H̃θ
z (t, xut , y

u
t , z

u
t , ut,

−→p (t) ,−→q (t)) (zvt − zut ) dt

]

+ E

[∫ T

0

H̃θ
v (t, xut , y

u
t , z

u
t , ut,

−→p (t) ,−→q (t)) (vt − ut) dt

]
,

Then, by using above inequality in (2.28), we obtain

Jθ (v)− Jθ (u) ≥ E

[∫ T

0

H̃θ
v (t, xut , y

u
t , z

u
t , ut,

−→p (t) ,−→q (t)) (vt − ut) dt

]
≥ 0.

In virtue of the necessary optimality conditions (2.8) , the last inequality implies that

Jθ (v)− Jθ (u) ≥ 0. Thus the theorem is proved.

Remark 2.4.2 In virtue of (2.26) there is a relationship between the Hamiltonian with respect to risk-

neutral and the Hamiltonian with respect to risk-sensitive. In fact, we have

Jθ (v)− Jθ (u) ≥ E

[∫ T

0

θV θt H
θ
v

(
t, yut , z

u
t , ut, p̃2 (t) , q̃2 (t) , V θ (t) ,D1 (t)

)
(vt − ut) dt

]
≥ 0,

we know that θV θt > 0. Then the above inequality can be rewritten as

Jθ (v)− Jθ (u) ≥ E

[∫ T

0

Hθ
v

(
t, yut , z

u
t , ut, p̃2 (t) , q̃2 (t) , V θ (t) ,D1 (t)

)
(vt − ut) dt

]
≥ 0.

In virtue of the necessary optimality conditions (2.25) , the last inequality implies that

Jθ (v)− Jθ (u) ≥ 0.
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2.5 Applications: A Linear Quadratic Risk-Sensitive Con-

trol Problem

We illustrate the chapter by given two different examples for the linear quadratic system.

2.5.1 Example 01

We provide a concrete example of a risk-sensitive backward doubly stochastic LQ problem, give

the explicit optimal control and validate our major theoretical results in Theorem 2.4.1 (Risk-

sensitive sufficient optimality conditions). First, let the control domain be U = [−1, 1]. Consider

the following linear quadratic risk-sensitive control problem

inf
v∈U

E

[
exp θ

{
1

2

∫ T

0

v2
t dt+

1

2
(yv0)

2

}]
, subject to

dyt = − (Ayvt +Bzvt + Cvt +D) dt−
(
A

′
yvt +B

′
zvt + C

′
vt +D

′
)←−
dBt + zvt dWt,

yT = ξ,

(2.29)

where A, B, C, D, A
′
, B

′
, C

′
and D

′
are positive real constants.

Let (yvt , z
v
t ) be a solution of (2.29) associated with vt. Then there exist unique Gt−adapted two

pairs of processes (p1, p2) , (q1, q2) of the following forward-backward doubly stochastic differen-

tial equations system (in short FBDSDEs) (called adjoint equation), according to equation (2.6):

dp1 (t) = q1 (t) dWt,

dp2 (t) =
[
Ap2 (t) +A

′
q2 (t)

]
dt+

[
Bp2 (t) +B

′
q2 (t)

]
dWt − q2 (t)

←−
dBt,

p1 (T ) = θAθT , p2 (0) = −θyv0AθT ,

(2.30)
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where

AθT := exp θ

{
1

2

∫ T

0

v2
t dt+ (yv0)

2

}
.

We give the Hamiltonian H̃θ defined by

H̃θ (t) := H̃θ (t, xvt , y
v
t , z

v
t , vt,

−→p (t) ,−→q (t))

=
1

2
v2
t p1 (t)− (Ayvt +Bzvt + Cvt +D) p2 (t)−

(
A

′
yvt +B

′
zvt + C

′
vt +D

′
)
q2 (t) .

We have H̃θ
v (t) =

[
vtp1 (t)− Cp2 (t)− C ′

q2 (t)
]
. Minimizing the Hamiltonian yields

ut =
1

pu1 (t)

(
Cpu2 (t) + C

′
qu2 (t)

)
. (2.31)

We only need to prove that ut is an optimal control of (2.29).

Theorem 2.5.1 (Risk-sensitive sufficient optimality conditions for a linear quadratic control problem).

Assume that θ > 0 and suppose that ut satisfies (2.31), where (−→p ,−→q ) satisfy (2.30). Then ut is the

unique optimal control of the above BDSDE of the linear quadratic problem (2.29).

Proof. From the definition of the functional cost Jθ, we have

Jθ (vt)− Jθ (ut) = E

[
exp θ

{
1

2

∫ T

0

v2
t dt+

1

2
(yv0)

2

}]
− E

[
exp θ

{
1

2

∫ T

0

u2
tdt+

1

2
(yu0 )

2

}]
.

We put xvT =
1

2

∫ T

0

v2
t dt, and by applying the Taylor’s expansion, we have

Jθ (vt)− Jθ (ut) = E
[
θ exp θ

{
xuT +

1

2
(yu0 )

2

}
(xvT − xuT )

]
+ E

[
θyu0 exp θ

{
xuT +

1

2
(yu0 )

2

}
(yv0 − yu0 )

]
.

It follows from (2.6) that pu1 (T ) = θAθT and pu2 (0) = −θyu0AθT . Then we have

Jθ (vt)− Jθ (ut) = E [pu1 (T ) (xvT − xuT )]− E [pu2 (0) (yv0 − yu0 )] . (2.32)
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By applying Itô’s formula to pu1 (t) (xvt − xut ) and pu2 (t) (yvt − yut ) that lead to

E [pu1 (T ) (xvT − xuT )] = E

[∫ T

0

1

2

(
v2
t − u2

t

)
pu1 (t) dt

]
,

and

−E [pu2 (0) (yv0 − yu0 )] = −E

[∫ T

0

C (vt − ut) pu2 (t) dt

]
− E

[∫ T

0

C
′
(vt − ut) qu2 (t) dt

]
.

By replacing the two above formulas into (2.32), then we get

Jθ (vt)− Jθ (ut) = E

[∫ T

0

vt (vt − ut) pu1 (t) dt

]
+ E

[∫ T

0

ut (vt − ut) pu1 (t) dt

]

− E

[∫ T

0

C (vt − ut) pu2 (t) dt

]
− E

[∫ T

0

C
′
(vt − ut) qu2 (t) dt

]
.

Because of θ > 0, we have (vt − ut) > 0. Thus we get the following result:

Jθ (vt)− Jθ (ut) ≥ E

[∫ T

0

ut (vt − ut) pu1 (t) dt

]
− E

[∫ T

0

C (vt − ut) pu2 (t) dt

]

− E

[∫ T

0

C
′
(vt − ut) qu2 (t) dt

]
.

Then

Jθ (vt)− Jθ (ut) ≥ E

[∫ T

0

(
utp

u
1 (t)− Cpu2 (t)− C

′
qu2 (t)

)
(vt − ut) dt

]
.

By replacing ut with its value in (2.31), we obtain Jθ (vt) ≥ Jθ (ut) , i.e. ut is optimal.

This proof is finished.

2.5.2 Example 02

In this section, we apply the risk-sensitive maximum principles obtained in the previous section

(Theorem 2.3.4) to deal with the linear-quadratic risk-sensitive stochastic optimal control problem
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{(2.1) , (2.2) , (2.3)}mentioned in Section 2.1. Our state dynamics is
dyvt = − (yvt + vt) dt− σvt

←−
dBt + zvt dWt,

yvT = ξ,

(2.33)

and our functional cost is the following expected exponential-of-integral form:

Jθ (v (.)) = E

[
exp θ

{∫ T

0

l (t, yvt , z
v
t , vt) dt

}]
, (2.34)

where

θ > 0, θ 6= 1, l (t, yvt , z
v
t , vt) =

1

2

(
v2
t + (yvt )

2
)
.

We want to minimize (2.34) subject to (2.33) by choosing v over U . Hence, we may apply Theorem

2.3.4 to solve our linear-quadratic risk-sensitive stochastic optimal control problem {(2.33) , (2.34)}.

The Hamiltonian function (2.20) is defined by

Hθ (t) := Hθ
(
t, yvt , z

v
t , vt, p̃2 (t) , q̃2 (t) , V θ (t) ,D1 (t)

)
(2.35)

=
1

2

(
v2
t + (yvt )

2
)
− (yvt + vt − θD1 (t) zvt ) p̃2 (t)− σvtq̃2 (t) .

Let (yut , z
u
t , ut) be an optimal solution. The adjoint equation (2.18) can be written by
dp̃2 (t) = [−yvt + p̃2 (t)] dt− θD1 (t) p̃2 (t) dW θ

t − [q̃2 (t) + θD2 (t) p̃2 (t)]
←−
dBθt ,

p̃2 (T ) = 0.

(2.36)

Minimizing the Hamiltonian (2.35) , we obtain

ut = p̃u2 (t) + σq̃u2 (t) . (2.37)

By substituting (2.37) into the BDSDE (2.33), we obtain
dyut = − [yut + p̃u2 (t) + σq̃u2 (t)] dt− [σ (p̃u2 (t) + σq̃u2 (t))]

←−
dBt + zut dWt,

yuT = ξ.
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Similarly, by substituting equation (2.37) into the BDSDE (2.36), gives
dp̃u2 (t) = [−yut + p̃u2 (t)] dt− θD1 (t) p̃u2 (t) dW θ

t − [q̃u2 (t) + θD2 (t) p̃u2 (t)]
←−
dBθt ,

p̃u2 (T ) = 0.

(2.38)

Replacing dW θ
t = dWt − θD1 (t) dt and

←−
dBθt =

←−
dBt − θD2 (t) dt in (2.38), we get

dp̃u2 (t) =
[
−yut +

(
1 + θ2

(
D2

1 (t) +D2
2 (t)

))
p̃u2 (t) + θD2 (t) q̃u2 (t)

]
dt,

− [q̃u2 (t) + θD2 (t) p̃u2 (t)]
←−
dBt − θD1 (t) p̃u2 (t) dWt,

p̃u2 (T ) = 0.

(2.39)

Peng and Shi [34] introduced a type of time-symmetric forward-backward stochastic differential

equations (SFBSDE in short), i.e., so-called fully coupled FBDSDEs. Therefore, an optimal solution

(p̃u2 , y
u, u) can be obtained by solving the following type of SFBSDE

dyut = − [yut + p̃u2 (t) + σq̃u2 (t)] dt− [σ (p̃u2 (t) + σq̃u2 (t))]
←−
dBt + zut dWt,

dp̃u2 (t) =
[
−yut +

(
1 + θ2

(
D2

1 (t) +D2
2 (t)

))
p̃u2 (t) + θD2 (t) q̃u2 (t)

]
dt

− [q̃u2 (t) + θD2 (t) p̃u2 (t)]
←−
dBt − θD1 (t) p̃u2 (t) dWt,

yuT = ξ, p̃u2 (T ) = 0.

(2.40)

Unfortunately, in such a system it is difficult to find the explicit solution. To solve this type of

SFBSDE (2.40) , we use a technique similar to the one used by Yong and Zhou [39]. We conjecture

that the solution to (2.40) is related by

p̃u2 (t) = ϕ (t) yut + χ (t) , (2.41)

for some deterministic differentiable functions ϕ (t) and χ (t). Application Itô’s formula to (2.41)

gives 

dp̃u2 (t) =
[
•
ϕ (t) yut − ϕ (t) yut − ϕ (t) (p̃u2 (t) + σq̃u2 (t)) +

•
χ (t)

]
dt

− ϕ (t)σ (p̃u2 (t) + σq̃u2 (t))
←−
dBt + ϕ (t) zut dWt,

p̃u2 (T ) = 0.

(2.42)
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Putting (2.41) into (2.42), we get

dp̃u2 (t) =
[(
•
ϕ (t)− ϕ2 (t)− ϕ (t)

)
yut − ϕ (t)χ (t)− ϕ (t)σq̃u2 (t) +

•
χ (t)

]
dt

−
[
ϕ2 (t)σyut + ϕ (t)χ (t)σ + ϕ (t)σ2q̃u2 (t)

]←−
dBt + ϕ (t) zut dWt,

p̃u2 (T ) = 0.

(2.43)

On the other hand, after substituting (2.41) into (2.39), we arrive at

dp̃u2 (t) =
[((

1 + θ2
(
D2

1 (t) +D2
2 (t)

))
ϕ (t)− 1

)
yut

+
(
1 + θ2

(
D2

1 (t) +D2
2 (t)

))
χ (t) + θD2 (t) q̃u2 (t)

]
dt

− [q̃u2 (t) + θD2 (t)ϕ (t) yut + θD2 (t)χ (t)]
←−
dBt − [θD1 (t)ϕ (t) yut + θD1 (t)χ (t)] dWt,

p̃u2 (T ) = 0.

(2.44)

Equating the coefficients of (2.43) and (2.44), we have

(p̃u2 (t) , q̃u2 (t)) =

(
ϕ (t) yut + χ (t) ,

ϕ (t) (σϕ (t)− θD2 (t)) yut + (ϕ (t)σ − θD2 (t))χ (t)

1− ϕ (t)σ2

)
, (2.45)

where ϕ (t) is the solution to the following Riccati type equation:
•
ϕ (t)− ϕ2 (t)− 2ϕ (t)

(
1 +

1

2
θ2
(
D2

1 (t) +D2
2 (t)

))
+ 1 = 0,

ϕ (T ) = 0,

(2.46)

and χ (t) is a solution to the following ordinary differential equation:
•
χ (t)−

(
ϕ (t) + 1 + θ2

(
D2

1 (t) +D2
2 (t)

))
χ (t)− (θD2 (t) + ϕ (t)σ) q̃u2 (t) = 0,

χ (T ) = 0.

(2.47)

By using the same identification, we get

χ (t) = − 1

θD1 (t)
ϕ (t) zut − ϕ (t) yut . (2.48)
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Finally, by (2.37) and (2.45), we can get the optimal control in the following state in feedback

form:

ut =
(1− σθD2 (t))

1− ϕ (t)σ2
ϕ (t) yut +

(1− σθD2 (t))

1− ϕ (t)σ2
χ (t) . (2.49)

Putting (2.48) in (2.49) we get

ut = − (1− σθD2 (t))

(1− ϕ (t)σ2) θD1 (t)
ϕ (t) zut , (2.50)

where ϕ (t) is determined by (2.46).

Theorem 2.5.2 We assume that the pair (ϕ (t) , χ (t)) has the solution of system (2.46) and (2.47). Then

the optimal control of our linear-quadratic risk-sensitive stochastic optimal control problem

{(2.33) , (2.34)} has the state feedback from (2.50).

2.5.2.1 Solution of the Deterministic Functions ϕ (t) and χ (t) via Riccati Equation

In the best our knowledge, it is very hard to find the explicit solution to Riccati equation in general.

But in our case, we can found the explicit solution of
•
ϕ (t)− ϕ2 (t) + 2ϕ (t)K (t) + 1 = 0,

ϕ (T ) = 0,

(2.51)

where

K (t) = −
(

1 +
1

2
θ2
(
D2

1 (t) +D2
2 (t)

))
. (2.52)

We denote ϕ (T ) = s1 (T ) the solution of (2.51), then the general solution is the form suit

ϕ (t) = s1 (t) + n1 (t) .
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By replacing ϕ (t) by s1 (t) + n1 (t) on (2.51) , on obtain
•
s1 (t) +

•
n1 (t) = s1 (t)

2
+ n1 (t)

2
+ 2s1 (t)n1 (t)− 2K (t) s1 (t)− 2K (t)n1 (t)− 1,

s1 (T ) + n1 (T ) = 0.

And because

•
s1 (t) = s1 (t)

2 − 2K (t) s1 (t)− 1.

Then

•
n1 (t) = n1 (t)

2
+ 2s1 (t)n1 (t)− 2K (t)n1 (t) .

Or

•
n1 (t)− 2s1 (t)n1 (t) + 2K (t)n1 (t) = n1 (t)

2
.

Let s1 (t) = 0, then

•
n1 (t) + 2K (t)n1 (t) = n1 (t)

2
, (2.53)

is a Bernoulli’s equation. The substitution necessary for the solution of this Bernoulli’s equation

(2.53) is then

o (t) = n1−2
1 (t) =

1

n1 (t)
.

It leads to the linear equation

•
o (t)− 2K (t) o (t) = −1. (2.54)

Then the homogeneous solution h (t) of (2.54) such that

•
h (t)− 2K (t)h (t) = 0,

is given by

h (t) = I exp

(
2

∫ T

t

K (s) ds

)
.
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Now we put

M (t) = I (t) exp

(
2

∫ T

t

K (s) ds

)
, (2.55)

M (t) is the particular solution of equation (2.54) i.e.,

•
I (t) exp

(
2

∫ T

t

K (s) ds

)
+2I (t)K (t) exp

(
2

∫ T

t

K (s) ds

)
−2I (t)K (t) exp

(
2

∫ T

t

K (s) ds

)
= −1

Hence,

•
I (t) = − exp

(
−2

∫ T

t

K (s) ds

)
.

Then,

I (t) =
1

2K (t)
exp

(
−2

∫ T

t

K (s) ds

)
.

Then the equation (2.55) rewrite as follow

M (t) = I (t) exp

(
2

∫ T

t

K (s) ds

)

=
1

2K (t)
exp

(
−2

∫ T

t

K (s) ds

)
exp

(
2

∫ T

t

K (s) ds

)

=
1

2K (t)
.

This concludes to that the general solution o (t) of (2.54) is

o (t) = h (t) +M (t)

= I exp

(
2

∫ T

t

K (s) ds

)
+

1

2K (t)
.

Then the general solution of our problem (2.51) is given by

ϕ (t) =
1

I exp
(

2
∫ T
t
K (s) ds

)
+ 1

2K(t)

. (2.56)
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We put

α (t) = −
(
ϕ (t) + 1 + θ2

(
D2

1 (t) +D2
2 (t)

))
, β (t) = − (θD2 (t) + ϕ (t)σ) q̃2 (t) , (2.57)

we rewrite equation (2.47) as follows
•
χ (t) + α (t)χ (t) + β (t) = 0,

χ (T ) = 0.

(2.58)

The explicit solution to equation (2.58) is

χ (t) =

[
exp

(∫ T

t

α (s) ds

)][∫ T

t

−β (s) exp

(∫ T

t

α (r) dr

)
ds

]
, (2.59)

where α (t) , β (t) are determined by (2.57).

Corollary 2.5.3 The explicit solution of the Riccati equation (2.51) is given by (2.56) and equation (2.58)

has an explicit solution given by (2.59), where the determined K (t) and α (t), β (t) are given by (2.52)

and (2.57) respectively.

Corollary 2.5.4 We assume that the pair (ϕ (t) , χ (t)) has the unique solution given by (2.56) , (2.59).

Then the optimal control of the problem {(2.33) , (2.34)} has the state feedback from (2.50) , where the

determined K (t) and α (t), β (t) are given by (2.52) and (2.57) respectively.
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Coupled Forward-Backward Stochastic Differential

Equations of Mean-Field Type with Application

I
n this chapter, we focus on an optimal control problem where the system is driven by a

fully coupled forward-backward stochastic differential equation of mean-field type with

risk-sensitive performance functional. We study the risk-neutral model for which an op-

timal solution exists as a preliminary step. This is an extension of an initial stochastic control

problem to this type of risk-sensitive performance problem, where the admissible set of controls

is convex. We establish necessary and sufficient optimality conditions for the risk-sensitive perfor-

mance functional control problem. Finally, we illustrate our main result by giving two examples

of risk-sensitive control problem under linear stochastic dynamics with an exponential quadratic

cost function, the second example will be a mean-variance portfolio with a recursive utility func-

tional optimization problem involving optimal control. The explicit expression of the optimal
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portfolio selection strategy is obtained in the state feedback.

3.1 Problem Formulation and Assumptions

Let T be a positive real number. Let
(

Ω,F ,
(
FWt

)
t≥0

,P
)

be a probability space filtered satisfying

the usual conditions, in which one−dimensional standard Brownian motionW = (Wt, 0 ≤ t ≤ T )

is given. We assume that FWt is defined by ∀t ≥ 0,FWt = σ (Wr, 0 ≤ r ≤ t) ∨ N , where N denote

the totality of P−null sets of F .

LetM2 ([0, T ] ,R) denote the set of one−dimensional jointly measurable random process

{ϕt, t ∈ [0, T ]}which satisfy the following conditions:

(i) : ‖ϕ‖M2([0,T ],R) =: E

[∫ T

0

|ϕt|2 dt

]
<∞, (ii) : ϕt is FWt −measurable for any t ∈ [0, T ] .

Similarly, we denote by S2 ([0, T ] ,R) the set of continuous one−dimensional random process

which satisfy the following conditions:

(i) : ‖ϕ‖S2([0,T ],R) =: E

[
sup
t∈[0,T ]

|ϕt|2
]
<∞, (ii) : ϕt is FWt −measurable for any t ∈ [0, T ] .

Let U be a nonempty subset of R.

Definition 3.1.1 An admissible control v is a process with values in U such that E

[∫ T

0

|vt|2 dt

]
< ∞.

We denote by U the set of all admissible controls.

For any v ∈ U , we consider the following fully coupled forward-backward stochastic differential

equation of mean-field type control system:
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dxvt = b
(
t, xvt , y

v
t , z

v
t ,E

′
(xvt ) ,E

′
(yvt ) ,E′

(zvt ) , vt

)
dt

+ σ
(
t, xvt , y

v
t , z

v
t ,E

′
(xvt ) ,E

′
(yvt ) ,E′

(zvt ) , vt

)
dWt,

xv0 = a,

dyvt = −f
(
t, xvt , y

v
t , z

v
t ,E

′
(xvt ) ,E

′
(yvt ) ,E′

(zvt ) , vt

)
dt+ zvt dWt,

yvT = ξ,

(3.1)

where b : [0, T ]× R× R× R× R× R× R× R→ R, σ : [0, T ]× R× R× R× R× R× R× R→ R,

f : [0, T ] × R × R × R × R × R × R × R → R are jointly measurable, and zvt is square integrable

and the terminal condition ξ is a FWT −measurable and square integrable random variable.

We defined the criterion to be minimized, with initial and terminal risk-sensitive performance

functional cost, as follows

Jθ (v (.)) = E
[
exp θ

{
Φ
(
xvT ,E

′
(xvT )

)
+ Ψ

(
yv0 ,E

′
(yv0)

)
(3.2)

+

∫ T

0

l
(
t, xvt , y

v
t , z

v
t ,E

′
(xvt ) ,E

′
(yvt ) ,E

′
(zvt ) , vt

)
dt

}]
,

where Φ : R× R→ R, Ψ : R× R→ R and l : [0, T ]× R× R× R× R× R× R× R→ R are jointly

measurable and θ is the risk-sensitive index.

The control problem is to minimize the functional Jθ over U if u ∈ U is an optimal control solution,

that is

Jθ (u) = inf
v∈U

Jθ (v) . (3.3)

Remark 3.1.2 We use the Euclidean norm |.| in R,> is a transpose and Tr is the trace of a matrix. All the

equalities and inequalities mentioned in this chapter are in the sense of dt×dP almost surely on [0, T ]×Ω.
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Notation 3.1.3 We use the following notations:

Υ =


xv

yv

zv

 , Υ
′

=


E′

(xv)

E′
(yv)

E′
(zv)

 and D
(
t,Υ,Υ

′
)

=


b

σ

−f


(
t,Υ,Υ

′
)
,

where E′
is the expected value with respect to the measure probability P

(
w

′
)
, and E is the expected value

with respect to the measure probability P (w) .

We assume the following assumptions

(A1) For each Υ,Υ
′ ∈ R × R × R, D

(
t,Υ,Υ

′
)

is in M2 ([0, T ] ,R× R× R× R× R× R) i.e.

D
(
t,Υ,Υ

′
)

is an FWt −measurable process defined on [0, T ] .

(A2) D
(
t,Υ,Υ

′
)

is uniformly Lipschitz with respect to
(

Υ,Υ
′
)

. There exists a constant k > 0,

such that
∣∣∣D (t,Υ1,Υ

′
)
−D

(
t,Υ2,Υ

′
)∣∣∣ ≤ k |Υ1 −Υ2| , ∀Υ1,Υ2,Υ

′ ∈ R× R× R, ∀t ∈ [0, T ] .

We also need the following monotonic conditions introduced by Min et al. [27], which are the

main assumptions in this chapter.

(A3)
〈
D
(
t,Υ1,Υ

′
)
−D

(
t,Υ2,Υ

′
)
,Υ1 −Υ2

〉
≤ −α1 |x1 − x2|2 − α2

(
|y1 − y2|2 + |z1 − z2|2

)
,

∀ Υ1 = (x1, y1, z1)
>
, Υ2 = (x2, y2, z2)

>
, Υ

′
=
(
E′

(x) ,E′
(y) ,E′

(z)
)>

, ∀t ∈ [0, T ] where α1 and

α2 are a positive constants.

Or we need the following

(A4)
〈
D
(
t,Υ1,Υ

′
)
−D

(
t,Υ2,Υ

′
)
,Υ1 −Υ2

〉
≥ α1 |x1 − x2|2 + α2

(
|y1 − y2|2 + |z1 − z2|2

)
,

∀ Υ1 = (x1, y1, z1)
>
, Υ2 = (x2, y2, z2)

>
, Υ

′
=
(
E′

(x) ,E′
(y) ,E′

(z)
)>

, ∀t ∈ [0, T ] where α1 and

α2 are a positive constants.

Theorem 3.1.4 For any given admissible control v (.), and under the above Assumptions (A1) − (A3) .

Then the fully coupled FBSDE of mean-field type control (3.1) has a unique solution
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(xvt , y
v
t , z

v
t ) ∈ S2 ([0, T ] ,R)× S2 ([0, T ] ,R)×M2 ([0, T ] ,R).

Proof. See [27] Theorem 6 page 3.

A control that solves the problem {(3.1) , (3.2) , (3.3)} is called optimal. Our goal is to establish

risk-sensitive necessary and sufficient optimality conditions, satisfied by a given optimal control,

in the form of mean-field stochastic maximum principle with a risk-sensitive performance func-

tional type.

We also assume the following

(A5)

i) b, σ, f, l, Φ and Ψ are continuously differentiable with respect to

(
xv, yv, zv,E′

(xv) ,E′
(yv) ,E′

(zv) , v
)
.

ii) All the derivatives of b, σ, f and l are bounded by

C
(

1 + |xv|+ |yv|+ |zv|+
∣∣∣E′

(xv)
∣∣∣+
∣∣∣E′

(yv)
∣∣∣+
∣∣∣E′

(zv)
∣∣∣+ |v|

)
.

iii) All the derivatives of Φ and Ψ are bounded byC
(

1 + |xv|+
∣∣∣E′

(xv)
∣∣∣) andC

(
1 + |yv|+

∣∣∣E′
(yv)

∣∣∣)
respectively.

Under the above assumptions, for every v ∈ U equation (3.1) has a unique strong solution, and

the cost function Jθ is well defined from U into R.

For more details in this kind of problem the reader can see the paper of Min et al. [27].
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3.2 Relation between the Risk-Neutral and Risk-Sensitive

Stochastic Maximum Principle

The proof of our risk-sensitive stochastic maximum principle necessitates a certain an auxiliary

state process mv
t , which is the solution of the following stochastic differential equation of mean-

field type control (SDE of mean-field type control):

dmv
t = l

(
t, xvt , y

v
t , z

v
t ,E

′
(xvt ) ,E

′
(yvt ) ,E

′
(zvt ) , vt

)
dt, mv

0 = 0.

Our control problem of {(3.1) , (3.2) , (3.3)} and from the above auxiliary process, new control

problem translated is equivalent to

inf
v∈U

E
[
exp θ

{
Φ
(
xvT ,E

′
(xvT )

)
+ Ψ

(
yv0 ,E

′
(yv0)

)
+mv

T

}]
= inf
v∈U

E [ϕ (xvT , y
v
0 ,m

v
T )] ,

subject to

dmv
t = l

(
t, xvt , y

v
t , z

v
t ,E

′
(xvt ) ,E

′
(yvt ) ,E′

(zvt ) , vt

)
dt,

dxvt = b
(
t, xvt , y

v
t , z

v
t ,E

′
(xvt ) ,E

′
(yvt ) ,E′

(zvt ) , vt

)
dt

+ σ
(
t, xvt , y

v
t , z

v
t ,E

′
(xvt ) ,E

′
(yvt ) ,E′

(zvt ) , vt

)
dWt,

dyvt = −f
(
t, xvt , y

v
t , z

v
t ,E

′
(xvt ) ,E

′
(yvt ) ,E′

(zvt ) , vt

)
dt+ zvt dWt,

mv
0 = 0, xv0 = a, yvT = ξ.

(3.4)

We require the following notation

AθT := exp θ
{

Φ
(
xvT ,E

′
(xvT )

)
+ Ψ

(
yv0 ,E

′
(yv0)

)
+

∫ T

0

l
(
t, xvt , y

v
t , z

v
t ,E

′
(xvt ) ,E

′
(yvt ) ,E

′
(zvt ) , vt

)
dt

}
,
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and we put also

ΘT := Φ
(
xvT ,E

′
(xvT )

)
+ Ψ

(
yv0 ,E

′
(yv0)

)
+

∫ T

0

l
(
t, xvt , y

v
t , z

v
t ,E

′
(xvt ) ,E

′
(yvt ) ,E

′
(zvt ) , vt

)
dt.

Then risk-sensitive loss of functional is given by

H (θ, v) :=
1

θ
log
[
E
(

exp θ
{

Φ
(
xvT ,E

′
(xvT )

)
+ Ψ

(
yv0 ,E

′
(yv0)

)
+

∫ T

0

l
(
t, xvt , y

v
t , z

v
t ,E

′
(xvt ) ,E

′
(yvt ) ,E

′
(zvt ) , vt

)
dt

})]

=
1

θ
log [E (exp θΘT )] .

When the risk-sensitive index θ is small, by Lemma 1.4.1 the loss functional H (θ, v) can be ex-

panded as

E (ΘT ) +
θ

2
V ar (ΘT ) +O

(
θ2
)
,

where, V ar (ΘT ) denotes the variance of ΘT . If θ < 0, the variance of ΘT , as a measure of risk,

improves the performance H (θ, v), in this case the optimizer called risk seeker. But, when θ > 0,

the variance of ΘT worsens the performanceH (θ, v), in this case the optimizer called risk averse.

The risk-neutral loss functional E (ΘT ) can be seen as a limit of risk-sensitive functional H (θ, v)

when θ → 0.

Next, let us introduce the following notations.

Notation 3.2.1 For convenience, we will use the following notations throughout this chapter. For φ ∈

{b, σ, f, l}, we define 

φ (t) = φ (t,Ov (t) , vt) ,

∂φ (t) = φ (t,Ov (t) , vt)− φ (t,Ou (t) , ut) ,

φζ (t) =
∂

∂ζ
φ (t,Ov (t) , vt) ,
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where

Ou (t) = xut , y
u
t , z

u
t ,E

′
(xut ) ,E

′
(yut ) ,E

′
(zut ) , Ov (t) = xvt , y

v
t , z

v
t ,E

′
(xvt ) ,E

′
(yvt ) ,E

′
(zvt ) ,

ζ = x, y, z, x̄, ȳ, z̄, v, and vt is an admissible control from U .

We assume that Assumptions (A1)− (A5) hold. We may apply the SMP for a risk-neutral of fully

coupled forward-backward of mean-field type control from Min et al. [27] and with augmented

state dynamics (mu, xu, yu, zu) to derive the adjoint equation. There exist unique FWt −adapted

three pairs of processes (p1, q1) , (p2, q2) and (p3, q3) solve the following matrix system of BSDEs:

d−→p (t) = −A (t) dt+R (t) dWt,
p1 (T )

p2 (T )

p3 (0)

 = θAθT


1

Φx

(
xuT ,E

′
(xuT )

)
−Ψy

(
yu0 ,E

′
(yu0 )

)

+ θE′

A
θ
T


0

Φx̄

(
xuT ,E

′
(xuT )

)
−Ψȳ

(
yu0 ,E

′
(yu0 )

)



 ,

(3.5)

with

E

[
3∑
i=1

sup
t∈[0,T ]

|pi (t)|2 +
2∑
i=1

∫ T

0

|qi (t)|2 dt

]
<∞,

where

A (t) =


0 0 0

lx (t) bx (t) −fx (t)

ly (t) by (t) −fy (t)




p1 (t)

p2 (t)

p3 (t)

+


0 0 0

0 σx (t) 0

0 σy (t) 0




q1 (t)

q2 (t)

q3 (t)



+ E
′




0 0 0

lx̄ (t) bx̄ (t) −fx̄ (t)

lȳ (t) bȳ (t) −fȳ (t)




p1 (t)

p2 (t)

p3 (t)



+ E
′




0 0 0

0 σx̄ (t) 0

0 σȳ (t) 0




q1 (t)

q2 (t)

q3 (t)



 ,
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and

R (t) =


q1 (t)

q2 (t)

δθ (t)

 ,

such that

δθ (t) = −Tr


 lz (t) bz (t)

σz (t) −fz (t)


 p1 (t) q2 (t)

p2 (t) p3 (t)




− Tr

E′


 lz̄ (t) bz̄ (t)

σz̄ (t) −fz̄ (t)


 p1 (t) q2 (t)

p2 (t) p3 (t)



 .

We suppose here that H̃θ be the Hamiltonian associated with the optimal state dynamics

(mu, xu, yu, zu) and let the three pairs of adjoint processes (−→p (t) ,−→q (t)) be given by

H̃θ (t) := H̃θ (t,mu
t ,Ou (t) , ut,

−→p (t) ,−→q (t)) =


l (t)

b (t)

−f (t)

 (−→p (t))
>

+


0

σ (t)

0

 (−→q (t))
>
. (3.6)

Theorem 3.2.2 Assume that (A1) − (A5) hold. If (mu, xu, yu, zu) is an optimal solution of the risk-

neutral control problem (3.4) , then there exist three pairs of FWt −adapted processes (p1, q1) , (p2, q2) and

(p3, q3) that satisfy (3.5) , such that

H̃θ
v (t,mu

t ,Ou (t) , ut,
−→p (t) ,−→q (t)) (ut − vt) ≤ 0, (3.7)

for all u ∈ U , almost every t and P−almost surely, where H̃θ
v (t) is defined in Notation 3.2.1.

Proof. We suppose that the Assumptions (A1) − (A5) hold, we may combine the SMP for risk-

neutral of controlled fully coupled FBSDE of mean-field type from [27] with the results of Yong

[38, 39].
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3.3 New Adjoint Equations and Risk-Sensitive Necessary

Optimality Conditions

To the best of our acknowledge, the Theorem 3.2.2 is the SMP for the risk-neutral of fully coupled

forward-backward of mean-field type control problem. We follow the new approach has been

used in [10, 11, 13], a transformation of the adjoint processes (p1, q1) , (p2, q2) and (p3, q3) has been

suggested in such a way to the first component (p1, q1) in (3.5) has been omitted, and express the

SMP in terms of only the last two adjoint processes, that we denote them by (p̃2, q̃2) and (p̃3, q̃3).

Noting that dp1 (t) = q1 (t) dWt and p1 (T ) = θAθT , the explicit solution of this BSDE is

p1 (t) = θE
[
AθT | FWt

]
= θV θt , (3.8)

where V θt := E
[
AθT | FWt

]
,∀ 0 ≤ t ≤ T.

In view of (3.8) , it would be natural to choose a transformation of (−→p ,−→q ) into an adjoint process

(p̃, q̃) , where p̃1 (t) =
1

θV θt
p1 (t) = 1.

We consider the following transform:

p̃ (t) =


p̃1 (t)

p̃2 (t)

p̃3 (t)

 :=
1

θV θt

−→p (t) , 0 ≤ t ≤ T. (3.9)

By using (3.5) and (3.9) , we have

p̃ (.) :=


p̃1 (T )

p̃2 (T )

p̃3 (0)

 =


1

Φx

(
xuT ,E

′
(xuT )

)
−Ψy

(
yu0 ,E

′
(yu0 )

)

+
1

V θT
E

′

V
θ
T


0

Φx̄

(
xuT ,E

′
(xuT )

)
−Ψȳ

(
yu0 ,E

′
(yu0 )

)



 .
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The following properties of the generic martingale V θ are essential in order to investigate the

properties of these new process (p̃ (t) , q̃ (t)) .

In this part, we want to prove the relationship between the expected exponential utility and the

quadratic backward stochastic differential equation.

First of all, it’s very important to write the expected exponential utility under this form

exp
(
θΛθt

)
= E

[
Aθt,T | FWt

]
= E

[
exp θ

{
Φ
(
xuT ,E

′
(xuT )

)
+ Ψ

(
yu0 ,E

′
(yu0 )

)
+

∫ T

t

l (s) ds

}
| FWt

]
.

(3.10)

Lemma 3.3.1 The necessary and sufficient condition for the expected exponential utility (3.10) to be hold,

is the following quadratic backward stochastic differential equation
dΛθt = −

(
l (t) +

θ

2
|D (t)|2

)
dt+D (t) dWt,

ΛθT = Φ
(
xuT ,E

′
(xuT )

)
+ Ψ

(
yu0 ,E

′
(yu0 )

)
,

(3.11)

where E

[∫ T

0

|D (t)|2 dt

]
<∞.

Proof. By the same technique in Lemma 1.2.1, we can prove Lemma 3.3.1.

As is proved in Lemma 3.3.1, the process Λθ is the first component of the FWt −adapted pair of

processes
(
Λθ,D

)
which is the unique solution to the quadratic backward stochastic differential

equation (3.11).

Next, we will state and prove the necessary optimality conditions for the system driven by a fully

coupled FBSDE of mean-field type control with a risk-sensitive performance functional kind.

To this end, let us summarize and prove some Lemmas that we will use thereafter.
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Lemma 3.3.2 Suppose that Assumption (A5) holds. Then

E

[
sup
t∈[0,T ]

∣∣Λθt ∣∣
]
≤ CT , (3.12)

where, CT is a positive constant that depends only on T and the boundedness of l, Φ and Ψ.

In particular, V θ solves the following linear BSDE

dV θt = θD (t)V θt dWt, V θT = AθT . (3.13)

Hence, the process defined on
(

Ω,F ,
(
FWt

)
t≥0

,P
)

by Lθt , where

Lθt :=
V θt
V θ0

= exp

(
−θ

2

2

∫ t

0

|D (s)|2 ds+ θ

∫ t

0

D (s) dWs

)
, ∀ 0 ≤ t ≤ T, (3.14)

is a uniformly bounded FWt −martingale.

Proof. The proof is similar to Lemma 2.3.2, by using the expression of (3.13), we can write

V θt = exp

(
−θ

2

2

∫ t

0

D2 (s) ds+ θ

∫ t

0

D (s) dWs + θΛθ0

)
.

Then,

Lθt :=
V θt
V θ0

= exp

(
−θ

2

2

∫ t

0

D2 (s) ds+ θ

∫ t

0

D (s) dWs

)
. 0 ≤ t ≤ T.

In view of (3.12) , the above equality is a uniformly bounded FWt −martingale.

Proposition 3.3.3 The second and the third risk-sensitive adjoint equations for (p̃2, q̃2) , (p̃3, q̃3) and

63



Chapter 3. A Risk-Sensitive Stochastic Maximum Principle for Fully Coupled FBSDE of
Mean-Field Type with Application

(
V θ,D

)
becomes

dp̃2 (t) = −
[
Hθ
x (t) +

1

V θt
E′ [

V θt H
θ
x̄ (t)

]]
dt+ [q̃2 (t)− θD2 (t) p̃2 (t)] dW θ

t ,

p̃2 (T ) = Φx

(
xvT ,E

′
(xvT )

)
+

1

V θT
E′
[
V θTΦx̄

(
xvT ,E

′
(xvT )

)]
,

dp̃3 (t) = −
[
Hθ
y (t) +

1

V θt
E′ [

V θt H
θ
ȳ (t)

]]
dt−

[
Hθ
z (t) +

1

V θt
E′ [

V θt H
θ
z̄ (t)

]]
dW θ

t ,

p̃3 (0) = −Ψy

(
yv0 ,E

′
(yv0)

)
− 1

V θT
E′
[
V θTΨȳ

(
yv0 ,E

′
(yv0)

)]
,

dV θt = θD (t)V θt dWt,

V θT = AθT .

(3.15)

The system (3.15) admits a unique FWt −adapted solution
(
p̃, q̃, V θ,D

)
, such that

E

[
sup
t∈[0,T ]

|p̃ (t)|2 + sup
t∈[0,T ]

∣∣V θ (t)
∣∣2 +

∫ T

0

(
|q̃ (t)|2 + |D (t)|2

)
dt

]
<∞, (3.16)

where

Hθ (t) := Hθ
(
t,Ov (t) , vt, p̃2 (t) , q̃2 (t) , p̃3 (t) , V θ (t) ,D3 (t)

)
(3.17)

= l (t) + b (t) p̃2 (t) + σ (t) q̃2 (t)− (f (t)− θD3 (t) zvt ) p̃3 (t) .

Proof. We hope to identify the processes α̃ and β̃ such that

dp̃ (t) = −α̃ (t) dt+ β̃ (t) dWt. (3.18)

By applying Itô’s formula to the processes −→p (t) = θV θt p̃ (t) and using the expression of V θ in
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(3.13) , we obtain

dp̃ (t) = − 1

θV θt


0 0 0

lx (t) bx (t) −fx (t)

ly (t) by (t) −fy (t)




p1 (t)

p2 (t)

p3 (t)

 dt− 1

θV θt


0 0 0

0 σx (t) 0

0 σy (t) 0




q1 (t)

q2 (t)

q3 (t)

 dt

− 1

θV θt
E

′




0 0 0

lx̄ (t) bx̄ (t) −fx̄ (t)

lȳ (t) bȳ (t) −fȳ (t)




p1 (t)

p2 (t)

p3 (t)



 dt

− 1

θV θt
E

′




0 0 0

0 σx̄ (t) 0

0 σȳ (t) 0




q1 (t)

q2 (t)

q3 (t)



 dt− θ

D1 (t)

D2 (t)

D3 (t)

 β̃ (t) dt

+
1

θV θt


q1 (t)

q2 (t)

δθ (t)

 dWt − θ


D1 (t)

D2 (t)

D3 (t)

 p̃ (t) dWt.

By identifying the coefficients of above equation to (3.18) , and using the relation p̃ (t) =
1

θV θt

−→p (t),

the diffusion coefficient β̃ (t) it will be written as

β̃ (t) =


q̃1 (t)

q̃2 (t)

δ̃θ (t)

− θ

D1 (t)

D2 (t)

D3 (t)

 p̃ (t) , (3.19)
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and the drift term of the process p̃ (t)

α̃ (t) =


0 0 0

lx (t) bx (t) −fx (t)

ly (t) by (t) −fy (t)




p̃1 (t)

p̃2 (t)

p̃3 (t)

+


0 0 0

0 σx (t) 0

0 σy (t) 0




q̃1 (t)

q̃2 (t)

q̃3 (t)



+
1

V θt
E

′

V
θ
t


0 0 0

lx̄ (t) bx̄ (t) −fx̄ (t)

lȳ (t) bȳ (t) −fȳ (t)




p̃1 (t)

p̃2 (t)

p̃3 (t)





+
1

V θt
E

′

V
θ
t


0 0 0

0 σx̄ (t) 0

0 σȳ (t) 0




q̃1 (t)

q̃2 (t)

q̃3 (t)



+ θ


D1 (t)

D2 (t)

D3 (t)

 β̃ (t) .

Finally, we obtain

dp̃ (t) = −


0 0 0

lx (t) bx (t) −fx (t)

ly (t) by (t) −fy (t)




p̃1 (t)

p̃2 (t)

p̃3 (t)

 dt−


0 0 0

0 σx (t) 0

0 σy (t) 0




q̃1 (t)

q̃2 (t)

q̃3 (t)

 dt

− 1

V θt
E

′

V
θ
t


0 0 0

lx̄ (t) bx̄ (t) −fx̄ (t)

lȳ (t) bȳ (t) −fȳ (t)




p̃1 (t)

p̃2 (t)

p̃3 (t)



 dt

− 1

V θt
E

′

V
θ
t


0 0 0

0 σx̄ (t) 0

0 σȳ (t) 0




q̃1 (t)

q̃2 (t)

q̃3 (t)



 dt− θ

D1 (t)

D2 (t)

D3 (t)

 β̃ (t) dt+ β̃ (t) dWt.

It is easily verified that

dp̃1 (t) = β̃1 (t) [dWt − θD1 (t) dt] , p̃1 (T ) = 1.
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In view of (3.14) , we may use Girsanov’s Theorem (see [12], Theorem 2.1 page 115) to claim that

dp̃1 (t) = β̃1 (t) dW θ
t , Pθ − a.s, p̃1 (T ) = 1,

where dW θ
t = dWt − θD (t) dt is a Pθ−Brownian motion, where

dPθ

dP

∣∣∣∣
FW

t

:= Lθt = exp

(
θ

∫ t

0

D (s) dWs −
θ2

2

∫ t

0

|D (s)|2 ds
)
, 0 ≤ t ≤ T.

In view of (3.14), the probability measures Pθ and P are in fact equivalent. Hence, noting that

p̃1 (t) :=
1

θV θt
p1 (t) is square integrable, we get that p̃1 (t) = Eθ

[
p̃1 (T ) | FWt

]
= 1. Thus, its

quadratic variation
∫ T

0

|q̃1 (t)|2 dt = 0. This implies that, for almost every 0 ≤ t ≤ T, q̃1 (t) = 0, Pθ

and P−a.s, we have

dp̃ (t) = −


0 0 0

lx (t) bx (t) −fx (t)

ly (t) by (t) −fy (t)




p̃1 (t)

p̃2 (t)

p̃3 (t)

 dt−


0 0 0

0 σx (t) 0

0 σy (t) 0




q̃1 (t)

q̃2 (t)

q̃3 (t)

 dt (3.20)

− 1

V θt
E

′

V
θ
t


0 0 0

lx̄ (t) bx̄ (t) −fx̄ (t)

lȳ (t) bȳ (t) −fȳ (t)




p̃1 (t)

p̃2 (t)

p̃3 (t)



 dt

− 1

V θt
E

′

V
θ
t


0 0 0

0 σx̄ (t) 0

0 σȳ (t) 0




q̃1 (t)

q̃2 (t)

q̃3 (t)



 dt+ β̃ (t) dW θ
t .
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Now replacing (3.19) in (3.20) , to obtain

dp̃ (t) = −


0 0 0

lx (t) bx (t) −fx (t)

ly (t) by (t) −fy (t)




p̃1 (t)

p̃2 (t)

p̃3 (t)

 dt−


0 0 0

0 σx (t) 0

0 σy (t) 0




q̃1 (t)

q̃2 (t)

q̃3 (t)

 dt (3.21)

− 1

V θt
E

′

V
θ
t


0 0 0

lx̄ (t) bx̄ (t) −fx̄ (t)

lȳ (t) bȳ (t) −fȳ (t)




p̃1 (t)

p̃2 (t)

p̃3 (t)



 dt

− 1

V θt
E

′

V
θ
t


0 0 0

0 σx̄ (t) 0

0 σȳ (t) 0




q̃1 (t)

q̃2 (t)

q̃3 (t)



 dt+


q̃1 (t)

q̃2 (t)

δ̃θ (t)

 dW θ
t − θ


D1 (t)

D2 (t)

D3 (t)

 p̃ (t) dW θ
t ,

where

δ̃θ (t) = −Tr


 lz (t) bz (t)

σz (t) −fz (t)


 p̃1 (t) q̃2 (t)

p̃2 (t) p̃3 (t)




− Tr

 1

V θt
E

′

V θt
 lz̄ (t) bz̄ (t)

σz̄ (t) −fz̄ (t)


 p̃1 (t) q̃2 (t)

p̃2 (t) p̃3 (t)



 .

From (3.21), we get

dp̃2 (t) = − [lx (t) + bx (t) p̃2 (t)− fx (t) p̃3 (t) + σx (t) q̃2 (t)] dt

− 1

V θt
E′ [

V θt [lx̄ (t) + bx̄ (t) p̃2 (t)− fx̄ (t) p̃3 (t) + σx̄ (t) q̃2 (t)]
]
dt

+ [q̃2 (t)− θD2 (t) p̃2 (t)] dW θ
t ,

(3.22)

dp̃3 (t) = − [ly (t) + by (t) p̃2 (t)− fy (t) p̃3 (t) + σy (t) q̃2 (t)] dt

− 1

V θt
E′ [

V θt [lȳ (t) + bȳ (t) p̃2 (t)− fȳ (t) p̃3 (t) + σȳ (t) q̃2 (t)]
]
dt

− [lz (t) + bz (t) p̃2 (t)− (fz (t)− θD3 (t)) p̃3 (t) + σz (t) q̃2 (t)] dW θ
t

− 1

V θt
E′ [

V θt [lz̄ (t) + bz̄ (t) p̃2 (t)− fz̄ (t) p̃3 (t) + σz̄ (t) q̃2 (t)]
]
dW θ

t .

(3.23)
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We can rewrite (3.13), (3.22) and (3.23) as the system below

dp̃2 (t) = −
[
Hθ
x (t) +

1

V θt
E′ [

V θt H
θ
x̄ (t)

]]
dt+ [q̃2 (t)− θD2 (t) p̃2 (t)] dW θ

t ,

p̃2 (T ) = Φx

(
xvT ,E

′
(xvT )

)
+

1

V θT
E′
[
V θTΦx̄

(
xvT ,E

′
(xvT )

)]
,

dp̃3 (t) = −
[
Hθ
y (t) +

1

V θt
E′ [

V θt H
θ
ȳ (t)

]]
dt−

[
Hθ
z (t) +

1

V θt
E′ [

V θt H
θ
z̄ (t)

]]
dW θ

t ,

p̃3 (0) = −Ψy

(
yv0 ,E

′
(yv0)

)
− 1

V θT
E′
[
V θTΨȳ

(
yv0 ,E

′
(yv0)

)]
,

dV θt = θD (t)V θt dWt,

V θT = AθT .

The system (3.15) admits a unique FWt −adapted solution
(
p̃, q̃, V θ,D

)
, such that

E

[
sup
t∈[0,T ]

|p̃ (t)|2 + sup
t∈[0,T ]

∣∣V θ (t)
∣∣2 +

∫ T

0

(
|q̃ (t)|2 + |D (t)|2

)
dt

]
<∞,

where

Hθ (t) := Hθ
(
t,Ov (t) , vt, p̃2 (t) , q̃2 (t) , p̃3 (t) , V θ (t) ,D3 (t)

)
= l (t) + b (t) p̃2 (t) + σ (t) q̃2 (t)− (f (t)− θD3 (t) zvt ) p̃3 (t) .

This finished the proof of Proposition 3.3.3.

Theorem 3.3.4 (Risk-sensitive necessary optimality conditions)

We assume that (A1) − (A5) hold. If (xu, yu, zu, u) is an optimal solution of the risk-sensitive control

problem {(3.1) , (3.2) , (3.3)}, then there exist pairs of FWt −adapted processes
(
V θ,D

)
, (p̃, q̃) that satisfy

(3.15) and (3.16), such that

Hθ
v

(
t,Ou (t) , ut, p̃2 (t) , q̃2 (t) , p̃3 (t) , V θ (t) ,D3 (t)

)
(ut − vt) ≤ 0,

for all u ∈ U , almost every 0 ≤ t ≤ T and P−almost surely.
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Proof. We arrive at a risk-sensitive stochastic maximum principle expressed in terms of the adjoint

processes (p̃2, q̃2) , (p̃3, q̃3) and
(
V θ,D

)
which solve (3.15), where the Hamiltonian H̃θ associated

with (3.4), given by (3.6) satisfies

H̃θ (t,mu
t ,Ou (t) , ut,

−→p (t) ,−→q (t)) =
{
θV θt

}
Hθ
(
t,Ou (t) , ut, p̃2 (t) , q̃2 (t) , p̃3 (t) , V θ (t) ,D3 (t)

)
,

(3.24)

and Hθ is the risk-sensitive Hamiltonian given by (3.17). Hence, since V θ > 0, the variational

inequality (3.7) translates into

Hθ
v

(
t,Ou (t) , ut, p̃2 (t) , q̃2 (t) , p̃3 (t) , V θ (t) ,D3 (t)

)
(ut − vt) ≤ 0, (3.25)

for all u ∈ U , almost every 0 ≤ t ≤ T and P−almost surely. This completed the proof of Theorem

3.3.4.

3.4 Risk-Sensitive Sufficient Optimality Conditions

In this section, we study when the necessary optimality conditions (3.7) become sufficient. For

any v ∈ U , we denote by (xv, yv, zv) the solution of equation (3.1) controlled by v to state the

following result.

Theorem 3.4.1 (Risk-sensitive sufficient optimality conditions)

Assume that the functions Φ, Ψ and (mv,Ov, v) → H̃θ (t,mv
t ,Ov (t) , vt,

−→p (t) ,−→q (t)) are convex and

for any v ∈ U such that E

[∫ T

0

|v|2 dt

]
< ∞. Then u is an optimal solution of the control problem

{(3.1) , (3.2) , (3.3)} if it satisfies (3.7) .
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Proof. Let u be an arbitrary element of U (candidate to be optimal). For any v ∈ U , we have

Jθ (v)− Jθ (u) = E
[
exp θ

{
Φ
(
xvT ,E

′
(xvT )

)
+ Ψ

(
yv0 ,E

′
(yv0)

)
+mv

T

}]
− E

[
exp θ

{
Φ
(
xuT ,E

′
(xuT )

)
+ Ψ

(
yu0 ,E

′
(yu0 )

)
+mu

T

}]
.

By applying the Taylor’s expansion and since Φ and Ψ are convex, we get

Jθ (v)− Jθ (u) ≥ E
[
θAθT (mv

T −mu
T )
]

+ E
[
θ
[
AθTΦx

(
xuT ,E

′
(xuT )

)
+ E

′
[
AθTΦx̄

(
xuT ,E

′
(xuT )

)]]
(xvT − xuT )

]
+ E

[
θ
[
AθTΨy

(
yu0 ,E

′
(yu0 )

)
+ E

′
[
AθTΨȳ

(
yu0 ,E

′
(yu0 )

)]]
(yv0 − yu0 )

]
.

It follows from (3.5), we remark that p1 (T ) = θAθT ,

p2 (T ) = θ
[
AθTΦx

(
xuT ,E

′
(xuT )

)
+ E′

[
AθTΦx̄

(
xuT ,E

′
(xuT )

)]]
, and

p3 (0) = −θ
[
AθTΨy

(
yu0 ,E

′
(yu0 )

)
+ E′

[
AθTΨȳ

(
yu0 ,E

′
(yu0 )

)]]
, then we have

Jθ (v)− Jθ (u) ≥ E [p1 (T ) (mv
T −mu

T )] + E [p2 (T ) (xvT − xuT )]− E [p3 (0) (yv0 − yu0 )] . (3.26)

By applying Itô’s formula to p1 (t) (mv
t −mu

t ), p2 (t) (xvt − xut ) and p3 (t) (yvt − yut ) , that lead to

E [p2 (T ) (xvT − xuT )] = −E

[∫ T

0

H̃θ
x

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)
(xvt − xut ) dt

]
(3.27)

− E

[∫ T

0

E
′
[
H̃θ
x̄

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)]
(xvt − xut ) dt

]

+ E

[∫ T

0

(b (t,Ov (t) , vt)− b (t,Ou (t) , ut)) p2 (t) dt

]

+ E

[∫ T

0

(σ (t,Ov (t) , vt)− σ (t,Ou (t) , ut)) q2 (t) dt

]
,

and

E [p1 (T ) (mv
T −mu

T )] = E

[∫ T

0

(l (t,Ov (t) , vt)− l (t,Ou (t) , ut)) p1 (t) dt

]
, (3.28)
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and

−E [p3 (0) (yv0 − yu0 )] = −E

[∫ T

0

H̃θ
y

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)
(yvt − yut ) dt

]
(3.29)

− E

[∫ T

0

E
′
[
H̃θ
ȳ

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)]
(yvt − yut ) dt

]

− E

[∫ T

0

H̃θ
z

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)
(zvt − zut ) dt

]

− E

[∫ T

0

E
′
[
H̃θ
z̄

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)]
(zvt − zut ) dt

]

− E

[∫ T

0

(f (t,Ov (t) , vt)− f (t,Ou (t) , ut)) p3 (t) dt

]
.

By replacing (3.27) , (3.28) and (3.29) into (3.26), we get

Jθ (v)− Jθ (u) ≥ E

[∫ T

0

H̃θ
(
t,mv

t ,Ov (t) , vt,
−→
p (t) ,

−→
q (t)

)
dt

]
(3.30)

− E

[∫ T

0

H̃θ
(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)
dt

]

− E

[∫ T

0

H̃θ
x

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)
(xvt − xut ) dt

]

− E

[∫ T

0

E
′
[
H̃θ
x̄

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)]
(xvt − xut ) dt

]

− E

[∫ T

0

H̃θ
y

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)
(yvt − yut ) dt

]

− E

[∫ T

0

E
′
[
H̃θ
ȳ

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)]
(yvt − yut ) dt

]

− E

[∫ T

0

H̃θ
z

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)
(zvt − zut ) dt

]

− E

[∫ T

0

E
′
[
H̃θ
z̄

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)]
(zvt − zut ) dt

]
.
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Since the Hamiltonian H̃θ is convex with respect to (x, x̄, y, ȳ, z, z̄, v), we have

E

[∫ T

0

H̃θ
(
t,mv

t ,Ov (t) , vt,
−→
p (t) ,

−→
q (t)

)
dt

]
− E

[∫ T

0

H̃θ
(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)
dt

]

≥ E

[∫ T

0

H̃θ
x

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)
(xvt − xut ) dt

]

+ E

[∫ T

0

E
′
[
H̃θ
x̄

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)]
(xvt − xut ) dt

]

+ E

[∫ T

0

H̃θ
y

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)
(yvt − yut ) dt

]

+ E

[∫ T

0

E
′
[
H̃θ
ȳ

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)]
(yvt − yut ) dt

]

+ E

[∫ T

0

H̃θ
z

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)
(zvt − zut ) dt

]

+ E

[∫ T

0

E
′
[
H̃θ
z̄

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)]
(zvt − zut ) dt

]

+ E

[∫ T

0

H̃θ
v

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)
(vt − ut) dt

]
.

Then, by using above inequality in (3.30) , we obtain

Jθ (v)− Jθ (u) ≥ E

[∫ T

0

H̃θ
v

(
t,mu

t ,Ou (t) , ut,
−→
p (t) ,

−→
q (t)

)
(vt − ut) dt

]
.

In virtue of the necessary optimality conditions (3.7) , then the last inequality implies that

Jθ (v)− Jθ (u) ≥ 0. Then the Theorem 3.4.1 is proved.

Remark 3.4.2 In the last step of proof, and according to (3.24), we have

Jθ (v)− Jθ (u) ≥ E

[∫ T

0

θV θt H
θ
v

(
t,Ou (t) , ut, p̃2 (t) , q̃2 (t) , p̃3 (t) , V θ (t) ,D3 (t)

)
(vt − ut) dt

]
,

we know that θV θt > 0. Then the above equation can be rewritten as

Jθ (v)− Jθ (u) ≥ E

[∫ T

0

Hθ
v

(
t,Ou (t) , ut, p̃2 (t) , q̃2 (t) , p̃3 (t) , V θ (t) ,D3 (t)

)
(vt − ut) dt

]
.
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In virtue of the necessary optimality conditions (3.25) , then the last inequality implies that

Jθ (v)− Jθ (u) ≥ 0.

3.5 Applications

3.5.1 Example 1: Risk-Sensitive Control Applied to the Mean-Field Linear-

Quadratic

We provide a concrete example of a the mean-field risk-sensitive forward-backward stochastic

LQ problem and we give the explicit optimal control and validate our major theoretical results in

Theorem 3.4.1 (Sufficient optimality conditions for risk-sensitive). First let the control domain be

U = [−1, 1]. Consider the following mean-field linear quadratic risk-sensitive control problem

inf
v∈U

E

[
exp θ

{
1

2

∫ T

0

v2
t dt+

1

2
(xvT )

2
+

1

2
(yv0)

2

}]
,

subject to

dxvt =
(
A1x

v
t +A2E

′
(xvt ) +A3vt

)
dt+

(
B1x

v
t +B2E

′
(xvt ) +B3vt

)
dWt,

dyvt = −
(
C1x

v
t + C2E

′
(xvt ) + C3y

v
t + C4E

′
(yvt ) + C5z

v
t + C6E

′
(zvt ) + C7vt

)
dt+ zvt dWt,

xv0 = a, yvT = ξ.

(3.31)

where A1, A2, A3, B1, B2, B3, C1, C2, C3, C4, C5, C6 and C7 are positive real constants.

Let (xvt , y
v
t , z

v
t ) be a solution of (3.31) associated with vt. Then, there exist unique FWt −adapted

pairs of processes (p1, q1) , (p2, q2) and (p3, q3) of following FBSDE of mean-field type system
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(called adjoint equations), according to the equations (3.5)

dp1 (t) = q1 (t) dWt,

dp2 (t) = −
(
A1p2 (t) +B1q2 (t)− C1p3 (t) +A2E

′
(p2 (t)) +B2E

′
(q2 (t))

− C2E
′
(p3 (t))

)
dt+ q2 (t) dWt,

dp3 (t) =
(
C3p3 (t) + C4E

′
(p3 (t))

)
dt+

(
C5p3 (t) + C6E

′
(p3 (t))

)
dWt,

p1 (T ) = θAθT , p2 (T ) = θxvTA
θ
T , p3 (0) = −θyv0AθT ,

(3.32)

where

AθT := exp θ

{
1

2

∫ T

0

v2
t dt+

1

2
(xvT )

2
+

1

2
(yv0)

2

}
.

We give the Hamiltonian H̃θ defined by

H̃θ (t) := H̃θ
(
t,mv

t ,Ov (t) , vt,
−→
p (t) ,

−→
q (t)

)
=

1

2
v2
t p1 (t) +

(
A1x

v
t +A2E

′
(xvt ) +A3vt

)
p2 (t) +

(
B1x

v
t +B2E

′
(xvt ) +B3vt

)
q2 (t)

−
(
C1x

v
t + C2E

′
(xvt ) + C3y

v
t + C4E

′
(yvt ) + C5z

v
t + C6E

′
(zvt ) + C7vt

)
p3 (t) .

We have H̃θ
v (t) = vtp1 (t) +A3p2 (t) +B3q2 (t)− C7p3 (t). Minimizing the Hamiltonian yields

ut = (C7p3 (t)−A3p2 (t)−B3q2 (t)) p−1
1 (t) . (3.33)

We only need to prove that ut is an optimal control of (3.31) .

Theorem 3.5.1 ( Risk-sensitive sufficient optimality conditions for a linear quadratic control problem).

Suppose that ut satisfies (3.33), where
(
→
p ,
→
q
)

satisfy (3.32). Then ut is the unique optimal control of the

above mean-field FBSDE of linear quadratic problem (3.31).
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Proof. From the definition of the cost functional Jθ, we have

Jθ (vt)− Jθ (ut) = E

[
exp θ

{
1

2

∫ T

0

v2
t dt+

1

2
(xvT )

2
+

1

2
(yv0)

2

}]

− E

[
exp θ

{
1

2

∫ T

0

u2
tdt+

1

2
(xuT )

2
+

1

2
(yu0 )

2

}]
.

We put mv
T =

1

2

∫ T

0

v2
t dt, and by applying the Taylor’s expansion, we have

Jθ (vt)− Jθ (ut) = E [p1 (T ) (mv
T −mu

T )] + E [p2 (T ) (xvT − xuT )]− E [p3 (0) (yv0 − yu0 )] , (3.34)

where p1 (T ) = θAθT , p2 (T ) = θxuTA
θ
T and p3 (0) = −θyu0AθT .

By applying Itô’s formula to p1 (t) (mv
t −mu

t ), p2 (t) (xvt − xut ) and p3 (t) (yvt − yut ) , and used the

explicit forms of the adjoint equations (3.32), that lead to

E [p1 (T ) (mv
T −mu

T )] = E

[∫ T

0

1

2

(
v2
t − u2

t

)
p1 (t) dt

]
,

and

E [p2 (T ) (xvT − xuT )] = E

[∫ T

0

C1p3 (t) (xvt − xut ) dt

]
+ E

[∫ T

0

C2p3 (t) (xvt − xut ) dt

]

+E

[∫ T

0

A3p2 (t) (vt − ut) dt

]
+ E

[∫ T

0

B3q2 (t) (vt − ut) dt

]
,

and

−E [p3 (0) (yv0 − yu0 )] = −E

[∫ T

0

C1p3 (t) (xvt − xut ) dt

]
− E

[∫ T

0

C2p3 (t) (xvt − xut ) dt

]

− E

[∫ T

0

C7p3 (t) (vt − ut) dt

]
.

By replacing the three above formulas into (3.34), then we get

Jθ (vt)− Jθ (ut) = E

[∫ T

0

1

2
(vt − ut) (vt − ut) p1 (t) dt

]
+ E

[∫ T

0

ut (vt − ut) p1 (t) dt

]

− E

[∫ T

0

C7p3 (t) (vt − ut) dt

]
+ E

[∫ T

0

A3p2 (t) (vt − ut) dt

]
+ E

[∫ T

0

B3q2 (t) (vt − ut) dt

]
.
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Because (vt − ut) being nonnegative. Then we have the following result:

Jθ (vt)− Jθ (ut) ≥ E

[∫ T

0

ut (vt − ut) p1 (t) dt

]
+ E

[∫ T

0

A3p2 (t) (vt − ut) dt

]

+ E

[∫ T

0

B3q2 (t) (vt − ut) dt

]
− E

[∫ T

0

C7p3 (t) (vt − ut) dt

]
.

Then

Jθ (vt)− Jθ (ut) ≥ E

[∫ T

0

(utp1 (t) +A3p2 (t) +B3q2 (t)− C7p3 (t)) (vt − ut) dt

]
. (3.35)

By replacing ut with its value in (3.35), we obtain Jθ (vt) ≥ Jθ (ut) , i.e. ut is optimal. This proof

is finished.

3.5.2 Example 2: Financial Application: Mean-Variance Risk-Sensitive

Stochastic Optimal Portfolio Problem

We deal with the mean-variance risk-sensitive stochastic optimal control problem, and apply the

risk-sensitive necessary optimality conditions (Theorem 3.3.4). Our state dynamics is
dxvt = (ρvt + rxvt ) dt+ σvtdWt,

xv0 = m0,

(3.36)

and 
dyvt = − (cxvt + ρvt − λyvt ) dt+ adWt,

yvT = 0.

(3.37)

According to by Lemma 1.4.1, we conclude

J θ (v (.)) =
1

θ
log
[
Jθ (v (.))

]
= E (ΘT ) +

θ

2
V ar (ΘT ) +O

(
θ2
)
,

where ΘT := Φ
(
xvT ,E

′
(xvT )

)
+ Ψ

(
yv0 ,E

′
(yv0)

)
+

∫ T

0

l (t,Ov (t) , vt) dt.
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We put l (t,Ov (t) , vt) = 0,Φ
(
xvT ,E

′
(xvT )

)
= xvT and Ψ

(
yv0 ,E

′
(yv0)

)
= −yv0 ,we get ΘT := xvT−yv0 .

Then, the cost functional be the following

J θ (v (.)) =
1

θ
log
[
Jθ (v (.))

]
= E

[
xvT − yv0 +

θ

2
[xvT − yv0 − ϑ]

2

]
, (3.38)

where θ > 0, θ 6= 1, ϑ = E (xvT − yv0) .

The investor wants to minimize (3.38) subject to (3.36) and (3.37) , by taking v (.) over U .

The Hamiltonian function (3.17) gets the form

Hθ (t) := Hθ (t,Ov (t) , vt, p̃2 (t) , q̃2 (t) , p̃3 (t) ,D3 (t)) (3.39)

= ρvt (p̃2 (t)− p̃3 (t)) + σvtq̃2 (t) + rxvt p̃2 (t) + (λyvt − cxvt + θD3 (t) a) p̃3 (t) .

Let (xut , y
u
t , z

u
t ) be an optimal triplet of the system {(3.36) , (3.37)}. The adjoint equations (3.15)

reduces to 
dp̃2 (t) = cp̃3 (t)− rp̃2 (t) dt+ [q̃2 (t)− θD2 (t) p̃2 (t)] dW θ

t ,

p̃2 (T ) = 1 + θ [xvT − yv0 − ϑ] ,

(3.40)

and 
dp̃3 (t) = −λp̃3 (t) dt,

p̃3 (0) = 1 + θ [xvT − yv0 − ϑ] .

Minimizing the Hamiltonian (3.39) , we obtain the following result

ρ (p̃2 (t)− p̃3 (t)) + σq̃2 (t) = 0. (3.41)

The SDE (3.36) , and the adjoint equation (3.40) with respect to optimal control, being
dxut = (ρut + rxut ) dt+ σutdWt,

xu0 = m0,

(3.42)
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and 
dp̃u2 (t) = cp̃u3 (t)− rp̃u2 (t) dt+ [q̃u2 (t)− θD2 (t) p̃u2 (t)] dW θ

t ,

p̃u2 (T ) = 1 + θ [xuT − yu0 − ϑ] .

(3.43)

Replacing dW θ
t = dWt − θD2 (t) dt in (3.43), we get

dp̃u2 (t) =
[
cp̃u3 (t)− rp̃u2 (t)− θD2 (t) q̃u2 (t) + θ2D2

2 (t) p̃u2 (t)
]
dt+ [q̃u2 (t)− θD2 (t) p̃u2 (t)] dWt,

p̃u2 (T ) = 1 + θ [xuT − yu0 − ϑ] .

(3.44)

Therefore, an optimal solution (p̃u2 (t) , xut , ut) can be obtained by solving the system of FBSDE

with mean-field type control (3.42) and (3.44). To solve the FBSDE {(3.42) , (3.44)}, we conjecture

the solution to (3.42) and (3.44) is related by

p̃u2 (t) = $ (t)xut + ς (t)E
′
(xut ) + γ (t) , (3.45)

for some deterministic differentiable functions $ (t) , ς (t) and γ (t), as the best of our acknowl-

edge the term σutdWt is called stochastic integral, so it goes to zero with respect to E′
, we have

dE′
(xut ) =

(
ρE′

(ut) + rE′
(xut )

)
dt,

E′
(xu0 ) = m0.

By applying Itô’s formula to (3.45), we get

dp̃u2 (t) =
[(
•
$ (t) +$ (t) r

)
xut +

(
•
ς (t) + ς (t) r

)
E′

(xut )

+
•
γ (t) +$ (t) ρut + ς (t) ρE′

(ut)
]
dt+$ (t)σutdWt,

p̃u2 (T ) = $ (T )xuT + ς (T )E′
(xuT ) + γ (T ) .

(3.46)

By equating the coefficients and the terminal conditions of (3.44) and (3.46) , we have

q̃u2 (t) = $ (t)σut + θD2 (t) p̃u2 (t) , $ (T ) = θ, ς (T ) = 0, γ (T ) = 1− θyu0 − θϑ, (3.47)
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and

0 =
(
•
$ (t) +$ (t) r

)
xut +

(
•
ς (t) + ς (t) r

)
E

′
(xut ) +

•
γ (t) +$ (t) ρut (3.48)

+ ς (t) ρE
′
(ut)− cp̃u3 (t) + rp̃u2 (t) + θD2 (t) q̃u2 (t)− θ2D2

2 (t) p̃u2 (t) .

By substituting (3.47) into (3.48), and by using (3.45), we obtain

0 =
(
•
$ (t) + 2$ (t) r

)
xut +

(
•
ς (t) + 2ς (t) r

)
E

′
(xut ) +

•
γ (t) + rγ (t) (3.49)

+$ (t) ρut + ς (t) ρE
′
(ut)− cp̃u3 (t) + θD2 (t)$ (t)σut.

By (3.49) , we deduce that $ (t) , ς (t) and γ (t) satisfying the following ordinary differential equa-

tions (in short ODEs)

•
$ (t) + 2$ (t) r = 0,

$ (T ) = θ,

•
ς (t) + 2ς (t) r = 0,

ς (T ) = 0,

•
γ (t) + rγ (t) +$ (t) ρut + ς (t) ρE′

(ut)− cp̃u3 (t) + θD2 (t)$ (t)σut = 0,

γ (T ) = 1− θyu0 − θϑ.

(3.50)

By solving the first and second ODEs in (3.50) , we get

$ (t) = θ exp

(
−2

∫ T

t

rds

)
, (3.51)

ς (t) = 0 exp

(
−2

∫ T

t

rds

)
. (3.52)

Using integrating factor method, to solve the third ODE in (3.50), we know that
•
γ (t) + rγ (t) +$ (t) ρut + ς (t) ρE′

(ut)− cp̃u3 (t) + θD2 (t)$ (t)σut = 0,

γ (T ) = 1− θyu0 − θϑ.
(3.53)
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We put

δ (t) = $ (t) ρut + ς (t) ρE
′
(ut)− cp̃u3 (t) + θD2 (t)$ (t)σut. (3.54)

We rewrite (3.53) as follows 
•
γ (t) + rγ (t) + δ (t) = 0,

γ (T ) = 1− θyu0 − θϑ.
(3.55)

The explicit solution of the equation (3.55) is

γ (t) =

[
1− θyu0 − θϑ−

∫ T

t

δ (s) exp

(∫ s

t

rdo

)
ds

]
exp

(
−
∫ T

t

rds

)
, (3.56)

where δ (t) is determined by (3.54).

Finally, we can have the optimal control in the following state feedback form by using (3.47), we

have ut =
1

$ (t)σ
q̃u2 (t) − 1

$ (t)σ
θD2 (t) p̃u2 (t), then by replacing the value of q̃u2 (t) from (3.41) ,

and p̃u2 (t) from (3.45) into the last expression of ut above, we have

ut = − (ρ+ σθD2 (t))
1

σ2$ (t)
$ (t)xut − (ρ+ σθD2 (t))

1

σ2$ (t)
ς (t)E

′
(xut ) (3.57)

− (ρ+ σθD2 (t))
1

σ2$ (t)
γ (t) +

ρ

σ2$ (t)
p̃u3 (t) ,

where $ (t) , ς (t) and γ (t) are determined by (3.51) , (3.52) and (3.56) respectively.

Theorem 3.5.2 We assume that $ (t) , ς (t) and γ (t) have the unique solution given by (3.51) , (3.52)

and (3.56) respectively. Then the optimal control of the problem {(3.36) , (3.38)} has the state feedback

from (3.57) .

It’s very important to remark that the solution of the function γ (t) in the expression (3.53) is

depend to the solution of p̃u3 (t). If we put p̃u3 (t) = E (t) yut + B (t)E′
(yut ) + κ (t) , for smooth

deterministic functions E (t) , B (t) and κ (t) . By using the similar technique as an optimal solution
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in the last paragraph, to the optimal solution of (p̃u3 (t) , yut , ut), then the solutions of functions

E (t) , B (t) and κ (t) yield respectively the equations

•
E (t) + 2λE (t) = 0,

E (0) = −θ,
•
B (t) + 2λB (t) = 0,

B (0) = 0,

•
κ (t) + λκ (t)− E (t) cxut − E (t) ρut − B (t) cE′

(xut )− B (t) ρE′
(ut) = 0,

κ (0) = 1 + θxu0 − θϑ.

(3.58)

By solving the first and second ODEs in (3.58), we have

E (t) = −θ exp

(
−2

∫ t

0

λds

)
, (3.59)

B (t) = 0 exp

(
−2

∫ t

0

λds

)
. (3.60)

Using the integrating factor method, to solve the third ODE in (3.58), we know that
•
κ (t) + λκ (t)− E (t) cxut − E (t) ρut − B (t) cE′

(xut )− B (t) ρE′
(ut) = 0,

κ (0) = 1− θxu0 − θϑ.
(3.61)

We put

ψ (t) = −E (t) cxut − E (t) ρut − B (t) cE
′
(xut )− B (t) ρE

′
(ut) . (3.62)

We rewrite (3.61) as follows 
•
κ (t) + λκ (t) + ψ (t) = 0,

κ (0) = 1 + θxu0 − θϑ.
(3.63)

The explicit solution of equation (3.63) is

κ (t) =

[
1 + θxu0 − θϑ−

∫ t

0

ψ (s) exp

(∫ s

0

λdr

)
ds

]
exp

(∫ t

0

−λds
)
, (3.64)
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where ψ (t) is determined by (3.62).

Then by using the expression of p̃u3 (t) , the feedback form of the control in (3.57) can be rewritten

as

ut = − (ρ+ σθD2 (t))
1

σ2$ (t)
$ (t)xut − (ρ+ σθD2 (t))

1

σ2$ (t)
ς (t)E

′
(xut ) (3.65)

− (ρ+ σθD2 (t))
1

σ2$ (t)
γ (t) +

ρ

σ2$ (t)
E (t) yut +

ρ

σ2$ (t)
B (t)E

′
(yut ) +

ρ

σ2$ (t)
κ (t) .

Corollary 3.5.3 The explicit solution of the first and second ODEs in (3.58) are given by (3.59), (3.60)

and the third ODE in (3.58) has an explicit solution given by (3.64), where % (t) and ψ (t) are determined

functions given by (3.62).

At the end, we can sum up the problem of portfolio {(3.36) , (3.37) , (3.38)} for mean-variance

with risk-sensitive performance, in the next Theorem 3.5.4, as the main result.

Theorem 3.5.4 We assume that $ (t) , ς (t) and γ (t) have the unique solution given by (3.51), (3.52)

and (3.56) respectively, E (t) , B (t) and κ (t) have the explicit solution given by (3.59) , (3.60) and (3.64) .

Then the optimal control of the problem {(3.36) , (3.37) , (3.38)} has the state feedback from (3.65), where

δ (t) is determined by (3.54), % (t) and ψ (t) are given by (3.62) .
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T
his thesis contains two main results in every chapter. The first result is Theorems 2.3.4

and 3.3.4, establishes the necessary optimality conditions for the system of BDSDE

with risk-sensitive performance and the system is governed by fully coupled FBSDE

of mean-field type control given in form of risk-sensitive performance respectively, using an al-

most similar scheme as in Chala [10]. The second main result, Theorems 2.4.1 and 3.4.1, suggests

sufficient optimality conditions of BDSDE given in form of risk-sensitive performance and fully

coupled FBSDE of mean-field type control given in form of risk-sensitive performance respec-

tively, as our best acknowledge that these results are a good extension of the result established by

Chala in [11]. The proof is based on the convexity conditions of the Hamiltonian function, the ini-

tial and terminal terms of the performance function. Note that the risk-sensitive control problems

studied by Lim and Zhou in [25] are different from ours. Remarkably, the maximum principle of

risk-neutral for the system BDSDE obtained by [2, 21], and Yong [38] are similar to our Theorem

2.2.2, but the adjoint equations and maximum conditions heavily depend on the risk-sensitive

parameter. The maximum principle of risk-neutral for the system obtained by Min et al. [27], is

similar to (Theorem 3.2.2), but the adjoint equations and maximum conditions heavily depend on
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the risk-sensitive parameter. If we put θ = E = B = κ = 0, we can compare our feedback control

of (3.65) with such control obtained by Hafayed [17].
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