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The giant magnetoimpedance of an 8.5 �m glass-covered amorphous microwire was investigated
in the frequency range of 10 MHz–3.5 GHz. It was found that when the exciting microwave current
exceeds some threshold value, a periodic fine structure appears in the frequency dependence of the
complex impedance. The appearance of this nonlinear phenomenon is interpreted to be a
consequence of the parametric excitation of standing spin waves. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3079659�

Nonlinear magnetization dynamics, which is one of the
fundamental issues in applied magnetism, has recently re-
ceived increasing attention in connection with the advances
in magnetic storage technologies and spintronics.1 Materials
and devices used in these areas typically have nanoscale di-
mensions and operate in the gigahertz range. The under-
standing of magnetization dynamics is of great importance
for these technologies. The nonlinear behavior of ferrites and
garnets was systematically investigated during the 1950s and
1960s, particularly in connection with the development of
radar and microwave techniques. With increasing interest in
metallic ferromagnets, nowadays, new experimental methods
are desirable for investigation of the nonlinear magnetic phe-
nomena in these materials. One such technique is the giant
magnetoimpedance �GMI�.

GMI comes from the dependence of electromagnetic
skin depth in soft magnetic metals on the external dc mag-
netic field.2 It has been shown by Yelon et al.3 that the the-
oretical description of GMI, which is based on the simulta-
neous solution of Maxwell equations and the Landau–
Lifshitz �LL� equation of motion is similar to the theory of
ferromagnetic resonance �FMR� in metals. The LL is gener-
ally a nonlinear equation. In the small signal limit �low ac
excitation current�, where the LL equation can be linearized,
this theoretical approach provides a very good explanation
for the observed GMI behavior.4 Nevertheless, at high exci-
tation current, where the nonlinearity of LL equation must be
taken into account, nonlinear effects should appear. Consid-
ering the correspondence between GMI and FMR one can
expect that various nonlinear effects, similar to those ob-
served in FMR,5 also take place in the GMI. Because of the
large damping of magnetization motion, the standard nonlin-
ear FMR experiments in ferromagnetic metals require high
power microwave sources.6 In GMI measurements, however,
the conditions for nonlinear behavior can already be
achieved with exciting currents of a few milliampere.7

Among various nonlinear phenomena, “frequency multipli-
cation” �higher order harmonics of GMI signal� has already
been investigated.8–15 Although the similarity between the
experimental configurations for transverse GMI in metallic
ribbons and parallel pumping experiments in ferromagnetic
insulators has already been pointed out by Yelon et al.,7 the

parametric excitation of spin waves,16 and other known non-
linear phenomena have not been reported so far.

The aim of this paper is to show that spatially inhomo-
geneous magnetic excitations can be pumped in the usual
“low power” GMI microwave experiments. To demonstrate
this, GMI has been measured in magnetically soft glass
coated microwires which are known to exhibit quite out-
standing magnetic properties, including GMI.17

The magnetoimpedance was investigated in the fre-
quency range of 10 MHz–3.5 GHz in a glass-covered micro-
wire prepared by the Taylor–Ulitovsky method.18 The nomi-
nal composition of the microwire alloy was
Co67Fe4Cr7Si8B14 known to exhibit nonmagnetostrictive
character, determining its GMI. A piece of the sample 3.5
mm in length �metallic core with diameter of 8.5 �m and
glass coat of about 5 �m thick� was mounted onto a micros-
trip line device under test �DUT�, as schematically shown in
the inset of Fig. 1. The glass coat was removed from the
ends, and the sample was soldered to the line to bypass a 2.7
mm wide gap in the microstrip line. The distance between
the electric contacts was about 2.85 mm. The dc magnetic
field of up to 100 Oe was applied parallel to the wire axis.
The Agilent PNA E8362B network analyzer was used to
measure the scattering parameters S of the DUT. The output
power was changed between �17 and 0 dBm �i.e., 20 �W
−1 mW�. The impedance Z of the sample was calculated
from the formula

Z = R + jX = 50
1 − S11

1 + S11
, �1�

where R and X are the resistance and reactance, respectively,
and S11 is the complex reflection parameter, corrected for the
effective electrical length of the connector and the microstrip
line in front of the sample. Because the impedance of sample
does not match the characteristic impedance of the transmis-
sion line �50 �� much of the incident power is reflected
before it enters the measured sample. To estimate how much
microwave power passes through the sample the transmis-
sion parameter S12 is also measured.

The frequency dependence of the real and imaginary
parts of the impedance, measured at the low level of incident
power ��17 dBm� for different values of applied dc mag-
netic field H, is shown in Fig. 1. At this incident power the
condition of the low signal level is well satisfied, the curvesa�Electronic mail: kraus@fzu.cz.
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are smooth and show the behavior typical for FMR, i.e.,
maximum of R and zero of X at the resonance frequency. As
shown in Fig. 2, the resonance frequencies � satisfy the Kit-
tel resonance condition for a uniaxial thin film magnetized
along the in-plane easy axis19

�/� = ��H + HK��H + HK + 4�Ms� �2�

very well. With the saturation magnetization 4�Ms
=5.4 kG, determined from the hysteresis loop measurement,
the experimental data can be fitted with an anisotropy field
HK=2.6 Oe and the g-factor of 2.09.

When the incident microwave power increases above
some critical threshold value a fine structure starts to appear
on the frequency dependence of Z. One example of such fine
structure is shown in Fig. 3, measured at constant magnetic

field H=40 Oe. At an incident power of 0.2 mW ��7 dBm�,
the impedance is still a smooth function of frequency. When,
however, this level is exceeded sharp dips appear on both the
real and imaginary parts of impedance near the resonance
frequency. With increasing power the dips become deeper
and broader and the frequency range, where they appear,
extends in both directions from the resonance. This behavior
is similar to the fine structure of FMR observed in amor-
phous microwires20,21 and can be explained in a similar way.
The threshold onset of nonlinear behavior is attributed to a
spontaneous energy transfer from the basic precession mode
to certain spatially nonuniform disturbances.

The theory of nonlinear FMR in ferromagnetic insulators
was worked out more than 50 years ago.16 According to this
theory the basic resonance mode �uniform precession in the
case of ferromagnetic insulators� becomes unstable at micro-
wave power much lower than the saturation of resonance
predicted by the conventional theory. This effect, called “pre-
mature saturation of the main resonance,” is caused by the
decay of the uniform mode into two spin waves with oppo-
site wave vectors k and −k. Above the critical threshold, the
damping of the basic resonance mode significantly increases
due to the exponential growth of parametrically excited spin
waves. Depending on the frequency of parametric excitations
�k, we speak about the first order ��k=� /2� or second order
��k=�� Suhl instability. At low magnetic fields �H
�4�Ms /3�, where the spin wave band is degenerate with
half of the pumping frequency � �so-called “coincidence of
main and subsidiary resonance”�, the first order processes
lead to very low critical thresholds. The critical amplitude of

FIG. 1. �Color online� The real and imaginary parts of complex impedance
for different values of applied dc field, measured at the incident microwave
power of 20 �W ��17 dBm�. �Field values: 2, 10, 20, 30, 40, 50, 60, 80,
and 100 Oe from the left to right.� Inset: sketch of DUT.

FIG. 2. Square of resonance frequency �fr=� /2�� as a function of applied
field H �circles denotes experimental data and line denotes theoretical fit�.

FIG. 3. �Color online� The real and imaginary parts of impedance measured
under applied dc field of 40 Oe and different levels of incident microwave
power. The vertical scales are valid only for the upper curves ��7 dBm�, the
others are shifted downwards to distinguish the evolution of the fine
structure.
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the basic resonance mode m0 for the first order spin wave
instability is given by20

m0/Ms = �k/�fk� , �3�

where �k is the relaxation frequency and fk the coupling
coefficient of the spin wave to the basic resonance mode.
The spin waves with the lowest ratio �k / �fk� are excited first,
when the threshold power level is achieved.

The original Suhl theory was developed for an infinite
ferromagnetic insulator, for which planar spin waves can be
assumed. In finite bodies the planar waves must be replaced
by the dipole-exchange modes �also called “standing spin
waves”�, which satisfy the surface boundary conditions.
Then instead of k the pumped waves are labeled by three
wave numbers �m ,n ,	�, which describe the quantization of
the magnetization precession in three dimensions.22 In an
infinite cylinder, m and n are related to the number of nodes
in the radial and circumferential directions, respectively, and
	 �any real number� is the wave vector along the axial direc-
tion. Even if the coupling coefficients fmn	 were properly
calculated the correct identification of the generated waves is
extremely difficult, because the relaxation frequencies �mn	

are generally unknown. In our previous paper,21 we tried to
identify the fine structure peaks in the nonlinear FMR spec-
trum of glass-covered microwires using the exchange stiff-
ness constant estimated from the linear spin wave resonance
spectrum and the eigenfrequencies of dipole-exchange
modes of an infinite insulating cylinder, theoretically inves-
tigated by Lai et al.23 This technique, however, cannot be
applied here, because the exchange stiffness constant of the
material under investigation is not known. Nor can the ex-
change constant be estimated, because the fitted value is sen-
sitive to the proper choice of the mode numbers. To deter-
mine the actual wave vectors of the pumped spin waves, an
additional experimental technique, Brillouin light scattering,
has been used.24 This experiment, however, may be very
difficult for the cylindrical surface micrometric radius.

It should be also mentioned that the explanation of fine
structure of the “above threshold” GMI curves by the para-
metric excitation of spin waves need not be unique. Excita-
tion of other waves can also be involved. The generation of
acoustic waves, observed e.g., in weak ferromagnets,25 is
less probable because of the low magnetostriction constant
of the amorphous alloy investigated. Other excitations, inher-
ent to ferromagnetic metals, can also account for the fine
structure. To properly include the metallic nature of GMI
materials further theoretical and experimental work is
needed.

We have shown that with low power GMI experiments
the parametric spin waves can be easily excited, which oth-
erwise require quite intricate high power FMR equipments.
This can be used as a powerful tool for the investigation of

spin wave relaxation and nonlinear magnetization dynamics
in metallic ferromagnets, which is now acknowledged to be
of great importance for current investigations of fast switch-
ing magnetization dynamics of magnetic thin film devices.
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