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Some important aspects of hadronic τ decays are reviewed: the determination of αs from the inclusive τ hadronic
width, the measurement of |Vus| through the Cabibbo-suppressed decays of the τ , and the theoretical description
of the τ → ντKπ spectrum. The present status of other relevant electroweak topics, such as charged-current
universality tests or bounds on lepton-flavour violation, has been already summarized in ref. [1].

1. The inclusive hadronic width of the tau

The hadronic τ decays turn out to be a beau-
tiful laboratory for studying strong interaction
effects at low energies [2, 3]. The τ is the
only known lepton massive enough to decay into
hadrons. Its semileptonic decays are then ideally
suited for studying the hadronic weak currents.

The inclusive character of the total τ hadronic
width renders possible an accurate calculation of
the ratio [4–8]

Rτ ≡
Γ[τ− → ντ hadrons]

Γ[τ− → ντe−ν̄e]
= Rτ,V +Rτ,A+Rτ,S .

The theoretical analysis involves the two-point
correlation functions for the vector V µ

ij = ψ̄jγ
µψi

and axial-vector Aµ
ij = ψ̄jγ

µγ5ψi colour-singlet
quark currents (i, j = u, d, s):

Πµν
ij,J (q) ≡ i

∫

d4x eiqx〈0|T (J µ
ij(x)J

ν
ij(0)†)|0〉, (1)

which have the Lorentz decompositions

Πµν
ij,J (q) = (−gµνq2 + qµqν)Π

(1)
ij,J (q2)

+qµqν Π
(0)
ij,J (q2), (2)

where the superscript (J = 0, 1) denotes the an-
gular momentum in the hadronic rest frame.

The imaginary parts of Π
(J)
ij,J (q2) are propor-

tional to the spectral functions for hadrons with
the corresponding quantum numbers. The semi-
hadronic decay rate of the τ can be written as
an integral of these spectral functions over the

invariant mass s of the final-state hadrons:

Rτ =12π

∫ m2
τ

0

ds

m2
τ

(

1 −
s

m2
τ

)2

×

[(

1 + 2
s

m2
τ

)

ImΠ(1)(s) + ImΠ(0)(s)

]

. (3)

The appropriate combinations of correlators are

Π(J)(s) ≡ |Vud|
2
(

Π
(J)
ud,V (s) + Π

(J)
ud,A(s)

)

+ |Vus|
2
(

Π
(J)
us,V (s) + Π

(J)
us,A(s)

)

. (4)

The contributions coming from the first two terms
correspond to Rτ,V and Rτ,A respectively, while
Rτ,S contains the remaining Cabibbo-suppressed
contributions.

The integrand in Eq. (3) cannot be calculated
at present from QCD. Nevertheless the integral it-
self can be calculated systematically by exploiting
the analytic properties of the correlators Π(J)(s).
They are analytic functions of s except along the
positive real s-axis, where their imaginary parts
have discontinuities. Rτ can then be written as a
contour integral in the complex s-plane running
counter-clockwise around the circle |s| = m2

τ :

Rτ =6πi

∮

|s|=m2
τ

ds

m2
τ

(

1 −
s

m2
τ

)2

×

[(

1 + 2
s

m2
τ

)

Π(0+1)(s) − 2
s

m2
τ

Π(0)(s)

]

. (5)

This expression requires the correlators only
for complex s of order m2

τ , which is signifi-
cantly larger than the scale associated with non-
perturbative effects. Using the Operator Product
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Expansion (OPE), Π(J)(s) =
∑

D C
(J)
D /(−s)D/2,

to evaluate the contour integral, Rτ can be ex-
pressed as an expansion in powers of 1/m2

τ . The
uncertainties associated with the use of the OPE
near the time-like axis are heavily suppressed by
the presence in (5) of a double zero at s = m2

τ .
The combination Rτ,V +A can be written as [6]

Rτ,V +A = NC |Vud|
2 SEW {1 + δP + δNP} , (6)

where NC = 3 is the number of quark colours and
SEW = 1.0201 ± 0.0003 contains the electroweak
radiative corrections [9–11]. The dominant cor-
rection (∼ 20%) is the perturbative QCD contri-
bution δP, which is already known to O(α4

s) [6,12]
and includes a resummation of the most impor-
tant higher-order effects [7, 13].

Non-perturbative contributions are suppressed
by six powers of the τ mass [6] and, therefore,
are very small. Their numerical size has been
determined from the invariant-mass distribution
of the final hadrons in τ decay, through the study
of weighted integrals [14],

Rkl
τ ≡

∫ m2
τ

0

ds

(

1 −
s

m2
τ

)k (
s

m2
τ

)l
dRτ

ds
, (7)

which can be calculated theoretically in the same
way as Rτ . The predicted suppression [6] of the
non-perturbative corrections has been confirmed
by ALEPH [15], CLEO [16] and OPAL [17]. The
most recent analysis [18] gives

δNP = −0.0059± 0.0014 . (8)

The QCD prediction for Rτ,V +A is then com-
pletely dominated by δP ; non-perturbative effects
being smaller than the perturbative uncertainties
from uncalculated higher-order corrections. The
result turns out to be very sensitive to the value
of αs(m

2
τ ), allowing for an accurate determination

of the fundamental QCD coupling [5, 6]. The ex-
perimental measurement Rτ,V +A = 3.479± 0.011
implies [18]

αs(m
2
τ ) = 0.344 ± 0.005exp ± 0.007th . (9)

The strong coupling measured at the τ mass
scale is significantly larger than the values ob-
tained at higher energies. From the hadronic de-
cays of the Z, one gets αs(M

2
Z) = 0.1191±0.0027
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Figure 1. Measured values of αs at different
scales. The curves show the energy dependence
predicted by QCD, using αs(m

2
τ ) as input. The

corresponding extrapolated αs(M
2
Z) values are

shown at the bottom, where the shaded band dis-
plays the τ decay result within errors [18].

[12, 18, 19], which differs from αs(m
2
τ ) by more

than 20 σ. After evolution up to the scale MZ

[20], the strong coupling constant in (9) decreases
to [18]

αs(M
2
Z) = 0.1212± 0.0011 , (10)

in excellent agreement with the direct measure-
ments at the Z peak and with a better accuracy.
The comparison of these two determinations of αs

in two very different energy regimes, mτ and MZ ,
provides a beautiful test of the predicted running
of the QCD coupling; i.e., a very significant ex-
perimental verification of asymptotic freedom.

2. Perturbative contribution to Rτ

The recent calculation of the O(α4
s) contribu-

tion to Π(0+1)(s) [12] has triggered a renewed the-
oretical interest on Rτ [12,18,21,22]. The pertur-
bative contribution δP is extracted from the Adler
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function

− s
d

ds
Π(0+1)(s) =

1

4π2

∑

n=0

Kn

(

αs(s)

π

)n

. (11)

For three flavours, the known coefficients take the
values: K0 = K1 = 1; K2 = 1.63982; K3(MS) =
6.37101 and K4(MS) = 49.07570 [12].

The perturbative component of Rτ is given by

δP =
∑

n=1

KnA
(n)(αs), (12)

where the functions [7]

A(n)(αs) =
1

2πi

∮

|s|=m2
τ

ds

s

(

αs(−s)

π

)n

×

(

1 − 2
s

m2
τ

+ 2
s3

m6
τ

−
s4

m8
τ

)

(13)

are contour integrals in the complex plane, which
only depend on aτ ≡ αs(m

2
τ )/π. Using the

exact solution (up to unknown βn>4 contribu-
tions) for αs(s) given by the renormalization-
group β-function equation, they can be numer-
ically computed with a very high accuracy [7].
One can easily check that the results are very
stable under changes of the renormalization scale
and rather insensitive to the truncation of the β
function (putting β4 = 0 has a negligible impact).
Thus, the resulting theoretical uncertainty on δP
is small.

However if, instead of adopting the known val-
ues for A(n)(αs), one expands αs(−s) in powers of
αs(mτ ) inside the the integrals (13), the large log-
arithmic running along the circle s = m2

τ exp (iφ)
(φǫ[0, 2π]) gives rise to a nearly divergent series
of the form δP =

∑

n=1(Kn + gn) an
τ , where the

gn coefficients depend on Km<n and on βm<n:

δ(0) = aτ + 5.20 a2
τ + 26.4 a3

τ + 127 a4
τ + · · · (14)

The “running” gn contributions are much larger
than the original Kn coefficients containing the
Adler function dynamics (g2 = 3.563, g3 = 19.99,
g4 = 78.00) [7]. These generates a sizeable renor-
malization scale dependence, which is much larger
than the naively expected O(α5

s) effect. The ra-
dius of convergence of this expansion is actually
quite small. A numerical analysis of the series [7]

shows that, at the three-loop level, an upper esti-
mate for the convergence radius is aτ,conv < 0.11,
which is very close to the physical value. Thus,
the fixed-order expansion (14) should not be used
for accurate predictions of Rτ . The result (9)
has been correctly obtained using Eq. (12) with
the exact values of the functions A(n)(αs). The
slightly different results quoted in refs. [12, 21]
originate in their use of the pathological fixed-
order expansion (14).1

3. |Vus| determination from tau decays

The separate measurement of the |∆S| = 0
and |∆S| = 1 tau decay widths provides a very
clean determination of Vus [23,24]. To a first ap-
proximation the Cabibbo mixing can be directly
obtained from experimental measurements, with-
out any theoretical input. Neglecting the small
SU(3)-breaking corrections from the ms − md

quark-mass difference, one gets:

|Vus|
SU(3) = |Vud|

(

Rτ,S

Rτ,V +A

)1/2

= 0.210±0.003 .

We have used |Vud| = 0.97418 ± 0.00027 [25],
Rτ = 3.640 ± 0.010 and the value Rτ,S =
0.1617± 0.0040 [24], which results from the most
recent BaBar [26] and Belle [27] measurements
of Cabibbo-suppressed tau decays [28]. The new
branching ratios measured by BaBar and Belle
are all smaller than the previous world aver-
ages, which translates into a smaller value of
Rτ,S and |Vus|. For comparison, the previous
value Rτ,S = 0.1686 ± 0.0047 [18] resulted in
|Vus|

SU(3) = 0.215 ± 0.003.
This rather remarkable determination is only

slightly shifted by the small SU(3)-breaking con-

1 A better convergence of the fixed-order expansion (14)
is enforced in Ref. [21] through an artificial cancelation
of the Kn and gn contributions at higher orders. Since
Rτ does not get corrections from D = 4 terms in the
OPE, this behaviour is trivially accomplished assuming
that the perturbative series is dominated by an n = 2 IR
renormalon. While this provides an interesting academic
model of higher-order contributions, the resulting wild be-
haviour of the Adler series is totally ad-hoc and gener-
ates problems for weighted distributions of the form (7).
The non-perturbative correction in (8) would no longer be
valid within this model, making the low value of αs(mτ )
claimed in [21] unjustified.
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tributions induced by the strange quark mass.
These corrections can be estimated through a
QCD analysis of the differences [23, 24, 29–36]

δRkl
τ ≡

Rkl
τ,V +A

|Vud|2
−

Rkl
τ,S

|Vus|2
. (15)

The only non-zero contributions are proportional
to the mass-squared difference m2

s − m2
d or to

vacuum expectation values of SU(3)-breaking op-
erators such as δO4 ≡ 〈0|mss̄s − mdd̄d|0〉 ≈
(−1.4 ± 0.4) · 10−3 GeV4 [23, 29]. The dimen-
sions of these operators are compensated by cor-
responding powers of m2

τ , which implies a strong
suppression of δRkl

τ [29]:

δRkl
τ ≈ 24SEW

{

m2
s(m

2
τ )

m2
τ

(

1 − ǫ2d
)

∆kl(αs)

−2π2 δO4

m4
τ

Qkl(αs)

}

, (16)

where ǫd ≡ md/ms = 0.053 ± 0.002 [37]. The
perturbative corrections ∆kl(αs) and Qkl(αs) are
known to O(α3

s) and O(α2
s), respectively [29, 36].

The J = 0 contribution to ∆00(αs) shows a
rather pathological behaviour, with clear signs of
being a non-convergent perturbative series. For-
tunately, the corresponding longitudinal contri-
bution to δRτ ≡ δR00

τ can be estimated phe-
nomenologically with a much better accuracy,
δRτ |

L = 0.1544 ± 0.0037 [23, 38], because it is
dominated by far by the well-known τ → ντπ
and τ → ντK contributions. To estimate the re-
maining transverse component, one needs an in-
put value for the strange quark mass. Taking the
range ms(mτ ) = (100 ± 10) MeV [ms(2 GeV) =
(96 ± 10) MeV], which includes the most recent
determinations of ms from QCD sum rules and
lattice QCD [38], one gets finally δRτ,th = 0.216±
0.016, which implies [24]

|Vus| =

(

Rτ,S

Rτ,V +A

|Vud|2
− δRτ,th

)1/2

= 0.2165± 0.0026 exp ± 0.0005 th . (17)

A larger central value, |Vus| = 0.2212± 0.0031, is
obtained with the old world average for Rτ,S.

Sizeable changes on the experimental determi-
nation of Rτ,S are to be expected from the full

analysis of the huge BaBar and Belle data sam-
ples. In particular, the high-multiplicity decay
modes are not well known at present. Thus, the
result (17) could easily fluctuate in the near fu-
ture. However, it is important to realize that the
final error of the Vus determination from τ de-
cay is completely dominated by the experimen-
tal uncertainties. If Rτ,S is measured with a 1%
precision, the resulting Vus uncertainty will get
reduced to around 0.6%, i.e. ±0.0013, making τ
decay the best source of information about Vus.

An accurate measurement of the invariant-
mass distribution of the final hadrons could make
possible a simultaneous determination of Vus and
the strange quark mass, through a correlated
analysis of several weighted differences δRkl

τ . The
extraction of ms suffers from theoretical uncer-
tainties related to the convergence of the pertur-
bative series ∆kl(αs), which makes necessary a
better understanding of these corrections.

4. τ → ντKπ and K → πlν̄l

The decays τ → ντKπ probe the same hadronic
form factors investigated in Kl3 processes, but
they are sensitive to a much broader range of
invariant masses. A theoretical understanding
of the form factors can be achieved, using an-
alyticity, unitarity and some general properties
of QCD, such as chiral symmetry and the short-
distance asymptotic behaviour [2, 3].

Figure 2 compares the resulting theoretical de-
scription of the τ decay spectrum [39] with the
recent Belle measurement [27]. At low values of s
there is clear evidence of the scalar contribution,
which was predicted previously using a careful
analysis of Kπ scattering data [38, 40]. From the
measured τ spectrum one obtains MK∗ = 895.3±
0.2 MeV and ΓK∗ = 47.5±0.4 MeV [39]. Since the
absolute normalization is fixed by Kl3 data to be
|Vus| f

K0π−

+ (0) = 0.21664± 0.00048 [41], one gets
then a theoretical prediction for the branching
fraction, Br(τ− → ντKSπ

−) = 0.427 ± 0.024%,
in good agreement with the Belle measurement
0.404 ± 0.013%, although slightly larger.

The τ determination of the vector form fac-
tor fKπ

+ (s) [39, 42] provides precise values for its
slope and curvature, λ′+ = (25.2± 0.3) · 10−3 and
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λ′′+ = (12.9 ± 0.3) · 10−4 [39], in agreement but
more precise than the corresponding Kl3 mea-
surements [41].
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Figure 2. Theoretical description [39] (solid line)
of the Belle τ− → ντKSπ

− data [27]. The K∗′

(dashed-dotted) and scalar (dotted) contributions
are also shown.
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