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Abstract: 

In this paper, a new graphic cryptosystem based on reversible memory cellular automata is introduced. Its main feature is that the original 

image and the cipher image are defined by the same palette of colors and that the recovered image is equal to the original one, that is, 

there is not loss of resolution. Moreover, it is proved that the proposed cryptosystem is secure against brute-force attacks, statistical 

attacks and chosen plaintext attacks. 
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1. Introduction 

Dynamical systems have been widely used in cryptography (see [4]). Nevertheless, there 

are few protocols based on dynamical systems specifically designed to encrypt images (see, 

for example [2]). Usually, these protocols are difficult to implement due to the difference 

between the chaotic arithmetic defined by the dynamical system used and the discrete 

arithmetic of the computers. Moreover, the decrypted image usually presents a loss of 

resolution and definition and consequently, it is not exactly the original one.  

Recently, the use of cellular automata to encrypt images has been proposed (see [1, 3]). 

Their main feature is that the recovered image has no loss of resolution. 

In this paper, the use of memory reversible cellular automata is proposed in order to design 

a graphic cryptosystem. It allows one to cipher images defined by any number of colors. 
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The original image and the cipherimage are defined by the same palette of colors and the 

decrypted image is identical to the original one, that is, no loss of resolution nor definition 

takes place. 

The rest of the paper is organized as follows: In Section 2, some basic concepts related to 

memory cellular automata are presented. In Section 3, the new cryptosystem for images is 

introduced and its security is proved. In Section 4 an example is shown, and finally, the 

conclusions and further work are presented in Section 5. 

2. Memory cellular automata 

A cellular automaton (CA) is a discrete dynamical system formed by a finite or infinite 

number of identical objects called cells, which are endowed with a state that changes in 

discrete time steps according to a deterministic rule. Specifically, a CA can be defined by 

means of a 4-uplet A = (C, S, V, f), where C is the cellular space formed by n cells: < i >, 0 

≤ i ≤ n-1. S is the state set, that is, the set of all posible values of the cells. In this work, S is 

a finite set with |S| = k; consequently S = Zk. The set of indices of C is the finite ordered 

subset ZV , |V| = m, such that for every cell < i >  C, its neighborhood, Vi, is the 

ordered set of m cells given by  . con  ,,,1 ViiV imi     

Moreover, the local transition function, f : S
m
S, is the function that determines the 

evolution of the states of the cells taking into account the states of the neighbor cells. Then, 

if Sa t

i )(  stands for the state of the cell < i > at time t, and )(t

iV  is the set of states of the 

neighborhood of the cell < i > at time t, the next state of the cell is: 
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As the cellular space is finite, boundary conditions must be given in order to assure that the 

evolution of the cellular automata is well-defined. In this work, periodic boundary 

conditions are considered:    nji mod then )()( t

j

t

i aa  . 

The set of states of all cells at time t is called the configuration at time t and it is 

represented by the vector   . ,, )(
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(0)

 is the initial 

configuration. If we denote by C the set of all possible configurations of a CA, the global 

function of the CA is a linear transformation )1()(:  tt CC  C,C , that yields the 

configuration at the next time step during the evolution of the CA. If  is bijective then 

there exists another CA, called its inverse, whose global function is 
-1

. When such inverse 

cellular automaton exists, the CA is called reversible and the evolution backwards is 

possible. 

In general, the evolution of a CA considers that the state of every cell at time t + 1 depends 

on the state of its neighborhood at time t. Nevertheless, one can consider that this evolution 

also depends on the states of other cells at times t - 1, t - 2, etc. In this case, the transition 

function can be represented in the following way:  , 
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specific local transition function. These CA are called memory cellular automata. 

3. The graphic cryptosystem 

Let I be an image defined by n = rs  128 pixels and by a palette of c colors. This image 

can be represented by a matrix, M, of order n = rs, with coefficients in Zc, where c = 2
b
 

and b = 1, 8, 24, for black and white images, grey level images and color images, 

respectively. The coefficient (i, j) of M stands for the color’s numeric value of the pixel (i, 



j) of the image I. As a consequence, if all rows of M are linking together, a linear array of n 

integers is obtained: P = (p0,...,pn-1). It is called the associate linear array to the image I. 

The proposed cryptosystem consists of three phases. In the first phase (the setup phase), the 

two users agree the key to be shared and the CA to be used is defined. In the second phase 

(the encryption phase), the sender encrypts the secret image (plainimage) to be sent to the 

receiver. Finally, in the third phase (decryption phase), the receiver uses the inverse CA to 

the one considered in the setup phase and decrypts the received image (cipherimage). 

Setup phase. Before encrypting an image, the sender and the receiver, agree to use a 1024-

bit secret key for the cryptosystem, K. Using such key, a pseudorandom sequence of 2n + 2 

bits is generated by means of the generator BBS. As a consequence, two sequences of n + 1 

bits are obtained:   )0()0(

00 ,, nbbK   and  )1()1(

01 ,, nbbK  . Subsequently, the sender 

constructs the linear array, P, associated to the image I and, using a random number 

generator, obtains a sequence of n integer numbers in Zc,  . ,, 10  nzzZ   Finally, a 

memory CA, A = (C, S, V, f), is defined to be used in the cryptosystem. Its main features are 

the following: the cellular space C, is a sequence of n = rs cells; the state set is S = Zc; the 

neighborhoods are defined by V = {-n/2,...,n/2}; and the local transition function is: 
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Note that this CA is reversible and its inverse is given by the following local transition 

function: 
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Note that it is suppose that n =rs is even. If n is odd, then an aditional random pixel will 

be added to the original image in order to obtain an even number of pixels. 



Encryption phase. In this phase, the sender defines the first configutations of the CA: C
(0)

 

= P, C
(1)

 = Z, and using the CA given by (1), computes the configurations C
(2)

 and C
(3)

. The 

cipherimage, J, is given by linking together the images, J1 and J2,  whose associated linear 

arrays are the configurations C
(2)

 and C
(3)

. The size of the image J is of 2n = (2r)s pixels. 

The maximum number of colors of the cipherimage is c, and consequently I and J are 

defined by the same palette of colors. Remark that the random configuration C
(1)

 can be 

destroyed when the encryption phase is finished. 

Decryption phase.  To decrypt the cipherimage, J, the receiver computes the 

configurations )3()0( CC   and  
)2()1( CC  , taking into account J. Subsequently, he applies 

the CA twice to obtain  )3( PC  , which is the linear array associated to I. Note that the 

recovered image is exactly the original image due to the reversibility of the CA used. 

If the number of pixels of the original image is n = rs, where 16  n  127, the above 

encryption and decryption protocols work correctly by virtue of the periodic boundary 

conditions. 

The proposed cryptosystem is secure against brute-force attacks due to the lenght of the 

key: 1024 bits. Also, it is secure against statistical attacks since the generator BBS is used 

and the configuration C
(1)

, is obtained by means of a random number generator. Moreover, 

the cryptosystem is secure against chosen plaintext attacks: if a possible attacker chooses an 

homogeneous image: ,10   ,Z)0(  nipa ci  then, to obtain the bit sequences used in 

the protocol: K0 y K1, he has to solve the system of  2n non-linear equations with 3n+2 

unknown variables: kkjj zabb )1()1()0( ,, , with nj 0 , 10  nk , given by the following 

equations: 
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4. Example 

The image (a) of the Figure 1 is a grey-level image with 216 colors and defined by 

512512 pixels. Its cipherimage is given by the image (b) of the same figure. It is also a 

grey-level image. It is defined by 256 grey levels and by 5121024 pixels. 

 

Figure 1. (a) Original image  (b) Cipherimage 

 

5. Conclusions and further work 

We have proposed a new graphic cryptosystem in order to encrypt an image defined by 

pixels and by any number of colors. This cryptosystem is based on a memory reversible 

cellular automaton and uses a cryptographically secure pseudorandom number generator in 

the encryption protocol. The session key of the cryptosystem has 1024 bits. Furthermore, 

the encrypted image is of the same type than the original one, that is, both images are 

defined by the same color palette. Moreover, the decrypted image is identical to the original 

one, that is, no loss of resolution nor definition takes place. In relation to the security of the 

proposed cryptosystem, we have stated that it is secure against brute-force attacks, 



statistical attacks and chosen plaintext attacks. Further work aimed at designing an 

algorithm with a lesser cipherimage and with the same level of security. 
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