
The use of Linear Hybrid Cellular
Automata as Pseudorandom Bit
Generators in Cryptography

C. Fraile Rubio1, L. Hernández Encinas2, S. Hoya White1,

A. Martín del Rey3 and G. Rodríguez Sánchez4

1Dpto. Matemática Aplicada, E.T.S.I.I., Universidad de Salamanca

Avda. Fernández Ballesteros s/n, 37700-Béjar, Salamanca, Spain.

E-mails: cjfrailer@terra.es, sarahw@usal.es
2Instituto de Física Aplicada, CSIC

C/Serrano 144, 28006-Madrid, Spain.

E-mail: luis@iec.csic.es
3Dpto. Matemática Aplicada, E.P.S., Universidad de Salamanca

C/Santo Tomás s/n, 05003-Ávila, Spain.

E-mail: delrey@usal.es
4Dpto. Matemática Aplicada, E.P.S., Universidad de Salamanca

Avda. Requejo 33, 49022-Zamora, Spain.

E-mail: gerardo@usal.es

Abstract
The main goal of this paper is to study the behaviour of a particular type of hybrid

cellular automata, as cryptographically secure pseudorandom bit generators. The hy-

brid cellular automata considered have been passed the statistical tests de�ned in the

cryptographic literature to study the security of the sequences generated for crypto-

graphic purposes: frequency test, serial test, poker test, run test and autocorrelation

test. Moreover, a study of their dynamical behaviour have been done.

Keywords- Cryptography. Linear Hybrid Cellular Automata. Pseudorandom
Number Generators.
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1. INTRODUCTION

Random number and random bit generators play an important role in di¤erent com-

puter simulation methods such as Monte Carlo techniques, Browmian dynamics, sto-

chastic optimization, computer-based gaming, design and testing of VSLI chips, cryp-

tographic systems, etc. (Niederreiter, 1992).

For example, the security of several cryptosystems depends on the generation of

random numbers and random bit sequences. That is the case for the pair of primes in

RSA cryptosystem, the secret key of DES and Triple-DES cryptosystems, the private

key of DSA digital signature scheme, the keystream of stream cyphers, etc. (Menezes

et al., 1997; Stinson, 2002). There exist two methods to produce such quantities:

non-deterministic and deterministic algorithms.

The �rst type uses natural sources of randomness and usually are based on hard-

ware � by using the randomness occuring in some natural physiscal process: elapsed

time between emission of particles during a radioactive decay, the frequency insta-

bility of a free running oscillator, etc.� and on software � elapsed time between

mouse movements, the content of input/output bu¤ers, etc.� Nevertheless, these al-

gorithms are not suitable for cryptographic purposes since the generator must always

produce the same output sequence starting from the same initial seed and these non-

deterministic procedures do not satisfy this property. That is why all methods used in

cryptography are based on deterministic algorithms. Due to this way of generating,

these numbers are called pseudorandom numbers.

Speci�cally, given a short truly random binary sequence of �xed length n (seed),

pseudorandom bit generators produce a binary sequence of length k >> n which

seems to be random. Such sequences are used to encrypt a plaintext by using stream

cyphers in such a way that the binary sequence de�ned by the plaintext is added, bit

by bit, with the bit sequence generated by the pseudorandom bit generator. The secret

key is the seed used in the generator. Hence, good random properties of the generator

are convenient to prevent statistical attacks but, moreover, it is necessary that the

generator must be sure. The security, in this sense, means that the probability that

an algorithm can produce in a polynomial time the next bit of a given sequence, is

negligible.

In this work, we are interested in the use of linear hybrid cellular automata as

pseudorandom bits generators in relation to their cryptographic properties. One-

dimensional cellular automata (CA for short) are �nite state machines consisting of a

�nite number of interconnected cells arranged linearly in one dimension, each of which

can be in one of a �nite number of possible states. Here, we only consider boolean

cellular automata, that is, CA whose state set is Z2 = f0; 1g. Every cell essentially



comprises of a memory element built with a D �ip-�op and a combinatorial logic that

generates the next-state of the cell from the present states of its neighbouring cells.

When all cells evolve according to the same logic function, the CA is called uniform,

otherwise it is called hybrid. Moreover, linear CA are those whose logic function

employs only the XOR gate.

The use of CA to design cryptosystems goes back to middle eighties when S.

Wolfram proposed the cellular automaton with rule number 30 as a pseudorandom

bit generator (Wolfram, 1986) for cryptographic purposes. Since then, many CA-

based cryptosystems have been proposed not only for text (Bardell, 1990; Cattell

& Muzio, 1998; Díaz Len et al., 2003; Guan, 1987; Gutowitz, 1993; Nandi, Kar &

Chaudhuri, 1994; Tomassini & Perrenoud, 2001; Tomassini et al., 1999) but also for

images (Álvarez Marañon et al., 2003; Hernández Encinas et al., 2002).

Most of these works are devoted to the study of cellular automata as crypto-

graphic secure pseudorandom bit generators. Traditionally, only uniform cellular

automata have been considered. In this paper, we focus our attention on hybrid CA,

and consequently the main goal of this work is to study the pseudorandom prop-

erties of linear hybrid cellular automata as cryptographic secure pseudorandom bit

generators.

The organization of this paper is as follows. In Section 2, an overview of pseudo-

random number generators is presented; in Section 3, the basic concepts of the theory

of cellular automata are introduced, focusing our attention on linear hybrid cellular

automata; in Section 4, the study of such cellular automata as pseudorandom bit

generators is made. Finally, in Section 5 the conclusions are presented.

2. OVERVIEW OF PSEUDORANDOM NUMBER GENERATORS

There exist several ways for generating pseudorandom numbers and pseudorandom

sequences of bits � for a general review of them, view (Menezes et al., 1997)� .

The most popular are linear congruential generators, lagged-Fibonacci generators

and linear feedback shift registers (LFSR).

To assure good pseudorandom properties of a bit sequence, it has to pass several

statistical tests � see (Knuth, 1998; Niederreiter, 1992)� . The �ve basic statistical

tests that are usually used for determining whether a sequence of bits possesses some

speci�c features that a truly random sequence would be likely to exhibit are the

frequency test, the serial test, the poker test, the run test and the autocorrelation

test (Menezes et al., 1997). They have been developed ad hoc for cryptographic use

and they are based on Golomb�s randomness postulates (Golomb, 1967). Before to

introduced these postulates, some basic notations and de�nitions are shown.



Let B = fb0; b1; b2; ::g be an in�nite bit sequence. An n-subsequence of B is

Bn = fb0; :::; bn�1g. A sequence B is said to be N-periodic if bi = bi+N , for every

i � 0. Moreover, B is periodic if it is N -periodic for some positive integer N . In this
case, the period of B is the minimun integer number with the last property. If B is

periodic of period N , then every subsequence BN is a cycle. Moreover, a run of B

is a subsequence consisting of consecutive zeros or consecutive ones which is neither

preceded nor succeeded by the same symbol. A run of zeros is called gap, whereas

a run of ones is called block. If B is periodic of period N , then the autocorrelation

function of B is the following integer-valued function:

C(t) =
1

N

N�1X
i=0

(2bi � 1)(2bi+t � 1); 0 � t � N � 1: (1)

This function measures the amount of similarity between the sequence B and a shift

of B by t positions. If B is a random periodic sequence of period N , then jN � C (t)j
can expected to be quite small for all values of t (Menezes et al., 1997).

Consequently, the three Golomb�s randomness postulates are the following:

First postulate. In the cycle BN of B, the number of ones di¤ers from the number

of zeros by at most 1.

Second postulate. In the cycle BN , at least half the runs have length 1, at least

one-fourth have length 2, at least one-eighth have length 3, etc., as long as the number

of runs so indicated exceeds 1. Furthermore, for each of these lengths, there are almost

equally many gaps and blocks.

Third postulate. The autocorrelation function is two-valued. Consequently, there

exists an integer k such that:

N � C(t) =
N�1X
i=0

(2bi � 1) (2bi+t � 1) =
(
N t = 0

k 1 � t � N � 1
(2)

A sequence of bits which satisfy Golomb�s postulates is called a pseudo-noise sequence.

As a consequence the mean features of the tests last mentioned are the following:

1. The frequency test has the purpose of determining whether the number of 0�s

and 1�s in the sequence B = fb0; : : : ; bn�1g are approximately the same, as it is
expected for a truly random sequence. If n0; n1 denotes the number of 0�s and

1�s is x, respectively, the statistic considered, which follows a �2 distribution

with 1 degree of freedom if n � 10, is:

Xf =
(n0 � n1)2

n
: (3)



2. The serial test tries to determine if the number of pairs 00, 01, 10 and 11

in the sequence x, are approximately the same. If n00; n01; n10 and n11 are,

respectively, the number of such occurrences, the statistic used, which follows

a �2 distribution with 2 degrees of freedom if n � 21, is:

Xs =
4

n� 1
�
n200 + n

2
01 + n

2
10 + n

2
11

�
� 2

n

�
n20 + n

2
1

�
+ 1: (4)

3. In the poker test the sequence x is divided into k non-overlapping parts of length

m, where m is an integer such that bn=mc � 5 � 2m. Let ni be the number of
occurrences of the ith type of sequences of length m, such that each of them

appear the same number of times in x. Then, the statistic considered, which

follows a �2 distribution with 2m � 1 degrees of freedom, is:

Xp =
2m

k

 
2mX
i=1

n2i

!
� k: (5)

4. As the expected number of runs of length i in a random sequence of length n is

ei =
n� i+ 3
2i+2

; (6)

the purpose of the run test is to check if the number of runs of several lengths

in x is as expected in a random sequence. Let k be the largest integer i for

which ei � 5 and let Gi and Bi the number of gaps and blocks of length i such
that 1 � i � k. The statistic used for this test, which follows a �2 distribution
with 2k � 2 degress of freedom, is:

Xr =
kX
i=1

(Gi � ei)2

ei
+

kX
i=1

(Bi � ei)2

ei
: (7)

5. The autocorrelation test determines the correlation between the sequence x and

non-cyclic shifted versions of x. Let d be an integer such that 1 � d � bn=2c.
The number of bits in x not equal to their d-shifts is given by

A (d) =
n�d�1X
i=0

xi � xi+d: (8)

The statistic considered, which follows a N (0; 1) distribution if n� d � 10, is:

Xa =
2A (d)� n+ dp

n� d
: (9)



3. CELLULAR AUTOMATA

3.1. Basic de�nitions
One-dimensional cellular automata are discrete dynamical systems consisting of a

�nite number of identical objects, called cells, arranged linearly in one dimension and

such a way that every one of them is in any one of a �nite number of possible states.

These states change in discrete time steps according to a rule, called local transition

function, such that the state of a cell at the next time step is determined by the

current states of a surronding neighborhood of cells.

More precisely, a one-dimensional CA is a 4-uplet A = (I; S; V; f), where I is the
cellular space consisting of a one-dimensional array of n cells. Each cell is denoted by

hii, 0 � i � n � 1 (see Figure 1). The �nite set S is the set of all possible states of
the cells; It is usually given by Zk. Moreover, a(t)i stands for the state of the cell hii
at time t. The ordered set of indices of the CA, V � Z, gives the neighbourhood of
every cell hii, consisting of the cells whose states at a time step determine the state
of hii at the next time step. In this work we consider symmetric neighbourhoods of
radius r, that is, the set of indices is V = f�r; : : : ; 0; : : : ; rg, and consequently the
neighbourhood of the cell hii is given by:

Vhii = fhi� ri ; : : : ; hii ; : : : ; hi+ rig ; 0 � i � n� 1: (10)

Finally, the local transition function, f : S2r+1 ! S, determines the evolution of the

CA throughout time, i.e., the changes of the states of every cell taking the states of

its neighbours into account. As a consequence:

a
(t+1)
i = f

�
a
(t)
i�r; : : : ; a

(t)
i ; : : : ; a

(t)
i+r

�
: (11)

As the cellular space is �nite, boundary conditions must be considered in order to as-

sure the well-de�ned evolution of the CA. Here we will stablish two types of boundary

conditions:

1. Periodic boundary conditions. This type consider a(t)i = a
(t)
j if and only if i � j

(modn).

2. Null boundary conditions. These conditions make a(t)i = 0 if i < 0 or i > n� 1.

Figure 1. One-dimensional cellular automata with n cells



The set of states of all cells at time t is called the con�guration at time t of the CA,

and it is denoted by C(t). In particular, C(0) is the initial con�guration. The set of all

possible con�gurations of a CA is denoted by C; if jSj = k, then jCj = kn. Moreover,
for every cell hii, the vector

�
a
(0)
i ; a

(1)
i ; : : : ; a

(t)
i

�
is called the temporal evolution of

order t+ 1 of hii.

3.2. Wolfram cellular automata
A particular and very interesting class of CA areWolfram cellular automata �WCA

for short� (Wolfram, 1983), for which S = Z2, the neighbourhoods are symmetric
of radius r = 1, they have periodic boundary conditions and, consequently, the local

transition function is given by the following expression:

a
(t+1)
i = f

�
a
(t)
i�1; a

(t)
i ; a

(t)
i+1

�
; 0 � i � n� 1: (12)

As jSj = 2 and jV j = 3, then there are 22
3
= 256 WCAs. Each WCA has

associated aWolfram rule number w, 0 � w � 255, which is de�ned as follows: There
are 8 possible values for the neighbourhoods: (0; 0; 0), (0; 0; 1),: : :,(1; 1; 1); then for

the WCA de�ned by (12) one has:

f0 = f (0; 0; 0) ; f1 = f (0; 0; 1) ;

f2 = f (0; 1; 0) ; f3 = f (0; 1; 1) ;

f4 = f (1; 0; 0) ; f5 = f (1; 0; 1) ;

f6 = f (1; 1; 0) ; f7 = f (1; 1; 1) ;

(13)

and one can de�ne w = f0 �20+f1 �21+ : : :+f7 �27. In this way, a WCA with number
w will be denoted by WCA(w).

A graphic representation of the evolution of the CA by means of the evolution

diagram can be obtained. This diagram represents the con�gurations of the CA in

the rows by simple substituting the state 1 by �, and the state 0 by �.
A very important type of WCA are linear WCA in which the next-state generating

logic employs only XOR logic operation. As a consequence the algebraic expression

of their local transition functions are given by:

a
(t+1)
i = �a

(t)
i�1 + �a

(t)
i + 
a

(t)
i+1; (mod 2) ; 0 � i � n� 1; (14)

where �; �; 
 2 Z2. There are eight linear WCA, whose explicit expressions are the



following:

WCA (0) � a
(t+1)
i = 0 (mod 2) ; (15)

WCA (60) � a
(t+1)
i = a

(t)
i�1 + a

(t)
i (mod 2) ; (16)

WCA (90) � a
(t+1)
i = a

(t)
i�1 + a

(t)
i+1 (mod 2) ; (17)

WCA (102) � a
(t+1)
i = a

(t)
i + a

(t)
i+1 (mod 2) ; (18)

WCA (150) � a
(t+1)
i = a

(t)
i�1 + a

(t)
i + a

(t)
i+1 (mod 2) ; (19)

WCA (170) � a
(t+1)
i = a

(t)
i+1 (mod 2) ; (20)

WCA (204) � a
(t+1)
i = a

(t)
i (mod 2) ; (21)

WCA (240) � a
(t+1)
i = a

(t)
i�1 (mod 2) : (22)

The importance of such automata lies in their interpretation in terms of Linear Al-

gebra. Let WCA (w) be a linear WCA with periodic boundary conditions and local

transition function given by (14). Then, its evolution is given by the following ex-

pression:

C(t+1);T =M � C(t);T (mod 2) ; (23)

where C(t);T stands for the transpose matrix of C(t), and

M =

0BBBBBBBBB@

� 
 0 � � � 0 �

� � 
 � � � 0 0

0 � � � � � 0 0
...
...
...
. . .

...
...

0 0 0 � � � � 



 0 0 � � � � �

1CCCCCCCCCA
(24)

is called the transition matrix of WCA (w).

Note that in the case of considering null boundary conditions, the (1; n)-th coef-

�cient and the (n; 1)-th coe¢ cient of this matrix are null.

Based on the statistical properties of the dynamics of cellular automata, i.e., the

patterns generated during the evolution of the CA from disordered initial con�gu-

rations, S. Wolfram classi�ed them into four categories (Wolfram, 1983; Wolfram,

1984):

1. Class I: The evolution of such automata leads from almost all initial con�gu-

rations to a homogeneous �nal con�guration:
�
1; (n: : :; 1

�
or
�
0; (n: : :; 0

�
. Conse-

quently, pattern disappears with time and changes in the initial con�guration

yield no changes in the �nal con�guration (see Figure 2).



Figure 2. Evolution of Class I CA

2. Class II: The evolution of these CA leads to a set of stable or simple periodic

structures (see Figure 3). As a consequence, the reduction of the set of con�g-

urations generated by this type of cellular automata is re�ected in a decrease

in its entropy. Small changes in the initial con�guration yield changes only in

a region of �nite size.

Figure 3. Evolution of Class II CA

3. Class III: This class is formed by all those CA which exhibits a chaotic aperiodic

or pseudorandom behaviour (see Figure 4). Consequently, in this type pattern

grows inde�nitely at a �xed rate (small changes in the initial con�guration yield

changes over a region of ever-increasing size) and they are specially suitable for

pseudorandom number generation.

Figure 4. Evolution of Class III CA

4. Class IV: The evolution of this type of CA yields to complicated localized and

propagating structures. As a consequence, this class exhibits more complex

behaviour, and is conjectured to be capable of universal computation (see Figure

5).

Figure 5. Evolution of Class IV CA

Note that continuous dynamical systems provide similar classes of behaviour seen in

cellular automata. The cellular automata of �rst class may be considered to evolve to

limit points; the second class cellular automata may be considered to evolve to limit

cycles. Cellular automata of class 3 exhibit chaotic behaviour similar to dynamical

systems with strange attractors, and �nally, the cellular automata of class 4 have very

long transients, and no direct analogue for them has been identi�ed among continuous

dynamical systems



3.3. Linear hybrid cellular automata
In the last two subsections we have considered CA in which all cells evolve accord-

ing to the same local transition rule, for this reason they are called uniform CA.

Nevertheless, we can consider CA in which the local transition functions are not the

same for each cell. In this case, we have hybrid CA (or non-uniform CA) � HCA for

short� .

Here, we study HCA based on the combination of two linear Wolfram local tran-

sition functions:

WCA (u) � a
(t+1)
i = �ua

(t)
i�1 + �ua

(t)
i + 
ua

(t)
i+1 (mod 2) ; (25)

WCA (v) � a
(t+1)
i = �va

(t)
i�1 + �va

(t)
i + 
va

(t)
i+1 (mod 2) ; (26)

with u < v and �u; �u; 
u; �v; �v; 
v 2 Z2. This linear HCA (LHCA for short) will
be denoted by fu; vg. If the number of cells of the cellular space of this LHCA is n,
then it is characterized by the n-upla of bits ("0; "1; : : : ; "n�1), in such a way that the

cell hii evolves according to WCA (u) if "i = 0, or according to WCA (v) if "i = 1.
This n-upla is called the evolution rule of the LHCA.

As in the uniform case, we can consider every LHCA in terms of Linear Algebra.

In particular, the evolution of the n-cell hybrid cellular automata fu; vg de�ned by
the local transitions functions (25)-(26) with the evolution vector ("0; "1; : : : ; "n�1)

and periodic boundary conditions, is de�ned by:

C(t+1);T =M � C(t);T (mod 2) ; (27)

where M is the transition matrix:

M =

0BBBB@
��0 
�0 0 � � � 0 ��0
��1 ��1 
�1 � � � 0 0
...

...
...

. . .
...

...


�n�1 0 0 � � � ��n�1 ��n�1

1CCCCA : (28)

and

�i = (1� "i)u+ "iv; 0 � i � n� 1: (29)

For null boundary conditions, the (1; n)-th coe¢ cient and the (n; 1)-th coe¢ cient of

M are null.

4. LHCA AS PSEUDORANDOM NUMBER GENERATORS

In this section, we �rstly describe the procedure for generating sequences of bits by

means of cellular automata. Moreover, three sieves are presented in order to choose



the CA with better random properties in order to generate pseudorandom sequences

of bits.

4.1 The procedure for generating bits
Cellular automata and, particullarly LHCA, can be considered in a very simple way

as pseudorandom bit generators. Starting from an initial con�guration on length n,

C(0) =
�
a
(0)
0 ; : : : ; a

(0)
n�1

�
, it is easy to construct a sequence of bits of length k �n >> n

by simple linking together the �rst k con�gurations, C(0); : : : ; C(k�1), of the evolution.

Nevertheless, this is not a cryptographic secure procedure: If an adversary obtains

a portion (of length greater than l) of such linked sequence, and knows the cellular

automata used, it is very easy to generate the rest of con�gurations given by such

automata during its evolution.

More secure bit sequences can be obtained by simply sampling the values that a

�xed cell attains in the evolution of the CA; that is, the bit sequence generated by

the CA is the temporal evolution of a particular cell hii:�
a
(0)
i ; a

(1)
i ; a

(2)
i ; : : :

�
: (30)

Note that this procedure is computationally more expensive than the previous one,

but it is also much more hard for an adversary to generate the rest of the sequence

knowing only one state of each past con�guration, as it is shown in §4.4. Consequently,

that is the procedure to generate bits used in this work with initial con�gurations of

512 bits.

4.2 First sieve: The study of the evolution diagram
As we mentioned above, those CA which exhibit chaotic or pseudorandom behaviour,

have good pseudorandom properties. Consequently a �rst sieve can achieved by

using the evolution diagrams of LHCAs of the form fu; vg presented in Appendix 1.
Taking into account these diagrams, one can classify the LHCAs into the four classes

mentioned in §3.2. As a consequence, the LHCA with apparent suitable behaviour as

psedorandom bit generators are the same for periodic boundary conditions and null

boundary conditions, and they are the following:

f60; 90g ; f60; 150g ; f60; 240g ; f90; 102g ; f90; 150g ; f90; 170g ;
f90; 240g ; f102; 150g ; f102; 170g ; f150; 170g ; f150; 240g: (31)

Note that in this sieve, several random initial con�gurations for every LHCA are

considered.

4.3 Second and third sieves: The tests for pseudorandomness
In the second and third sieve, the statistical tests for pseudorandomness (see §2.2)

are applied to the LHCA which passed the �rst sieve. The main features of these

sieves are the following:



1. The initial con�guration in both cases is formed by 512 cells.

2. The number of analyzed sequences is 100, each one of them of 1000 bits in the

second sieve, and 2500 bits in the third sieve.

3. Every test�s signi�cance level is 0:05 and the parameters of the poker and au-

tocorrelation tests: m; d, are randomly choosen.

4. Finally, in both sieves we have rejected a LHCA if the number of sequences

which not pass any of the tests is bigger than 10.

In the second sieve the results obtained for LHCA with periodic boundary con-

ditions are shown in Table 1, where the values in the columns stand for the number

of rejected sequences:

LHCA 1th 2th 3th 4th 5th

f60; 90g 2 6 5 6 4

f60; 150g 9 3 9 6 6

f60; 240g 4 5 5 8 6

f90; 102g 3 5 5 8 3

f90; 150g 3 4 3 8 3

f90; 170g 6 6 9 2 3

f90; 240g 4 5 8 5 5

f102; 150g 8 9 4 7 8

f102; 170g 7 2 4 8 6

f150; 170g 7 5 8 7 5

f150; 240g 6 6 6 4 2

Table 1. LHCA with periodic boundary conditions (second sieve)

whereas the results for LHCA with null boundary conditions are shown in Table 2:



LHCA

f60; 90g
f60; 150g
f60; 240g
f90; 102g
f90; 150g
f90; 170g
f90; 240g
f102; 150g
f102; 170g
f150; 170g
f150; 240g

1th 2th 3th 4th 5th

3 4 3 4 4

3 3 5 4 7

61 � � � �

6 9 8 13 �

2 1 3 4 6

0 0 0 0 12

32 � � � �

100 � � � �

0 0 0 100 �

4 3 5 7 4

0 0 0 0 0

Table 2. LHCA with periodic null conditions (second sieve)

Consequently, all LHCA with periodic boundary conditions passed the second sieve,

and only �ve of them with null boundary conditions: f60; 90g, f60; 150g, f90; 150g,
f150; 170g and f150; 240g, passed the second sieve.

The third sieve is passed for all LHCA with periodic boundary conditions except

of the LHCA f150; 170g, as it is shown in Table 3:

LHCA

f60; 90g
f60; 150g
f60; 240g
f90; 102g
f90; 150g
f90; 170g
f90; 240g
f102; 150g
f102; 170g
f150; 170g
f150; 240g

1th 2th 3th 4th 5th

5 5 5 8 6

4 6 3 5 3

7 8 6 6 7

3 2 3 4 6

3 6 5 6 4

1 2 3 5 6

4 8 7 7 7

8 3 2 5 4

3 4 6 5 6

7 8 7 10 �

3 7 5 5 6

Table 3. LHCA with periodic boundary conditions (third sieve)

In the other case, that is, for LHCA with null boundary conditions, three of the �ve

LHCA which passed the second sieve, f60; 90g, f90; 150g and f150; 240g also passed



this third sieve:
LHCA

f60; 90g
f60; 150g
f60; 240g
f90; 102g
f90; 150g
f90; 170g
f90; 240g
f102; 150g
f102; 170g
f150; 170g
f150; 240g

1th 2th 3th 4th 5th

6 0 6 0 0

100 � � � �

� � � � �

� � � � �

3 3 6 5 7

� � � � �

� � � � �

� � � � �

� � � � �

98 � � � �

0 6 0 1 1

Table 4. LHCA with null boundary conditions (third sieve)

4.4 Cryptographic security
Some cryptanalyst attacks based on the algebraic properties of cellular automata

(Díaz et al., Meier & Stafelbach, 1992) are e¢ cient if the number of cells of the

CA (i.e., the number of states of the initial con�guration) is less than 500. As it is

mentioned above, in this work the number of cells of the LHCA analysed is equal to

512; consequently, such attacks are avoided.

Moreover, good pseudorandom properties of the bit sequences generated are guar-

anteed by using the statistical (with cryptographic signi�cance) tests passed in this

work.

Furthermore, also �brute force�attacks are avoided as the length of the key is

formed by 1024 bits (512 representing the initial con�guration and 512 representing

the evolution rule of the LHCA) and, consequently there are 21024 ' 1:8�10308 possible
keys.

5. CONCLUSIONS

We have studied all the 28 linear hybrid cellular automata which are formed by

two linear Wolfram cellular automata for their use as pseudorandom bit generators

in cryptography. Consequently, we have analyced their pseudorandom properties by

means of several statistical tests with cryptographic signi�cance. From the results ob-

tained, we have considered 10 linear hybrid cellular automata with periodic boundary

conditions and 3 with null boundary conditions, with good pseudorandom properties.
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Appendix 1

Evolution diagrams of the LHCA studied with periodic boundary conditions



Evolution diagrams of the LHCA studied with null boundary conditions


