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The effect of nonadiabatic couplings on the collisional removal of O2�b 1�g
+ ,v� by O2�X 3�g

− , v
=0� is investigated. Two-dimensional adiabatic and quasidiabatic potential energy surfaces for the
excited dimer states and the corresponding nonadiabatic radial couplings have been computed by
means of ab initio calculations. Alternately, a two-state theoretical model, based on the Landau–
Zener and Rosen–Zener–Demkov assumptions, has been employed to derive analytical forms for the
nonadiabatic couplings and an adiabatic-to-diabatic transformation only depending on a reduced set
of adiabatic energy terms. Compared to the ab initio results, the predictions of the model are found
to be highly accurate. Quantum dynamics calculations for the removal of the first ten vibrational
states of O2�b 1�g

+ ,v� indicate a clear dominant contribution of the vibration-electronic relaxation
mechanism relative to the vibration-translation energy transfer. Although the present
reduced-dimensionality model precludes any quantitative comparison with experiments, it is found
that the removal probabilities for v=1–3 are qualitatively consistent with the experimental
observations, once the vibrational structure of the fragments is corrected with spectroscopical terms.
Besides, the model served to show how the computation of the adiabatic PESs just at the crossing
seam was sufficient to describe the nonadiabatic dynamics related to a given geometrical
arrangement. This implies considerable savings in the calculations which will eventually allow for
larger accuracy in the ab initio calculations as well as higher dimensional treatments. © 2010
American Institute of Physics. �doi:10.1063/1.3297893�

I. INTRODUCTION

The energy transfer by collisions involving the ground
and excited species of molecular oxygen plays a crucial role
in the chemistry of the upper Earth’s atmosphere. Since they
compete with radiative processes, the knowledge of the col-
lisional outcome is needed to understand the observed
steady-state populations of molecular oxygen and to properly
infer their production efficiencies.1 In particular, Slanger
et al.2 reported the vibrational distribution of the b 1�g

+ state
in the nightglow emission of the atmospheric band system,
for vibrational levels up to v=15. The distribution is remark-
able as it exhibits a bimodal feature, with peaks at v=3 /4
and v=12, and deep minima at v=1 and v=8. Several
experiments3–5 have been conducted to investigate the colli-
sional removal of O2�b 1�g

+ , v=1–3� by O2, which turned
out to be the most efficient collider for those vibrational
levels.6 An impressive decrease was found in the removal
rate coefficients as v increases from 1 to 3, consistent with
the features observed in the vibrational distribution. Among
the possible mechanisms responsible of such behavior, the
electronic-electronic �E-E� energy exchange process �primes
are used to label the identity of the molecules�,

O2��b
1�g

+,v� + O2��X
3�g

−, v = 0�

→ O2��X
3�g

−,v� + O2��b
1�g

+, v = 0� , �1�

was thought to be the most likely candidate, based on a con-
sistency between the associated endothermicities and the ob-
served activation energies. However, a detailed theoretical
picture of the deactivation process is still missing. Kirillov7

did give estimations of removal rate coefficients by resorting
to the semiclassical Rosen–Zener model8 but, although the
results are consistent with the experimental observations, the
formalism rests on the use of empirical parameters and in-
vestigation of the underlying nonadiabatic mechanisms was
not addressed.

In order to provide a first theoretical insight into the
microscopic mechanisms, we investigate in this work the ef-
fect of nonadiabatic radial couplings on the collisional re-
moval of O2�b 1�g

+ ,v� by O2, by means of ab initio methods
and quantum dynamics calculations. The removal of vibra-
tional states up to v=9 is treated within an isolated two-state
model, involving the two electronic states which correlate
with the fragments O2�b 1�g

+�+O2�X 3�g
−� of Eq. �1�. Al-

though the spin-orbit couplings were found to have dramatic
effects on the removal of O2�X 3�g

− , v�25� by O2,9–11 the
radial couplings between the two states of interest are con-
sidered here as the main source of nonadiabatic pathways for
O2�b 1�g

+ ,v�. The vicinity of the coupling region with re-
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spect to the fragment vibrational states of Eq. �1� provides
strong support to the relevance of such a deactivation pro-
cess, at least for the lowest vibrational states of O2�b 1�g

+ ,v�.
As shown in the following, the validity of the isolated two-
state model is ensured for the entire range of vibrational
states studied by the negligible radial couplings found with
other states of the dimer unless high interaction energies are
sampled.

Given the dimensionality of the system together with the
difficulty in dealing with several coupled potential energy
surfaces �PESs�, we employ a reduced dimensionality model
of the dimer. We focus on a particular orientation of the
oxygen molecules, the rectangular H orientation,12 corre-
sponding with the equilibrium geometry of the dimer of D2h

symmetry when both molecules are at their equilibrium in-
ternuclear distances re. Two degrees of freedom are consid-
ered, the intermolecular separation R and the internuclear
distance r of the vibrationally excited molecule O2�, whereas
the vibrationally cold molecule O2� is frozen at its equilib-
rium geometry re. By varying the internuclear distance of
one of the molecules the system becomes of the C2v symme-
try. In Fig. 1 we present a scheme of the low-lying electronic
states of the system in the asymptotic limit as functions of
the active coordinate r. The two upper curves of the same
3B2 symmetry correspond to the states of interest in the
present work, namely, the 3 3B2 and 4 3B2 adiabatic states.
Due to the near resonance of the latter states around re and
the noticeable effects of exchange interactions occurring for
the chosen H orientation,13–17 large nonadiabatic radial cou-
plings are expected at finite intermolecular separations.

The reduced dimensionality model considered here can-
not yield a quantitative agreement with experimental results,
in particular, due to the neglect of the rotational degrees of
freedom. Instead, the present study will serve as a necessary
step to identify the nonadiabatic mechanisms and to assess

their importance in the collision dynamics. The two-
dimensional model allows us to investigate the following
relaxation pathways of O2�b 1�g

+ ,v�:

O2�b,v� + O2�X,re� → O2�b,v�� + O2�X,re� , �2�

O2�b,v� + O2�X,re� → O2�X,v�� + O2�b,re� , �3�

where the X 3�g
− and b 1�g

+ states are referred to as X and b.
The first process is a vibration-translation �V-T� intramolecu-
lar energy transfer, and the second one is a vibration-
electronic �V-E� intermolecular energy transfer, coincident
with the E-E mechanism of Eq. �1� in the case of v�=v. The
nonadiabatic radial couplings studied here between the 3 3B2

and 4 3B2 states are responsible for the V-E relaxation
mechanism.

The paper is organized as follows. In Sec. II, after a brief
description of the computational methodology, we discuss
the results obtained for the ab initio PESs and the nonadia-
batic coupling matrix elements �NACMEs�. In Sec. III, we
present a two-state theoretical model providing analytical ex-
pressions for the NACMEs and an adiabatic-to-diabatic
transformation, and confront them against the results of
ab initio calculations. Section IV is devoted to the collision
dynamics using both ab initio and model diabatic PESs. V-E
and V-T relaxation mechanisms are investigated and the con-
sistency with the experimental observations is assessed. Con-
clusions and directions for further investigations are given in
Sec. V.

II. AB INITIO POTENTIAL ENERGY SURFACES
AND NONADIABATIC COUPLINGS

A. Methodology

The two-dimensional 3 3B2 and 4 3B2 PESs were ob-
tained from state-average CASSCF calculations, with equal
weights for the first four states of the same symmetry. The 2p
shell of each oxygen atom was included in the active space,
leading to 16 electrons distributed among 12 molecular or-
bitals and to configuration state functions expansions of
28 352 terms. The 5s4p3d2f atomic natural orbital basis
set18 was employed throughout the calculations. Within this
computational scheme, the PESs were computed for R rang-
ing from 4 to 18 bohr and r from 1.8 to 3.3 bohr. The vibra-
tionally cold molecule O2� was held fixed at its equilibrium
geometry re=2.28 bohr. At each point �r ,R�, quasidiabatic
states were generated following a 2�2 adiabatic-to-diabatic
transformation �d=U�a of the CASSCF wave functions.
The unitary transformation matrix U was determined by
maximizing the overlap of both the active orbitals and the
configuration coefficients of the wave function expansion
with those at a reference geometry,19 chosen in the present
case in the asymptotic limit. Within such a two-state model,
the transformation can be written as a function of the mixing
angle �,20

���
d

��
d � = � cos � sin �

− sin � cos �
���1

a

�2
a � , �4�

where the dependence of each quantity on Q= �r ,R� has been
omitted for the sake of clarity. The diabatic PESs V��

d and
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FIG. 1. Low-lying electronic states of the dimer in the O2�� ,r�+O2�� ,re�
asymptotic limit as functions of the active coordinate r and within the C2v
point group of symmetry. The states of O2�� ,r� are indicated in parentheses.
The two upper curves refer to the states of interest in the present work,
O2�b 1�g

+ ,r�+O2�X 3�g
− ,re� �solid line� and O2�X 3�g

− ,r�+O2�b 1�g
+ ,re�

�dashed line�.
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V��
d and related coupling V��

d are obtained according to
Vd=U†VaU. The NACMEs gk�Q�= ��1

a�� /�Qk��2
a	 have

been computed along the two directions as first derivatives of
the mixing angle21,22 ���Q� /�Qk, with Qk as the active coor-
dinate r or R. As a check of the diabatization procedure, a
three-point finite difference method23 has been employed to
compute the NACMEs at some selected nuclear geometries.
Additionally, given the fact that dynamical correlation effects
can have a significant influence on the electronic system cur-
rently studied, tests calculations were performed at the
MRCI level of theory, using the CASSCF wave functions as
reference. By freezing the eight core orbitals during the op-
timization, the MRCI wave functions were comprised of
about 18�106 contracted configurations �3.5�109 uncon-
tracted�. The results of MRCI calculations will be discussed
in Sec. III C. All ab initio calculations have been carried out
using the MOLPRO suite of programs.24

B. Results

Cuts through the adiabatic 3 3B2 and 4 3B2 PESs are
displayed in Figs. 2 and 3, together with the corresponding
diabatic PESs, mixing angle, and NACME. As can be seen,
different features are encountered according to the Qk coor-
dinate being considered. If one looks at the motion along the
r direction �Fig. 2�, at finite R values, there is an avoided
crossing between the adiabatic PESs around re. Accordingly,
the diabatic PESs display a crossing seam along R, centered

at r=re. The mixing angle changes smoothly from 0 to � /2
along r, consistent with the interchange of electronic charac-
ter between the adiabatic wave functions as they cross re.
The NACMEs gr are bell-shaped functions centered at re, of
increasing width as R decreases. Along the R direction �Fig.
3�, the adiabatic PESs do not display any avoided crossing.
Instead, there is an exponentially increasing splitting as we
move toward shorter R values. The mixing angle changes
smoothly from � /2 �or 0 if r	re� to � /4 as R decreases,
consistent with a continuously increasing mixing of states.
The resulting diabatic PESs behave as noncrossing near-
resonant energy curves, and stay almost parallel along R.
The NACMEs gR are again bell-shaped functions. Their
width is almost independent of r and their maximum is lo-
cated where the adiabatic PESs begin to split significantly.
Further details regarding particular features of the electronic
system will be given in Sec. III.

It can be seen in Figs. 2 and 3 that the NACMEs gr and
gR derived from the mixing angle are in excellent agreement
with those yielded by the finite difference method. A similar
agreement has been obtained for all other tested geometries
�down to R=4 bohr�. Such a close agreement between the
quantities ��1

a�� /�Qk��2
a	 and �� /�Qk demonstrates that the

residuum couplings ���
d �� /�Qk���

d	 are negligible along the
two directions considered. This is a stringent condition to
assess the validity of the 2�2 diabatization procedure.22 Be-
sides, for most of the intermolecular separations, the calcu-
lated mixing angles tend to the proper limiting values �0 and
� /2� such that the adiabatic and diabatic representations co-
incide when we move far from the avoided crossing region.
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as functions of the internuclear distance r, for an intermolecular separation
of R=5 bohr. Lower panel: mixing angle �dashed line� and NACMEs ob-
tained from first derivatives of the mixing angle �solid line� and the finite
difference method �full circle�.
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This trend is broken for R
4.5 bohr and small r, probably
due to some contamination of other states not accounted for
in the two-state model. In practice, such a contamination has
a negligible effect on the calculated transition probabilities,
and test calculations showed that the NACMEs between the
two pairs of states, �1 3B2 , 2 3B2� and �3 3B2 , 4 3B2� �see
Fig. 1�, are quite small down to R
4 bohr. In particular, the
computed NACMEs between the 2 3B2 and 3 3B2 states in-
dicate an inefficient state mixing for the additional avoided
crossing which occurs near r=3 bohr. We thus have chosen
to follow diabatically the states of interest along that crossing
region and neglect the related diabatic coupling in the dy-
namics calculations.

III. FEATURES OF THE O2„b
1�g

+
…+O2„X

3�g
−
… SYSTEM

AND MODELS OF NONADIABATIC COUPLINGS

The results of the preceding section have shown that an
isolated two-state model can be safely employed to describe
the nonadiabatic interactions in O2�b 1�g

+�+O2�X 3�g
−�.

Within a two-state model, starting from the transformation
Va=UVdU† defined by Eq. �4�, the mixing angle writes as

tan�2�� =
2V��

d

V��
d − V��

d , �5�

and, from gQk
=�� /�Qk, the NACMEs write accordingly25

gQk
=

�V��
d − V��

d �
�

�Qk
V��

d − V��
d �

�Qk
�V��

d − V��
d �

�V��
d − V��

d �2 + 4�V��
d �2 , �6�

where the dependence of each quantity on Q has been omit-
ted for the sake of clarity. In this section, we explore the
possibility of obtaining the mixing angle and the NACMEs
as functions of the adiabatic energies. This would allow us to
construct an adiabatic-to-diabatic transformation using the
adiabatic PES as a unique source of information.

A. Features of the O2„b
1�g

+
…+O2„X

3�g
−
… system

At r=re, since the two oxygen molecules are in different
electronic states and collide in a symmetrical position with
respect to each other, an exchange degeneracy arises.26,27

The resulting asymptotically resonant 2 3B3g and 2 3B2u

states show an increasing energy splitting due to exchange
interactions13–16 as the molecules approach each other. The
overlap between orbitals of the two diatoms leads to an ex-
ponential dependence of the energy splitting with R, as it is
found12,28,29 for the splittings between the dimer spin states
dissociating into O2�X 3�g

−�+O2�X 3�g
−�. The breakdown of

symmetry induced by the vibrational motion forms states of
the same 3B2 symmetry. For r close to re, the 3 3B2 and 4 3B2

states are asymptotically well approximated by linear com-
binations of the D2h states, whereas, at short R, they acquire
the character of the 2 3B3g and 2 3B2u states. It has been
previously shown that this feature has noticeable effects on
the spin-orbit couplings between the dimer states.17

The choice of building the diabatic basis set by requiring
a minimum change relative to the asymptotic limit has inter-
esting consequences. Indeed, the resulting diabatic states pre-

serve along R the electronic character which holds asymp-
totically, i.e., for r close to re, the mixture of D2h states.
Hence, the diabatic states do not experience any splitting due
to exchange interactions, this effect being entirely transferred
to the diabatic coupling. Consequently, the diabatic PESs be-
have as two parallel curves along R, and the diabatic cou-
pling exhibits an exponential dependence with R. Regarding
the behavior along r, we found that the energy difference of
the diabatic PESs evolves almost linearly with r, whereas the
diabatic coupling remains practically constant. The former
feature relates to the behavior of the X 3�g

− and b 1�g
+ di-

atomic potentials and is verified within a limited range of
distances around re. The weaker dependence with r of the
diabatic coupling V��

d relative to that of V��
d −V��

d is imposed
by the condition that tan�2�� must vanish far away from the
crossing seam.30

B. Models of nonadiabatic couplings

From the features discussed above, we can establish a
model for the diabatic matrix elements. We assume that the
diabatic coupling is constant along r and equal to its value at
the crossing seam,

V��
d �Q� = 1

2�Ea�re,R� , �7�

and the energy difference between the diabatic PESs is con-
stant along R and, hence, equal to its asymptotic value at R�,

V��
d �Q� − V��

d �Q� = 
 �Ea�r,R�� . �8�

The sign 
 depends on r�re or r	re, and �Ea�Q�
=V2

a�Q�−V1
a�Q� is the energy difference between the adia-

batic PESs. The mixing angle of Eq. �5� is then given by

��Q� =
1

2
arctan�


�Ea�re,R�
�Ea�r,R��� + ��r,R�� , �9�

where we imposed the conditions ��r ,R��=� /2 or 0 depend-
ing on r�re or r	re, and ��re ,R��=� /4. The above equa-
tion defines an adiabatic-to-diabatic transformation matrix
depending only on the splitting of the adiabatic PESs at the
seam and on the splitting between the fragments states.

If one is also interested in obtaining the NACMEs from
adiabatic energies, it is convenient to make further assump-
tions about the behavior of the diabatic matrix elements. In
order to represent the NACME along r, Eq. �8� can be rea-
sonably approximated by

V��
d �Q� − V��

d �Q� = �s�R���re − r� , �10�

where �s�R���0 is the slope around re of the difference
between the diatomic potentials. It is worth to note that Eq.
�7� together with Eq. �10� correspond to the model originally
suggested by Landau31 and Zener32 to deal with avoided
crossing problems. From Eq. �6�, we obtain the well-known
Lorentzian shape for gr,

25,33
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gr�Q� =
1

2

��R�/2
�r − re�2 + ���R�/2�2 , �11�

where ��R�=2�Ea�re ,R� /�s�R��. To represent the NACME
along R, Eq. �7� can be approximated by

V��
d �Q� = � exp�− �R� . �12�

Equations �8� and �12� are closely connected to the Rosen–
Zener model8 further extended by Demkov34 to deal with
noncrossing potentials coupled by an exponential interaction
function. Accordingly, using Eq. �6�, the NACME gR takes a
sec-hyperbolic form,35

gR�Q� = �
�

4
sech���R − RM�r��� , �13�

where RM�r� is the value for which gR has its extremum
value,

RM�r� =
− 1

�
ln��Ea�r,R��

2�
� . �14�

These extrema correspond with the midway points ��r ,RM�
−��r ,R��=� /8, where the energy splitting satisfies
�Ea�r ,RM�=
2�Ea�r ,R��. Details about the two-
dimensional mixing angle corresponding to the Landau–
Zener and Rosen–Zener–Demkov models are given in the
Appendix.

Finally, analytic forms for both gr and gR can be derived
by taking into account Eqs. �10� and �12� at a time. In this
case, the NACMEs write as

gr�Q� =
1

2

1

a�Q� + �a�Q��−1 �r − re�−1, �15�

gR�Q� =
1

2

1

a�Q� + �a�Q��−1� , �16�

where a�Q�=2� exp�−�R� /�s�R���r−re� is a particular
form of the relative splitting term36 �Ea�re ,R� /�Ea�r ,R��.

C. Results

We compare in Fig. 4 the mixing angle values yielded by
the analytical form of Eq. �9� and the maximal overlap
method applied to the CASSCF ab initio wave functions
�Sec. II A�. The analytical mixing angles were derived using
both the ab initio values of the relative splitting term and its
approximate form. In the last case, the parameters �, �, and
�s�R�� were obtained by fitting the ab initio splittings
�Ea�re ,R� and �Ea�r ,R�� to exponential and linear forms,
respectively. As can be seen, the analytical mixing angles
present an overall good agreement with the ab initio results
down to intermolecular separations of about 4.5 bohr. The
slightly larger disagreement obtained with the approximate
form of the relative splitting term is a direct consequence of
the linear dependence imposed for �Ea�r ,R��, the exponen-
tial dependence of �Ea�re ,R� being well verified. For
R
4.5 bohr and small r, the contamination of the wave
functions by further states becomes noticeable and breaks
down the two-state approximation employed in the model-
ing. Accordingly, the ab initio NACMEs gr and gR obtained
from the finite difference method �which does not suppose a
two-state model� differ by less than 1% with the analytical
forms of Eqs. �15� and �16� in the strong coupling regions,
except for R
4.5 bohr, where discrepancies up to 20% are
found. The two-dimensional diabatic coupling V��

d obtained
from the analytical adiabatic-to-diabatic transformation ap-
plied to the adiabatic PESs is compared in Fig. 5 with the
ab initio result. As can be seen, both results verify rather well
the approximations of the modeling discussed in Sec. III A,
i.e., a diabatic coupling constant along r and varying expo-
nentially with R. The agreement between the model and
ab initio results is quite good around the crossing seam,
whereas discrepancies appear for r values distant from the
crossing. As will be shown in the next section, these differ-
ences, located far from the strong coupling region, have little
influence in the nonadiabatic dynamics.

A natural question regarding the accuracy of the present
model concerns the dynamical correlation effects, since they
can strongly modify the relative position of the two interact-
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with ab initio values of the relative splitting term.
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ing states. We thus performed calculations at the MRCI level
of theory �Sec. II A� of the potentials and NACMEs at se-
lected geometries. Compared to the CASSCF results, the
MRCI potentials wells are much deeper and displaced to-
ward shorter R, whereas the splitting term �Ea�re ,R� is sig-
nificantly larger. Nonetheless, �Ea�re ,R� was found again
very well approximated by an exponential form, and, as can
be seen in Fig. 6, the analytical NACMEs gr and gR are in
excellent agreement with their ab initio counterparts. It thus
appears that dynamical correlation effects have a significant
influence on the PESs, but do not modify the nature of the
interaction between the states.

IV. DYNAMICS CALCULATIONS

A. Computational methodology

Within the two-dimensional model, the total Hamil-
tonian writes H=TR+Tr+Hel�q ;Q�, where TR and Tr are ki-
netic energy operators associated with the nuclear coordi-
nates Q= �r ,R�, Hel is the electronic Hamiltonian, and q
collects all the electronic coordinates. The dynamical prob-
lem is then readily posed using the diabatic basis set of Eq.
�4�, whose relevant quantities are the PESs, V��

d and V��
d , and

the related coupling V��
d =V��

d .
The time-independent Schrödinger equation H��n0	

=E��n0	 is solved for each selected initial state n0 of the
diatomic. The total wave function is expanded as

�n0�q,Q� = �
��=�,�

�
v�

N����

g��v�
n0 �R����v��r����

d �q;Q� , �17�

where N���� is the number of vibrational levels considered
for each electronic state ��=� or �, and ���v��r� are the

vibrational wave functions of the diatoms with associated
energies ���v�. After multiplying by ���v��

d� and integrating
over r and the electronic coordinates, one obtains the set of
close-coupled equations,

�−
�2

2�

d2

dR2 − E�g�v
n0 �R� + �

��v�

Z�v;��v��R�g��v�
n0 �R� = 0.

�18�

The coupling matrix Z is given by

Z�v;��v��R� = ��v�vv�����

+ W�v;�v��R����� + V�v;��v��R��1 − ����� ,

�19�

where W�v;�v� are the vibrational couplings within each elec-
tronic state,

W�v;�v��R� = ���v�V��
int���v�	 , �20�

with V��
int�Q�=V��

d �Q�−V��
d �r ,R�� being the diabatic interac-

tion potential. The vibronic couplings V�v;��v� are written as

V�v;�v��R� = ���v�V��
d ���v�	 . �21�

Notice that all couplings vanish asymptotically.
The set of close-coupled equations �Eq. �18�� has

been solved by means of the R-matrix propagation method
of Light and co-workers.37,38 The integration range
R= �4,18� bohr has been divided into 500 sectors. To get
converged results for the removal probabilities up to v=9,
vibrational bases up to N���=13 were employed for both
�=� and �. The resulting scattering matrix elements S��v�;�v
were extracted at the end of the propagation by imposing the
usual boundary conditions. The state-to-state probabilities
P�v→��v�= �S��v�;�v�2 were used to derive the inelastic prob-
abilities, including the V-T relaxation pathway,

P�b,v�
VT = �

v��v

Pbv→bv�, �22�

the V-E relaxation pathway,

P�b,v�
VE = �

v�

Pbv→Xv�, �23�

and the total removal probabilities P�b,v�
tot = P�b,v�

VT + P�b,v�
VE . Fi-

nally, note that in this approach the two O2 monomers are
treated as distinguishable. A proper treatment of the ex-
change symmetry should be performed within a full dimen-
sional model including the rotational degrees of freedom.39,40

B. Results

In Fig. 7 we report V-T and total inelastic probabilities
for the collisional removal of O2�b ,v=1,3 ,9� by O2 as func-
tions of kinetic energy. A first set of results corresponds to
the diabatic PESs and coupling derived from the ab initio
mixing angle and CASSCF adiabatic energies reported in
Sec. II. A second one corresponds to the probabilities
obtained by substituting the mixing angle by the analytic
form of Eq. �9�, where the approximate form
�2� exp�−�R� /�s�R���r−re� has been used for the relative
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FIG. 6. NACMEs along the internuclear distance r �gr, upper panel� and
along the intermolecular separation R �gR, lower panel� at selected values of
R and r, respectively. The results were obtained from the finite difference
method applied to the ab initio MRCI wave functions �full circle�, and the
analytical forms of Eqs. �15� and �16� �solid line�.
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splitting term �Ea�re ,R� /�Ea�r ,R��. It is readily seen that
the use of the model and ab initio diabatic representations
provide almost identical results. Only small deviations ap-
pear for the probabilities corresponding to the inefficient V-T
process, and they are consistent with slight differences ob-
served at short and large values of r between the ab initio
and model mixing angles �see Fig. 4�. A similar agreement is
attained for all other vibrational states not shown in Fig. 7.
The use of the ab initio values of the relative splitting term in
Eq. �9� provides only a slight improvement of the small V-T
probabilities. The agreement produced by the two-
dimensional adiabatic-to-diabatic model transformation,
which is constructed solely from knowledge of the relative
splitting term, can be considered as remarkable.

We found a strong dependence of the V-E probabilities
with the initially selected state v, for the whole range of

vibrational states O2�b ,v=0–9� studied. This can be under-
stood in terms of the energy gap law: the largest V-E prob-
abilities occur when the internal energy of a given initial
level �b ,v� is close to that of an adjacent �X ,v�� level, i.e.,
corresponding with a small energy gap �bv−�Xv�. In addition,
it has been found that the V-E relaxation mechanism clearly
dominates over the V-T energy transfer for all the vibrational
levels studied. The preeminence of the V-E energy transfer is
the result of favorable energy gaps and of larger vibronic
couplings �Eq. �21��, as compared with the �bv−�bv� energy
gaps and the vibrational couplings �Eq. �20�� involved in the
V-T process.

As shown in the previous section, the diabatic coupling
is practically constant with the vibrational coordinate r and
this feature has been already accounted for to build up the
model adiabatic-to-diabatic transformation. The preeminence
of the V-E process over the V-T one prompted us to test a
further approximation, in which both the diabatic interaction
potentials and related coupling are fixed at their values along
the crossing seam r=re. Since the mixing angle satisfies
��re ,R�=� /4, the resulting vibrational and vibronic cou-
plings write

W�v;�v��R� 
 1
2 �V1

a,int�re,R� + V2
a,int�re,R���vv�, �24�

V�v;�v��R� 
 1
2�Ea�re,R����v���v�	 , �25�

where Vi=1,2
a,int �re ,R� are the adiabatic interaction potentials

computed along the crossing seam and ���v ���v�	 are over-
lap integrals between the vibrational wave functions belong-
ing to different electronic states. The resulting removal prob-
abilities are shown in Fig. 7. It can be seen that the total
removal probabilities reproduce rather well the results previ-
ously obtained, especially in the case of initial levels exhib-
iting large V-E removal probabilities. This indicates a weak
sensitivity of the V-E energy transfer process to the vibra-
tional dependence of the potentials. Furthermore, it is worth
noting that the approximate vibrational couplings of Eq. �24�
prevent the description of a direct V-T removal process.
Despite this, as can be seen in Fig. 7, a qualitative agreement
is achieved for the V-T probabilities. This indicates that a
sequence of V-E energy transfers must be playing a role in
the V-T removal probabilities obtained from the complete
calculation.

C. Comparison with experiments

The relevance of the nonadiabatic mechanisms to the
removal of O2�b ,v� by O2 can be assessed by a confrontation
with the experimental observations.3–5 The probabilities of
Fig. 7 are not in agreement with observations since they
indicate that the removal process becomes more efficient as
v increases from one to three quanta, while the opposite
behavior is found experimentally.5 This inconsistency is due
to inaccuracies in the ab initio set of vibrational energies for
the fragments and, specifically, to the neglect of the zero-
point energy of the vibrationally cold molecule, whose
motion is frozen in the present model. In the following,
we replaced the vibrational energies of Eq. �19� by effective
values ��v

eff=��v
RKR+���v=0

RKR , where ��v
RKR are energy levels
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FIG. 7. Inelastic probabilities as functions of kinetic energy for O2�b 1�g
+ ,v�
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transformations constructed from ab initio values of the mixing angle �full
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confrontation with experimental observations, see text and Fig. 8.
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obtained from accurate Rydberg–Klein–Rees �RKR�
potentials41 of the O2�X� and O2�b� diatomic states. The cal-
culations of the removal probabilities have been conducted
by resorting to the approximate vibrational and vibronic cou-
plings of Eqs. �24� and �25�, using the vibrational wave func-
tions ��v

RKR�r� associated with the RKR potentials.
The removal probabilities for v=1–3 obtained after cor-

rection of the vibrational structure of the fragments are re-
ported in Fig. 8. It can be noticed that the behavior of the
probabilities of Fig. 8 is quite different to that of the prob-
abilities of Fig. 7; this shows that using an accurate set of
fragment energy levels is crucial, due to the importance of
the energy gap law in the energy transfer dynamics. The
results of Fig. 8 are now qualitatively consistent with the
experiments of Kalogerakis et al.,5 where the measured re-
moval rate coefficients exhibited a strong decrease in the
removal efficiency as v goes from 1 to 3 for temperatures
between 100 and 300 K �we analyzed the product of present
probabilities Pb,v�Ek� times exp�−Ek /kBT� and found that ki-
netic energies Ek as high as 0.15 and 0.25 eV for v=1 and
v=3, respectively, are relevant to this function at T=300 K�.
Besides, the activation energies extracted from the near
Arrhenius dependence of the removal rate coefficients led
Kalogerakis et al. to propose that the relaxation mechanism
must be dominated by the resonant E-E process �Eq. �1��.
The results shown in Fig. 8 clearly show that the removal of
O2�b ,v� at thermal energies proceeds almost completely
through the E-E mechanism, in agreement with the expecta-
tions of Kalogerakis et al. Notice that, due to the distinct
vibrational frequencies of the O2�X� and O2�b� states, other
V-E channels �Eq. �3� with v��v� dominate the removal of
higher vibrational states. Over the entire range v=1–9, we
found two maxima in the removal probabilities at v=1 and
v=8, and a minimum at v=4. These results provide addi-
tional clues for the relevance of nonadiabatic mechanisms in
explaining the peaks at v=3 /4 and deep minima at v=1 and
v=8 observed in the vibrational population distribution of
O2�b ,v� in the upper atmosphere.2

Similar conclusions can be drawn from the results of

Kirillov,7 who employed the semiclassical Rosen–Zener
model8 with empirical parameters to fit the experimental rate
coefficients. We tested the Rosen–Zener formula using the
exponential parameter � �Eq. �12�� corresponding to our
ab initio calculations. The resulting probabilities display a
similar trend but quite different values as compared with the
quantum probabilities. The interaction might be too strong to
satisfy the semiclassical approximation.36

V. CONCLUDING REMARKS

The collisional removal of O2�b 1�g
+ ,v� by O2 has been

studied within a two-degrees-of-freedom model of C2v sym-
metry, by means of ab initio calculations of the relevant
PESs and couplings, and quantum dynamics calculations.
The calculated removal probabilities indicate that an efficient
removal process proceeds through V-E relaxation mecha-
nisms, driven by nonadiabatic radial couplings. After correct-
ing the fragments vibrational structure, the results have been
found qualitatively consistent with the experiments of
Kalogerakis et al.5 regarding the behavior of the removal
probabilities with the initial state selected v and the domi-
nant contribution of resonant E-E processes for v=1–3.

The severe reduction in dimensionality in the model pre-
cludes any attempt to make a more detailed comparison with
the experiments. To achieve a realistic simulation, the full
anisotropy of the PESs and couplings should be obtained,
and the dynamics should involve all the degrees-of-freedom
of the system. In particular, adding the rotational degrees of
freedom to the vibronic transitions might play a key role in
mitigating the energy gaps and modulating the nonadiabatic
couplings. Such a simulation represents a very challenging
task, both for the electronic structure as well as for the dy-
namical part of the computations. Clearly, one should de-
velop a model with the necessary ingredients but making at
the same time various reasonable approximations. In this re-
gard, we found here that several approximations reducing
considerably the computational effort might be safely ap-
plied. First, it has been found that an isolated two-state
model is realistic in order to treat the nonadiabatic relaxation
dynamics of O2�b 1�g

+ ,v� up to quite high vibrational levels
�v
9� and large kinetic energies. Second, analytical forms
only depending on the ratio between the splitting of the adia-
batic curves along the crossing seam and the difference be-
tween the diatomic potentials are found to yield accurate
NACMEs and adiabatic-to-diabatic transformation as com-
pared with the ab initio results. This avoids costly computa-
tions of NACMEs or the use of ab initio quasidiabatization
procedures, and provides in this way more flexibility in
choosing a suitable electronic structure method to describe
the system. Besides, the adiabatic energies can be corrected
for size consistency, basis set superposition errors, and physi-
cal perturbations such as spin-orbit coupling, whereas the
usual diabatization procedures do not take into account these
issues. Finally, the dominance of the V-E process over the
V-T one allowed us to neglect the variation of the diabatic
interaction potentials and couplings with the vibrational co-
ordinate.

In summary, the present study indicates that considerable
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+ , v=1–3� colliding with O2, after using spectroscopical terms for
the fragments energy levels �see text�. Total removal probabilities are shown
by solid lines, while dashed lines correspond to the E-E contribution of Eq.
�1�. After correcting the fragments vibrational structure, the results are now
in qualitative agreement with the experiments of Ref. 5.
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savings in the theoretical treatment of the title process �or
related problems as the collisional removal of O2�a 1�g ,v�
by O2 �Ref. 1�� could be achieved with the computation of
two adiabatic PESs just at the crossing seam. Still this is a
challenging task since, for a realistic simulation, the effect of
the different relative orientations of the oxygen molecules
should be included. We found that the couplings are origi-
nated from exchange degeneracy effects and symmetry-
breaking of the dimer states due to the vibrational motion.
Large NACMEs are thus expected for those geometrical ar-
rangements which exhibit a permutation symmetry between
the oxygen molecules, such as the H orientation considered
here or the linear L geometry,16 whereas they should be
smaller at other geometries. The role of the rotational de-
grees of freedom in the dynamics should be also taken into
account, at least approximately. Moreover, the ab initio PESs
should include dynamical correlation effects. Test MRCI cal-
culations indicate that the analytical models proposed here
also work well at a higher level of theory. Work in these
directions is in progress.
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APPENDIX: TWO-DIMENSIONAL MIXING ANGLE
WITHIN THE LANDAU-ZENER AND ROSEN-ZENER-
DEMKOV MODELS

The NACME gr corresponding with the avoided-
crossing problem takes the Lorentzian form of Eq. �11� when
the Landau–Zener assumptions �Eqs. �7� and �10�� are used
to model the diabatic matrix elements along the r direction.
For the two-dimensional system studied here, this form can
be employed to compute the mixing angle along the two
directions, through21,33

��Q� = ��r0,R0� + �
r0

r

gr�r�,R�dr� + �
R0

R

gR�r0,R��dR�.

�A1�

The necessary condition is that there exists a value r0 of r
such that the function gR�r0 ,R� is known. In the present case,
we know that ��re ,R�=� /4, and hence gR�re ,R�=0. Thus,
using r0=re together with Eq. �11�, the integral of Eq. �A1�
writes

��Q� =
1

2
arctan� �r − re�

��R�/2� +
�

4
. �A2�

Similarly, the NACME gR corresponding with the non-
crossing curves problem takes the sec-hyperbolic form of Eq.
�13� when the Rosen–Zener–Demkov assumptions �Eqs. �8�
and �12�� are used to model the diabatic matrix elements
along the R direction. This form can be employed to compute
the two-dimensional mixing angle through

��Q� = ��r0,R0� + �
r0

r

gr�r�,R0�dr� + �
R0

R

gR�r,R��dR�,

�A3�

the necessary condition being that there exists a value R0 of
R such that the function gr�r ,R0� is known. In the present
case, we can use the fact that gr�r ,R��=��r−re� to choose
R0. Then, the integral of Eq. �A3� writes

��Q� = �
1

2
arctan�tanh��

2
�R − RM�r���� 


�

8

+ ��r,R�� . �A4�

It is worth to note that the forms of Eqs. �A2� and �A4� are
fully consistent with those obtained when Eq. �9� is used
together with the Landau–Zener and Rosen–Zener–Demkov
assumptions.
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