# Palladium-catalyzed [3C $+2 \mathrm{C}+2 \mathrm{C}]$ cycloaddition of enynylidenecyclopropanes: efficient construction of fused 5-7-5 tricyclic systems $\dagger \ddagger$ 

Gaurav Bhargava, ${ }^{a}$ Beatriz Trillo, ${ }^{a}$ Marisel Araya, ${ }^{a}$ Fernando López, ${ }^{*}{ }^{b}$ Luis Castedo ${ }^{a}$ and José L. Mascareñas** ${ }^{a}$

Received (in Cambridge, UK) 16th September 2009, Accepted 12th November 2009
First published as an Advance Article on the web 27th November 2009
DOI: 10.1039/b919258a

We report a Pd-catalyzed intramolecular $[3 \mathrm{C}+2 \mathrm{C}+2 \mathrm{C}]$ cycloaddition between alkylidenecyclopropanes, alkynes and alkenes. The method provides synthetically relevant 5-7-5 tricyclic structures, with good chemoselectivity and complete diastereoselectivity.

Modern organic synthesis is eagerly demanding methods that allow the preparation of target-relevant products from simple and readily available precursors in a rapid and economical fashion. ${ }^{1}$ A particularly relevant strategy to achieve this goal consists of the development of metal-catalyzed multicomponent cycloadditions $[m+n+o+\cdots] .{ }^{2}$ During the last decades, progress in this area has mainly relied on $\mathrm{Rh}-$, $\mathrm{Ir}-$, $\mathrm{Ni}-$, $\mathrm{Co}-$, or Ru-catalyzed processes, ${ }^{3}$ whereas related Pd-catalyzed methodologies have lagged behind. ${ }^{4}$ Additionally, while most metal-catalyzed multicomponent cycloadditions provide mono- or bi-cyclic structures, processes leading to fused tricyclic or higher polycyclic systems are very scarce. ${ }^{5}$

We have recently developed a Pd-catalyzed $[3 \mathrm{C}+2 \mathrm{C}]$ intramolecular cycloaddition of alkylidenecyclopropanes to alkynes, reaction that provides an entry to a variety of bicyclo[3.3.0]octanes. ${ }^{6}$ Considering that the cycloaddition may involve the generation of a palladacyclohexane intermediate like 2 (Scheme 1 ), ${ }^{7}$ we decided to investigate whether the presence of an extra 2 C - $\pi$-system could provide for the construction of tricycles featuring a seven-membered carbocycle, through a carbometallation and reductive elimination sequence. ${ }^{8}$ Herein we demonstrate the viability of the approach by reporting several examples of Pd-catalyzed intramolecular $[3+2+2]$ cycloadditions leading to synthetically relevant 5-7-5 tricyclic structures.

The study began by investigating the performance of substrate 1a, ${ }^{9}$ which exhibits a tethered terminal alkyne unit

[^0]

Scheme 1 Rationale for the $[3+2+2]$ cycloaddition.
as an additional $2 \mathrm{C}-\pi$-system. Several ligands previously found effective in Pd-catalyzed [3 $+n$ ] cycloadditions were tested in combination with different $\operatorname{Pd}(0)$ sources (Table 1 ). ${ }^{9}$ The best outcome was obtained in the presence of the catalyst generated from a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and the bulky phosphite L1, which produced the tricyclic cycloadduct 3a in $52 \%$ yield, after heating in toluene at $90{ }^{\circ} \mathrm{C}$ for 30 min . Phosphoramidite ligands $\mathbf{L 2}$ or $\mathbf{L 3}$, previously used for inducing

Table 1 Preliminary Pd-catalyzed cycloadditions of $\mathbf{1 a} \mathbf{- 1} \mathbf{c}^{a}$


| Entry | $\mathbf{1}$ | $\mathbf{L n}$ | $\mathbf{3 : 4}$ ratio $^{b}$ | Conv $(\%)^{c}$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | $\mathbf{1 a}$ | $\mathbf{L 1}$ | $1: 0$ | $100(52)$ |
| 2 | $\mathbf{1 a}$ | $\mathbf{L 2}$ | $1: 1$ | $83(6)$ |
| 3 | $\mathbf{1 a}$ | $\mathbf{L 3}$ | - | 0 |
| 4 | 1b | $\mathbf{L} 1$ | $0: 1$ | 27 |
| 5 | 1c | $\mathbf{L} 1$ | $0: 0$ | $100(53 \% \text { of } \mathbf{5 c})^{d}$ |

${ }^{a}$ Conditions: $10 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathbf{L n} 26 \mathrm{~mol} \%$, dioxane, $90^{\circ} \mathrm{C}, 1-2 \mathrm{~h}$.
${ }^{b}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ on crude reaction mixtures. ${ }^{c}$ Isolated yield under parenthesis. ${ }^{d}$ Yield refers to $\mathbf{5 c}$.


Table 2 Pd-catalyzed [3C $+2 \mathrm{C}+2 \mathrm{C}]$ cycloadditions of $\mathbf{1 d}-\mathbf{l}^{a}$
Entry Substrate
${ }^{a}$ Conditions: $10 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{~L} 126 \mathrm{~mol} \%$, dioxane, $90^{\circ} \mathrm{C}, 1-2 \mathrm{~h}$.
${ }^{b}$ 3:4 ratios determined by NMR on crude mixtures. ${ }^{c}$ Isolated yield of pure 3. ${ }^{d}[3+2]$ cycloaddut $4 h$ was isolated in $23 \%$ yield. ${ }^{e}[3+2]$ cycloaddut $4 \mathbf{i}$ was isolated in $44 \%$ yield. ${ }^{f}[3+2]$ cycloaddut 4 j was isolated in $36 \%$ yield. $E=\mathrm{CO}_{2} \mathrm{Et}$.
$[3 C+4 C]$ cycloadditions of alkylidenecyclopropanes, ${ }^{6 e}$ were ineffective (entries 2 and 3). Once the feasibility of the cycloaddition was demonstrated, the impact of the alkyne substitution was studied. Unfortunately, use of a disubstituted alkyne such as in $\mathbf{1 b}$, hampered the required second carbometalation, and the $[3+2]$ adduct $\mathbf{4 b}$ was the only product that could be isolated, yet in low yield (entry 4). On the other
hand, substitution with an electron withdrawing group $\left(\mathbf{1 c}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}\right)$ triggered an alternative $[2 \mathrm{C}+2 \mathrm{C}+2 \mathrm{C}]$ cycloaddition (entry 5), which occurs with preservation of the cyclopropane ring. Thus, the exclusive formation of 5 c from $\mathbf{1 c}$ suggests that the Pd complex preferentially coordinates the dyine prior to the oxidative addition at the cyclopropanic unit. ${ }^{4 c}$

In order to avoid the competing [ $2+2+2]$ cycloaddition, and to further explore the possibilities of the process, we studied the performance of related precursors incorporating an alkene instead of an alkyne as second 2 C - $\pi$-component. Gratifyingly, the cycloaddition of $\mathbf{1 d}$ proceeded smoothly, providing the desired 5-7-5 tricyclic system 3d, along with the corresponding [ $3 \mathrm{C}+2 \mathrm{C}$ ] cycloaddutct $\mathbf{4 d}$ in a 2.3:1 ratio. The major cycloadduct $\mathbf{3 d}$ could be easily separated from the mixture and was isolated in a reasonable $68 \%$ yield (entry 1 ). Importantly, the reaction was completely diastereoselective, exclusively providing the isomer with the fused-hydrogens in a cis configuration. ${ }^{10}$ The influence of the structural characteristics of the tethers was next investigated. As shown in the table, the cycloaddition proceeded efficiently with precursors $\mathbf{1 e}-\mathbf{1 h}$ providing different ratios of the $[3+2+2]$ and $[3+2]$ adducts. Complete chemoselectivities were achieved with substrates $\mathbf{1 e}$ and $\mathbf{1 f}$ which feature ether and amine units in the connecting tethers (entries 2 and 3). Confirmation of the structure and stereochemical assignment was unambiguously obtained by X-ray crystallographic analysis on the $[3+2+2]$ cycloadduct $\mathbf{3 f}$ (Fig. 1). ${ }^{8}$

Other related systems, such as $\mathbf{1 g}$ or $\mathbf{1 h}$ provided lower chemoselectivities (entries 4 and 5), albeit the desired $[3+2+2]$ cycloadducts $\mathbf{3 g}$ and $\mathbf{3 h}$ could be still isolated in respectable yields after a simple flash chromatography ( 51 and $49 \%$ yield, respectively). Furthermore, it is worth to remark that, regardless of the tether moiety employed, the formation of the $[3+2+2]$ adducts was completely diastereoselective. The use of a saturated hydrocarbon linkage between the alkene and the alkyne units (1i) was prejudicial for the cycloaddition, as $\mathbf{3 i}$ was now obtained as a minor component and in only $16 \%$ yield (entry 6 ). The access to a fully carbonbased 5-7-5 tricyclic structure could however be achieved with substrate $\mathbf{1} \mathbf{j}$, which includes two malonate linking units (entry 7).

We next reasoned that the introduction of an electron withdrawing group at the alkene unit might increase its metal coordination ability and favour the second carbometallation step, thereby improving the $[3+2+2] /[3+2]$ ratio.


Fig. 1 X-Ray crystal structure of $\mathbf{3 f}$.


Scheme 2 Tandem Pd-catalyzed allylic alkylation and [3+2+2] cycloaddition reaction.

Gratifyingly, the cycloaddition of $\mathbf{1 k}$, which features an ester group at the alkene terminus, took place with significantly higher chemoselectivity than that obtained from the parent precursor $\mathbf{1 j}$, providing the desired $[3+2+2]$ cycloadduct $\mathbf{3 k}$ in a good $75 \%$ yield (entry 8 ). Importantly, the reaction was completely diastereoselective, thus allowing the direct construction of a functionalized and stereochemically rich 5-7-5 tricarbocycle. ${ }^{11}$ Similarly, the cycloaddition result of $\mathbf{1 1}$ was clearly superior to that of the alkene-unsubstituted homologue $\mathbf{1 g}$, providing $\mathbf{3 1}$ with complete selectivity, in a $60 \%$ isolated yield (entry 9).

Finally, we also analyzed the possibility of carrying out the assembly of the precursors and the $[3+2+2]$ cycloaddition reaction in a tandem, one-step protocol, since both reactions are Pd-catalyzed processes. Gratifyingly, heating of 1 -vinylcyclopropyl tosylate 7 with one equivalent of the sodium salt of $\mathbf{6}$ in the presence of the suitable proportion of dppe, ${ }^{12} \mathbf{L} 1$ and $\mathrm{Pd}_{2} \mathrm{dba}_{3}$, provided the expected cycloadduct $\mathbf{3 d}$ in $62 \%$ isolated yield (Scheme 2).

In conclusion, we have developed a new Pd-catalyzed multicomponent intramolecular cycloaddition reaction between alkylidenecyclopropanes (3C), alkynes (2C) and alkenes (or a terminal alkyne, 2C). The transformation takes place with moderate to excellent chemoselectivities and complete diastereoselectivities, providing straightforward access to a variety of synthetically relevant 5-7-5 tricyclic systems.

This work was supported by the Spanish MICINN [SAF2007-61015, Consolider-Ingenio 2010 (CSD2007-00006)], Xunta de Galicia (PGIDIT06PXIB209126PR and GRC2006/ 132), CSIC and Comunidad de Madrid (CCG08-CSIC/ PPQ3548). BT thanks the Spanish MICINN for a predoctoral fellowship. We thank Johnson-Matthey for the gift of metals.

## Notes and references

1 (a) P. A. Wender, S. T. Handy and D. L. Wright, Chemistry \& Industry, 1997, 765-769; (b) T. Hudlicky and M. G. Natchus, in Organic Synthesis: Theory and Applications, ed. T. Hudlicky, JAI Press, Greenwich, 1993, vol. 2, pp. 1-26; (c) P. A. Wender, Chem. Rev., 1996, 96, 1-2; (d) P. A. Wender and B. L. Miller, Nature, 2009, 460, 197-201.
2 For selected reviews discussing multicomponent metal-catalyzed cycloadditions, see: (a) G. Balme, G. Bouyssi and N. Monteiro, in Multicomponent Reactions, ed. J. Zhu and H. Bienaymé, Wiley-VCH, Weinheim, 2005, pp. 224-276; (b) R. V. A. Orru and M. de Greef, Synthesis, 2003, 1471-1499; (c) J. Montgomery, Acc. Chem. Res., 2000, 33, 467-473; (d) B. Heller and M. Hapke, Chem. Soc. Rev., 2007, 36, 1085-1094; (e) E. Guitián, D. Pérez and D. Peña, in Topics in Organometallic Chemistry, ed. J. Tsuji, Springer Verlag, Weinheim, 2005, vol. 14, pp. 109-146; (f) P. R. Chopade and J. Louie, Adv. Synth. Catal., 2006, 348, 2307-2327; (g) S. Saito and Y. Yamamoto, Chem. Rev., 2000, 100, 2901-2915; (h) T. Shibata, Adv. Synth. Catal., 2006, 348, 2328-2336.

3 For selected recent examples, see: $[\mathbf{5}+\mathbf{1}+\mathbf{2}+\mathbf{1}]$ : (a) P. A. Wender, G. G. Gamber, R. D. Hubbard, S. M. Pham and L. Zhang, J. Am. Chem. Soc., 2005, 127, 2836-2837; $[5+2+1]:(b)$ P. A. Wender, G. G. Gamber, R. D. Hubbard and L. Zhang, J. Am. Chem. Soc., 2002, 124, 2876-2877 and references cited therein; $[4+2+2]:(c)$ M. H. Baik, E. W. Baum, M. C. Burland and P. A. Evans, J. Am. Chem. Soc., 2005, 127, 1602-1603 and references therein; (d) P. A. Evans and E. W. Baum, J. Am. Chem. Soc., 2004, 126, 11150-11151; (e) P. A. Evans, J. E. Robinson, E. W. Baum and A. N. Fazal, J. Am. Chem. Soc., 2002, 124, 8782-8783; (f) S. R. Gilbertson and B. DeBoef, J. Am. Chem. Soc., 2002, 124, 8784-8785; [4 + $2+1]:(g) \mathrm{Y} . \mathrm{Ni}$ and J. Montgomery, J. Am. Chem. Soc., 2006, 128, 2609-2614; $[3+2+2]:(h)$ P. A. Evans and P. A. Inglesby, J. Am. Chem. Soc., 2008, 130, 12838-12839; (i) S. Saito, S. Komagawa, I. Azumaya and M. Masuda, J. Org. Chem., 2007, 72, 9114-9120 and references therein; (j) K. Maeda and S. Saito, Tetrahedron Lett., 2007, 48, 3173-3176; (k) S. Komagawa and S. Saito, Angew. Chem., Int. Ed., 2006, 45, 2446-2449; ( $l$ ) L. G. Zhao and A. de Meijere, Adv. Synth. Catal., 2006, 348, 2484-2492; (m) J. Barluenga, R. Vicente, P. Barrio, L. A. Lopez, M. Tomas and J. Borge, J. Am. Chem. Soc., 2004, 126, 14354-14355; [3+3+1]: (n) S. Y. Kim, S. I. Lee, S. Y. Choi and Y. K. Chung, Angew. Chem., Int. Ed., 2008, 47, 4914-4917; [3+1 + 1]: (o) K. Kamikawa, Y. Shimizu, S. Takemoto and H. Matsuzaka, Org. Lett., 2006, 8, 4011-4014; [2+2+2+1]: (p) J. J. Kaloko, Y. H. Gary and T. I. Ojima, Chem. Commun., 2009, 4569-4571; (q) B. Bennacer, M. Fujiwara, S. Y. Lee and I. Ojima, J. Am. Chem. Soc., 2005, 127, 17756-17767; [2 + $2+1+\mathbf{1}]$ : (r) Q. F. Huang and R. Hua, Chem.-Eur. J., 2007, 13, 8333-8337; [2 $+2+2 \mathbf{2}:(s)$ See reviews on ref. $2 f-h$. See also: $(t)$ T. Iwayama and Y. Sato, Chem. Commun., 2009, 5245-5247; (u) N. Saito, K. Shiotani, A. Kinbara and Y. Sato, Chem. Commun., 2009, 4284-4286; [2 $+2+\mathbf{1}]:(v)$ T. Kondo, M. Nomura, Y. Ura, K. Wada and T. A. Mitsudo, J. Am. Chem. Soc., 2006, 128, 14816-14817; (w) P. A. Wender, M. P. Croatt and N. M. Deschamps, Angew. Chem., Int. Ed., 2006, 45, 2459-2462.

4 For a Pd-catalyzed $[3+2+2]$ cocyclization process, see: (a) N. Tsukada, Y. Sakaihara and Y. Inoue, Tetrahedron Lett., 2007, 48, 4019-4021; For $[\mathbf{2}+\mathbf{2}+\mathbf{1}]$ annulations, see: (b) R. Grigg, L. X. Zhang, S. Collard and A. Keep, Chem. Commun., 2003, 1902-1903; For [2 + 2 + 2] cycloadditions, see reviews on ref. $2 f-h$. See also: (c) Y. Sato, T. Tamura, A. Kinbara and M. Mori, Adv. Synth. Catal., 2007, 349, 647-661; (d) C. Romero, D. Peña, D. Pérez and E. Guitian, J. Org. Chem., 2008, 73, 7996-8000 and references cited threin.
5 For some examples, see ref. $3 p-q$, and those cited therein.
6 (a) A. Delgado, J. R. Rodríguez, L. Castedo and J. L. Mascareñas, J. Am. Chem. Soc., 2003, 125, 9282-9283; (b) J. Durán, M. Gulías, L. Castedo and J. L. Mascareñas, Org. Lett., 2005, 7, 5693-5696; For $[3+2]$ cycloadditions to alkenes, see: (c) M. Gulías, R. García, A. Delgado, L. Castedo and J. L. Mascareñas, J. Am. Chem. Soc., 2006, 128, 384-385; For [3+2] cycloadditions to allenes, see: (d) B. Trillo, M. Gulías, F. López, L. Castedo and J. L. Mascareñas, Adv. Synth. Catal., 2006, 348, 2381-2384; For related $[3+4]$ cycloadditions, see: (e) M. Gulías, J. Durán, F. López, L. Castedo and J. L. Mascareñas, J. Am. Chem. Soc., 2007, 129, 11026-11027.
7 For a theoretical study on the Pd-catalyzed cycloadditions of alkylidenecyclopropanes, see: (a) R. García-Fandino, M. Gulías, L. Castedo, J. R. Granja, J. L. Mascareñas and D. J. Cárdenas, Chem.-Eur. J., 2008, 14, 272-281; (b) T. Suzuki and H. Fujimoto, Inorg. Chem., 2000, 39, 1113-1119.
8 For Rh- and Ni-catalyzed intermolecular $[3+2+2]$ cycloadditions of alkylidenecyclopropanes see ref. $3 h-l$.
9 See Electronic Supplementary Information for synthetic details.
10 DFT calculations to confirm the mechanistic hypothesis and explain the sterochemical results are ongoing.
11 In contrast to the cycloaddition of dyine $\mathbf{1 c}$ (Table 1), in the cycloaddition of $\mathbf{1 k}$ we did not observe the formation of $[2+2+2]$ cycloadducts of type 5 .
12 The presence of dppe ensures a small proportion of a bidentate Pd complex which facilitates the coupling reaction.


[^0]:    ${ }^{a}$ Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
    E-mail: joseluis.mascarenas@usc.es; Fax: + 34 981595012; Tel: + 34981563100
    ${ }^{\text {b }}$ Instituto de Química Orgánica General (CSIC), 28006, Madrid, Spain.E-mail: fernando.lopez@iqog.csic.es; Fax: + 34915644853 ; Tel: + 34915622900
    $\dagger$ This article is part of a ChemComm 'Catalysis in Organic Synthesis' web-theme issue showcasing high quality research in organic chemistry. Please see our website (http://www.rsc.org/chemcomm/ organicwebtheme2009) to access the other papers in this issue. $\ddagger$ Electronic supplementary information (ESI) available: Experimental procedures and spectroscopic data of previously unknown reaction products. CCDC 748242. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b919258a

