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IFT-UAM/CSIC-08-14Version 2nd November 2009Spherially symmetri models with pressure:separating expansion from ontration and generalizing TOV onditionJosé P. Mimoso∗Departamento de Físia,Fauldade de Ciênias da Universidade de LisboaCentro de Físia Teória e Computaional,Universidade de LisboaAv. Gama Pinto 2, 1649-003 Lisboa, PortugalMorgan Le Delliou†Instituto de Físia Teória UAM/CSIC,Faultad de Cienias, C-XI,Universidad Autónoma de MadridCantoblano, 28049 Madrid SPAINFilipe C. Mena‡Centro de MatemátiaUniversidade do MinhoCampus de Gualtar, 4710-057 Braga, Portugal(Dated: Reeived 30/10/09; Aepted...)We investigate spherially symmetri perfet �uid spaetimes and disuss the existene and sta-bility of a dividing shell separating expanding and ollapsing regions. We perform a 3 + 1 split-ting and obtain gauge invariant onditions relating the intrinsi spatial urvature of the shellsto the ADM mass and to a funtion of the pressure whih we introdue and that generalisesthe Tolman-Oppenheimer-Volko� equilibrium ondition. We analyse the partiular ases of theLemaître-Tolman-Bondi dust models with a osmologial onstant as an example of a Λ-CDMmodel and its generalization to ontain a entral perfet �uid ore. These models provide simple,but physially interesting illustrations of our results.PACS numbers: 98.80.-k, 98.80.Cq, 98.80.Jk, 95.30.Sf , 04.40.Nr, 04.20.JbI. INTRODUCTIONModels of struture formation generally assume thatsmall loal inhomogeneities grow due the gravitationalinstability, so that the overdensities ollapse and even-tually form the "bound" strutures we observe in thepresent universe. Underlying this viewpoint is the ideathat the ollapse of the overdensities departs from thegeneral expansion of the universe. This approah oftenrelies on the idea that a small overdensity an be ap-proahed as a losed path in an otherwise spatially �atFriedmann universe and it laims that Birkho�'s theo-rem justi�es that, on the one hand, its evolution is in-dependent from the outside universe, and, on the otherhand, that the behaviour of the outside Friedmann uni-verse is immune to the ollapse of the losed path (seee.g. [1, 2, 3℄).The ollapse of overdensities has been ex-
∗Eletroni address: jpmimoso�ii.f.ul.pt
†Also at Centro de Físia Teória e Computaional, Universidadede Lisboa, Av. Gama Pinto 2, 1649-003 Lisboa, Portugal; Ele-troni address: Morgan.LeDelliou�uam.es, delliou�ii.f.ul.pt
‡Also at Departamento de Matemátia, Instituto Supe-rior Ténio, 1049-001 Lisboa, Portugal; Eletroni address:fmena�math.uminho.pt

tensively studied and most works have been foused onthe study of the formation both of small struture (as-trophysial objets) and of large-sale struture as theoutome of the growth of small perturbations in a os-mologial ontext. The latter subjet, omprises the rel-ativisti and newtonian analysis of the evolution of the�utuations (see e.g. [1, 2, 3, 4℄) and the study of thesubsequent ampli�ation of the growing modes into thenon-linear regime resorting to numerial methods (seee.g. [5, 6, 7, 8℄). In the present work we onsider spheri-ally symmetri, inhomogeneous universes with pressure,and study the question of whether there exists a dividingshell separating expanding and ollapsing regions. Ourgoal bears a onnetion to the general problem of assess-ing the in�uene of global physis into the loal physis[9, 10℄. One aspet of this problem whih has always at-trated great interest is the endeavour to explain the loalinertial phenomena in a Mahian sense (see e.g. [11, 12℄)and, in fat, Brans-Dike theory [13, 14, 15, 16℄ stemsfrom this problem.Another related aspet has been the study of the in�u-ene of osmi expansion on loal systems. Einstein andStraus [17℄ were the �rst to study this problem by on-struting a global solution whih resulted from mathingthe spherially symmetri vauum Shwarzshild solutionto an expanding dust FLRW exterior aross a hypersur-fae preserving the symmetry. Bonnor has made several
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2 Mimoso, Le Delliou & Menainvestigations along this line (see e.g. [18℄). In partiu-lar, he o-presented an exat solution representing a loaldistribution of Eletrially Counterpoised Dust embed-ded in an expanding universe with zero spatial urvature[19℄, showing that the distribution partiipates in the ex-pansion. Among the generalisations of this model aresettings whih keep the spherial symmetry but gener-alise the interior soure �elds by onsidering for exam-ple Vaidya (see [20℄ and referenes therein) or Lemaître-Tolman-Bondi (LTB) spaetimes (see [21, 22, 23, 24, 25℄).On a di�erent ontext, Herrera and o-workers [26℄ havestudied the "raking" of ompat objets in astro-physis using small anisotropi perturbations aroundspherially symmetri homogeneous �uids in equilibrium.In this work we use a di�erent approah from all theworks desribed above. In one hand, by making use ofa single oordinate path, we do not have to handle themathing problem. On the other hand, our approahis not perturbative. We adopt the formalism whih hasbeen reently developed in a remarkable series of papersby Lasky and Lun using Generalised Painlevé-Gullstrand(hereafter GPG) oordinates [27, 28, 29℄. We performa 3 + 1 splitting and obtain gauge invariant onditionsrelating not only the intrinsi spatial urvature of theshells to the ADM mass1, but also a funtion of the pres-sure whih we introdue and that generalises the Tolman-Oppenheimer-Volko� (TOV) equilibrium ondition.In partiular, we onsider that the existene of a spher-ial shell separating an expanding outer region from aninner region ollapsing to the enter of symmetry, de-pends essentially on two onditions. The �rst onditionestablishes that there is no matter exhange aross theshell. The seond ondition establishes that the general-ized TOV equation is satis�ed on that shell, and henethat this shell is in some sort of equilibrium. The di�er-ene with respet to the original problem where the TOVequation was introdued for the �rst time is twofold. Ourresult does not rely on the assumption of a stati equi-librium of the spherial distribution of matter, and on-sequently does not assume that all the internal spherialperfet �uid spherial shells are onstrained to satisfy theTOV equation. In our ase the generalized TOV equationis just satis�ed at the dividing shell. Besides, the gener-alized TOV funtion depends on the spatial 3-urvaturein a more general way than the original TOV equation.Furthermore, we shall haraterise the dividing shell withkinemati quantities whih provide a gauge invariant for-mulation of the problem.In order to illustrate our results we will analyse somepartiular ases. The simplest example is provided by thewell-known Lemaître-Tolman-Bondi dust models with aosmologial onstant whih an be seen as an exampleof a Λ-CDM model. A preliminary presentation of thiswork an be found in [31℄. As a seond ase we onsider1 also referred to as Misner-Sharp mass[30℄.

generalizations of the previous model to ontain a en-tral perfet �uid ore. These models provide simple, butphysially interesting illustrations of our results.An outline of the paper is: (II) The GPG formalismof Lasky and Lun: 3 + 1 splitting and gauge invariantskinematial quantities. (III) Existene of a shell separat-ing ontration from expansion: general onditions. (IV)Partiular examples (A) Λ-CDM model (LTB with a os-mologial onstant). (B) Perfet �uid ore in a Λ-CDMmodel. (V) Disussion of our results.We shall use the following index onvention: Greekindies α, β, ... = 1, 2, 3 while latin indies a, b, ... =
0, 1, 2, 3.II. 3 + 1 SPLITTING AND GAUGEINVARIANTS KINEMATICAL QUANTITIESIn this setion we set the basi equations that we shallsubsequently need. For omparison, we follow losely theformalism used by Lasky and Lun (LL) [28℄, while slightlygeneralising their derivations for the expliit presene ofa osmologial onstant Λ.A. Metri and ADM splittingWe adopt the GPG oordinates of Ref. [28℄ and per-form an ADM 3+1 splitting [32℄ in whih the spher-ially symmetri line element assumes a perfet �uidtimelike normalised �ow na := −α∇at = [−α, 0, 0, 0](nana = −1), de�ning with its lapse N = α and its radialshift vetor Nµ = (β, 0, 0), an evolution of the spatiallyurved three-metri 3gµν = diag

(

1
1+E

, r2, r2 sin2 θ
) withtime (dΩ2 := dθ2 + sin2 θdφ2),

ds2 = −α(t, r)2dt2 +
1

1 + E(t, r)
(β(t, r)dt + dr)2

+ r2dΩ2. (II.1)The 3+1 approah uses the projetion operators alongand orthogonal to the �ow
Na

b := −nanb, hab :=gab + nanb. (II.2)where hab is the 3-metri on the surfae Σ normal tothe �ow. Those projetors are also used for ovariantderivatives: Along the �ow, the proper time derivative ofany tensor Xab
cd is

Ẋab
cd := neXab

cd;e, (II.3)and in the orthogonal 3-surfae, eah omponent is pro-jeted with h

X āb̄
c̄d̄;ē := ha

fhb
gh

i
ch

j
dh

k
eXfg

ij;k. (II.4)



Spherially symmetri models with P: dividing shell and generalized TOV 3Then the ovariant derivative of the �ow, from its pro-jetions, is de�ned as
na;b = N c

b na;c + nā;b̄ = −nbṅa +
1

3
Θhab + σab

+ ωab, (II.5)where the projetion trae, the expansion of the �ow, is
Θ = na

;ā, the rate of shear σab is its symmetri trae-freepart and its skew-symmetri part is the vortiity ωab.For perfet �uids we have the Rayhaudhuri propaga-tion equation
Θ̇ − ṅa

;ā = −1

3
Θ2 + ṅaṅa − σabσ

ab + ωabω
ab

− κ

2
(ρ + 3P ) + Λ. (II.6)where κ = 8π.The extrinsi urvature Θab := 1

2Lnhab gives2
Θab =diag

[

0,−1 + E

α
ℵ,− β

αr3
,− β

αr3 sin2 θ

]

, (II.7)with ℵ =

[

β′ +
1

2

Ė − βE′

1 + E

]

.and3
Θ = −

(

βr2
)′

αr2
− 1

2

LnE

1 + E
, (II.8)whih leads to

a =
1

3

r

α

(

β

r

)′

+
1

6

LnE

1 + E
. (II.9)The 3-Rii tensor on Σ gives

3Rµν = diag

[

− E′

(1 + E)r
,−1

2
E′r − E,

(

−1

2
E′r − E

)

sin2 θ

]

. (II.10)Samely, the 3-Rii trae and trae-free 3-Rii tensorderive from the 3-metri as
3R = − 2

(Er)′

r2
(II.11)and,

3Qµν :=3Rµν − 1

3
3gµν

3R (II.12)
⇒ 3Qµ

ν =
1

6

E′r − 2E

r2
Pµ

ν = q(t, r)Pµ
ν (II.13)

⇒ q =
r

6

(

E

r2

)′

. (II.14)2 Reall that for a salar Ln = na∂a =
1

α
∂t −

β
α

∂r ; [28℄ alled it
Kab but we prefered the Ellis onvention.3 Note that we obtain a sign for K and a di�erent from that ofRef. [28℄.

where Pµ
ν is diag [−2, 1, 1].The trae and trae-free Hessian of α write

1

α
DµDµα =

√
1 + E

αr2

(

r2
√

1 + Eα′
)′ (II.15)and,

1

α
DµDνα − 1

3α
3gµνDcDcα = ǫ(t, r)Pµν (II.16)with ǫ = −r
√

1 + E

3α

(
√

1 + E

r
α′

)′

. (II.17)The Bianhi identity T a
b;a = 0 an be projeted along

nb giving:
nbT a

b;a = − Lnρ − (ρ + P )Θ = 0. (II.18)while projetions orthogonal to nb give the Euler equa-tion
h b

aT c
b;c =







β
1
0
0







(

P ′ + (ρ + P )
α′

α

)

= 0 (II.19)
⇒ P ′ = − (ρ + P )

α′

α
. (II.20)B. The Einstein Field EquationsIt is well known that the ADM approah separates theten Einstein Field Equations (EFE) into four onstraintsand six evolution equations. Spherial symmetry reduesthem to 2+2 equations.The Hamiltonian onstraint reads, in the presene of aosmologial onstant,

3R +
2

3
Θ2 − 6a2 =16πρ + 2Λ, (II.21)the momentum onstraint, restrited to the radial dire-tion by symmetry,
(

r3a
)′

= − r3

3
Θ′ (II.22)and the evolution equations an be redued to4

−2LnΘ − 1

2
3R − Θ2 − 9a2 +

2

α
DaDaα =24πP − 3Λ,(II.23)

−Lna − aΘ + ǫ − q =0. (II.24)4 Note the sign di�erenes in front of the Lie derivatives termsompared with [28℄; our results give a sign for Ḣ whih is on-sistent with the Rayhaudhuri equation restrited to the FLRWase.



4 Mimoso, Le Delliou & MenaUsing Eqs. (II.8) and (II.9) in Eq. (II.22), one an sim-plify the latter into
− LnE

1 + E
=2

β

α2
α′. (II.25)Using the guidane that, from Eqs. (II.11) and (II.14),

3R+12q eliminates derivatives in E, we an further sim-plify the ombination of (Eqs. (II.23) + 6(II.24))×r2/3with expressions from Eqs. (II.8,II.9,II.11,II.14,II.15) as
2r (1 + E) (lnα)′ − 8πPr2 + Λr2 + 2rLn

(

β

α

)

−
(

β

α

)2

= −E. (II.26)Substitution of Eq. (II.26) into Eq. (II.21)×r2/4 yields,together with Eqs. (II.8,II.9,II.11,II.25,r/2×II.26), aPoisson-like equation whih, integrated over r de�nes aMisner-Sharp mass funtion [30℄
M ′ = 4πρr2

⇒ M = 4π

∫ r

0

ρx2dx = r2 (1 + E) (lnα)
′

− 4πPr3 +
1

3
Λr3 + r2Ln

(

β

α

)

, (II.27)whih with Euler's Eq. (II.20) rewritten, for P 6= −ρ,leads to the expression
M

r2
+ 4πPr =Ln

(

β

α

)

+
1

3
Λr − 1 + E

ρ + P
P ′. (II.28)The evolution Eq. (II.26) an be reast to reognise thede�nition of (II.27):

E + 2
M

r
+

1

3
Λr2 =

(

β

α

)2

. (II.29)With Euler's Eq. (II.20) , the momentum Eq. (II.25) be-omes
LnE =2

β

α

1 + E

ρ + P
P ′, (II.30)while taking Eq. (II.29)'s Lie derivative and using (II.30)with Ln

1
r

= − β
α
∂r

1
r

= β
α
/r2, then β

α
×Eq. (II.28) reads

LnM =4πPr2 β

α
. (II.31)Taking the positive (ontrating) root of Eq. (II.29), theevolution Eqs. α×(II.31) and α×(II.30) for M and E anbe written in term of time derivatives, expliiting the Liederivative:

Ṁ = α
(

M ′ + 4πPr2
)

√

2
M

r
+

1

3
Λr2 + E, (II.32)

Ė = α

(

E′ + 2
1 + E

ρ + P
P ′

)

√

2
M

r
+

1

3
Λr2 + E. (II.33)This system is then losed with a hoie of an equationof state.

C. Generalized LTBGetting the metri (II.1) into the LTB form, as in [28℄,requires a oordinate transform so that βdt + dr ∝ dR.Taking t(T ) and r(T, R), we have then the ondition
β∂T t + ∂T r = 0, (II.34)whih beomes

β = − ṙ. (II.35)Consequently, the line element (II.1) an be rewritten as
ds2 = −α(T, R)2 (∂T t)

2
dT 2+

(∂Rr)
2

1 + E(T, R)
dR2+r2dΩ2,(II.36)where E(T, R) > −1 and we an freely absorb the timefuntion in the new time by hoosing t = T . Using now ˙and ′ for ∂T and ∂R respetively, Eq. (II.29) now reads

ṙ2 =α2

(

2
M

r
+

1

3
Λr2 + E

) (II.37)and Eq. (II.32) rewrites, using Eq. (II.35),
Ṁ =β4πPr2 = 4πPr2α

√

2
M

r
+

1

3
Λr2 + E, (II.38)while Eq. (II.33)×r′ rewrites

Ėr′ =2β
1 + E

ρ + P
P ′ = 2

1 + E

ρ + P
P ′α

√

2
M

r
+

1

3
Λr2 + E(II.39)and Euler's Eq. (II.20)×r′ is unhanged

α′

α
= − P ′

ρ + P
. (II.40)D. Remarks on ΛIn all that preedes, the osmologial onstant was keptexpliit. However, from the EFEs, one an inlude its ef-fets in the total density and pressure as that of a �uidwith ρΛ = −PΛ = Λ

κ
. We then obtain expressions iden-tial to Lasky & Lun [28℄. It is interesting to note thatthe Misner-Sharp mass, in the expliit Λ formulation, isonly referring to the initial, �Λless� mixture, while en-ompassing the gravitational e�ets of the presene of

Λ. From Eq. (II.27) we an de�ne the mass Mtot andpressure term 4πPtotr
3 for the sum of the total perfet�uid mixture plus Λ by taking Eq. (II.27) for a perfet�uid and setting Λ = 0. We an also interpret the sumof the total mass and pressure terms as the mass of anequivalent dust model Med. We an then integrate the



Spherially symmetri models with P: dividing shell and generalized TOV 5mass of Λ �uid and introdue the �Misner-Sharp mass�[30℄ pressure term for the Λ �uid:
Mtot + 4πPtotr

3 =r2 (1 + E) (ln α)′ + r2Ln

(

β

α

)

≡ Med,(II.41)
MΛ =

4π

3
r3ρΛ =

Λ

6
r3, (II.42)

4πPΛr3 = − 1

2
Λr3. (II.43)Thus we an rewrite the Misner-Sharp sum of the massand pressure term from its omponents from Eq. (II.27):

M + 4πPr3 =Mtot + 4πPtotr
3 +

1

3
Λr3, (II.44)

MΛ + 4πPΛr3 = − 1

2
Λr3 +

Λ

6
r3 = −1

3
Λr3, (II.45)so Mtot = M + MΛ and Ptot = P + PΛ. In Se. III,unless stated otherwise, we will use M , ρ and P to meantheir total values while referring to the perfet-�uid-onlyvalues as Mpf , ρpf and Ppf . In addition, the mass evo-lution Eq. (II.31) refers to the �Λless� mixture mass andpressure. We an thus extrapolate that this mass onser-vation equation is valid for eah omponent of minimallyoupled �uid in the mixture: we thus have for indepen-dent �uids

M =
∑

fluid i

Mi, (II.46)
P =

∑

fluid i

Pi, (II.47)
LnMi =4πPir

2 β

α
= ±4πPir

2

√

2
M

r
+ E. (II.48)III. GEOMETRICAL AND PHYSICALCONDITIONS FOR THE EXISTENCE OF ADIVIDING SHELLIn our spherial symmetri approah, we are lookingfor shells dividing expansion at all time from regions ofmixed behaviour involving periods of ollapse.This leads to an investigation of the onditions for thedynamial separation of setions of matter trapped insidea dividing surfae (physial ondition). We will see thatthis approah is distint from a purely kinemati sepa-ration of ontration from expansion (geometrial ondi-tion) and will express the physial ondition using kine-mati quantities.A. Misner-Sharp mass onservationIn the previous setion we have seen how the Misner-Sharp mass is evolving with the �ow under Eq. (II.31).

We an thus de�ne a surfae for whih this mass is on-served with respet to the �ow:
∀t, LnM(t, r⋆(t)) =0

⇔ ∀t, E = −2
M

r⋆

, or P⋆ = 0 or r⋆ = 0, (III.1)While the seond ase, P = 0, de�nes a dust-like layer inthe perfet �uid mix, and the third ase, r = 0, is trivial,we shall onentrate on the �rst ase, E = −2M
r
. In thisase, from Eq. (II.30) we get

LnE = ± 2

√

2
M

r
+ E

1 + E

ρ + P
P ′ = 0, (III.2)so the shell is haraterised by �xed urvature andMisner-Sharp mass. This implies that if a presribedinitial P and ρ distribution is given suh that there exista shell where

E⋆ = −2
M⋆

r⋆

, (III.3)then this shell an loally separate inner and outer re-gions that an be expanding and ontrating di�erently.We all the separating shell a �limit shell�, and denoteit with ⋆. In GPG oordinates the above ondition isequivalent to β
α

∣

∣

∣

⋆
= 0, or to β⋆ = 0. We an then useit to ompute

ṙ⋆ = − 2M

E
α

[LnM

M
− LnE

E

]

⋆

= 0, (III.4)
r̈⋆ = − 2M

E
α2

[L2
nM

M
− L2

nE

E

]

⋆

, (III.5)and
Lnr = −β

α
⇒ Lnr⋆ = 0, (III.6)so the limit shell appears as a �turnaround�5 shell, interms of areal radius.However, these onditions are oordinate dependentand give limited insight as to how they would express fordi�erent observers. This alls for a de�nition using gaugeinvariant quantities.B. Expansion and ShearNewtonian struture formation in spherial symmetryprovides a natural limiting shell that is a lous separatingat a given time expansion from ollapse: the turnaroundradius (see e.g.[33℄). The de�nition of that lous is given5 See disussion in [1, Setion 19, p77℄



6 Mimoso, Le Delliou & Menaby the vanishing of the expansion with respet to the�ow. Nevertheless, this is not neessarily the ase result-ing from ondition III.1. Let us �rst start from the previ-ous mass �ow de�nition and examine the orrespondingexpansion.In GPG oordinates [28℄, de�ning the �ow by theshift/lapse vetor, we an ompute the expansion (thetrae of the symmetri part of the projeted ovariantderivative of the �ow vetor), using Eqs. (II.25,II.8):
Θ = −

(

β

α

)′

− 2
β

α

1

r
(III.7)At r∗ (for β

α
= 0), we have non-zero expansion given by

Θ⋆ = −
(

β

α

)′

⋆

. (III.8)The shear an also be expressed here from Eqs. (II.9)and (II.25) as
a =

1

3

[

(

β

α

)′

− β

α

1

r

]

, (III.9)and we an then relate shear and expansion as (usingEq. III.6)
r

(

Θ

3
+ a

)

= − β

α
= Lnr, (III.10)so on the limit shell,

Θ⋆ + 3a⋆ =0 ⇔ (Lnr)⋆ = 0. (III.11)1. Generalising TOVThe TOV equation, following [28℄, emerges fromEq. (II.28) in the stati ase.We now generalise the TOV equation by de�ning afuntional gTOV from Eq. (II.28) as
gTOV =

[

1 + E

ρpf + Ppf

P ′
pf + 4πPpfr +

Mpf

r2
− 1

3
Λr

]

=

[

1 + E

ρ + P
P ′ + 4πPr +

M

r2

]

. (III.12)The de�nitions (III.10), (II.28) and (III.12) ombine toyield
gTOV = − r

[

Ln

(

Θ

3
+ a

)

−
(

Θ

3
+ a

)2
] (III.13)

= − L2
nr. (III.14)We an then obtain loal onditions that yield the TOVequation on the limit shell when

gTOV⋆ = 0 ⇔ L2
nr =0

⇔ Ln

(

Θ

3
+ a

)

⋆

=0. (III.15)

We an further express gTOV in a form that re-minds of the FLRW Rayhaudhuri equation by using
〈ρ〉 ≡ M/(4πr3/3), i.e.

gTOV =
1 + E

ρ + P
P ′ +

4π

3
r (〈ρ〉 + 3P ) , (III.16)and for FLRW it redues to

gTOVFL =
4π

3
r (ρ + 3P ) = −r̈. (III.17)2. Dynamis of the limit shellWe have seen that we ould de�ne the limit shell byonly setting E⋆ = −2M⋆/r⋆ (so β⋆ = 0), so that Θ⋆ =

3a⋆. Now, using Eqs. (II.29,II.32,II.33,III.12) we �nd
(

β

α

)

�

=β

(

β

α

)′

+ αgTOV (III.18)
⇒ β̇ =β

(

β′ − β
α′

α
+

α̇

α

)

+ α2gTOV, (III.19)so on the limit shell, we have
(

β

α

)

�

⋆

=αgTOV⋆ (III.20)
⇒ β̇⋆ =α2gTOV⋆. (III.21)Reall that, in the LTB frame, β = −ṙ, so this tells us

r̈LTB,⋆ = − α2gTOV⋆, (III.22)and thus when gTOV⋆ = 0 that shell has no aelerationand is therefore really stati, as expressed in the origi-nal TOV equation. For ompleteness, we an rëexpressEq. (III.6) with Eqs. (II.31,II.30,III.12) in GPG oordi-nates:
r̈GPG,⋆ = −2M

E
α2

[L2
nM

M
− L2

nE

E

]

⋆

= −α2

[

gTOV⋆ − r2
⋆

gTOV2
⋆

M⋆

]

. (III.23)3. Rayhaudhuri expansion evolutionFrom Eqs. (II.21) and (II.23), with Λ inluded as a�uid omponent, we have in the GPG frame,
−2LnΘ − 2

3
Θ2 − 12a2 +

2

α
DkDkα =8π (ρ + 3P ) ,(III.24)and on the limit shell, that reads

− 2

α
Θ̇⋆ − 2Θ2

⋆ +
2

α
DkDkα⋆ =8π (ρ + 3P ) , (III.25)



Spherially symmetri models with P: dividing shell and generalized TOV 7showing that this shell an still be dynami. Using theEuler Eq. (II.20), the Hessian (II.15) gives
2

α
DγDγα =

1 + E

ρ + P
P ′

[

E′

1 + E
− 2

(

αr2
)′

αr2

]

− 2

(

1 + E

ρ + P
P ′

)′

. (III.26)Thus Eq. (III.24) reads
− LnΘ − Θ2 − 2

r

β

α

[

2Θ +
3

r

β

α

]

= 4π (ρ + 3P )

− P ′

2 (ρ + P )
E′ +

(

1 + E

ρ + P
P ′

)′

+

(

2

r
− P ′

ρ + P

)

1 + E

ρ + P
P ′. (III.27)Here, we an reognise the �rst term of TOV. On thelimit shell the above equation reads

− 1

α
Θ̇⋆ − Θ2

⋆ = 4π (ρ + 3P )

− P ′

2 (ρ + P )
E′ +

(

1 + E

ρ + P
P ′

)′

+

(

2

r
− P ′

ρ + P

)

1 + E

ρ + P
P ′, (III.28)and we reast the Rayhaudhuri equation for the FLRWase

−LnΘ − Θ2

3
=4π (ρ + 3P ) (III.29)
= − 3Ḣ − 3H2. (III.30)4. Remarks on null expansion limit shellsWe now explore the onsequenes of having, in additionto (III.11), the ondition Θ⋆ = 0for the limit shell. Inthis ase, the shear must also vanish on the shell and
(

β

α

)′

⋆

=0, (III.31)whih onstrains the gradient of the generalised veloity�eld β/α.In addition, and most importantly, the RayhaudhuriEq. (III.27) shows that an initially expansion-free divid-ing shell is not likely to remain so, and will drift radially.If we impose the vanishing of LnΘ in Eq. (III.24), wederive
1

α⋆

DkDkα⋆ =4π (ρ + 3P )⋆ , (III.32)whih then translates into a thermodynami onditionon the seond-order derivative of P , whih should indue

r
3
√

3M
Λ

E>

Elim
− (3M )

2
3

3
√

Λ

E<

(

−2M
r

− Λ
3r

2
)

Figure 1: Kinemati analysis for a given shell of onstant Mand E. Depending on E relative to Elim, the fate of theshell is either to remain bound (E< < Elim) or to esape andosmologially expand (E> > Elim). There exists a ritialbehaviour where the shell will forever expand, but within a�nite, bound radius (E = Elim, r ≤ rlim)a very spei� and ad ho loal equation of state of theperfet �uid, namely
(

1 + E

ρ + P
P ′

)′

⋆

= −4π (ρ + 3P )⋆ +
P ′

⋆

2 (ρ + P )⋆

E′
⋆

−
(

2

r
− P ′

ρ + P

)

⋆

1 + E⋆

ρ⋆ + P⋆

P ′
⋆. (III.33)We onlude that the ase of a stati, expansion-free,limit shell is very restritive: for example, in the sim-plest ase, disussed below, of an inhomogeneous Λ-CDMmodel, Eq. (III.33) indues a restritive equation of state

P = −ρ/3 on the shell, whih is neither veri�ed by thedust omponent, nor by the Λ �uid, whereas the limitshell in this ase derives from a statiity ondition (seeSe. IVA).IV. APPLICATIONS TO SIMPLE MODELSWe now will illustrate the behaviour aording to thelimit shell of simple models. First we will see how itappears in a Λ-CDM model, that is a Lemaître-Tolman-Bondi dust model with a osmologial onstant. We willthen look at more general models inluding perfet �uids.A. Overdensity in a Λ-CDM modelIn what follows we onsider a Λ-LTB model whih, be-sides the bare LTB ase, is exatly solvable, the mostsimple perfet �uid model with a osmologial ontextdeparting from LTB and whih satis�es the onditionsfor the existene of an asymptotially r-stati dividingshell. Indeed, as stated in [28℄, hoosing P = 0 leads to
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r

ṙ

Figure 2: Phase spae of a shell of �xed M and E. Thesales are set by the value of rlim = 3

q

3M
Λ

while the atualkinemati of the shell is given by E.the usual LTB solutions. Setting P = 0 in Eq. (II.38)implies6 Ṁ = 0 and it is somewhat remarkable that thismass is still onserved for eah shell in spite of the pres-ene of Λ. Λ gives a homogeneous pressure, whih inEq. (II.40) gives α′ = 0 so we an rede�ne αdT = dT ∗into the line element (II.36), and �nally in Eq. (II.39),assuming no shell rossing r′ 6= 0. We are therefore leftwith Eq. (II.37) in the lassi LTB form, with
ṙ2 =2

M

r
+

1

3
Λr2 + E. (IV.1)Adding a osmologial onstant modi�es the mass def-inition but not the dust equation of motion. However,we have an extra term that leads to a di�erent dynam-is. We an thus write the Rayhaudhuri-like equationorresponding to time derivation of Eq. (IV.1):

r̈ = − M

r2
+

Λ

3
r, (IV.2)and this shows there exists a radius without aelerationfor stritly positive Λ, ontrary to pure dust. However,the �rst integral (IV.1) su�es for analysis of what hap-pens to eah shell (with �xed R).1. Kinemati analysisThe Friedmann-like equation (IV.1) an be used to getthe dynamis in a purely kinematial way. It an beexpressed with a polynomial

ṙ2 =
Λ

3r

(

r3 +
3E

Λ
r +

6M

Λ

)

=
Λ

3r
P3,f (r), (IV.3)6 M an be understood as the mass of the dust alone but interat-ing with Λ, see Se. II D.

6

8

10

12

14

16

0 2 4 6 8 10

x

∝ R−1

ln(ρ)

∝ R−3

ln(R)

∼ ρbFigure 3: NFW with bakground density pro�lewhih roots (given in appendix A) should obey the e�e-tive potential equation
E = V (r) ≡− 2M

r
− Λ

3
r2. (IV.4)Sine ṙ2 ≥ 0, we have the ondition

E ≥V (r). (IV.5)The motion of a given shell over time thus follows E =
const urves above the e�etive potential V . Roots,the points of hanging diretion, translate as a geomet-ri intersetions between those urves and V . The ef-fetive potential admits one real negative root (0 en-ergy/urvature) at

r = − 3

√

6M

Λ
, (IV.6)and one double solution at its horizontal tangent (V ′ = 0)

rlim =
3

√

3M

Λ
, (IV.7)for whih the value of E beomes

Elim = − (3M)
2
3 Λ

1
3 . (IV.8)It an be easily shown that any shell standing at rlimwith Elim will automatially be a limit shell

rlim = − 2Mtot,lim

Elim

= −2
M + Λ

6 r3
lim

Elim

= − 3M

Elim

, (IV.9)and alulating its gTOV, using the de�nition ofEq. (III.12) and reognising Eq. (IV.2),
gTOV =

M

r2
− Λ

3
r = −r̈, (IV.10)that suh a shell will be r-stati (gTOVlim = −r̈lim = 0).
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x
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K10

K8

K6
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K2

2

4

6

→ cst

ln(R)

E(R) > 0

ln(−Elim)

∝ R
4
3

E = −1

∝ R
2

E > −1

ln(−E(R))

Figure 4: NFW with bakground Elim and an example of
E pro�le given by Eq. (IV.20), for Emin = −1 + e

−10 and
r1 = e

9.The e�etive potential analysis is shown in �g. 1.We an thus reonstrut the phase spae of that shell inthe (ṙ, r) plane. Above the energy Elim, there is only oneroot in the negative region, thus the �ow is qualitativelyde�ned by its initial onditions. At Elim, the doublepositive root gives a repulsive point, thus a saddle, while,below Elim, the pair of roots give losed and open orbitsas shown on �g. 2.The Rayhaudhuri-like equation an also be expressedwith a polynomial
r̈ =

Λ

3r2

(

r3 − 3M

Λ

)

=
Λ

3r2
P3,R(r), (IV.11)admitting only one real root; the aeleration is alwayspositive for

r ≥ 3

√

3M

Λ
, (IV.12)thus at in�nity (osmologial onstant dominates, M ismonotonous in r). Therefore, at this root, there exist alimit radius beyond whih there is no reollapse:

rlim(R) =
3

√

3M(R)

Λ
. (IV.13)Note that this radius orresponds to the saddle point,whih initial energy radial pro�le is �xed with ini-tial onditions for the mass distribution Elim(R) =

− (3M(R))
2
3 Λ

1
3 . Therefore the last intersetion betweenthe initial urvature pro�le, set by ombining veloityand mass pro�les, and this saddle point pro�le yields aglobal shell beyond whih there is no reollapse, reover-ing separation of expansion from ollapse. Expliit exatsolutions for this ΛLTB evolution model are shown inappendix B. It is nevertheless rutial to realise that theseletion of the limit shell from initial urvature does notentail neessarily that it should start as r-stati. Indeed

log(R)

∼ ρb

∝ R−ǫ

log(ρ(R))

Figure 5: power law density pro�le without usp and withbakgroundthe opposite should be true in general, as an be seen inEqs. (IV.1) using Elim, Rlim in (IV.4), and �g. 1: for anyhoie of the initial Rlim < rlim, the radial veloity
Ṙ2

lim =Elim − V (Rlim) > 0, (IV.14)so it appears that the r-stati behaviour of the shellshould only emerge asymptotially as it approahes zeroveloity for in�nite time. The seleted limit shell there-fore agrees with the onditions (III.11,III.15) only at in-�nity in time, and is traed bak to initial onditionsowing to the Λ+dust onservation of M and E in time.More general �uids should not always allow for this on-servation on the limit shell, however one a shell veri�esEqs.(III.11,III.15), its statiity guaranties that it shouldverify it at time-in�nity. It is remarkable that the ex-istene of the limit shell only matters at time-in�nity,suggesting that a weaker de�nition than (III.11,III.15)should a be su�ient ondition.2. Time dependent TOVThe shape of Eq. (IV.10) shows that, at the root ofthe Rayhaudhuri-like polynomial, gTOV = 0 and thatit is positive inside and negative outside. The trappedregion is thus haraterised by gTOV ≥ 0. We an alsoompute, using M = 4π 〈ρ〉 r3/3,
gTOV′ =

[

4π

(

ρ − 2

3
〈ρ〉
)

− Λ

3

]

r′ (IV.15)so TOV is a dereasing funtion of r (for r′ > 0, a fairassumption as seen when r(t = 0) = R), exept in regionswhere ρ > 2
3 (〈ρ〉 + ρΛ), that is in density peaks. It is alsoa time dependent funtion through the evolution of r:

˙gTOV = ∓
(

2M

r3
+

Λ

3

)

√

E +
2M

r
+

Λ

3
r2, (IV.16)thus for a given shell, it inreases with time for ingoingdust shells and dereases for outgoing ones. The mainpoint is that with dust, turnaround shells have r-stati
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log(R

r0
)

∝ R2

∝ R2

E(R) > 0

∝ R2

∝ R(2−ǫ)

log(−Elim,noC(R))

log(−EnoC(R))

∝ R
2(3−ǫ)

3

Figure 6: power law density without usp + bakgroundinlog(−Elim) − log(R) and log(−E) − log(R) sales
gTOV, and that balaned shells (between their mass pulland that of Λ) verify the TOV equation and are thusstati. 3. Examples of initial densityIt is obvious then that initial onditions are ruial todetermine the existene of a separating shell in the ΛLTBmodel sine they set the pro�le of E and that of Elim. Asingle rossing of the two urves ensures loally the exis-tene of suh a shell, while its global e�et remains if theinitial onditions do not foster shell rossing. This is thease if there is only one rossing from bound to unbound
Es of Elim. More ompliated ases will be examined ina future work. We now proeed with examples of initialdensity pro�les and then dedut the onditions on theorresponding urvature pro�le for a limit shell to exist.a. NFW with bakground: The hoie of an NFW[34℄ density pro�le is motivated by their prevalene inlarge osmologial dark matter haloes ([35, and referenestherein℄). If we initialise the halo with suh a density pro-�le, with onentration 1/R0 and in�exion density ρ0/4,plaed on a onstant bakground ρb, we an ompute theorresponding mass pro�le. The density pro�le, as illus-trated on �g. 3, is given by [34℄

ρ =
ρ0

R
R0

(

1 + R
R0

)2 + ρb. (IV.17)The orresponding mass then reads
M = 4π

{

r3
0ρ0

[

ln

(

1 +
R

r0

)

− R

R + r0

]

+ ρb

R3

3

}

.(IV.18)Now armed with the expression for the maximum en-ergy funtion, the double root solution above, we anobtain from Eq. (IV.8) the bound upper limit for the ini-tial Energy/urvature pro�le that separates between ever

expanding and bound shells
Elim = − (12π)

2
3 Λ

1
3

{

r3
0ρ0

[

ln

(

1 +
R

r0

)

− R

R + r0

]

+ρb

R3

3

}
2
3

. (IV.19)Figure 4 shows that pro�le orresponding to the NFWwith bakground mass. We then propose an example forthe E(R) pro�le, motivated by its osmologial Fried-mann asymptoti urvature and its simple radial evolu-tion from bound to unbound, as
E(R) = − 4Emin

(

R

r1

)(

1 − R

r1

)

, (IV.20)where r1 > 0 and −1 < Emin < 0, hosen so that Erosses Elim near its onstant density region. With theasymptoti onstant density and Friedmann negative ur-vature (E ≃ 4
r2
1

R2 = −k∞R2), these initial onditionsmodel well a ollapsing struture in an open bakgroundof urvature radius r1

2 . The resulting urves are shownin �g. 4. We have here an example where shells with
E < Elim are trapped inside the limit shell de�ned bythe intersetion of the two pro�les. Moreover, that limitshell in the ase of dust with Λ has been shown to bestati. Thus, with this set of physially motivated initialonditions, the limit shell de�ned in this way delimits aonstant region of ollapsing mass, separated from ex-panding shells.b. Cosmologial bakground with power law overden-sity: The most natural osmologial initial ondition isa power law overdensity, with or without usp, upon auniform bakground with an initial Hubble �ow ([35℄).The uniform bakground and initial Hubble �ow ensuresthe asymptoti solution starts FLRW. In this seond ex-ample of initial onditions, we explored both density pro-�les but illustrate only the uspless ase as it is more ob-servationally sounded ([35, and refs. therein℄). The den-sity pro�les, as illustrated for the seond ase on �g. 5,are given by (ǫ > 0, and in the �rst ase ǫ ≤ 3 for a �niteentral mass)

ρ =ρ0

(

R

R0

)−ǫ

+ ρb, (IV.21)
ρ =ρ0

(

1 +
R

R0

)−ǫ

+ ρb. (IV.22)Observations of the Cosmi Mirowave Bakground(CMB) would imply to hose initial time at reombina-tion and amplitudes of the order of ρ0 ∼ 10−5ρb ([see 35,and refs. therein℄). The orresponding mass then reads,for the uspy pro�le,
Mcusp = 4πr3

0ρ0















[

ln
(

R
r0

)]

, ǫ = 3
[

“

R
r0

”

3−ǫ

3−ǫ

]

, 0 < ǫ < 3















+
4π

3
ρbR

3,(IV.23)
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Figure 7: rlim < r∂1
< r∂2

ase for a dust layer with Λ. Fullspae Λ-CDM diagram for log(−Elim)−log(R) and log(−E)−
log(R) in dashed line. This region is haraterised by E >

Elim, so the dynamial analysis of �g. 1 yields ontinuationof initial veloities diretions.and for the pro�le with onstant density in the entre
MnoCusp = 4πr3
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1
2

(
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)(
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)
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(

1 + R
r0

)]

, ǫ = 1
[

(

R
r0

)
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1+ R
r0

− 2 ln
(

1 + R
r0

)

]

, ǫ = 2
[

R
r0

“

1+ R
r0
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(

1 + R
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+
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+
4π

3
ρbR

3. (IV.24)The resulting boundary pro�le for E again followsEq. (IV.8), using the obtained mass pro�les. Taking aninitial Hubble �ow, Ṙ = HiR, the E(R) pro�le is thende�ned by Eq. (IV.1) to be
E(R) =

(

H2
i − Λ

3

)

R2 − 2M

R
. (IV.25)The resulting omparison between E and Elim for thenon-uspy ase is shown in �g. 6. One again, the in-tersetion de�nes a stati limit shell for whih rlim =

− 2Mtot,lim

Elim
and gTOV = 0, all shells inside it are in thekinematially bound region of �g. 1 while those outsideare in the free region. Initial onditions ensure they willexpand in a quasi FLRW manner.These examples illustrate that osmologially moti-vated initial onditions lead to a lear separation be-tween expanding and ollapsing regions. Therefore forthese systems, expansion ignores the e�ets of ollapseand onversely the details of the ollapsing region anignore the presene of a bakground expanding universe.

r∂2

log(−E(R))

r∂1

E > Elim

⇓
ṙ < 0 : r∂ → 0
ṙ > 0 : r∂ → ∞

Rlim
log(−Elim(R))

E(R) > 0

E < Elim ⇒ r∂ collapse to 0

log(R)

E
∂−2

= E∂+
2
⇒ ṙ

∂−2
= 0

Figure 8: r∂1
< rlim < r∂2

ase for a dust layer with Λ,
Λ-CDM for log(−Elim) − log(R) and log(−E) − log(R) indashed line. The region with E < Elim is trapped by its setof e�etive potentials and will reollapse, that with E > Elim,so the dynamial analysis of �g. 1 yields ontinuation of initialveloities. Separating shell remains in between those regions.B. Perfet �uid ore in a Λ-CDM modelBefore examining the possibility of existene for a limitshell inside a perfet �uid in a sequel paper, where weshall present an ansatz for a perfet �uid inhomogeneousore in a Friedmann environment, let us turn to the on-�guration where a perfet �uid ball is surrounded by a)vauum with a osmologial onstant, b) dust and Λ.1. Pure Λ exteriorIn the same way as [28℄ did for a perfet �uid sur-rounded by a Λ = 0 vauum, We an examine the inter-fae between the perfet �uid and the Λ vauum. In thelatter region, both the pressure radial derivative P ′ = 0and the sum ρΛ + PΛ = 0 for all time and plae by def-inition of Λ. In the same way as [28℄ showed for suha on�guration with Λ = 0 vauum, suh a simple in-terfae implies, through Eqs. (II.40) and (II.30), that theenergy and lapse funtions, E and α, are unde�ned there.These equations show that only if the �uid's pressure ra-dial derivative P ′ vanishes faster than ρ+P an E and αremain de�ned. This ondition sets an unusual boundaryonstraint to the perfet �uid's EoS (simple linear EoSdo not agree with it), but it is more fruitful to point outthat suh behaviour mimis that of a vanishingly thinlayer of Λ-dust. Thus, the transition between the tworegimes give rise to an inesapable Λ-dust atmosphere,however vanishingly thin, as was found in the pure va-uum ase [28℄. We have two free boundaries, r∂1

(t) wherethe pressure vanishes and r∂2
(t) > r∂1

(t) where the den-sity vanishes, at whih the EoS is de�ned as
0 =

{

f(ρ, P ) for r ∈ [0; r∂1
]

P for r ∈ [r∂1
; r∂2

] .
(IV.26)
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log(−Elim(R))

log(−E(R))

r∂2r∂1

log(R)

E < Elim ⇒ r∂ collapse to 0

E
∂−2

= E∂+
2
⇒ ṙ

∂−2
= 0

E(R) > 0Figure 9: r∂1
< r∂2

< rlim ase for a dust layer with Λ,
Λ-CDM for log(−Elim) − log(R) and log(−E) − log(R) indashed line. This region is haraterised by E < Elim, so thedynamial analysis of �g. 1 yields eventual reollapse.Evolution of r∂1

(t) and r∂2
(t) follows from setting respe-tively P = 0, then P = ρ = 0 in Eqs. (II.32), (II.33) and(II.40) to evolve those radii from initial onditions. Theontinuity of the urvature through both boundaries im-poses again

[

lim
r→r+

∂i

− lim
r→r−

∂i

]

{E (t, r)} =0, (IV.27)that an be used to transmit the value of the mass pa-rameter from the outer Shwarzshild-de Sitter spaetimedown to the perfet �uid boundary urvature.2. Limit shellAt this stage, the possibility opens for a limit shell inthe Λ-CDM atmosphere of the ore, provided that suhshell veri�es in onjuntion Eqs. (III.3), or equivalently(III.11), and (III.15), whih is only possible in a positivelyurved region. Given the surrounding Shwarzshild-de Sitter environment, the positive urvature require-ment is at least loally �lled near the outer bound-ary. There the analysis of Se. (IVA) applies fully toyield, given initial onditions, the loation of the previ-ously disussed stati virtual shell. Reall that in theShwarzshild-de Sitter region, E = − 2M∂2

r
− Λ

3 r2 while
Elim = − (3M∂2

)
2
3 Λ

1
3 = cst, however the analysis onlyapplies in the presene of dust, thus between r∂1

and r∂2
.Owing to the preservation of ontinuity in M and E at

r∂1
, whihever behaviour the perfet �uid may have, itwill be on�ned by that of the previously explored Λ-CDM at its boundary.Let us exhibit examples of suh on�gurations: wean start from a similar example as presented in Se.(IVA3). Nevertheless, to preserve urvature ontinu-ity (IV.27), the initial veloity at r∂2

should go to 0,and therefore the previous E pro�le should be modi�edaordingly. Then we are faed with three possibilities

due to the loation of the dust layer boundaries om-pared with the limit shell in the full spae dust model:
rlim < r∂1

< r∂2
, r∂1

< rlim < r∂2
or r∂1

< r∂2
< rlim.Those ases are illustrated respetively on �gs. 7, 8 and9. In the �rst ase, the dust layer loates above the max-imum of their e�etive potential (IV.4) so their initialveloities gives the diretion of their unhindered asymp-toti behaviour, i.e. an initially expanding dust layershould expand forever. If a separating shell exists, itshould lie within the perfet �uid region. The seondase shows the existene of a separating shell, the perfet�uid being bound by the eventual reollapse of the r∂1shell, while some of the dust shell will expand throughthe vauum region and eventually squeeze it to in�nity.In the third ase all the dust shells loate below the max-imum of their e�etive potential (IV.4) so the whole masswill eventually reollapse, as if the separating shell wasvirtually loated in the vauum region.Now sending the r∂2

boundary to in�nity, we an ex-pand the dust layer aordingly and so long as Se.(IVA)'s analysis yields a limit shell within the dust re-gion, the perfet �uid shall be ontained by the ollapsinginner boundary (i.e. the third ase disappear and we areleft with ases rlim < r∂1
and r∂1

< rlim as treated in�gs. 7 and 8).In this setion we have found that the presene of aosmologial onstant does not modify the need for a dustlayer around a perfet �uid ore surrounded by vauum.We have also given examples of limit shell separationbehaviours for appropriately set initial onditions in thedust layer with Λ. We have even hinted at that possibilityinside the perfet �uid from the dust behaviour, althoughsuh study should be left for a sequel paper.V. SUMMARY AND DISCUSSIONIn the present work we have onsidered spheriallysymmetri, inhomogeneous universes in order to aser-tain under whih onditions a dividing shell separatingexpanding and ollapsing regions exists. This endeavouris important in relation with the present understanding ofstruture formation as the outome of gravitational ol-lapse of overdense pathes within an overall expandinguniverse.We have addressed this problematis by resort-ing to an ADM 3+1 splitting, utilising the so-alledGeneralized-Painlevé-Gullstrand oordinates as devel-oped in Refs. [27, 28℄. This enables us to follow a non-perturbative approah and to avoid having to onsiderthe mathing of the two regions with the ontrasting be-haviours. We have found loal onditions haraterisingthe existene of a dividing shell. We have related theseonditions to a gauge invariant de�nition of the proper-ties of the dividing shell. These require the vanishing ofa linear ombination of the expansion salar and of theshear on the shell, as well as that of its �ow derivative. InGPG oordinates, it summarises as a vanishing of both



Spherially symmetri models with P: dividing shell and generalized TOV 13�rst and seond order �ow derivatives of the areal radius.In order to illustrate our �ndings we have onsideredsome simple examples of osmologial interest that pro-vide realizations of our results. We have onsidered a Λ-CDM model whereby we onsider an LTB universe withdust and a osmologial onstant. Notie that the simul-taneous onsideration of the latter two omponents yieldsa perfet �uid model for the ombined matter ontent.Moreover it an be seen as simpli�ed model of a dustuniverse within a osmologial setting oarsely providedby Λ whih would then mimi the energy ontent of thebakground osmologial model with a rate of expansionmuh smaller than that of the pure dust ollapse.We have hosen initial onditions motivated by osmo-logial onsiderations and have disussed the existene ofa dividing shell for those ases. We have also generaliseda result of Ref. [28℄ for the ase where a osmologialonstant is present, whih states that a perfet �uid oreembedded in a universe �lled with a osmologial on-stant neessarily exhibits a dust transition between theperfet �uid inner region and the outer vauum region.This permits to envisage this ase as a generalization ofthe former Λ-CDM examples.Finally we should mention that, a thorough disussionof global onditions represent a muh harder problem,and remain an open problem sine this involves the fullharaterisation of a partial di�erential equations prob-lem with boundary onditions in an open domain.AknowledgmentsThe authors wish to thank José Fernando Pasual-Sanhez for bringing to their attention the work of theauthors of Ref. [28℄, and for helpful disussions. Thework of MLeD is supported by CSIC (Spain) under theontrat JAEDo072, with partial support from CICYTprojet FPA2006-05807, at the IFT, Universidad Au-tonoma de Madrid, Spain, and was also supported byFCT (Portugal) under the grant SFRH/BD/16630/2004,at the CFTC, Lisbon University, Portugal. FCM issupported by CMAT, Univ. Minho, and FCT projetPTDC/MAT/108921/2008. JPM also wishes to thankFCT for the plurianual running grant of CFTC.Appendix A: ROOTS OF P3,f (r)1. Roots for the polynomialThe roots (r0s) of Eq. (IV.3) proeed from the poly-nomial P3,f . We hange variable suh that r = u + vand use the extra degree of freedom to hoose to rewrite

P3,f = 0 suh that
uv = − E

Λ
, (A.1)

(

u3 +
3M

Λ

)2

=

(

E

Λ

)3

+

(

3M

Λ

)2

. (A.2)Solutions for the latter seond degree polynomial omenaturally as
u3 =

−3M ±
√

E3

Λ + (3M)2

Λ
(A.3)

⇒ u =
3

√

√

√

√
−3M ±

√

E3

Λ + (3M)
2

Λ
ei 2πk

3 . (A.4)We are left with six solutions for u and v, whih aresymmetrial and related by Eq. (A.1) so uv being real,hoosing u3 as the positive squareroot solution, the or-responding v3 beomes the negative one while u and vare omplex onjugate, so
uv =

3

√

(3M)2 − E3

Λ − (3M)2

Λ2
= −E

Λ
, (A.5)therefore the roots are:

rk=0,±1 =





3

√

−3M +

√

E3

Λ
+ (3M)2ei 2πk

3

+
3

√

−3M −
√

E3

Λ
+ (3M)

2
e−i 2πk

3



 /Λ
1
3 (A.6)

2. Real root(s)For the positive disriminant, ∆ = E3

Λ + (3M)
2, thereis only one real root for k = 0. A negative or null dis-riminant, yields again the real k = 0 root and two otherreal roots for k = ±1, sine then v = u. We are then leftwith the single real root, noting

a0 =
3

√

−3M +

√

E3

Λ
+ (3M)

2
, (A.7)

a∗
0 =

3

√

−3M −
√

E3

Λ
+ (3M)

2
, (A.8)

r0 =
a0 + a∗

0

Λ
1
3

, (A.9)
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Λ + (3M)2 ≤ 0, the two other real roots
a± =

3

√

√

√

√

3M + i

√

(−E)
3

Λ
− (3M)

2
(1 ∓ i

√
3), (A.10)

ā± =
3

√

√

√

√

3M − i

√

(−E)3

Λ
− (3M)

2
(1 ± i

√
3), (A.11)

r± =
a± + ā±

2Λ
1
3

, (A.12)3. Signs of the real roots:So as to order the roots, it is neessary to look at theirsign. This is important as r should be positive, r < 0 be-ing unphysial. Reall that M, Λ > 0 and E > −1. When
∆ > 0, i.e. when E > − (3M)

2
3 Λ

1
3 = Elim, we have onlyone real root and r0 > 0 ⇒ a0 > −a∗

0. We always have
−a∗

0 =
3

√

3M +
√

E3

Λ + (3M)
2

> 0. Supposing a0 > 0(and thus a3
0 > 0) then −a∗3

0 a3
0 = E3

Λ > 0 ⇔ E > 0.Therefore, with the hypothesis E > 0, the ondition
r0 > 0 implies a0 > −a∗

0 ⇔ a3
0 > −a∗3

0 ⇔ −3M > 3M !Hene for E > 0 we have r0 < 0. Samely, for 0 ≥
E > − (3M)

2
3 Λ

1
3 , requesting r0 > 0 implies a0 > −a∗

0while −a∗
0 > 0 ≥ a0! Therefore, 0 ≥ E > − (3M)

2
3 Λ

1
3always entails r0 < 0 and we onlude that r0 is al-ways negative when E > − (3M)

2
3 Λ

1
3 . The ase when

(3M)
2
Λ < 1 is more interesting as we have three realroots for −1 < E ≤ − (3M)

2
3 Λ

1
3 . Let us use the solu-tions of Eq. (A.6) in the form

rk =
uk + ūk

Λ
1
3

=
2ℜ(uk)

Λ
1
3

. (A.13)We know that
u3

k = − 3M + i

√

(−E)
3

Λ
− (3M)

2 (A.14)so ℑ(u3
k) ≥ 0 and ℜ(u3

k) < 0. We an thenrewrite u3
k = ρeiϕk,3 with ρ2 = (−E)3

Λ , and ϕk,3 ∈
[

π
2 + 2kπ ; π + 2kπ

]

k∈Z
. The values of uk are de-dued as uk = ρ

1
3 eiϕk with ϕk =

ϕk,3

3 : ϕk ∈
[

π
6 + 2kπ

3 ; π
3 + 2kπ

3

]

k∈Z
. Eah uk admits the samemodulus, so the phases, eah separated by 2π/3, giveus the ranges and the order in whih eah root lies. Theresults are the following:

ϕ0 ∈
[

π
6 ; π

3

]

⊂
[

0 ; π
2

]

⇒ r0 >0, (A.15)
ϕ+ ∈

[

π − π
6 ; π

]

⊂
[

π
2 ; π

]

⇒ r+ <0, (A.16)
ϕ− ∈

[

−π
2 ; −π

3

]

⊂
[

−π
2 ; 0

]

⇒ r− ≥0, (A.17)and the order of the osine (sine rk involves the realpart of uk) yields −r+ ≥ r0 ≥ r− ≥ 0. This is agreeing

with the analysis of Se. IVA1 understanding that thenegative root shifts from r0 to r+ through the ∆ = 0point, and that below the horizontal tangent, r0 is theexterior turning point while r− gives the interior envelopeof the e�etive potential.The above solutions gives us then the expliit equa-tions for the intersetion of the e�etive potential withthe urrent urvature involved in eq. IV.1.Appendix B: EXACT SOLUTIONS FOR ANINHOMOGENEOUS ΛCDMThe equation of motion admits analytial solutions interms of hyperellipti integrals (see also Lemaître [36℄).From Eq. (IV.1)
t =

∫ r

R

√

r

Er + 2M + Λ
3 r3

dr, (B.1)however, in onformal time (dt = rdη)
r′2 =Er2 + 2Mr +

Λ

3
r4, (B.2)

⇒ η =

∫ r

R

1
√

Er2 + 2Mr + Λ
3 r4

dr =

∫ r

R

1
√

P4(r)
dr(B.3)Given that the inomplete ellipti integral of the �rstkind is de�ned by

F (x, k) =

∫ x

0

dt
√

(1 − t2) (1 − k2t2)
=

∫ x

0

dt
√

PF (t)
,(B.4)it is possible by a rational hange of variable, z = ax+b

cx+dto go from PF to P4:
PF (z(x)) = ((c − a)x + (d − b)) ((c + a)x + (d + b))×

×((c − ka)x + (d − kb)) ((c + ka)x + (d + kb)) / (cx + d)
4

=
P4(x)

(cx + d)
4 . (B.5)The solutions are therefore following, using cr + d =

ad−bc
(a−cz) and dr = ad−bc

(a−cz)2
dz

η =

∫ r

R

1
√

PF (z)

1

(cr + d)
2 dr =

F (ar+b
cr+d

, k) − F (aR+b
cR+d

, k)

(ad − bc) (B.6)We then just need to �nd a, b, c, d, k in terms of E, M, Λ.We already have the roots of P4 = P3,f rΛ
3 from AppendixA and we an write from Eq. (B.5)

r1 = −d − b

c − a
, r2 = −d + b

c + a
, r3 = −d − kb

c − ka
, r4 = −d + kb

c + ka
.(B.7)



Spherially symmetri models with P: dividing shell and generalized TOV 15We an obtain expressions for d and b, isolating them inthe �rst and seond pairs of roots:
d = −r1(c − a) + r2(c + a)

2
, b =

r1(c − a) − r2(c + a)

2
,(B.8)

= −r3(c − ka) + r4(c + ka)

2
, =

r3(c − ka) − r4(c + ka)

2k
.(B.9)Equating the two ways of writing b+d, we obtain a linearrelation between c and a,

c =
r3k(1 − k) + r4k(1 + k) − 2kr2

r3(1 − k) + 2kr2 − r4(1 + k)
a. (B.10)Now reall that the fators of x4 and x0 in P4 are respe-tively

(c2 − a2)(c2 − k2a2) =
Λ

3
, (B.11)

r1r2r3r4 =0. (B.12)The osmologial onstant means from Eq. (B.11) thatneither c = ±a nor c = ±ka, while Eq. (B.12) entailsthat one of the roots is 0. If we hoose r4 = 0, then wehave d = −kb and therefore, from Eqs. (B.8), d + kb = 0yields
c

a
=

r1(1 − k) − r2(1 + k)

r1(1 − k) + r2(1 + k)
, (B.13)so with Eq. (B.10) and r4 = 0, we obtain a third degreepolynomial in k (reall k 6= 1 for non-degeneray of PF )

(k − 1)

{

(

k +
2r1r2 − r1r3 − r2r3

r1r3 − r2r3

)2

+ 1

−
(

2r1r2 − r1r3 − r2r3

r1r3 − r2r3

)2
}

= 0 (B.14)
⇒ k =

2r1r2 − r1r3 − r2r3

r2r3 − r1r3
±

√

(

2r1r2 − r1r3 − r2r3

r1r3 − r2r3

)2

− 1.(B.15)We also an rewrite the ondition (B.10) to obtain a withEq. (B.11): the positivity of Λ in Eq. (B.11),
Λ

3
=

4k2
(

1 − k2
)2
[

(1 − k)
2
r3 + 4r2k

]

[r3 − r2] r2r3

[2r2k + (1 − k) r3]
4 a4,(B.16)

imposes to hoose r3 > r2 > 0, and thus
a = ± [2r2k + (1 − k) r3]

√

√

√

√

√

Λ

3[(1−k)2r3+4r2k][r3−r2]r2r3

2k |1 − k2| .(B.17)We dedue then c from Eq. (B.10)
c = ± k [(1 − k) r3 − 2r2]

√

√

√

√

√

Λ

3[(1−k)2r3+4r2k][r3−r2]r2r3

2k |1 − k2| ,(B.18)derive b from inluding the solutions (B.17,B.10) in itsexpression in Eq. (B.8)
b = ∓

[

4r2k + (1 − k)
2
r3

]

r1 +
[(

1 − k2
)

r3

]

r2

2
×

×

√

√

√

√

√

Λ

3[(1−k)2r3+4r2k][r3−r2]r2r3

2k |1 − k2| , (B.19)and obtain d with our hoie of r4 = 0 that indues
d = −kb

d = ±
k
[

4r2k + (1 − k)2 r3

]

r1 + k
[(

1 − k2
)

r3

]

r2

2
×

×

√

√

√

√

√

Λ

3[(1−k)2r3+4r2k][r3−r2]r2r3

2k |1 − k2| . (B.20)Inputting the values of the roots from appendix A, andthe values of the transformation oe�ients a, b, c, and
d into Eq. (B.21) yields the onformal time evolution so-lution, that an be related to the osmi time aordingto

t =

∫

rdη =

∫ r

R

r
∂

∂r

(

F (ar+b
cr+d

, k)

(ad − bc)

)
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