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Abstract

We present a complete and systematic analysis of the Minkowski extrema of the N = 1, D = 4

Supergravity potential obtained from type II orientifold models that are T-duality invariant, in the

presence of generalised fluxes. Based on our previous work on algebras spanned by fluxes, and the

so-called no-go theorems on the existence of Minkowski and/or de Sitter vacua, we perform a partly

analytic, partly numerical analysis of the promising cases previously hinted. We find that the models

contain Minkowski extrema with one tachyonic direction. Moreover, those models defined by the

Supergravity algebra so(3, 1)2 also contain Minkowski/de Sitter minima that are totally stable. All

Minkowski solutions, stable or not, interpolate between points in parameter space where one or several

of the moduli go to either zero or infinity, the so-called singular points. We finally reinterpret our

results in the language of type IIA flux models, in order to show explicitly the contribution of the

different sources of potential energy to the extrema found. In particular, the cases of totally stable

Minkowski/de Sitter vacua require of the presence of non-geometric fluxes.
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1 Objectives, background and outline

The study of moduli stabilisation is a crucial step in establishing a link between low energy

phenomenology, which is about to be thoroughly explored at the LHC, and string theory con-

structions in four dimensions. In particular an understanding of how Supersymmetry (SUSY)

breaking happens in this context is mandatory, in order to proceed with this “top-bottom”

approach to linking strings and low energy physics.

In this paper we continue with the programme already started in ref. [1], and we perform

a systematic search for moduli vacua within the flux models that looked most promising after

scanning them through the so-called no-go theorems [2–6] on the existence of de Sitter vacua.

The result is successful and the promising case identified in [1] happens to provide with the

already-mentioned de Sitter vacua with all moduli stabilised at reasonable values. With a

certain tuning of one of the parameters such vacua can be made Minkowski. The process of

searching for these solutions is systematic and could be easily generalised to other models.

In order to explain our results in the most straightforward way in the following sections, let

us now recall the main issues addressed in [1], and also the main conclusions achieved.

The starting point is the set of N = 1, type II orientifold models that are T-duality invariant

and allowed by the symmetries of the T6/(Z2 × Z2) isotropic orbifold [7–11]. Specifically, we
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concentrate on IIB orientifold models with O3/O7-planes (and, generically, also with D3/D7-

branes) in which a background for the non-geometric Q flux, as well as for the NS-NS H̄3

and R-R F̄3 fluxes, can be consistently switched on. Within these models a classification of

all the compatible non-geometric Q flux backgrounds was carried out in ref. [9]. Subsequently,

our previous work [1] extended the results of [9] to include H̄3 flux, providing a complete

classification of the Supergravity algebra g , defined by[
Xa, Xb

]
= Qab

c X
c ,

[
Za , X

b
]

= Qbc
a Zc , [Za, Zb] = H̄abcX

c . (1.1)

Here, Za and Xa, with a = 1, . . . , 6 , are the isometry and gauge generators coming from the

reduction of the metric and the B-field with fluxes [7], respectively.

Once the allowed fluxes/algebras were defined, we were able to write down a superpotential

and, consequently, a scalar potential. We then concentrated on studying the existence of de

Sitter (dS) and Minkowski (Mkw) vacua, which are interesting for phenomenology, i.e. that

break Supersymmetry. As mentioned above, we made use of some no-go theorems concerning

the existence of such vacua, as well as of the mechanisms proposed to circumvent them [2–6].

The subtlety here was that these theorems were mostly proposed in the language of a type

IIA generalised flux compactification, including O6-planes and D6-branes. We therefore had to

develop a dictionary between the contributions to the scalar potential in the IIA language, in

which the no-go theorems were formulated, and the IIB one in which we performed the classifi-

cation of the Supergravity algebras. By means of this dictionary, we excluded the existence of

dS/Mkw vacua in more than half of the effective models based on non-semisimple Supergravity

algebras. On the other hand, those based on semisimple algebras survive the no-go theorem

and stand a chance of having all moduli stabilised.

With the set of effective models that are phenomenologically interesting (aka SUSY breaking

ones) narrowed down to a few, we now present a detailed numerical study of potential vacua. In

section 2 we define the SUGRA potential and the different models allowed, based on the algebra

classification. Section 3 explains the method used to find extrema for this multivariable (6 real

fields) potential. The process is analytic in what involves the fields that enter the superpotential

linearly (i.e. the dilaton, S, and the T modulus), whereas it has to be tackled numerically when

dealing with the Z modulus, which has a cubic dependence. That is done thoroughly in section

4, where we present the main results of the paper, addressing all models one by one. In section

5 we reinterpret our results in the language of type IIA constructions, splitting the potential

energy in terms of the different contributions. This is a useful exercise in terms of comparing

our results to previous ones in the literature, mainly those addressed to illustrate the no-go

theorems. We finally conclude in section 6.
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2 The N = 1 SUGRA models

In this section we present a set of N = 1 T-duality invariant effective Supergravities. They

arise from type IIB generalised flux compactifications on T6/(Z2 × Z2) isotropic orientifolds

with O3/O7-planes [1, 7–11]. The orientifold involution action allows a background for the

NS-NS, H̄3 , and R-R, F̄3 , 3-form fluxes, as well as for the so-called non-geometric, Q, tensor

flux. These fluxes play a double role at the four dimensional level: on the one hand, they

determine the Supergravity algebra g of (1.1), entering it as structure constants and, therefore,

being constrained by the Jacobi identities. On the other hand, the fluxes induce a N = 1

superpotential for the moduli fields of the compactification, which can potentially lead to their

stabilisation.

A new approach that combines these two aspects to explore the phenomenology of gener-

alised flux compactifications was introduced in [9], and further developed in [1]. It is based

on making extensive use of the orbifold symmetries to classify the set of Supergravity algebras

embeddable within the fluxes in (1.1), and derive their characteristic flux induced superpoten-

tials. The fluxes entering these superpotentials automatically satisfy all the constraints arising

as Jacobi identities of the algebra (1.1).

The resulting models can be organized according to the B-field reduction they are built

on. In other words, according to the non-trivial ggauge subalgebra in (1.1) spanned by the

gauge Xa generators and specified by the non-geometric Q flux background. The set of such

reductions was found to include the semisimple so(3, 1) and so(4) algebras, together with the

non-semisimple su(2) + u(1)3 , iso(3) and nil, giving rise to five non-equivalent Supergravity

models1. They are described by a Kähler K potential and a superpotential W of the form

K = −3 log
(
−i (Z − Z̄)

)
− log

(
−i (S − S̄)

)
− 3 log

(
−i (T − T̄ )

)
,

W = |Γ|3/2
[
T P3(Z) + S P2(Z) − ξ3 P̃2(Z) + ξ7 P̃3(Z)

]
,

(2.1)

with P2,3(Z) being up to cubic polynomials in the Z modulus, and where P̃i(Z) denotes

the dual of Pi(Z) such that Pi → P̃i

Z3 when Z → − 1
Z . The set of moduli fields and flux

parameters appearing in (2.1) are now introduced following the notation and conventions of [1].

Moduli fields

There is one R-R shifted dilaton, S , and one R-R shifted Kähler modulus, T , which enter

the superpotential linearly. Additionally, there is one redefined complex structure modulus,

Z , which relates to the original complex structure of the compactification via the non-linear

action of a Γ ∈ GL(2,R) matrix. The Z modulus enters the superpotential in eqs (2.1)

1The nil algebra was denoted n3.5 in [17].
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through the P2,3(Z) and P̃2,3(Z) flux-induced polynomials. Taking the imaginary part of the

original complex structure modulus to be positive at any physical vacuum, we will adopt the

convention |Γ| > 0 without loss of generality. This implies that ImZ0 > 0 at any physical

vacuum. Moreover, the relation between the moduli values at the vacuum and certain physical

quantities, such as the string coupling and the internal volume, imposes that ImS0 > 0 and

ImT0 > 0 at the vacuum.

Couplings

The expression for W given in eq. (2.1), contains T Zn terms induced by the non-geometric

Q tensor flux together with SZn terms induced by the ordinary H̄3 flux, up to n = 3. These

couplings are totally determined by the form of the P3(Z) and P2(Z) flux-induced polynomials

respectively.

ggauge P3(Z)/3 P2(Z)

so(3, 1) −Z3 −Z ε1
(
−Z3 + 3Z

)
+ ε2

(
1− 3Z2

)
so(4) Z3 −Z ε1

(
Z3 + 3Z

)
+ ε2

(
1 + 3Z2

)
su(2) + u(1)3 Z ε1Z3 + ε2

iso(3) −Z 3 ε1Z + ε2

nil 1 ε1 − 3 ε2Z

Table 1: The P3(Z) and P2(Z) flux-induced polynomials.

The polynomial P3(Z) , induced by the Q flux, is totally fixed after the choice of the B-

field reduction, namely after specifying ggauge. However, the polynomial P2(Z) , induced by the

H̄3 flux, depends on two real parameters (ε1, ε2) which determine the extension of ggauge to a

Supergravity algebra, g. Specific examples of these polynomials are presented in table 1. Finally

there are also Zn self-interaction couplings induced by the R-R F̄3 flux. They are specified by

two real parameters, (ξ3, ξ7) , which relate to the number and types of localised sources present,

i.e. O3/O7-planes and D3/D7-branes, through the tadpole cancellation conditions [1].

3 Minimisation conditions

Given the Kähler potential and the superpotential of eqs (2.1), the dynamics of the moduli

fields Φ ≡ (Z,S, T ) are determined by the standard N = 1 scalar potential

V = eK

(∑
Φ

KΦΦ̄|DΦW|2 − 3|W|2
)

, (3.1)
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where KΦΦ̄ is the inverse of the Kähler metric KΦΦ̄ ≡ ∂K
∂Φ∂Φ̄

, and DΦW = ∂W
∂Φ

+ ∂K
∂Φ
W is the

Kähler derivative. Moduli fields are stabilised at the minimum of the potential energy, taking

a vacuum expectation value Φ0 (VEV) determined by the conditions

∂V

∂Φ

∣∣∣∣
Φ=Φ0

= 0. (3.2)

From now on, our objective will be to solve the above system (3.2) of high degree polynomial

equations together with the physical requirement of V |Φ=Φ0
& 0, namely, de Sitter (dS), almost

Minkowski (Mkw) solutions. Our strategy will consist on finding the exactly Mkw solutions to

the minimisation conditions, and then looking for dS extrema continuously connected to them

via a deformation of the parameter space.

Since the moduli S and T enter the superpotential (2.1) linearly, the scalar potential V

computed from (3.1) can be written as

V = |Γ|3 eK
(
m0 + 2mi xi +Mij xi xj

)
where i, j = 1, ..., 4 , (3.3)

and

x =
(

ReS , ReT , ImS , ImT
)
. (3.4)

Note that, because of the form of the superpotential in eq. (2.1), m0 and mi depend on

(Z , ε1,2 , ξ3,7 ) , while the matrix M does not depend on the R-R flux parameters ξ3,7.

The VEVs of the S0 and T0 moduli that extremise the potential at V = 0 satisfy(
ReS0 , ReT0 , ImS0 , ImT0

)
= −M−1m

∣∣
Z=Z0

, (3.5)

where we have assumed a non-degenerate M matrix. Otherwise there would be flat directions

and the stabilisation of S and T would remain incomplete. It is worth mentioning that, when

we plug a particular pair {P2(Z),P3(Z)} of polynomials from table 1, M becomes box diagonal

and splits into two 2 × 2 matrices. In other words, axion and volume moduli do not mix2 in

the quadratic polynomial of eq. (3.3).

Using eq. (3.5) the V = 0 condition reads

m0 −M−1
ij mimj = 0 , (3.6)

and provides us with the first constraint between the Z modulus and the ε1,2 and ξ3,7 param-

eters at the Mkw vacua. The function appearing in eq. (3.6),

V(Z) ≡ m0 −M−1
ij mimj , (3.7)

2The subtle cancellation of the cross terms is a consequence of the Jacobi identities of the Supergravity
algebra (1.1), in particular of the H̄x[bcQ

ax
d] = 0 constraints.
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plays an important role in the calculation. The equations derived from ∂ReZV = ∂ImZV = 0

are just

∂ReZ V = 0 and ∂ImZV = 0 , (3.8)

where again we have used V = 0 and eq. (3.5). The reduced potential, V(Z) , captures the

Mkw extrema of V and some of their stability properties. In particular, tachyonic Mkw extrema

in V(Z) have their origin in tachyonic Mkw extrema of the full potential V .

3.1 An example: the nil based models

We now clarify the previous procedure by explaining the nil case in detail. This algebra is

defined by the superpotential [1]

W = |Γ|3/2 [3 T + S (ε1 − 3 ε2Z)− ξ3 (ε1Z3 + 3 ε2Z2) + 3 ξ7Z3] , (3.9)

and the Kähler potential in (2.1).

The function m0, derived from this superpotential, is given by 3

m0 = 4 |Z|2
[( (

ε1 |Z|2 + 3 ε2 ReZ
)
ξ3 − 3 |Z|2 ξ7

)2

+ 3 ε22 ξ
2
3 ImZ2

]
, (3.10)

whereas the functions mi are

m1 = 4 ReZ
[
ReZ

(
3 ε2 ReZ − ε1

)(
ReZ (ε1 ξ3 − 3 ξ7) + 3 ε2 ξ3

)
+

3 ε2 ImZ2
(

ReZ (ε1 ξ3 − 3 ξ7) + 2 ε2 ξ3

)]
,

m2 = −12 ReZ2 [ ReZ (ε1 ξ3 − 3 ξ7) + 3 ε2 ξ3 ] ,

m3 = −4 ImZ3 [ ε1 (ε1 ξ3 − 3 ξ7) + 3 ε22 ξ3 ] ,

m4 = −12 ImZ3 (ε1 ξ3 − 3 ξ7) .

(3.11)

As mentioned above, the 4 × 4 symmetric matrix M splits into two 2 × 2 matrices, the first

one acting on the axions ReS and ReT with

M11 = 4 (3 ε2 ReZ − ε1)2 + 12 ε22 ImZ2 ,

M22 = 36 ,

M12 = −12 (3 ε2 ReZ − ε1) ,

(3.12)

and the second one on the volumes ImS and ImT with

M33 = 4 (3 ε2 ReZ − ε1)2 + 12 ε22 ImZ2 ,

M44 = 12 ,

M34 = 0 .

(3.13)

3To make the expressions lighter we replace (ImΦ)q with ImΦq , and similarly for any powers of ReΦ.
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The absence of flat directions implies ε2 6= 0 . Otherwise, only the linear combination 3 T +ε1 S
enters the superpotential (3.9), and the axionic part of its orthogonal combination cannot be

fixed.

At this stage, we do not know yet if there will be full, stable Mkw minima. If any, the

axions of S and T will be fixed at the values

ε2 ReS0 = −ReZ2
0 (ε1 ξ3 − 3 ξ7)− 2 ReZ0 ε2 ξ3 ,

3 ReT0 = −ReS0 ε1 + 3 ReS0 ReZ0 ε2 + ReZ3
0 (ε1 ξ3 − 3 ξ7) + 3 ReZ2

0 ε2 ξ3 ,
(3.14)

while their volume partners will be given by

ImS0 = − m3

M33

∣∣∣∣
Z=Z0

, ImT0 = − m4

M44

∣∣∣∣
Z=Z0

. (3.15)

Finally we analyse the Z modulus stabilisation at Mkw vacua, described by the reduced

potential V(Z) in eq. (3.7). The physical Mkw extrema conditions require both

{ V , ∂ReZ V , ∂ImZ V }Z=Z0
= 0 (3.16)

and

{ detM , M44 m3 , M33 m4 }Z=Z0
6= 0 . (3.17)

The last three conditions ensure a complete stabilisation of S and T at non-vanishing ImS0

and ImT0 values. Plugging the above expressions for (m0 ,mi ,M), it can be shown that these

two condition sets are incompatible. Hence we can conclude that there are no Mkw extrema in

the Supergravity models based on the nil B-field reduction.

4 Numerical analysis

In this section we perform a detailed search of Minkowski extrema for the set of Supergravity

models based on the non-semisimple iso(3) and su(2)+u(1)3 , as well as the semisimple so(4)

and so(3, 1) B-field reductions introduced in section 2. The task will be that of solving the set

(3.16) of polynomial equations

V|Z=Z0
= 0 ,

∂ V
ReZ

∣∣∣∣
Z=Z0

= 0 ,
∂ V
ImZ

∣∣∣∣
Z=Z0

= 0 . (4.1)

The method we will use to find the solutions of (4.1) makes use of the symmetries and the

scaling properties of the Supergravity models which are now introduced.
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4.1 Parameter space, discrete symmetries and strategy

It is worth noticing that the form of the superpotential in eqs (2.1), in particular that of the

polynomials P2(Z) in table 1, allows us to remove the factor |ε| ≡
√
ε21 + ε22 from it (provided it

is non-zero) by a rescaling of the S modulus and a redefinition of the ξ3 parameter. Therefore,

the angle tan θε ≡
ε2
ε1

is the only free parameter coming from the NS-NS flux. Analogously, the

(non-vanishing) combination |ξ| ≡
√
|ε|2 ξ2

3 + ξ2
7 can be globally factorised in the superpotential

by rescaling both the S and T moduli. This leaves the angle given by tan θξ ≡
ξ7

|ε| ξ3

as the

free parameter coming from the R-R flux. These parameter redefinitions and moduli rescalings

are given by

ε1 → |ε| cos θε , ε2 → |ε| sin θε , ξ3 →
|ξ|
|ε| cos θξ , ξ7 → |ξ| sin θξ , (4.2)

together with

S → S |ξ||ε| and T → T |ξ| , (4.3)

generating a global factor in the superpotential and, therefore, also in the scalar potential,

W → |Γ| 32 |ξ| W (Φ ; θε, θξ) and V → |Γ|
3 |ε|
|ξ|2 V (Φ ; θε, θξ) .

The moduli rescaling in (4.3) also implies a rescaling of the F-term for all the moduli fields

FZ → |Γ|
3
2 |ξ|FZ (Φ ; θε, θξ) , FS → |Γ|

3
2 |ε|FS (Φ ; θε, θξ) , FT → |Γ|

3
2 FT (Φ ; θε, θξ) , (4.4)

where FΦ ≡ DΦW in eq. (3.1). Then, at any non-supersymmetric extremum with FΦ=Z,S,T 6= 0,

Supersymmetry will be mostly broken by FS (FZ) when the |ε| (|ξ|) parameter is large, and

also by FT when both |ε| and |ξ| are small. Furthermore, the normalised moduli masses are

also sensitive to these rescalings. Specifically, by varying |ε| , the eigenvectors of the mass

matrix are modified. From now on, we will always take |ε| and |ξ| to be +1 when presenting

numerical examples of moduli masses at an extremum of the potential.

After applying (4.2) and (4.3), the parameter space of the Supergravity models can be

understood as a 2-torus with coordinates (θε, θξ). These effective models come up with a set of

discrete symmetries which allows us to map non-physical solutions into physical ones and vice

versa. The set of such symmetries act on the moduli fields and the parameter space as follows:

i) W is invariant under

S → −S , ( θε , θξ ) → ( θε + π , π − θξ ) . (4.5)
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ii) W goes to −W under these two transformations:

T → −T , ( θε , θξ ) → ( θε + π , 2 π − θξ ) . (4.6)

Z → −Z , ( θε , θξ ) → ( 2π − θε , θξ + π ) . (4.7)

iii) Finally, since the parameters entering the superpotential are real, we can combine field

conjugation with the above transformations to obtain an additional symmetry

(Z , S , T ) → − (Z , S , T )∗ , ( θε , θξ ) → ( 2π − θε , θξ ) , (4.8)

which relates physical extrema at ±θε.

These symmetries of the Supergravity models will be extensively used when scanning the pa-

rameter space looking for the physical solutions (ImΦ0 > 0) to the system (3.2).

The strategy to perform such a search will be the following: our scanning parameter is the

angle θε, which needs to be evaluated only in the interval θε ∈ [0, π] because of the symmetry

(4.8). The value of θξ can be obtained from the first equation in (4.1) since tan θξ enters it

quadratically. Substituting θξ(θε,Z0) into the original system (4.1), it reduces to

∂ V
ReZ

∣∣∣∣
Z=Z0

= h1(θε,Z0) = 0 and
∂ V
ImZ

∣∣∣∣
Z=Z0

= h2(θε,Z0) = 0 , (4.9)

where h1 and h2 are complicated functions depending on the Supergravity model under con-

sideration. Provided a value for the angle θε, the VEV of Z0 can be numerically computed

from (4.9). After that, and using the value obtained for θξ(θε,Z0) , the VEVs for the moduli

fields S and T can be obtained from (3.5).

In this sense, the modulus Z is the key field in the stabilisation process, whereas S and

T simply get adjusted to generate the extremum of the potential. However, there are singular

points given by ImZ0 = 0. We find that the value of the θε parameter and the VEV of the

ReZ modulus at such points can be obtained4 from P2(Z0) = P3(Z0) = 0.

4.2 Models based on non-semisimple B-field reductions

The first Supergravity models we will deal with are those based on non-semisimple B-field

reductions, namely, the iso(3) and the su(2) + u(1)3 reductions. These models exhibit a

special feature: the functions h1 and h2 in (4.9) become homogeneous functions, so the set of

Mkw extrema for these models has a scaling nature,

Z0(θε) ∝ | tan θε|n . (4.10)

4Notice that these conditions correspond to the stabilisation of the S and T moduli at a globally supersym-
metric extremum, namely ∂SW = ∂TW = 0.

9



The iso(3) models

Let us start by exploring Minkowski solutions for the Supergravity model based on the iso(3)

non-semisimple B-field reduction. This model is specified by the Kähler potential in eqs (2.1)

and the superpotential

W = |Γ|3/2 [−3 T Z + S (3 ε1Z + ε2)− ξ3 (ε2Z3 − 3 ε1Z2) + 3 ξ7Z2] . (4.11)

Using the procedure introduced in the previous section, we find Mkw extrema in the ε1 < 0

range, as shown in figure 1. They are all rescaled solutions of the form

Z0(θε) = | tan θε| (±0.30920 + 0.11495 i) , (4.12)

and have a tachyonic direction, hence being unstable.
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Figure 1: Left: location of the Mkw solutions within the parameter space for the Supergravity

models based on the iso(3) B-field reduction, highlighting the singular points. Right: the set

of VEVs of the modulus Z , reflecting its scaling nature. The points A and A’ correspond to

a singular limit |Z0| → ∞.

The set of singular points in the figure, as well as the Supergravity algebras underlying the

different regions in the plots, are summarized as follows:

i) Points A and A’ have an underlying g = iso(3) ⊕Z3 u(1)6 and are conjugate points with

respect to the transformations (4.5) and (4.8). As we flow towards them, the tachyon

aligns with the ImS modulus direction and |Φ0| → ∞ for all the moduli fields. Due

to their underlying Supergravity algebra, these points were excluded to have dS/Mkw

extrema in ref. [1].

In the following, we will generically refer to such points as points of excluded Supergravity

algebras. They will show up as singularities in the moduli VEVs.
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ii) All along the AA’ line, including point B located at (θε, θξ) = (π, π
4
) , there is a unique

underlying Supergravity algebra g = so(4) ⊕Z3 u(1)6 . As we flow towards this point B,

the tachyon aligns with the ImZ modulus direction, and |Φ0| → 0 for all the moduli

fields, becoming again a singularity in the moduli VEVs.

Unlike the previous A and A’ points, the Supergravity algebra underlying the point B is

not excluded to have dS/Mkw extrema [1]. Therefore, with some abuse of the language,

we will refer to these points as dynamical singularities in the moduli VEVs. Observe that

the AA’ line in the left plot of figure 1 is smooth at the singular point B.

The su(2) + u(1)3 models

Let us continue with the second set of Supergravity models based on a non-semisimple B-field

reduction. Those models are based on the su(2) + u(1)3 reduction. They are defined by (2.1)

with the superpotential

W = |Γ|3/2 [3 T Z + S (ε1Z3 + ε2) + ξ3 (ε1 − ε2Z3)− 3 ξ7Z2] . (4.13)

The set of Minkowski solutions for this model is very similar to that previously analysed. This

time, they correspond to solutions of the form

Z0(θε) = | tan θε|
1
3 (±0.99368 + 0.55061 i) , (4.14)

and also have a tachyonic direction, being unstable.
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Figure 2: Left: location of the Mkw solutions within the parameter space for the Supergravity

models based on the su(2) + u(1)3 B-field reduction, highlighting the singular points. Right:

set of VEVs of the modulus Z , reflecting its scaling nature. Again, the points A and A’ are

singular since |Z0| → ∞.
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The results are shown in the two plots of figure 2, where the singular points can be described

as follows:

i) Points A and A’ have an underlying g = iso(3) + nil and, as in the previous case, are

conjugate points with respect to the transformations (4.5) and (4.8). As we flow towards

these points, the tachyon aligns with the ImS modulus direction and also |Φ0| → ∞
for all the moduli fields. Therefore they are again singularities associated to points of

excluded Supergravity algebras [1].

ii) Along the AB and BA’ lines, the Supergravity algebra is g = so(4) + nil. However,

this time point B corresponds to a different algebra, g = so(4) + u(1)6 , which cannot

have Minkowski extrema [1]. As we flow towards this point B, |Φ0| → 0 for all the

moduli fields, resulting in a singularity in the moduli VEVs. Observe that the line of

Mkw extrema is no longer smooth at this point, around which the tachyon aligns itself

along the ImS modulus direction.

4.3 Models based on semisimple B-field reductions

In the final part of this section we concentrate on the Supergravity models based on the semisim-

ple B-field reductions of so(4) and so(3, 1). Their distribution of Minkowski extrema is more

involved than that of the previous models based on non-semisimple reductions. This is mainly

because the scaling property (4.10) no longer takes place.

As we will see, the distribution of Minkowski extrema draws closed curves in both the

parameter space and the Z0 complex plane. Although the former has to be understood as a

closed curve up to some of the discrete transformation in (4.5) and (4.6), the latter is a truly

closed curve in the Z0 complex plane.

The so(4) models

The first Supergravity model based on a semisimple B-field reduction we are going to describe

is that of the so(4) reduction. This model is defined in eqs (2.1) with the superpotential given

by

W = |Γ|3/2 [3 T (Z3 −Z) + S (ε1Z3 + 3 ε2Z2 + 3 ε1Z + ε2) +

+ ξ3 (ε1 − 3 ε2Z + 3 ε1Z2 − ε2Z3)− 3 ξ7 (1−Z2)] .
(4.15)

As it happens for the Supergravity models studied so far, there are only Minkowski solutions

with a tachyonic direction. These unstable Mkw solutions are shown in figure 3, where the

singular points highlighted in the plots are now explained:
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Figure 3: Left: location of the Mkw solutions within the parameter space for the Supergravity

models based on the so(4) B-field reduction, highlighting the singular points. Right: set of

VEVs of the modulus Z . Note that, up to discrete transformations, the Mkw extrema describe

closed curves in both plots.

i) Points D and D’ have an underlying g = iso(3) + so(4) and are conjugate points with

respect to the transformation (4.8). They are points of excluded Supergravity algebras [1].

As we flow towards these points, ImS0 → ∞ while ImT0 , ImZ0 → 0. The tachyonic

direction in field space is aligned with the ImS modulus direction.

ii) The DD’ line, going through the singular point B, has an underlying g = so(4)2 Super-

gravity algebra. As we flow towards point B, the tachyon is still mostly aligned with ImS ,

and ImΦ0 → 0 for all the moduli fields, becoming once more a dynamical singularity in

the moduli VEVs. However the axions behave differently when approaching the B point:

ReZ0 → 0, ReS0 → ±∞ and ReT0 → ∓∞ , with the upper sign choice if approaching

from the left, and the other way around when approaching from the right. Notice, again,

that this DD’ line in the left plot of figure 3 is smooth.

iii) The DD’ line going through the singular points C, C’ and A, has an underlying g =

so(3, 1) + so(4) Supergravity algebra. This path, shown in the left plot of figure 3, is

discontinuous at points C, C’ and A because of the vanishing of the ImT modulus. The

pairs of points with identical labels are conjugate points with respect to the transformation

(4.6). As we flow towards points C and C’, ImT0 → 0 , and the tachyonic direction aligns

50% in the ImS direction and 50% in the ReS one. Finally, moving towards point A,

ImT0 → 0 and the tachyon is aligned with the ImZ direction. These points C, C’ and A

are, then, dynamical singularities in the moduli VEVs.
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The so(3, 1) models

The last, but not least, Supergravity model based on a semisimple B-field reduction is so(3, 1) .

This model is defined in eqs (2.1) by the superpotential

W = |Γ|3/2 [−3 T (Z3 + Z) + S (ε2 + 3 ε1Z − 3 ε2Z2 − ε1Z3)−
− ξ3 (ε1 − 3 ε1Z2 − 3 ε2Z + ε2Z3) + 3 ξ7 (1 + Z2)] .

(4.16)

The most interesting feature of this model is that it contains stable, Minkowski vacua

within a certain region of the parameter space as well as unstable Mkw solutions, like those of

the previously analysed models, in a different one. Another property of this model is that any
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Figure 4: Left: location of the Mkw solutions within the parameter space for the Supergravity

models based on the so(3, 1) B-field reduction, highlighting the singular points. Right: set

of VEVs of the modulus Z . Notice that, up to discrete transformations, the Mkw extrema

describe closed curves in both plots.

point in the parameter space has a g = so(3, 1)2 Supergravity algebra underlying it. Therefore,

any singularity in the moduli VEVs is a dynamical singularity. The entire set of Minkowski

solutions are shown in figure 4.

With respect to the highlighted points in the figure, let us divide the parameter space in

three pieces: the DD’ line going through the points C and C’; the EE’ line going through the

point B; and the DE & D’E’ lines, containing the stable Mkw vacua:

i) At the points D, D’, E and E’, the Mkw extrema have a flat direction associated to volume

directions 5. This direction is, roughly, 58% ImS and 42% ImT at the D and D’ points,

whereas it becomes 72% ImS, 25% ImT and 3% ImZ at the E and E’ points.

5At these points, the 2× 2 reduced Hessian built from V(Z) in eq. (3.7), becomes degenerate.
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ii) The EE’ line contains the singular point B. When moving towards it, the tachyon mostly

aligns with the ImS direction and ImΦ0 → 0 for all the moduli fields. The axions behave

differently when approaching this point: ReZ0 → 0, ReS0 → ∓∞ and ReT0 → ±∞ ,

with the upper sign choice if flowing from the left and the other choice when flowing from

the right. Again, the EE’ line in the left plot of figure 4 is smooth.

iii) The DD’ path goes through the singular points (F,F’) and (C,C’). At (F,F’) 6, it is dis-

continuous due to the double limits ImS0 →
0

0
and ImT0 →

0

0
in eq. (3.5). However, as

we flow towards points C and C’, a vanishing ImS0 → 0 takes place, and the tachyonic

direction mainly aligns with the ImT volume direction. These points are, again, dynam-

ical singularities in the moduli VEVs. Observe that points equally labeled in figure 4 are

conjugate points with respect to the transformation (4.5).

iv) The DE & D’E’ lines contain the stable Mkw vacua and will be explored separately.

There are two specially symmetric points which belong to part iii) of the parameter space.

The first one comes from noticing that this piece exhibits the novel feature of having a crossing

at (θε, θξ) = (π, 1.43082π). This crossing takes place in the parameter space, not in the moduli

space, so two separate unstable Minkowski extrema

Z0 = ±0.27527+0.80635 i , |ε||ξ|−1S0 = ∓0.87477+0.30709 i , |ξ|−1T0 = ∓0.44718+1.19429 i ,

(4.17)
with the tachyonic direction mostly along the ImT volume direction, coexist at this point. The

second point, located at (θε, θξ) = (0, 1.48913π), gives rise to an axion-vanishing unstable Mkw

solution

Z0 = 1.16280 i , |ε||ξ|−1S0 = 0.30849 i , |ξ|−1T0 = 0.78019 i , (4.18)

invariant under the Φ → −Φ∗ transformation of (4.8). The tachyonic direction is totally

contained within the axion field space, with the relative contributions of 37% for ReS, 40%

for ReT and 23% for ReZ.

DE & D’E’ lines of stable vacua.

Let us look into the region within the parameter space that contains totally stable Minkowski

vacua, namely, the DE & D’E’ lines shown in figure 4. Provided a value for θε within the

region DE (and equivalently for D’E’), a stable dS vacuum emerges from varying the θξ angle

slightly with respect to its value at the Mkw vacuum,

θ
(dS)
ξ = θ

(Mkw)
ξ + δθξ with δθξ > 0 . (4.19)

6These F and F’ points can be analytically computed and correspond to (θε, θξ) =
(
±π2 , arctan

(
1
3

))
together

with the VEVs of Z0 = ± 1
3 +

√
2

3 i .
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Figure 5: This figure shows the narrow band above the line of stable Mkw vacua containing

stable, dS vacua.

There is a critical value, δθ∗ξ , beyond which the dS vacuum no longer exists7. This behaviour

is represented in figure 5. The dS vacua found in this way are deformations of the Mkw ones

and are also stable along any direction in field space. Therefore, there is a narrow region above

the line of Mkw vacua, shown in figure 5, which incorporates dS stable vacua. Moreover if we

choose δθξ < 0, the original Mkw vacuum becomes stable AdS.

At these Mkw/dS vacua, Supersymmetry is broken by a non-vanishing F-term for all the

moduli fields8, i.e. FΦ=Z,S, T 6= 0 . This agrees with the general results concerning the existence

of non-supersymmetric, stable, Minkowski vacua stated in refs [12, 13]. Given that SUSY

is broken by all directions considered here, seven complex ones in total, the constraint on

the Kähler potential outlined in these works, formulated as the number of fields breaking

SUSY being larger than three, is fulfilled. Moreover, due to the F-term rescalings of (4.4),

Supersymmetry breaking is dominated by FZ when |ξ| increases, while it is dominated by FS

as long as |ε| grows.

The (positive) smallest eigenvalue of the mass matrix is mostly associated to a combination

of the ImS and ImT moduli fields, depending on the |ε| scaling parameter, i.e. it gets aligned

with the ImT volume when |ε| increases. At the Mkw vacua, the rest of the moduli masses

are about a couple of order of magnitudes above the lightest one, unlike in scenarios including

gaugino condensation or other non-perturbative effects [14]. In the absence of large hierarchies

7As an example, in the case of θε = 49π
100 , the moduli VEVs at the Mkw vacuum are given by Z0 =

0.45089 + 0.46042i , |ε||ξ|−1S0 = −1.07734 + 1.28783i and |ξ|−1T0 = 1.15629 + 0.60267i. This Mkw vacuum is
compatible with θ

(Mkw)
ξ = 0.10821π , while the critical value for deforming it to dS is given by δθ∗ξ = 0.00079π.

8In the case of θε = 49π
100 , the values of the F-terms at the Mkw vacuum are given by |Γ|− 3

2 |ξ|−1 FZ =
4.00933 + 3.48324i , |Γ|− 3

2 |ε|−1 FS = 0.46460− 0.00623i and |Γ|− 3
2 FT = −4.67506 + 5.76899i.
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we cannot split the stabilisation process into a 2+1 fields problem, but the problem intrinsically

becomes a 3 fields one. This property is related to the fact that all the moduli are stabilised

due to fluxes, so one would not expect to have mysterious cancellations in the mass terms in

order to generate a hierarchy.

Finally, a dS saddle (tachyonic) point also appears close to these Mkw/dS stable vacua (in

field space) with a much larger energy. This provides us with a natural scenario in which to

investigate the possibilities for slow-roll modular inflation to take place. We find the standard

eta problem, i.e. |η| ∼ O(10), of the inflationary models based on N = 1 Supergravity theories,

when starting to roll from the dS saddle point to the Mkw/dS vacuum. This agrees with the

results of [5, 6] derived in the absence of non-geometric fluxes.

5 Comparison with type IIA scenarios

The set of Supergravity models we have explored in the previous sections are dual to type IIA

generalised flux models through applying three T-duality transformations along internal space

directions [7, 8]. Several no-go theorems concerning the existence of Mkw/dS extrema in these

type IIA generalised flux models have been stated as well as ways for circumventing them [2–6].

In this section we will use the mapping introduced in ref. [1] between the set of generalised flux

models we derived in a type IIB with O3/O7-planes language, and their generalised type IIA

dual flux models with O6-planes. Our purpose will be to investigate how the different sources

of potential energy do conspire to produce the Mkw extrema we have found.

In the type IIB side, the generalised set of NS-NS fluxes comprises the H̄3 and Q fluxes.

Going to the type IIA side, these fluxes map again to H̄3 and Q flux components as well as

new metric ω and non-geometric R flux components. In the R-R flux sector, the situation

looks similar. The F̄3 flux in the type IIB picture maps to components of the set F̄p, with

p = 0, 2, 4 and 6, of type IIA fluxes [7,8]. These F̄p fluxes induce the set of IIA scalar potential

contributions VF̄p
. The axions ReS and ReT enter the potential through the R-R piece

VR-R ⊂ VIIA ,

VR-R =
6∑

p=0 (even)

VF̄p
= eK

6∑
p=0 (even)

ImZ(6−p)
(
fp(ReΦ)

)2

, (5.1)

where the functions fp , with p = 0, 2, 4 and 6, depend on ReS and ReT linearly [1].

The IIA/IIB correspondence between the contributions to the potential energy coming from

localised sources results as follows. The O3-planes (D3-branes) in the type IIB models have

to be interpreted as O6-planes (D6-branes) wrapping the 3-cycle in the internal space which

is invariant under the IIA orientifold action. In the following, we will refer to these O6/D6

sources as type 1. Finally, the O7-planes (D7-branes) in the type IIB side become O6-planes
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(D6-branes) wrapping a 3-cycle invariant under the composition of the orbifold and the IIA

orientifold actions [1, 8]. We will refer to these O6/D6 sources as type 2.

The scalar potential in the IIA dual Supergravity models then splits as

VIIA = VNS-NS + VR-R + Vloc , (5.2)

with VNS-NS = VH̄3
+ Vω + VQ + VR accounting for the generalised NS-NS fluxes, VR-R =

VF̄0
+ VF̄2

+ VF̄4
+ VF̄6

accounting for the R-R fluxes and Vloc = V
(1)

loc + V
(2)

loc accounting for the

(types 1 and 2) O6/D6 localised sources. In ref. [1], it was shown that the IIA duals of the IIB

Supergravity models based on the nil and iso(3) B-field reductions yield VQ = VR = 0, hence

resulting in geometric IIA flux models [15–20]. This is also the case for the models based on

the su(2) + u(1)3 B-field reduction at the special circles θε = ±π
2

within the parameter space.

Far from these circles as well as in those Supergravity models based on the so(4) and so(3, 1)

B-field reductions, VQ 6= 0 and/or VR 6= 0, giving rise to non-geometric IIA flux models.

Let us now recall the most important results concerning the no-go theorems on the existence

of dS/Mkw extrema in generalised IIA flux models mentioned above. For such solutions to exist,

the terms in the scalar potential induced by the generalised NS-NS fluxes and the R-R fluxes

have to satisfy

(Vω − VF̄2
) + 2 (VQ − VF̄4

) + 3 (VR − VF̄6
) ≥ 0 ,

(VF̄0
− VH̄3

) + (VQ − VF̄4
) + 2 (VR − VF̄6

) ≥ 0 ,
(5.3)

where all the R-R flux-induced terms, VF̄p
, are positive definite, as well as the VH̄3

and VR

terms coming from the fluxes H̄3 and R , respectively [1]. The inequalities in (5.3) are saturated

at the Mkw extrema. Therefore, if restricting ourselves to the set of geometric IIA flux models

described above, there is a VF̄0
6= 0 condition (non-vanishing Romans parameter) needed for

having dS extrema.

At this point, and before presenting our results in type IIA language, it is convenient to

compare them with related work published in the literature. As we already mentioned in ref. [1],

our framework is also that of ref. [5], which we have extended to include the set of generalised

fluxes needed to restore T-duality.

In what concerns the several papers published on the existence of de Sitter solutions and

no-go theorems, refs [2–4], there are some differences which are worth highlighting. First of all,

unlike refs [3, 4], we do not consider KK five-branes. Neither we consider NS5-branes as they

do in refs [2, 4]. However the most important difference with all these works is the fact that

our minimisation procedure considers the dependence of the potential on the axions which are

treated as dynamical variables. While in the references pointed out they are set to constant

values and do not feature in the scalar potential.
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There are also substantial differences between our work with that of ref. [6]. On the one

hand, these authors consider Kähler and complex structure moduli in addition to the dilaton

and volume moduli considered in the previous works reviewed here. However, the potential

contains the effect of just geometric fluxes, in addition to the usual NS-NS 3-form flux, R-R

fluxes and O6/D6 sources. Nevertheless they manage to find a couple of Z2 × Z2 orbifold

models that, within their working numerical precision, are compatible with de Sitter vacua.

These are both anisotropic models and cannot, therefore, be compared to ours. In any case it

is worth mentioning that, throughout their analysis, these authors find plenty of solutions with

one tachyonic direction, just as it happens in our analysis.

5.1 Minkowski extrema in geometric type IIA flux models

As we have stated above, there are three sets of type IIB Supergravity models that become

dual to geometric type IIA flux models with

VQ = VR = 0 . (5.4)

They are the models based on the nil and iso(3) B-field reductions together with those based

on the su(2) + u(1)3 reduction at the circles defined by θε = ±π
2

in the parameter space.

A common feature in all these IIA dual geometric models is that only the f4 and f6 func-

tions appearing in (5.1) depend (linearly) on the ReS and ReT axions. Then, their stabilisation

conditions, provided ImZ0 6= 0, translate into

VF̄4
= VF̄6

= 0 . (5.5)

Substituting (5.4) and (5.5) into the inequalities of (5.3), we obtain, for any Minkowski ex-

tremum, that

VH̄3
= VF̄0

and Vω = VF̄2
, (5.6)

so VNS-NS = VR-R > 0 at such extrema9. Then, the negative energy contribution needed to set

VIIA = 0 in (5.2) will come from the localized sources, i.e. Vloc < 0 (see figure 6).

The IIB Supergravity models based on the nil reduction were found in section 3.1 not to

accommodate for Mkw extrema while those based on the su(2) +u(1)3 reduction at the circles

θε = ±π
2

were excluded to possess Mkw extrema in ref. [1]. Therefore, the Mkw extrema we

found in the Supergravity models based on the iso(3) B-field reduction, constitute the entire

9Notice that due to the positiveness of VF̄2
, the Vω contribution to the scalar potential coming from the

(negative) curvature of the internal space (induced by the metric flux ω ) results also positive as it was stated
in [3, 4].
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set of geometric IIA dual Minkowski flux extrema for the isotropic Z2 × Z2 orbifold. These

extrema have an underlying g = so(4) ⊕Z3 u(1)6 Supergravity algebra [1].

The IIA dual contributions to the scalar potential at the geometric Mkw flux extrema are

shown in figure 6 (where mp = 1/
√

8πG ≈ 2 × 1018 GeV). Although they are plotted for a

particular point within the parameter space, the profile of the contributions does not change

when moving from one point to another, due to the scaling properties explained in section 4.

Observe that the negative energy contribution needed to obtain VIIA = 0 comes from the O6/D6

sources wrapping the 3-cycle invariant under the orientifold action (type 1). Specifically, from

O6-planes which carry negative charge. Moreover, additional positive energy coming from type

2 D6-branes with positive charge is also required. These type 2 sources are forbidden in the Z2

orbifold compactifications of [7,8], so these geometric IIA dual Mkw extrema are not expected

to exist there.
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Figure 6: IIA dual contributions to the scalar potential at the Mkw extrema for the Supergravity

models based on the iso(3) B-field reduction. They are computed at the circle θε = 3π
4

in

the parameter space which implies θξ = 0.22375π and the moduli VEVs of Z0 = 0.30920 +

0.11495 i , |ε||ξ|−1S0 = −0.00171 + 0.01276i and |ξ|−1T0 = 0.01579 + 0.00092i. It can be seen

that VQ = VR = VF̄4
= VF̄6

= 0 as well as VH̄3
= VF̄0

> 0 and Vω = VF̄2
> 0.

Finally, for these IIB Supergravity models based on the iso(3) B-field reduction, the IIA

dual Romans parameter which generates the VF̄0
contribution required for having dS extrema,

reads

f 2
0 = 4 |Γ|3 |ε|2 |ξ|2 (sin θε)

2 (cos θξ)
2 , (5.7)

so it vanishes at the A, A’ and B singular points shown in figure 1. Far from these points, an

unstable dS extremum emerges from varying the θξ angle slightly with respect to its value at

the Mkw extremum, θ
(dS)
ξ = θ

(Mkw)
ξ + δθξ with δθξ > 0, as it has been previously explained for
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the case of the stable dS vacua in the so(3, 1)-based models. Also a critical value δθ∗ξ appears

beyond which dS solutions no longer exist.

5.2 Minkowski extrema in non-geometric type IIA flux models

Now we present the IIA dual energy contributions at the Mkw extrema for the Supergravity

models which are non-geometric type IIA generalised flux models. These models are those

based on the su(2) + u(1)3 (with θε 6= ±π
2

), so(4) and so(3, 1) B-field reductions.

The su(2) + u(1)3 models

As it was stated in section 4.2, these models also have the scaling property of the geometric

IIA dual models. Therefore, their profile of energy contributions, shown in figure 7, does not

change from one point within the parameter space to another.
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Figure 7: IIA dual contributions to the scalar potential at the Mkw extrema for the Supergravity

models based on the su(2) + u(1)3 B-field reduction. They are computed, again, at the circle

θε = 3π
4

in the parameter space implying this time θξ = 0.13055π and the moduli VEVs of

Z0 = 0.99368 + 0.55061 i , |ε||ξ|−1S0 = −1.01524 + 0.28041i and |ξ|−1T0 = 0.82169 + 0.01611i.

These non-geometric type IIA dual flux models (note that VQ 6= 0 and VR 6= 0 ) need again

of localised sources to achieve Minkowski (unstable) solutions. Analogously to the geometric

case, type 1 O6-planes and type 2 D6-branes are required, as it can be seen in figure 7. Also

each contribution in VNS-NS and VR-R is positive at the Mkw solutions. Finally, unstable dS

solutions can again be obtained by deforming these Mkw extrema, as for the geometric IIA

dual models.
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The so(4) models

The next Supergravity models whose IIA duals become non-geometric flux models are those

based on the semisimple so(4) B-field reduction. The contributions to the potential energy at

the Minkowski extrema do not fit a unique pattern, as it has been the case for the Supergravity

models analysed so far. Such contributions do depend on the point in the parameter space

under consideration, since the scaling property (4.10) is no longer present in these models.
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Figure 8: IIA dual contributions to the scalar potential at a Mkw extremum for the Supergravity

models based on the so(4) B-field reduction. In the left plot, they are computed at the circle

θε = 1255
1000

π which belongs to the DC piece of the parameter space and implies θξ = 0.40225π

together with the moduli VEVs of Z0 = −1.48023+0.59103i , |ε||ξ|−1S0 = −1.15549+3.44203i

and |ξ|−1T0 = 0.13871 + 0.00708i. In the right plot they are computed at the circle θε = 3π
8

which belongs to the CA piece of the parameter space and implies θξ = 1.93558π together

with the moduli VEVs of Z0 = −0.73422 + 2.12313i , |ε||ξ|−1S0 = −0.57723 + 0.74810i and

|ξ|−1T0 = 0.33682 + 0.04399i.

In order to illustrate the above statement, let us recall the form of the contributions to the

scalar potential coming from the localised sources. They were computed in ref. [1], and given

by

V
(1)

loc = − |ε| |Γ|3
4 |ξ|2 ImT 3

cos θξ and V
(2)

loc =
3 |ε| |Γ|3

4 |ξ|2 ImT 2 ImS sin θξ , (5.8)

for the Supergravity models based on semisimple B-field reductions. Then V
(1)

loc = 0 at the D

and D’ singular points shown in figure 3, while V
(1)

loc < 0 in all the Mkw solutions. On the other

side, V
(2)

loc = 0 at the singular point A, whereas V
(2)

loc > 0 for the Mkw solutions along the CC’

line that goes through point B, and V
(2)

loc < 0 if doing so through point A. An example is shown

in figure 8, where the sign of the energy contribution provided by type 2 localised sources is

different for the two Mkw solutions. In the left plot type 2 D6-branes are required, while type

2 O6-planes are needed in the right one.
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Finally, one observes that the flux-induced P2,3(Z) polynomials for these models reduce

to those of the geometric ( iso(3)-based) models around Z = 0, as it can be seen from their

form in table 1. As long as we take the limit θε → π , the profile (up to some scale factor) of

the energy contributions to the Mkw extrema tend to that of the geometric models in figure 6.

Once more, unstable dS extrema can be obtained by a continuous deformation of the Mkw

solutions, namely, by taking θξ → θξ + δθξ for a given θε circle.

The so(3, 1) models

Let us conclude by looking into the energy contributions to the Mkw extrema for the IIA

duals of the Supergravities models based on the so(3, 1) B-field reduction. As for the previ-

ous semisimple models, such contributions depend critically on the specific point within the

parameter space under consideration.
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Figure 9: IIA dual contributions to the scalar potential at a stable Mkw vacuum for the

Supergravity models based on the so(3, 1) B-field reduction. They are computed at the circle

θε = 49π
100

which belongs to the DE piece of the parameter space and implies θξ = 0.10821π ,

together with the moduli VEVs of Z0 = 0.45089 + 0.46042i , |ε||ξ|−1S0 = −1.07734 + 1.28783i

and |ξ|−1T0 = 1.15629 + 0.60267i.

The set of Minkowski solutions for this model is shown in figure 4, where a narrow region

within the parameter space, that of the DE & D’E’ lines, was found to contain stable vacua.

At these stable vacua, Vω < 0 and V
(1)

loc < 0 , while the rest of the contributions to the scalar

potential are positive. Then, these stable vacua need type 1 O6-planes and type 2 D6-branes

to exist. As long as we flow between the points D and E in figure 4, the main contributions

to |ξ|2
|Γ|3 |ε|m4

p
VIIA change from being of order O(10−2) around the point D, to become of order

O(1) around the point E. An intermediate point in the DE line is shown in figure 9.
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For these Supergravity models, the contributions to the potential energy coming from lo-

calised sources are still given by (5.8). By inspection of figure 4, we conclude that there are

unstable Mkw solutions having V
(2)

loc ≷ 0. Even more, there is a particularly interesting solution

with V
(2)

loc = 0. It is located at the point (θε, θξ) = (0.40904π, 0) within the parameter space,

and its profile of the contributions to VIIA is shown in figure 10. Naturally, its image point un-
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Figure 10: IIA dual contributions to the scalar potential at a unstable Mkw solution for the

Supergravity models based on the so(3, 1) B-field reduction. It is computed at the point

(θε, θξ) = (0.40904π, 0) which belongs to the CD line in the parameter space. The VEVs

for the moduli fields result in Z0 = 0.18657 + 0.41905i , |ε||ξ|−1S0 = 0.12569 + 0.32326i and

|ξ|−1T0 = 0.76855 + 0.49656i.

der the transformation Φ→ −Φ∗ of (4.8) is also a solution with V
(2)

loc = 0. These unstable Mkw

solutions are the only ones that would also exist in the Z2 orbifold compactification of refs [7,8],

that does not allow type 2 O6/D6 sources. In the absence of such sources, these unstable so-

lutions could presumably be lifted to solutions of a N = 4 gauged Supergravity [10,11,20–23]

built from an electric-magnetic gauging 10.

Furthermore, it can also be seen in figure 4 that, unlike in the previous Supergravity models,

unstable solutions with V
(1)

loc > 0 exist along the CC’ line with π < θξ <
3π
2

. These solutions

require type 1 D6-branes and are compatible with V
(2)

loc < 0 , so type 2 O6-planes have to

be present. The point in the parameter space already studied in section 4, in which the two

separate moduli solutions of (4.17) coexist, belongs to this set of solution and its sources of

potential energy are shown in the left plot of figure 11. The point in the parameter space

having the axion-vanishing moduli VEVs of (4.18), also belong to this class. In this solution,

10We thank G. Dibitetto and D. Roest for discussions on this point.
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ReFΦ = 0 and VH̄3
= VF̄4

= 0 together with VF̄0
= 0, as it is displayed in the right plot of

figure 11.
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Figure 11: Left: IIA dual contributions to the scalar potential at the unstable Mkw solutions

that coexist at the point (θε, θξ) = (π, 1.43082π) in the parameter space. Right: same for the

axion-vanishing solution at the point of parameter space given by (θε, θξ) = (0, 1.48913π).

Finally, the flux induced polynomials P2,3(Z) in table 1 for this Supergravity models, also

reduce to those of the geometric IIA models in the limit case of Z → 0. Therefore, one would

expect that, as we approach point B in figure 4, the profile of the potential energy contributions

should match that of figure 6, again up to a scale factor. Indeed, VQ → 0 and VR → 0 when

we approach this singular point, i.e. |Φ0| → 0 , of the moduli VEVs. As for all the previous

Supergravity models, dS extrema can again be obtained by continuously deforming the Mkw

solutions.

6 Conclusions

In this paper we have performed a systematic and complete analysis of the N = 1, D = 4

Supergravity potential induced by generalised fluxes in the context of type II orientifold models

that are T-duality invariant and allowed by the symmetries of the T6/(Z2 × Z2) isotropic

orbifold. The key point throughout this work is the realisation, already presented in refs [1,9],

that non-geometric Q fluxes, together with NS-NS 3-form H̄3 fluxes, are the structure constants

of the Supergravity algebra defined by the isometry and gauge generators that come from the

reduction of the metric and the B-field. A classification of allowed algebras by the symmetries

of the model (including tadpole cancellation conditions arising from the presence of localised

sources) was performed in these previous works, and the end result was that there are only

five viable Supergravity models. These are parametrised by four real quantities, (ε1, ε2) that

determine the algebra, and (ξ3, ξ7) that tell us the number and type of localised sources involved.
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We have now analysed these five possible models, which result in five different polynomial

forms for the superpotential determining the N = 1, D = 4 scalar potential, in order to see

whether any of them can contain minima that have all moduli stabilised and Supersymmetry

broken. This is a programme that had already begun in ref. [1], where we made use of the

so-called no-go theorems on the existence of Minkowski/de Sitter vacua already published in

the literature. That allowed us to single out the B-field reduction based on the semisimple

so(3, 1) algebra as the promising case that evaded all conditions posed by the no-go theorems.

Technically speaking, the analysis of the extrema of the scalar potential was performed

both analytically and numerically. The extremisation with respect to the fields that enter the

superpotential linearly (i.e. the dilaton S and modulus T ) is performed analytically, and the

resulting solutions, functions of the modulus Z, are plugged back into V . This results in an

extremely involved polynomial functions of high powers of Z, which we solve numerically. The

Minkowski condition, V = 0 is imposed to facilitate the analysis, as well as being of physical

interest.

As stated above, only one choice of B-field reduction, that based on the so(3, 1) algebra,

gives rise to minima with all moduli stabilised at a Minkowski vacuum. These solutions can also

be deformed continuously to either de Sitter or anti de Sitter by a slight variation of the relevant

parameters. Supersymmetry is broken by all moduli, at a scale which is, as expected, large for

values of the fluxes of order one. Our systematic search showed that all the B-field reductions

(but the nil based one) produce Minkowski extrema with all but one direction stabilised. These

tachyonic solutions show a specific pattern, as they always interpolate between singular points

of the parameter space where one or several moduli go to either zero or infinity. We have also

shown the breakdown of the potential energy contributions in the language of type IIA, in order

to compare our results to those examples put forward in the context of the no-go theorems. In

this way it is obvious that the solutions with stable, Minkowski vacua require non-geometric

flux contributions to the scalar potential.

Finally, we would like to make a comment on the applicability of the techniques developed

here. The analysis presented can be certainly be performed for a different type of construction.

In particular asymmetric orbifolds could be studied, taking as a starting point the results

obtained here for symmetric ones.

Acknowledgments
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