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Abstract. The aim of this paper is to present a very efficient and accurate numerical algorithm to identify a 

variable (space- and temperature-dependent) heat transfer coefficient in two-dimensional inverse steady-state 

heat conduction problems involving irregular heat-conducting body shapes in the presence of Dirichlet, 

Neumann, and Robin boundary conditions. In this numerical method, a boundary-fitted grid generation 

technique (elliptic) is used to discretize the physical domain (heat-conducting body) and solve for the steady-

state heat conduction equation by approximating the derivatives of the field variable (temperature) by 

algebraic ones. This paper describes a very accurate and efficient sensitivity analysis scheme to compute the 

sensitivity of the temperatures to variation of the variable heat transfer coefficient. The main advantage of 

the sensitivity analysis scheme is that it does not require the solution of adjoint equation. The conjugate 

gradient method (CGM) is used to reduce the mismatch between the computed temperature on part of the 

boundary and the simulated measured temperature distribution. The obtained results confirm that the 

proposed algorithm is very accurate, efficient, and robust. 
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NOMENCLATURE: 

(k)d            direction of descent at iteration k 

qɺ    heat flux 
2

W
( )
m

  

h            heat transfer coefficient 
2

W
( )
m . C�  

Ja            Jacobian matrix 

J    Jacobian of transformation 

J    objective function 

T
k    thermal conductivity of the solid body 

W
( )
m. C�

 

n              outward drawn unit vector 

T    temperature ( C)�  

m
T               measured outer surface temperature ( C)�  

T
∞   ambient temperature ( C)�  

,x y            Cartesian coordinates in the physical domain 

Greek symbols 

, ,α β γ   metric coefficients in 2-D elliptic grid generation 

(k)β    search step size at iteration k  

Γ   boundary 

(k)γ    conjugation coefficient at iteration k  

Ω    domain 

,ξ η    Cartesian coordinates in the computational domain 

Subscripts 

i    grid index in ξ - direction 

j    grid index in η - direction 

M    number of grid points in the ξ - direction 

N    number of grid points in the η - direction 

Superscript 

k   iteration number 
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1. Introduction 

Inverse Heat Transfer Problems (IHTPs) are widely considered mathematically challenging 

problems. IHTPs are ill-posed and difficult to solve. Ill-posed problems are inherently 

unstable and very sensitive to noise. In other words, in such problems a small error in the 

input data can give rise to a large error in the solution [1-3]. Therefore, the development of 

efficient, accurate, and robust numerical schemes to solve IHTPs is of vital importance. 

Direct well-posed heat transfer problems are concerned with the determination of the 

temperature distribution over a heat-conducting body given that the boundary conditions, 

the thermo-physical properties, the geometrical configuration of the body, and the applied 

heat flux are all known. In contrast, the inverse heat transfer problem deals with the 

determination of the boundary conditions, the thermo-physical properties, the geometrical 

configuration of the heat-conducting body, and the applied heat flux from the knowledge of 

the temperature distribution on some part of the body boundary. Inverse heat transfer 

analysis has been extensively used to determine the thermo-physical properties such as the 

thermal conductivity and the convection heat transfer coefficient [4-29], the heat flux [18, 

29-36], and the boundary shape of bodies [37-43]. The evaluation of the convection heat 

transfer coefficient is a difficult task because convection is a very complex phenomenon 

[44]. The convection heat transfer coefficient depends on many variables such as the 

geometry of the surface as well as the surface temperature, to name a few. The estimation 

of a variable convection heat transfer coefficient using an inverse analysis has been less 

researched [45-48]. In the literature, there exist some limitations on the proposed methods 

by different researchers to identify such a variable parameter. Some of these limitations 

can be summarized as follows: 

- the applicability of the direct solver to rectangular or circular heated bodies only (using 

traditional finite-difference method) and inability to consider a general 2D domain.  
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- the inability to handle a variety of boundary conditions. Most of the boundary conditions 

in the literature include a constant temperature (Dirichlet boundary condition) or 

insulated case.  

Thus a general methodology for a general 2D domain and boundary conditions  considering  

a variable convection heat transfer coefficient with a high degree of accuracy is required.    

This paper deals with a two dimensional inverse steady-state heat conduction problem. 

The objective of this study is to estimate a variable (space- and temperature-dependent) 

heat transfer coefficient in an irregular body. The convection heat transfer coefficient 

considered in this paper is a linearly space (boundary surface shape)- and temperature 

(boundary surface temperature)-dependent parameter. However, the linear from can be 

easily extended to other forms of dependency of the convective heat transfer coefficient on 

the space and temperature such as quadratic and cubic. 

In the proposed numerical approach, an elliptic grid generation technique is used to 

generate a mesh over the irregular body and solve for the steady state heat conduction 

equation. The discretization in the computational domain is based on the finite-difference 

method, a method chosen for its simplicity and ease of implementation. The most  

innovative aspect of the numerical approach is its very efficient and accurate sensitivity 

analysis scheme, already introduced by the authors for other parameter estimation 

problems in heat transfer [18, 28, 29]. The sensitivity analysis scheme is formulated to 

compute the sensitivity of the temperatures to variation of the variable heat transfer 

coefficient. The conjugate gradient method is employed to minimize the difference between 

the computed temperature on part of the boundary and the simulated measured 

temperature. As will be shown, this numerical methodology does not require the solution of 

an adjoint problem. Explicit expressions for the sensitivity coefficients are derived which 

allow for the computation of the sensitivity coefficients in one single solve.  
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The proposed solution method introduced here is sufficiently general and can be employed 

for the estimation of a space- and temperature-dependent heat transfer coefficient applied 

on part of the boundary of a general two-dimensional region as long as the general two-

dimensional region can be mapped onto a regular computational domain. Moreover, there 

is no limitation on the type of the boundary conditions. In other words, Dirichlet, 

Neumann, and Robin boundary conditions can be imposed on the domain boundary. 

 

2. Governing equation 

The mathematical representation of the steady-state heat conduction problem of interest 

here can be expressed as below (see Fig. 1) 

 2 0 in physical domain T∇ = Ω   (1) 

subject to the boundary conditions 

 1 on boundary surface 
T

T q

n k

∂
= − Γ

∂

ɺ
  (2) 

 ( - ) on boundary surface ,  3, 4
i i

i
i

T

hT
T T i

n k Γ ∞

∂
= − Γ =

∂
  (3) 

Two different cases are considered for the boundary condition on the boundary surface 2Γ  

which will be considered separately: 

Case 1: The heat transfer coefficient is space-dependent (Fig. 1a): 

 ( )
2 2

2 2
2

( )
-  on boundary surface 

T

hT
T T

n k Γ ∞

Γ∂
= − Γ

∂
  (4) 

where 
2 22 2 1 2 3( )h a X a Y a
Γ Γ

Γ = + + .  
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Case 2: The heat transfer coefficient is temperature-dependent (Fig. 1b): 

 ( )2

2 2

2

2

( )
-  on boundary surface 

T

h TT
T T

n k

Γ

Γ ∞

∂
= − Γ

∂
  (5) 

where 
2 22( )h T a bT
Γ Γ
= + .  

 

a)                                                 b) 

Fig. 1 Physical domain (solid body) subjected to convective heat transfer on surfaces 
i
Γ , 2, 3, 4i =  and 

heat flux qɺ  on surface 1
Γ . The thermal conductivity of the body is 

T
k .   

 

In this study, the elliptic grid generation technique is employed to discretize the physical 

domain and approximate the derivatives of the field variable (temperature) by algebraic 

ones. This technique is based on solving a system of elliptic partial differential equations to 

distribute nodes in the interior of the physical domain by mapping the irregular physical 

domain from the x  and y  physical plane (Fig. 1) onto the ξ  and η  computational plane 

(Fig. 2), which is a regular region [49].  
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Fig. 2 Computational domain. 

 

More details on the implementation of the elliptic grid generation technique and solution 

procedure for the steady-state heat conduction equation can be found in [50].  

3. The inverse analysis 

3.1. Objective function 

An inverse analysis can be used to estimate the variable heat transfer coefficient 2h  (using 

the estimation of 1a , 2a , 3a  for the space-dependent heat transfer coefficient and a  and b  

for the temperature-dependent heat transfer coefficient separately) so that the square of 

the difference between the computed temperature of the outer surface 2Γ  and the 

measured temperature of the same surface is minimized. This can be mathematically 

expressed as 

 
2

2 2

2

 on 

min : : Eq .(1) in ,  BCs in Eqs.(2)-(4) or (5) 
m

h

C T T
Γ

Γ

   = − Ω 
   

J   (6) 

where C  is a positive constant and can be considered as 10 , 0,1,2,nC n= = …. The aim of 

the inverse analysis is to minimize the following objective function expression using the 

optimization of the value of 1a , 2a , 3a  for the space-dependent 2h  and a  and b  for the 

temperature-dependent 2h : 

A B

C D

1 2 M. . .

1

2

N

.
 
.
 
.

x
h
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1

2
, ( , )

2

( )
m

M

i N i N
i

C T T
−

=

= −∑J   (7) 

3.2 Sensitivity analysis 

As the proposed method is concerned with a gradient-based optimization method (here, 

conjugate gradient method), the computation of derivative of the objective function with 

respect to the unknown variables is needed. Since two different cases are considered for the 

variable heat transfer coefficient, two different sensitivity analysis schemes are considered 

as follows:  

Case 1) Space-dependent heat transfer coefficient 
2 22 2 1 2 3( )h a X a Y a
Γ Γ

Γ = + + : 

 In this case, the sensitivity of the objective function J  defined by Eq.(7) to the unknown 

variables 1a , 2a , 3a  is calculated as follows 

 
1 1

, ,
, ( , ) , ( , )

2 2

2 ( ) 2 ( )
m m

M M
i N i N

i N i N i N i N
i il l l

T T
C T T T T C

a a a

− −

= =

∂ ∂∂
= − = −

∂ ∂ ∂
∑ ∑

J
  (8) 

where 1,2, 3l = . In Eq. (8), ,i N

l

T
C

a

∂

∂
 ( 1,2, 3l = ) are called the sensitivity coefficients. To 

obtain an algebraic expression for the sensitivity coefficients, from the boundary condition 

of the heat conduction equation at the surface 2Γ , Eq. (4),  we have 

 
2 2conduction convection| |q q
Γ Γ
=ɺ ɺ    

 
2 22

2

( )
T

T
k h T T

n Γ ∞

∂
− = −

∂
  

 
2 2 2 21 2 3

2

( )( )
T

T
k a X a Y a T T

n Γ Γ Γ ∞

∂
− = + + −

∂
  (9) 
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The term 
T

n

∂

∂
 at a boundary surface in the physical domain is related to 

T

ξ

∂

∂
 and/or 

T

η

∂

∂
 

at the corresponding transformed boundary surface in the computational domain. At 

surface 2Γ  we have  

 
2 2

1
| | ( )

T T
T T

n J
η ξ

γ β
η γ

Γ Γ

∂ ∂
= = −

∂ ∂
  (10)

  

where (from the elliptic grid generation method) 

 2 2 2 2, , ,x y x x y y x y J x y x y
η η ξ η ξ η ξ ξ ξ η η ξ

α β γ= + = + + = −=   (11) 

Using the finite-difference method, the T
η

 and T
ξ

 at every boundary surface with 

Neumann and Robin conditions can be discretized. By substituting Eq. (10) and the finite-

difference expressions for T
ξ
 and T

η
 (on the boundary surface 2Γ ) into Eq. (9), we get

 

( )
2

, , 1 , 2 1, 1,
,1 , 2 , 3

3 4
( )

1

2 2
i N i N i N i N i N

T ii N N Ni

T T T T T
a x a y ak T T

J
γ β

γ

− − + −
∞

  − + −  − − = −    

+
 

+

  (12) 

The following expression is obtained by solving Eq. (12) in terms of 
,i N

T : 

,i N
T =  

2 2 2, 1 , 2 1, 1, 1 , 2 , 3

1 , 2 , 3

(4 2 2 2 )

(3 2 2 2 )

T i N T i N T i N T i N i N i N

T i N i N

k T k T k T k T J a x T J a y T J a T

k J a x J a y J a

γ γ β β γ γ γ

γ γ γ γ

− − + − ∞ ∞ ∞
− + − + + +

+ + +

  (13) 
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Using an algebraic software, one can obtain an expression for the sensitivity coefficients 

,i N

l

T
C

a

∂

∂
 ( 1,2, 3l = ) by differentiating the obtained expression for 

,i N
T  with respect to 1a , 

2a , and 3a , respectively, as follows 

 2, , 1 , 2 1, 1,,

2
1 1 , 2 , 3

2 (3 4 )

(3 2 2 2 )

i N T i N i N i N i Ni N

T i N i N

J x k T T T T TT

a k J a x J a y J a

γ γ γ γ β β

γ γ γ γ

∞ − − + −
− + − +∂

=
∂ + + +

  (14) 

 2, , 1 , 2 1, 1,,

2
2 1 , 2 , 3

2 (3 4 )

(3 2 2 2 )

i N T i N i N i N i Ni N

T i N i N

J y k T T T T TT

a k J a x J a y J a

γ γ γ γ β β

γ γ γ γ

∞ − − + −
− + − +∂

=
∂ + + +

  (15) 

 2 , 1 , 2 1, 1,,

2
3 1 , 2 , 3

2 (3 4 )

(3 2 2 2 )

T i N i N i N i Ni N

T i N i N

J k T T T T TT

a k J a x J a y J a

γ γ γ γ β β

γ γ γ γ

∞ − − + −
− + − +∂

=
∂ + + +

  (16) 

 

Case 2) Temperature-dependent heat transfer coefficient 
2 22( )h T a bT
Γ Γ
= + :  

In this case, the sensitivity of the objective function J  defined by Eq.(7) to the unknown 

variables a and b  is calculated as follows 

 
1 1

, ,
, ( , ) , ( , )

2 2

2 ( ) 2 ( )
m m

M M
i N i N

i N i N i N i N
i i

T T
C T T T T C

a a a

− −

= =

∂ ∂∂
= − = −

∂ ∂ ∂
∑ ∑

J
  (17) 

 
1 1

, ,
, ( , ) , ( , )

2 2

2 ( ) 2 ( )
m m

M M
i N i N

i N i N i N i N
i i

T T
C T T T T C

b b b

− −

= =

∂ ∂∂
= − = −

∂ ∂ ∂
∑ ∑

J
  (18) 

In a similar fashion, Eq. (12) becomes 

 ( )
2

, , 1 , 2 1,
,

1,
,

3 41

2 2
( )i N i N i N i N i N

T ii NN

T T T T T
k T T

J
a bTγ β

γ

− − + −
∞

  − + −  − − = −     
+


 

 (19) 
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Eq. (19) is a quadratic equation in terms of 
,i N

T . The following expression is obtained by 

solving Eq. (19) in terms of 
,i N

T : 

 

(
3 3
2 2

2 2

2 3 2 2
,

1 1
3 2 2 (9 12 12 4

4i N T T T T
T k J a J bT k k Ja k JbT J a

J b
γ γ γ γ γ γ γ

γ
∞ ∞

=− + − − + − +

 

3 3 1
2 2 2

2 2

2 2 2 2
1, , 1 , 2 1,8 4 8 32 8 8 )

T i N T i N T i N T i N
J abT J b T J bk T J bk T J bk T J bk Tγ γ γ β γ γ γ β

∞ ∞ − − − +

+ + − + − + 

  (20)  

Again, using an algebraic software, one can obtain an expression for the sensitivity 

coefficients ,i N
T

C
a

∂

∂
 and ,i N

T
C

b

∂

∂
 by differentiating the obtained expression for 

,i N
T  with 

respect to a  and b , respectively, as follows 

,i N
T

a

∂
=

∂
 

3 3 3
2 2 2

2 2

2 2 2 2 2 21 1 1
2 (12 8 8 ) / (9 12 12 4

4 2 T T T T
J k J J a J bT k k Ja k JbT J a

J b
γ γ γ γ γ γ γ γ

γ
∞ ∞


− − + + + − + +

 

3 3 1
2 2 2

2 2

2 2 2 2
1, , 1 , 2 1,8 4 8 32 8 8 )

T i N T i N T i N T i N
J abT J b T J bk T J bk T J bk T J bk Tγ γ γ β γ γ γ β

∞ ∞ − − − +

+ − + − + 

  (21) 

  

,i N
T

b

∂
=

∂
 

 
3
2

2 2 2 2

2 2 2
1,

1 1 1
2 ( 12 8 8 8

4 2 T T i N
J T k JT J aT J bT J k T

J b
γ γ γ γ γ β

γ
∞ ∞ ∞ ∞ −


− − − − + + −
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3 3 3 3
2 2 2 2

2

2 2 2 2
, 1 , 2 1,32 8 8 ) / (9 12 12 4

T i N T i N T i N T T T
J k T J k T J bk T k k Ja k JbT J aγ γ γ β γ γ γ γ

− − + ∞
+ − + + − + +

 

3 3 1
2 2 2

2 2

2 2 2 2
1, , 1 , 2 1,8 4 8 32 8 8 )

T i N T i N T i N T i N
J abT J b T J bk T J bk T J bk T J bk Tγ γ γ β γ γ γ β

∞ ∞ − − − +

+ − + − + 

  (22) 

Moreover, other forms of dependency of the heat transfer coefficient on the temperature, 

such as 
2 2 2

2
2( )h T a bT cT

Γ Γ Γ
= + +  (quadratic) and 

2 2 2 2

2 3
2( )h T a bT cT dT

Γ Γ Γ Γ
= + + +  

(cubic), may also be used resulting in a cubic and a quartic equation in terms of 
,i N

T , 

respectively. Hence one can obtain an expression for the sensitivity coefficients by 

differentiating the obtained expression for 
,i N

T  with respect to the coefficients appearing in 

the heat transfer coefficient expression (as there are algebraic expressions for the roots of 

cubic and quartic equations).  

Using Eqs. (14)-(16), the sensitivity matrix Ja  for Case 1 (space-dependent heat transfer 

coefficient) can be explicitly written as 

 
1 2 3

2, 2, 2,

1 2 3

3, 3, 3,

1 2 3

1, 1, 1,

1 2 3( 2) 1 ( 2) 1

, ,

N N N

N N N

a a a

M N M N M N

M M

T T T

a a a

T T T

C C Ca a a

T T T

a a a

Ja Ja Ja

− − −

− × − ×

     ∂ ∂ ∂     
     ∂ ∂ ∂     
     ∂ ∂ ∂     
     

= = =∂ ∂ ∂     
     
    
    
∂ ∂ ∂    
    
    ∂ ∂ ∂     

⋮ ⋮ ⋮

( 2) 1M− ×







 (23) 

And using Eqs. (21) and (22), the sensitivity matrix Ja  for Case 2 (temperature-dependent 

heat transfer coefficient) can be explicitly written as 
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2, 2,

3, 3,

1, 1,

( 2) 1 ( 2) 1

,

N N

N N

a b

M N M N

M M

T T

a b
T T

C Ca b

T T

a b

Ja Ja

− −

− × − ×

   ∂ ∂   
   ∂ ∂   
   ∂ ∂
   
   = =∂ ∂   
   
   
∂ ∂   
   
   ∂ ∂   

⋮ ⋮

  (24) 

Problems for which the value of TJa Ja  is very small are referred to as ill-conditioned. In 

general, IHTPs are very ill-conditioned particularly near the initial guess used for the 

unknown parameters which may be far from the actual solution. This may result in a 

negative value for the variable heat transfer coefficient and hence the termination of the 

iterative process. To circumvent this problem, the constant C  is introduced in the 

objective function expression to be able to incorporate it into the sensitivity coefficients 

and form a new set of sensitivity coefficients.  

 

3.3 The Conjugate Gradient Method (CGM) 

In this study, the conjugate gradient optimization method is used due to its reliable 

performance in treating the inverse heat transfer problems. The objective function given by 

Eq. (7) is minimized by searching along the direction of descent (k) d  using a search step 

size (k)  β .  

 (k 1) (k) (k) (k)ff dβ+ = −   (25) 

where 1 2 3, ,f a a a≡  for Case 1 and ,f a b≡  for Case 2. The direction of descent of the 

current iteration is obtained as a linear combination of the direction of descent of the 

previous iteration and the gradient direction (k) ∇J . Therefore,  

 (k) (k) (k) (k 1)d dγ −= ∇ +J   (26) 

mse47
Strike-Out
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The Polak-Ribiere formula [51] is employed to calculate the conjugation coefficient: 

 

T T
(k) (k) (k 1) (k) (k) (k 1)

(k)

(k 1) 2 T
(k 1) (k 1)

( ) ( )
γ

− −

−
− −

   ∇ ∇ −∇ ∇ ∇ −∇      = =
∇  ∇ ∇  

��

J J J J J J

J J J

  (27) 

The search step size is given as follows [2] 

 
( ,

(k) (k) T
,

(k) (k) T (k)

)(k

k

)

( )

[ ] [ ]
  

[ ] [ ]
mi Ni N

d T T

d d
β

−
=

Ja

Ja Ja
  (28) 

The following algorithm represents the direct and inverse analysis steps used to estimate 

the space- and temperature-dependent heat transfer coefficient in steady-state heat 

conduction problems separately: 

1. Specify the physical domain, the boundary conditions, and the measured outer surface 

temperature. 

2. Generate the boundary-fitted grid using the elliptic grid generation method. 

3. Solve the direct problem of finding the temperature values at any grid points of the 

physical domain using an initial variable heat transfer coefficient (initial guess for 1 2 3, ,a a a  

and ,a b ).  

4. Using Eq. (7), compute the objective function ( (k)J ). 

5. If value of the objective function obtained in step 4 is less than the specified stopping 

criterion, the optimization is finished. Otherwise, go to step 6. 

6. Compute the sensitivity matrices 
1a

Ja , 
2a

Ja , and 
3a

Ja  (for Case 1) from Eq. (23) and 

the sensitivity matrices a
Ja

 
and 

b
Ja  (for Case 2) from Eq. (24). 
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7. Compute the gradient directions (k)

la
∇J ( 1,2,3l = ) from Eq. (8) and (k)

a
∇J  and (k)

b
∇J  

from Eqs. (17) and (18), respectively. 

8. Compute the conjugation coefficients (k)

la
γ  ( 1,2,3l = ) and (k)

a
γ  and (k)

b
γ  from Eq. (27). 

For k 0= , set (0) 0γ = .  

9. Compute the directions of descent (k)

la
d  ( 1,2,3l = ) and (k)

a
d  and (k)

b
d  from Eq. (26). 

10. Compute the search step sizes (k)

la
β  ( 1,2,3l = ) and (k)

a
β  and (k)

b
β  from Eq. (28). 

11. From Eq. (25), evaluate the new values for 
l

a  ( 1,2,3l = ) and a  and b  separately, 

namely 1
1
(k )a + ,  1

2
(k )a + , 1

3
(k )a + , and 

(k 1)
a

+
 and 

(k 1)
b

+
.      

12. Set the next iteration (k = k + 1 ) and return to the step 2. 

In Eq. (25), if the value of the expression (k) (k)dβ  is larger than the value of (k)f , then the 

new value for the variable heat transfer coefficient, (k+1) (k+1) (k+1) (k+1
3

)
2 1 , 2 ,i N i N

h a x a y a= + +   

( 2, , 1)i M= −⋯  or (k+1) (k+1) (k+1) (k+1
2 ,

)
i N

h a b T= + , becomes negative resulting in termination 

of the iterative process. Thus the parameter C  is introduced in Eq. (6) to decrease the 

value of the expression (k) (k)dβ  and obtain a positive value for the heat transfer coefficient 

in the next iteration, thereby continuing the iterative process. We start every problem with 

an ordinary least square objective function for which 0, 1n C= = . It is obvious that 

multiplication (or division) of the objective function value by a positive constant C  will 

not change the optimum solution [52]. 

 

3.4 stopping criterion 

If the problem involves no measurement errors, the traditional check condition is specified 

as 
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where ε  is a small specified number. However, the measured temperatures will contain 

errors. In this case, the objective function value will not be zero at the end of the iterative 

process. As the computed temperatures approach the measured temperatures containing 

errors, during the minimization of the objective function (Eq. (7)), large oscillations may 

appear in the inverse problem solution resulting in an ill-posed character for the inverse 

problem. However, the conjugate gradient method may become well-posed if the 

Discrepancy Principle is used to stop the iterative procedure. In the Discrepancy Principle, 

the solution is assumed to be sufficiently accurate when the difference between computed 

and measured temperatures is of the order of magnitude of the measurement errors, that 

is, 

where σ  is the standard deviation of the measurement errors, which is assumed constant 

in the present analysis. We can obtain the following value for ε  by substituting Eq. (30) 

into Eq. (7) (objective function definition)  

Then the iterative procedure is stopped when the following criterion is satisfied [2] 

 

4. Results 

In this paper, two test cases are investigated to demonstrate the accuracy and efficiency of 

the proposed inverse analysis in the numerical treatment of inverse heat conduction 

problems involving variable heat transfer coefficient. Test Case 1 deals with a space-

 (k) ε<J   (29)

 computed measuredT T σ− ≈   (30)

 2( 2)C Mε σ= −   (31)

 (k) ε<J   (32)
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dependent heat transfer coefficient and Test Case 2 treats a temperature-dependent heat 

transfer coefficient. It is first assumed that the variable heat transfer coefficient 2h  is 

known, the heat conduction problem is solved using the given boundary conditions to 

obtain the temperature distribution on the surface 2Γ . Then the computed temperature 

distribution ,i N
T  ( 2, , 1i M= −… ) is used as the simulated measured temperatures for 

inverse analysis to recover the initially used variable heat transfer coefficient 2h . To avoid 

committing an inverse crime, a different mesh is also used to recover the desired parameter 

( 2h ). 

 

4.1 Space-dependent heat transfer coefficient: 

As stated above, the steady-state heat conduction problem is initially solved using the 

known values for the thermal conductivity of conducting body 
T

k , the constant heat 

transfer coefficient i
h  imposed on the surface i

Γ  ( 3,4i = ), the space-dependent heat 

transfer coefficient 2 , ,0.05 0.007 2.5
i N i N

h x y= + +  imposed on the surface 2Γ , and the heat 

flux qɺ  applied on the surface 1
Γ  to obtain the temperature distribution on the outer 

surface 2Γ  (
,i N

T , 2, , 1i M= −… ). To facilitate the computation of the sensitivity matrix 

coefficients using the central finite-difference relations, the grid nodes (1, )N  and ( , )M N on 

corners of the outer surface 2Γ  are excluded from computing the temperature distribution. 

Then the resulting outer surface temperature distribution is used as the simulated 

measured temperatures in the inverse analysis to recover the initially used values for three 

parameters 1 0.05a = , 2 0.007a = , and 3 2.5a = . To do so, the square of the difference 

between the temperature distribution of the outer surface 2
Γ  (obtained from the solution 

the direct problem at each iteration) and the simulated measured temperature distribution 

of the same surface ( 2
Γ ) is to be minimized. 
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Test Case 1: Numerical values of the coefficients involved in this test case are listed in 

Table 1. The temperature distribution in the body (using a grid size of 50 40× ) and the 

simulated measured temperature distribution on the outer surface 2Γ , ( , )mi N
T , are 

demonstrated in Fig. 3a and Fig. 3b, respectively. ( , )mi N
T  will be used in the inverse 

analysis to recover the initial values of 1 2 3, ,a a a . Using an inverse analysis, the known 

(desired) values of 1 0.05
d

a = , 2 0.007
d

a = , and 3 2.5
d

a =  are to be recovered by utilizing 

two different initial guesses: 

 

 
initial initial initial1 1 1

1 2 30.00002, 0.0004, 0.00001a a a= = =   

 
initial initial initial2 2 2

1 2 30.1, 0.7, 0.8a a a= = = −    

 

2

W
( )
m

qɺ

  

W
( )
m.CT

k

  

2 2

W
( )
m .C

h   3 2

W
( )
m .C

h

  

4 2

W
( )
m .C

h

  

2
( C)T °

∞

  
3
( C)T °

∞

  
4
( C)T °

∞

  

2000  10  , ,0.05 0.007 2.5
i N i N

x y+ +

  
5  5  30  30  30  

Table 1 Data used for Test Case 1.  
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a)                                                            b) 

Fig. 3 Temperature distribution in irregular physical domain (a) and on outer surface 2Γ (used as m
T  for 

inverse analysis) (b).   

 

 

Fig. 4 Distribution of variable heat transfer coefficient on the outer surface 2Γ .  
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Initial guess 1: 
initial1

2 , , 2

W
0.00002 0.0004 0.00001( )

m .C
i N i N

h x y= + +   

 

 

a)                                                            b) 

Fig. 5  Estimation of 1a , 2a , 3a  ( 2 1 , 2 , 3i N i N
h a x a y a= + + ) and objective function versus iteration number 

for initial heat transfer coefficient 
initial1

2
2 , ,0.00002 0.0004 0.00001(W/ m .C)

i N i N
h x y= + +  (a), and 

comparison of initial, optimal, and desired (simulated measured) heat transfer coefficient distributions (b).  
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Initial guess 2: 
initial2

2 , , 2

W
0.1 0.7 0.8( )

m .C
i N i N

h x y= + −
 

 

 

a)                                                            b) 

Fig. 6 Estimation of 1a , 2a , 3a  ( 2 1 , 2 , 3i N i N
h a x a y a= + + ) and objective function versus iteration number for 

initial heat transfer coefficient 
initial2

2
2 , ,0.1 0.7 0.8(W/ m .C)

i N i N
h x y= + −  (a), and comparison of initial, 

optimal, and desired (simulated measured) heat transfer coefficient distributions (b). 

 

The inverse analysis is investigated using two different initial guesses which are far from 

the desired ones. The initial guesses are selected so that they can reflect the accuracy, 

efficiency, and robustness of the inverse analysis. For the first initial guess, a different grid 
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the initial, optimal, and desired heat transfer coefficient distributions on the surface 
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shown in Fig. 5b (for initial 1), Fig. 6b (for initial 2), and Fig. 7b (for initial 2 with the 
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1 2 3, ,a a a , the initial and final values of the objective function, the computation time, and 

the percentage of the decrease in the objective function are given in Table 2 (for both cases 

of no measurement error and a measurement error). As shown in Table 2, a 100% 

reduction in the objective function and complete recovering of the values for 
1 2 3, ,a a a  (the 

heat transfer coefficient components) are achieved in both initial cases with no 

measurement error. In case of the measurement error of 0.5σ = , there is also an 

approximately a 100% reduction in the objective function. As shown in Table 2, the errors 

in recovering the parameters 1 2 3, ,a a a  are insignificant. The results are obtained by a 

FORTRAN compiler and computations are run on a PC with Intel Core i5 and 6G RAM. 

A tolerance of 710−  is used in iterative loops to increase the accuracy of results. 

 

Initial guess 2 (with measurement error): 
initial2

2 , , 2

W
0.1 0.7 0.8( )

m .C
i N i N

h x y= + −   

In this study, for both cases of space- and temperature-dependent heat transfer coefficient, 

the measured temperature containing random errors, meas
,i N

T  ( 2, , 1)i M= −… , is generated 

by adding an error term ωσ  to the exact temperature exact
,i N

T  to give 

 meas exact
, ,i N i N

T T ωσ= +   (33) 

where ω  is a random variable with normal distribution, zero mean, and unitary standard 

deviation. Assuming 99% confidence for the measured temperature, ω  lies in  the range 

2.576 2.576 ω− ≤ ≤  and it is randomly generated by using MATLAB. σ  is the standard 

deviation of the measurement errors and is considered as 0.5σ =  in this study. The initial 

guess 2 (
initial2

2 , , 2

W
0.1 0.7 0.8( )

m .C
i N i N

h x y= + − ) is considered again to initiate the 

optimization process. 
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a)                                                            b) 

Fig. 7 Estimation of 1a , 2a , 3a  ( 2 1 , 2 , 3i N i N
h a x a y a= + + ) and objective function versus iteration number for 

initial heat transfer coefficient 
initial2

2
2 , ,0.1 0.7 0.8(W/ m .C)

i N i N
h x y= + −  by considering measurement error 

(a), and comparison of initial, optimal, and desired (simulated measured) heat transfer coefficient 

distributions (b). 

 

Grid size Desired 

value 

Initial 

(guess) 

value 

Final 

value 

Temperature  

measurement  

error 

Initial  value 

of J  

Minimum  

value of J  

Reduction 

in objective 

function & 

computation time 

50 60×  1

2
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0.05
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2.5

a

a

a

=

=

=

 
1

2

3

0.00002

0.0004

0.00001

a

a

a

=

=

=

 
2

1
3

2

3

5.00 10

6.96 10

2.50

a

a

a

−

−

= ×

= ×

=

 
0σ =  572667842.97  

( 10C = ) 

37.04 10−×  100%  

(34s)

(1100 iterations)  

50 40×   1

2
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0.7

0.8

a

a

a

=

=

= −
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1
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2
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a

a

a
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−
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= ×
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a
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5.01 10

(error=0.2%)

7.34 10
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(error=0.4%)

a

a

a

−

−

= ×

= ×

=

 

0.5σ =  13439285.83  
( 100C = ) 

1199.87  ~ 100%  

(4138 iterations)  

Table 2 Results for the estimation the heat transfer coefficient components 1a , 2a , and 3a .    
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4.2 Temperature-dependent heat transfer coefficient: 

Test Case 2: Numerical values of the coefficients involved in this test case are listed in 

Table 3. Initially the direct problem is solved using the known values for the thermal 

conductivity, the heat flux, and the heat transfer coefficients to obtain the temperature 

distribution on the outer surface 2Γ  
(Fig. 8a), 

,i N
T , which will be used as the simulated 

measured temperatures ( , )mi N
T  for the inverse analysis to recover the initial values of a  

and b .  The grid size is 60 50× . Using an inverse analysis, the known (desired) values of 

6.0
d

a =  and 0.4
d

b =  are to be recovered by utilizing two different initial guesses: 

 
1 1initial initial0.001, 0.04a b= =   

 
2 2initial initial10.0, 0.9a b= =   

 

 

2

W
( )
m

qɺ   
W

( )
m.CT

k   2 2

W
( )
m .C

h   3 2

W
( )
m .C

h   4 2

W
( )
m .C

h   2
( C)T °

∞
  

3
( C)T °

∞
  

4
( C)T °

∞
  

1000  30  ,6.0 0.4
i N

T+   7  7  20  20  20  

Table 3 Data used for Test Case 2. 
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a)                                                            b) 

Fig. 8 The validation of the implemented numerical method for the direct heat transfer problem using the 

finite element analysis software COMSOL. Temperature distribution obtained by the proposed numerical 

method (a) and temperature distribution obtained by COMSOL (b).  

 

 

Fig. 9 Distribution of variable heat transfer coefficient on the outer surface 2Γ .  
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Initial guess 1: 
initial1

2 , 2

W
0.001 0.04 ( )

m .C
i N

h T= +
 

 

 

a)                                                            b) 

Fig. 10 Estimation of a and b  ( 2 ,i N
h a bT= + ) and objective function versus iteration number for initial 

heat transfer coefficient 
initial1

2
2 ,0.001 0.04 (W/ m .C)

i N
h T= +  (a), and comparison of initial, optimal, and 

desired (simulated measured) heat transfer coefficient distributions (b). 
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Initial guess 2: 
initial2

2 , 2

W
10.0 0.9 ( )

m .C
i N

h T= +
 

 

 

a)                                                            b) 

Fig. 11 Estimation of a and b  ( 2 ,i N
h a bT= + ) and objective function versus iteration number for initial 

heat transfer coefficient 
initial2

2
2 ,10.0 0.9 (W/ m .C)

i N
h T= +  (a), and comparison of initial, optimal, and 

desired (simulated measured) heat transfer coefficient distributions (b). 
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Initial guess 2 (with measurement error): 
initial2

2 , 2

W
10.0 0.9 ( )

m .C
i N

h T= +
 

 

a)                                                            b) 

Fig. 12 Estimation of a and b  ( 2 ,i N
h a bT= + ) and objective function versus iteration number for initial 

heat transfer coefficient 
initial2

2
2 ,10.0 0.9 (W/ m .C)

i N
h T= +  by considering measurement error (a), and 

comparison of initial, optimal, and desired (simulated measured) heat transfer coefficient distributions (b). 

 

Grid size Desired 

value 

Initial 

(guess) 

value 

Final 

value 

Temperature  

measurement  

error 

Initial  value 

of J  

Minimum  

value of J  

Reduction 

in objective 

function & 

computation time 
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a

b

=
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136.35  ~ 100%  

(4000 iterations)  

Table 4 Results for the estimation the heat transfer coefficient components a  and b .  
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Like the estimation of the space-dependent heat transfer coefficient, the inverse analysis 

used for estimation of the temperature-dependent heat transfer coefficient is investigated 

using two different initial guesses which are far from the desired ones. For both initial 

guesses, different grid sizes (60 30×  for the initial 1 and 60 80×  for initial 2 and initial 2 

with measurement error) used to avoid committing an inverse crime. The convergence 

history of the components of the variable heat transfer coefficient ( ,a b )  and the decrease 

in the objective function versus the iteration number are shown in Fig. 10a (for initial 1), 

Fig. 11a (for initial 2), and Fig. 12a (for initial 2 with the measurement error). The 

comparison of initial, optimal, and desired heat transfer distributions on the surface 
2

Γ  are 

shown in Fig. 10b (for initial 1), Fig. 11b (for initial 2), and Fig. 12b (for initial 2 with the 

measurement error). The details of the results, including the initial and final values for ,a b

, the initial and final values of the objective function, the computation time, and the 

percentage of the decrease in the objective function are given in Table 4 (for both cases of 

no measurement error and a measurement error). As shown in Table 4, a 100% reduction 

in the objective function and complete recovering of the values for ,a b  (the heat transfer 

coefficient components) are achieved in both initial cases with no measurement error. In 

case of the measurement error of 0.5σ = , there is also an approximately a 100% reduction 

in the objective function. As shown in Table 4, the errors in recovering the parameters ,a b  

are significant. 

 

5. Conclusion 

This paper presented a new numerical procedure for separate estimation of a space- and 

temperature-dependent heat transfer coefficient in a two dimensional irregular heat-

conducting body using an inverse steady-state heat conduction analysis. The irregular body 

was transformed into a regular computational domain to perform all computations related 

to the direct and inverse heat conduction solution. To do this, an elliptic grid generation 
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scheme was used to generate a grid over the body. An accurate and very efficient 

sensitivity analysis scheme was used to calculate sensitivity coefficients needed in a 

gradient-based optimization method (here, conjugate gradient method). The explicit 

expressions for the sensitivity coefficients were derived for both dependence cases (space- 

and temperature- dependence) which allow for the computation of the sensitivity 

coefficients in one single solve, regardless of the number of unknown quantities. The 

conjugate gradient method was used as a tool to minimize the objective function and 

recover the desired quantities. The obtained results revealed that the proposed algorithm is 

very accurate and efficient. 
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