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ABSTRACT10

This study presents a novel modal parameter identification method enabling approximation of11

the mode shapes of linear systems using white noise or earthquake inputs. The majority of well12

established existing system identification methods perform successfully when the system is excited13

by broadband white noise excitation. However, they encounter serious limitations when analysing14

the vibrations triggered by non-stationary earthquake inputs. Thus, the presented technique extends15

the applicability of system identification and modal based structural health monitoring methods.16

The method operates in modal space and is based on mode superposition in short windows. The17

mode shapes are identified using an optimization algorithm minimizing the weighted sum of cross-18

correlation of frequency response spectra. The technique is validated analytically using simulation19

results of a simple 3D structure representing a simplifiedmodel of a real bridge pier structure, which20

enables exact comparison to known properties. The results show the method provides relatively21

good identification accuracy of modal parameters of systems excited by white noise and earthquake22

inputs. The identified modal frequencies showed <1% error, where the mode shape coefficients23
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were identified within 5% error. The method performs robustly even for high levels of simulated24

sensor noise and can be readily applied to more complex MDOF systems.25

26
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INTRODUCTION28

A number of different structural health monitoring (SHM) methods have been developed to29

identify damage. Many are vibration-based SHM methods developed to capture changes in modal30

parameters (Brownjohn et al. 2010; Astroza et al. 2013; Astroza et al. 2016a; Astroza et al. 2016b;31

Moaveni et al. 2010; Nagarajaiah and Basu 2009; Saaed and Nikolakopoulos 2016) . These32

changes can be represented as a damage index (Doebling et al. 1996; Amezquita-Sanchez and33

Adeli 2015; Singhal and Kiremidjian 1996; Ren and De Roeck 2002) or used for reconstruction of34

second order models (Luş et al. 2002; Luş et al. 2004; Hong et al. 2009). They are popular be-35

cause of their use with measured, small ambient vibrations to identify linear responses and systems.36

37

The eigensystem realization algorithm (ERA) (Juang and Pappa 1985) and its combination38

with natural excitation techniques (NExT/ERA) (Moaveni et al. 2008; Pappa et al. 1998; Moncayo39

et al. 2010; Caicedo 2011) or the Observer/Kalman Filter Identification (OKID) (Juang et al. 1993;40

Vicario et al. 2015; Fraraccio et al. 2008) are two of the more commonly used modal parameter41

identification techniques for linear time-invariant systems subjected to white noise excitations. A42

number of studies (Astroza et al. 2016a; Moaveni et al. 2010; Brownjohn et al. 2010) used a stochas-43

tic subspace identification (SSI) technique (Vicario et al. 2015) to identify modal parameters of44

simulated and real life structures. Successful SHM in these conditions has also been implemented45

using different variations of autoregressivemoving average (ARMA) (Carden and Brownjohn 2008;46

Bodeux and Golinval 2001; da Silva et al. 2008; Sohn and Farrar 2001) and enhanced frequency47

domain decomposition (EFDD) methods (Brincker et al. 2001; Jacobsen et al. 2008; Moaveni et al.48

2010; Astroza et al. 2016a).49

50

All these techniques are limited to linear time-invariant systems. Moreover, most perform best51

when the input loads meet specific characteristics, such as broad band white noise, which is not a52

typical condition. The ability to easily use ambient vibrations without constraint or knowledge of53

the input would be more ideal for regular monitoring, requiring an output-only SHM method.54
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55

This research presents a new modal parameter identification technique based on mode decom-56

position to perform as an output only identification technique for linear time-invariant systems57

using relatively long duration response measurements extracted from ambient load or even larger,58

shorter duration earthquake induced vibrations. The method is not limited to any characteristics59

of the input load. In addition, for longer, non-linear seismic responses these parameters can be60

identified within short windows over the event. Finally, the approximated constant mode shapes can61

be used to decompose the modes, which can be used for reconstruction of single mode dominant62

hysteresis loops that can be readily analysed for changes or damage using hysteresis loop analysis63

(HLA) (Zhou et al. 2015; Zhou et al. 2017).64

65

METHOD66

Mode decoupling67

The equation of motion of a linear multi-degree-of-freedom (MDOF) system is described:68

M{ ¥-} + C{ ¤-} +K{-} = MA{ ¥-6} (1)69

where M, C, K are the mass, damping and stiffness matrices, r is the excitation influence vector,70

{ ¥-}, { ¤-} and {-} are the acceleration, velocity and displacement vectors of MDOF system, re-71

spectively, and { ¥-6} is the ground motion acceleration.72

73

Assuming the modes shapes are real-valued, the linear MDOF system response can be repre-74

sented as the weighted, linear sum of individual vibration modes:75

- (C) =
=∑
8=1

q8 · G8 (C) = Φ- (C) =



q1,1 · G1(C) + · · · + q1,= · G= (C)
...

q=,1 · G1(C) + · · · + q=,= · G= (C)


(2)76
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where n is the number of modes, - (C) =
[
G1(C) G2(C) · · · G= (C)

])
is modal displacement77

vector of = modes at time instant t, where each row of - (C) represents each mode, G8 (C),78

Φ =
[
q1 q2 ...q8 ... q=

]
is the n × n mode shape matrix calculated by solving an eigenvalue79

problem, where q8 is n × 1 mode shape vector of the iCℎ mode.80

81

In this study, a relatively simple tool is proposed to approximate Φ̂ using the principle of mode82

superposition. Although the method is limited to systems with real-valued modes, a number of83

studies (Moaveni et al. 2010; Moaveni et al. 2013; Astroza et al. 2016c) demonstrated that for civil84

structures the lowest modes are typically real or near real-valued. The modal response, - , of a85

linear structure can be described, per Equation (2):86

- = Φ̂−1- =



q̂1,1 · · · q̂1,=
...

. . .
...

q̂=,1 · · · q̂=,=



−1 

q1,1 · G1 + · · · + q1,= · G=
...

q=,1 · G1 + · · · + q=,= · G=


(3)87

where = is the number of DOFs, and Φ̂ is an approximate mode shape matrix, where ideally Φ̂ = Φ.88

The hat symbol here is used to denote identified/approximated parameters in this study.89

90

In real structures, the exact number of modes contributing to the structure’s response is often91

unknown and can be very large, as with suspension bridges (Farrar et al. 1996). For practical92

reasons only a limited number of DOFs are monitored, making full mode decomposition infeasible.93

However, partial decomposition can be carried out using limited DOFs, which is still practical for94

real structures, because higher modes often have negligible response energy. In addition, most civil95

structure design codes neglect the influence of higher modes, as they contribute less than 10% to96

the total effective modal mass (CEN 2004).97

98

For a structure modelled with < = 2 DOFs of = total DOFs using Equation (2) for - , the esti-99
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mated modal response - ?,<, where ? in the subscript refers to partial decoupling, can be written:100

101

- ?,2 =Φ̂
−1- =


q̂1,1 q̂1,2

q̂2,1 q̂2,2



−1 
q1,1 · G1 + q1,2 · G2 + · · · + q1,= · G=
q2,1 · G1 + q2,2 · G2 + · · · + q2,= · G=


=

=
1

34C (Φ̂)

[ (q̂2,2 · q1,1 − q̂1,2 · q2,1)G1 + (q̂2,2 · q1,2 − q̂1,2 · q2,2)G2

(−q̂2,1 · q1,1 + q̂1,1 · q2,1)G1 + (−q̂2,1 · q1,2 + q̂1,1 · q2,2)G2

+ · · · + (q̂2,2 · q1,= − q̂1,2 · q2,=)G=
+ · · · + (−q̂2,1 · q1,= + q̂1,1 · q2,=)G=

]
(4)102

where q 9 ,8 and q̂ 9 ,8 represent the true and identified mode shape coefficients, respectively. If q̂ 9 ,8103

can be identified exactly, then q̂1,1 = q1,1, q̂2,1 = q2,1, q̂1,2 = q1,2 and q̂2,2 = q2,2. From the104

assumed perfect identification, the result of the decomposition is defined:105

- ?,2 =


1 · G1 + 0 · G2 + · · · + (q̂2,2·q1,8−q̂1,2·q2,8)

34C (Φ̂) G8 + · · · + (q̂2,2·q1,=−q̂1,2·q2,=)
34C (Φ̂) G=

0 · G1 + 1 · G2 + · · · + (−q̂2,1·q1,8+q̂1,1·q2,8)
34C (Φ̂) G8 + · · · + (−q̂2,1·q1,=+q̂1,1·q2,=)

34C (Φ̂) G=


=

=


1 · G1 + 0 · G2 + · · · + U1,8 · G8 + · · · + U1,= · G=
0 · G1 + 1 · G2 + · · · + U2,8 · G8 + · · · + U2,= · G=



(5)106

where U1,8 and U2,8 are scaling factors that result for each mode.107

108

More generally, for a system with < modeled DOFs of = total DOFs, the estimated modal109
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response - ? can be written:110

- ?,< =



1 · G1 + 0 · G2 + · · · + 0 · G< + U1,<+1G<+1 + · · · + U1,=G=

0 · G1 + 1 · G2 + · · · + 0 · G< + U2,<+1G<+1 + · · · + U2,=G=

· · ·
0 · G1 + 0 · G2 + · · · + 1 · G< + U<,<+1G<+1 + · · · + U<,=G=



=

=



1 0 · · · 0 U1,<+1 · · · U1,=

0 1 · · · 0 U2,<+1 · · · U2,=
...

...
. . .

...
...

. . .
...

0 0 · · · 1 U<,<+1 · · · U<,=



- = �-

(6)111

where U<,= is the =Cℎ mode scaling factor and � is a mode scaling matrix defining contribution of112

omitted modes, < + 1 . . . =. Thus, the 8Cℎ modal response will consist of the 8Cℎ mode itself and113

scaled modes that are omitted by a perfectly approximated (Φ̂ = Φ) mode shape matrix (Φ̂). The114

contribution of other modes is thus, ideally, equal to zero.115

116

It can also be shown for the approximated mode shape matrix, Φ̂, where modal coefficients117

are optimized only for the 8Cℎ mode (with a goal q̂8 = q8) using Equation (3), the following mode118

decomposition and mode scaling matrix, A, is obtained:119

- ?,< = Φ̂
−1- =



U1,1 U1,2 · · · 0 · · · U1,=

U2,1 U2,2 · · · 0 · · · U2,=

· · · · · · · · · · · · · · · · · ·
U8,1 U8,2 · · · 1 · · · U8,=

· · · · · · · · · · · · · · · · · ·
U<,1 U<,2 · · · 0 · · · U<,=





G1

G2

· · ·
G8

· · ·
G=



(7)120

Thus, the modal response of the 8Cℎ mode, G8, is removed from the modal responses of all121

other modes due to the zeros in the 8Cℎ column. This result means the full/partial decomposition122

per Equation (6) can be achieved by approximating each mode shape individually, thus applying123

mode-by-mode identification.124

125
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Estimating cross-correlation of frequency response spectra126

Mode contribution/coupling can be quantified by calculating its energy content in the frequency127

domain. Ideally, the 8Cℎ mode would have very small spectral energy in the other modes if q̂8 is128

perfectly identified as in Equation (7). Assuming the absolute acceleration is monitored, thus129

¥-01B = ¥- − A ¥-6, the decomposed modal absolute acceleration, ¥- , can be represented in the130

frequency domain by carrying out an FFT analysis:131

. (Φ̂) =
����) ( ¥- ?,<)�� = �� ¥- ?,<,��)

�� = ��Φ̂−1 ¥-01B,��)

�� (8)132

where ,��) is the Fourier transformation matrix defined, ,��) (=, :) = ,
(=−1) (:−1)
#

, where133

,# = 4
(−2c8)/# , (= = 1. . . #), # is the discrete length of the monitored signal - , and : = 1. . .  ,134

where  is the number of frequency bins in the analysis.135

136

As a result . (Φ̂) =
[
H1 H2 · · · H<

])
is < ×  , where each row of . (Φ̂) represents the137

frequency response spectrum (FRS) of each mode. In the case of perfect identification, Φ̂ = Φ, the138

FRS of each mode, H8, will represent a Single-Degree-of-Freedom (SDOF) linear time-invariant139

(LTI) mechanical system, which for the 8Cℎ mode response can be described:140

H8 (l) = � (l) · �8 (l) (9)141

where � (l) is the Fourier transform of an input and �8 (l) is the frequency response function for142

the 8Cℎ mode.143

144

For perfect identification, q̂8 = q8 per Equation (7), the 8Cℎ mode response will have zero145

contribution from other modes. This contribution can be quantified in the frequency domain by146

calculating the cross-correlation of the 8Cℎ mode’s frequency response spectrum with respect to the147

frequency response spectrum of the other modes and expressed as a function of the 8Cℎ mode shape,148

q̂8, yielding:149
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2>AA8B>,8 (q̂8) = H=,8B>8
(q̂8). = (q̂8)) (10)150

where the term = in the superscript refers to the normalized FRS, H=8 ·H=8 ) = 1, H=,8B>
8

is the normalized

FRS of the 8Cℎ mode isolated around the natural frequency, l8:

H8B>8 (Φ̂) = H8 (Φ̂)diag(#8) (11)

where #8 is a ×1 shape vector used to segregate a givenmode’s FRS to calculate its energywithout151

other modes contributing, where  , again, is the number of frequency bins used for FFT analysis152

as defined in Equation (8). The term 3806 refers to transformation of a column vector into a diago-153

nal matrix. Shape vector, # , can be formulated using anywindowing function, as shown in Figure 1.154

155

In this study, a peak segregation function, #8, is formulated using a Hanning windowing156

technique. Effective window length is taken as a factor of the estimated frequency bandwidth, Δl,157

determined from the fitted FRF, �̂8 (l), (from Equation (9)) at the response level of
���̂8�� /√2 as158

shown in Figure 1. Hence, the shape function can be written:159

#8 (l) = 0 l < l8 − ,2 · Δl

= 0.5 ·
(
1 − cos

(
2c
=

#

))
l8 − ,2 · Δl ≤ l ≤ l8 +

,

2
· Δl

= 0 l > l8 + ,2 · Δl

(12)160

where = = l − (l8 − ,
2 · l), # = , · Δl where Δl is the frequency bandwidth at the response161

level of
���̂8�� /√2, and, is the assumed effective peak isolation width.162

163

Thus, the mode segregation function, #8, is re-evaluated for each time window after FRF least-164

square fitting is performed. This approach enables identification of time-varying systems. Window165

segments may be continuous or partially overlapping depending on the resolution of time-varying166

parameter changes desired. However, it should be noted that windowing function, #8, is only used167

to estimate cross correlation between windowed FRS of 8Cℎ mode, H8B>8 , and the other mode FRS, . .168
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169

Optimizing mode shape coefficients170

The efficiency of the partial decoupling for mode i can thus be estimated by summing all the171

weighted correlation coefficients ( 9 = 1..<, 9 ≠ 8), excluding correlation of the mode with itself:172

�>AA8B>,8 (q̂8) =
<∑

9=1, 9≠8
F89 · 2>AA8B>,89

(q̂8) (13)173

where F8
9
is the weighting coefficient that enforces mode orthogonality or scales the correlation

coefficients based on Modal Assurance Criteria (MAC) (Allemang 2003):

F89 =
©­­«
1 +

√
"��8, 9 +

√
"��<8AA

8, 9

2
ª®®¬

2

"��8, 9 =

���q̂8) "̂q̂ 9 ���2(
q̂8
)
"̂q̂8

)
·
(
q̂ 9
)
"̂q̂ 9

)

"��<8AA8, 9 =

����
(
q̂8
<8AA

))
"̂q̂ 9

����
2

((
q̂8
<8AA

))
"̂q̂8

<8AA

)
·
(
q̂ 9
)
"̂q̂ 9

)

(14)

where "̂ , is the assumed/approximated mass matrix of the system, which acts as a scaling matrix.174

175

If no priori knowledge is known about the structure to estimate this mass, an identity matrix can176

be taken. "��8, 9 is the modal assurance criteria coefficient expressing the degree of consistency177

or orthogonality between the optimized 8Cℎ modal vector, q̂8, and the other estimated mode shape178

coefficients, q̂ 9=1...<. "��<8AA
8, 9

is the coefficient expressing the degree of similarity between179

optimized mirrored mode shape, q̂8
<8AA , and all other estimated mode shape coefficients, q̂ 9=1...<.180

The mirrored mode shape vector, q̂8
<8AA is the mode shape vector q̂8 mirrored around either of the181
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principal axes, x or y:182

q̂8
<8AA

= q̂8
<8AA,G

=


q̂8,G

−q̂8,H


or q̂8

<8AA
= q̂8

<8AA,H
=


−q̂8,G
q̂8,H


(15)183

where q̂8,G and q̂8,H are the 8Cℎ mode shape vector components in x and y direction, respectively.184

Thus, the correlation scaling factor provided in Equation (14) will enforce mode shape optimization185

orthogonalized around the principal axes in case of overlapping or very closely spaces modes.186

187

Finally, the solution to the optimal 8Cℎ mode shape coefficients can be written as the solution to188

the following optimization problem:189

(q̂8) = arg min
q̂8

(�>AA8B>,8 (q̂8)) (16)190

Once the optimal approximated mode shape coefficients q̂8 for mode i are found, the optimization191

can proceed for the next mode, as shown in Figure 2.192

193

When mode-by-mode identification is carried out, detection of new modal frequencies or poles194

becomes an easy task because the modes with high spectral energy are already removed from the195

FRS of unidentified modes due to the zeros in Equation (7). The optimization problem can be196

readily solved using the unconstrained non-linear multivariable solver available in MATLAB. A197

more detailed version of the mode identification routine is shown in the flow chart of Figure 3.198

199

Modified Gram-Schmidt orthogonalization200

As the mode shape coefficients go through the optimization process of Equation (16), it is201

important to ensure mode orthogonality with respect to the other modes, to allow the solver to202

converge optimal values. Mode orthogonality can be obtained using the modified Gram-Schmidt203

orthogonalization process, which generates a set of mode shape coefficients that is orthogonal to204
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all the subsequent mode shapes. The 9 Cℎ mode shape can be mass orthogonalized with respect to205

the 8Cℎ mode (Chopra 1995):206

q̂>ACℎ9 = q̂ 9 − q̂8 ·
q̂)
9
"̂q̂8

q̂)
8
"̂q̂8

(17)207

where "̂ is the assumed/approximated mass matrix. If no a-priori knowledge about the structure208

is known, an identity matrix can be used.209

210

Mode orthogonalization can be implemented as a part of the objective function, or as an addi-211

tional step, which would then require an additional convergence loop. Although the mode shape212

optimization is carried out for the 8Cℎ mode, meaning only the q̂>ACℎ
8

terms are being varied, in fact213

due to the orthogonalization process of Equation (17), all the terms of Φ̂>ACℎ are being varied in the214

optimization loop, as shown in flowchart of Figure 3. However, after each optimization iteration,215

only the 8Cℎ mode and the rest of unidentified modes will be updated, as defined in Step 8 of Figure216

3. This approach ensures previously identified modes are not being altered.217

218

Damping and frequency estimation219

A successful mode shape identification decomposes the response into separate modes. In the220

frequency domain, this outcome results in a set of single transfer functions, each representing221

SDOF system without any residuals from adjacent modes, per Equation (6). However, in real life222

situations, structures often have an infinitely large number of difficult to identify modes with very223

low energy. As a result, the modal transfer functions will often contain some contribution from224

residuals due to unidentified or poorly identified modes (Ewins 2000).225

226

Assuming the contribution from the othermodes is negligible, the frequency response spectrum,227

H8 (l), of 8Cℎ mode can be approximated, per Equation (9):228

Ĥ8 (l) = �̂8 (l) · � (l) =
&8

l̂2
8
− l2 + 28b̂ll̂8

· � (l) (18)229
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where �̂8 (l) is the fitted FRF function for mode i, l̂8 is the identified natural frequency and b̂8 is230

the identified modal damping ratio. Thus, the modal parameters (l̂8 and b̂8) can be identified using231

curve fitting methods (Jacobsen et al. 2008) assuming the modal parameters do not vary throughout232

the analyzed time window and assuming the input excitation, � (l), is known or is constant in case233

of broadband white noise excitation, � (l) = 2>=BC. In this study a least-square-fit is utilized to234

minimize the error between the approximated, Ĥ8, and calculated, H8, FRS across the range of modal235

coordinates.236

237

Mode identification process summary238

Initial modal parameter identification239

The initial mode shape identification, when no prior knowledge about the structure is known,240

can be described as a step process and is shown in the flowchart of Figure 3:241

242

Step 1. Analysis initialization: Choose the time segment, collect < × B data matrix, - =243 [
G1 G2 · · · G<

])
, where m is the number of measured DOFs and B = (C1 − C0) · 5B is the number244

of samples, C0 is the start and C1 the end of the time window, and 5B is the sampling frequency.245

Assign a random orthogonal mode shape matrix, Φ̂8=8C , where init refers to initial identification246

guess. Initialize mode number 8 = 1.247

248

Step 2. Selecting the strongest mode: Transform the data into the modal space using Equation249

(3), and obtain the FRS of each modal response, . (Φ̂8=8C) =
[
H1 H2 · · · H<

])
, by transforming250

it into the frequency domain using Equation (8). Analyse all FRS for unidentified modes, (from i251

to m modes), and find the mode, H4<0G , with the strongest energy, where 4<0G is the mode index252

number. Rearrange the approximated mode shape matrix, Φ̂8=8C (:, [8 4<0G]) = Φ̂8=8C (:, [4<0G 8])253

and redo the transformation for . (Φ̂8=8C) using Equation (8).254

255

Step 3. Mode/ peak identification: Identify the modal frequency with the strongest energy from256
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the 8Cℎ modes’s FRS, H01B8 (l), and create shape function, #<>34
8

, using Equation (12) for the 8Cℎ257

mode, which will segregate the FRS around the selected modal frequency. Calculate the isolated258

FRS for mode i, H8B>8 (Φ̂8=8C) using Equation (11). Use Equations (10) and (13) to calculate the initial259

correlation coefficient '8C4A=0 = �>AA
8B>,8

(
q̂8=8C
8

)
.260

261

Step 4. Setting up an optimization problem / objective function: Create optimization matrix,

Φ̂>ACℎ = Φ̂: . Define the optimizationmatrix 8Cℎ column as a function of q̂>ACℎ
8

=

[
q̂>ACℎ1,8 q̂>ACℎ2,8 · · · q̂>ACℎ

<,8

])
.

Mode shape coefficients for the other modes will be subjected to Gram-Schmidt orthogonaliza-

tion. Define the correlation coefficient, calculated per Equation (13), as a function of q̂>ACℎ
8

=[
q̂>ACℎ1,8 q̂>ACℎ2,8 · · · q̂>ACℎ

<,8

])
:

�>AA8B>,8
(
q̂>ACℎ8

)
= �>AA8B>,8

( [
q̂>ACℎ1,8 q̂>ACℎ2,8 · · · q̂>ACℎ

<,8

]) )

Step 5. Solving optimization problem: Solve linear unconstrained optimization problem using262

Equation (16) and obtain the optimized mode shape coefficients for the 8Cℎ mode, q̂>ACℎ
8

.263

264

Step 6. Performing orthogonalization: Orthogonalize all mode shape coefficients with respect to265

identified mode shape coefficients, q̂>ACℎ
8

, using the modified Gram-Schmidt method, of Equation266

(17). Mode orthogonalization can be implemented inside the objective function or after optimiza-267

tion, by creating an additional convergence loop.268

269

Step7. Checking the convergence: Calculate the total correlation coefficient, '8C4A = �>AA8B>,8
(
q̂8=8C
8

)
270

per Equation (13), and check the convergence:271

�>=E8C4A =
'8C4A−1 − '8C4A

'8C4A−1
(19)272

Step 8. Updating the mode shape matrix: Update the approximated mode shape matrix’s 8Cℎ273

mode shape and the rest of unidentified modes (uidm) Φ̂8=8C (:, [i uidm]) = Φ̂>ACℎ (:, [i uidm]). If274
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the convergence value is greater than �>=E8C4A > 14−6, return to Step 4.275

276

Step 9. Mode shape verification: Verify the newly identified mode by evaluating it’s FRS. In277

case of successful identification, the pole will be clearly visible, whereas the same peak will be278

removed from other mode’s FRS, H8 (Φ̂8=8C), or in other words the rest of the modes will contain no279

residuals from the newly identified mode, which acts as a noise. This result means if the whole280

identification loop process is re-iterated from Step 3, by setting 8 = 1, thus starting from mode 1,281

the identification will yield more accurate mode shapes.282

283

Step 10. Stepping back to look for new modes / poles: Step to the next mode, 8 = 8 + 1, and284

return to Step 2.285

286

METHOD VALIDATION AND ANALYSES287

Test structure288

The proposed method is validated analytically using a 3D FE model representing a simplified289

model of a bridge pier structure shown in Figure 4. It is a 7.3< long circular 1.2< diameter rein-290

forced concrete column rigidly connected to the footing. Concrete blocks are attached to the top of291

the cantilever column, which represents the mass of the bridge deck. The structure is simplified into292

a 4 degrees-of-freedom (DOF) system, with 2 DOFs in each direction, as shown in Figure 4. More293

details on the test structure are provided in (Schoettler et al. 2012). The estimated effective second294

moment of area around both axis is �G = �H = 0.1<4, the modulus of elasticity of the concrete is295

� = 22.9�%0.296

297

The estimated translational mass in x and y directions is "G = "H = 2.7 · 105:6, whereas298

the rotational masses around x and y directions are different resulting in "qG = 0.68 · 106:6 and299

"qH = 1.16 · 106:6. The following stiffness matrix and diagonal mass matrix are obtained for a300
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linear 4 DOF system:301

 =



0.088 0.322 0 0

0.322 1.565 0 0

0 0 0.088 −0.322

0 0 −0.322 1.565



· 109 " =



0.24 0 0 0

0 1.16 0 0

0 0 0.24 0

0 0 0 0.68



· 106 (20)302

Rayleigh proportional damping, � = U0" + U1 , is assumed with estimated proportionality303

constants U0 = 0.24 and U1 = 0.002, which provide b1 = 3% and b3 = 4% critical damping for304

the first and the third modes, respectively. Calculated modal frequencies and equivalent damping305

ratios for all modes are shown in Table 1306

Initial modal parameter identification307

The initial modal parameter identification is carried out assuming no a priori knowledge about308

the structure is known. The identification is implemented assuming the input ground excitation is309

not known (output only method). Thus, the objective function is formulated using Equation (13).310

311

Two different input ground motions are selected to simulate the response of a linear structure: a)312

2 minute long broadband 2.5%g RMS white noise excitation with constant frequency distribution;313

and b) Landers 1992 earthquake excitation with peak ground acceleration (PGA) of 0.17g . Time314

histories of the selected ground input motions are shown in Figure 5. The identification is based315

on the recorded time series of the whole response (120s for WN and 50s for EQ event). The mass316

matrix is assumed to be calculated with 30% error, thus "834=C = / ·" , where the assumed scaling317

matrix is / = 3806
( [

1 0.7 1.3 0.7
] )
. The effective peak isolation width used in Equation (12)318

is, = 5.319

RESULTS AND DISCUSSION320

Initial modal parameter identification321

Identification based on white noise excitation322

The initial modal parameter identification is carried out using 30 of the 120 seconds white323

noise excitation response data. It is assumed no input ground acceleration is recorded. Thus,324
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identification is based only on the measured acceleration response data. Identification is carried out325

for 3 different RMS added signal noise levels (0%, 5% and 20%) where the RMS noise is a random326

normal distribution of the square root of the average of the clean (no noise) simulated measurement327

with 99.7% of random values within the defined noise level. Identification results are shown in328

Tables 2 to 4.329

330

The identified modal frequencies presented in Table 2 demonstrate very good agreement for all331

the noise levels and the discrepancies, Δ 5 , are lower than 1%. The identified equivalent modal332

damping ratios, presented Table 3 demonstrate poorer consistency compared to identified modal333

frequencies. The maximum captured error is Δb1 = 16.3%, for the largest 20% RMS noise. Large334

discrepancies can be associated to the relatively short 30 seconds window chosen and low sensitiv-335

ity of the damping ratio with respect to least squares cost function.336

337

Table 4 shows the identified mode shape coefficients , q̂. The method yields accurate mode338

shape coefficient identification even for high signal noise levels. The maximum captured relative339

error is Δb = 4.52%, for the 20% added RMS noise case.340

341

Identification based on earthquake excitation342

Initial modal parameter identification based on the earthquake response is carried out using 50343

seconds of recorded absolute acceleration response data. It is assumed no input ground acceleration344

is recorded. Thus, identification is based only on the measured response data. As for the white345

noise excitation data, the identification is carried out for 3 different added signal noise levels. The346

identified modal frequencies shown in Table 5 demonstrate very good agreement for all the noise347

levels and the discrepancies, Δ 5 , are lower than 1%.348

349

The identified equivalent damping ratios, b̂, shown in Table 6, demonstrate smaller errors com-350

pared to identification results based on WN excitation. More accurate values can be explained by351

17 Poskus, January 11, 2020



the longer analysed response time history used for identification. The maximum recorded relative352

error is Δb = 7.0% corresponding to 20% added RMS noise.353

354

Table 7 shows the identified mode shape coefficients , q̂. The method yields accurate mode355

shape coefficient identification for all the noise levels. The maximum captured relative error is356

Δq = 6.85%, for the 5% signal noise levels.357

358

The results show the proposed method is capable of accurate identification of modal parame-359

ters. The initial parameter identification for a 4 DOF system is carried out using only the measured360

response assuming the system is time-invariant. The identified modal frequencies and mode shape361

coefficients demonstrate very good consistency with the simulated model for all the noise levels.362

In contrast, identification of the equivalent modal damping ratios tend to yield lower accuracy.363

Similar findings have been obtained in a number of studies (Luş et al. 2002; Moaveni et al.364

2010; Hong et al. 2009), where the identified damping ratios demonstrated larger deviations than365

the frequencies. The method yields equally accurate identification for both white noise and earth-366

quake induced ground motion, again, assuming the input is unknown and using output only method.367

368

Limitations369

The proposed method operates in the modal space and is based on mode decomposition. Thus370

a linear time-invariant system (LTI) is assumed throughout the analyzed time window. However,371

strong ground motions can trigger inelastic behaviour, meaning the principle of mode superposition372

will no longer be valid. However, most of structures exhibit non-linear behaviour only for a very373

short time period and the non-linear part comprises a relatively small part of the time history374

response. In such cases, the method can be applied to shorter time windows, meaning the time375

windows containing inelastic structural response will be approximated by average mode shape co-376

efficient values providing the best mode decoupling. Tracking their evolution over time can provide377

a good measure of non-linear monitoring.378
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379

The method also requires user judgement, especially in situations where the signal noise ap-380

pears in the form of poles in the frequency spectrum. These poles might falsely be misinterpreted381

as modal poles, thus yielding incorrect identification results. However, the results presented here382

show excellent robustness to white noise and accuracy for ambient or more common smaller seismic383

inputs, which are the dominant events seen.384

385

User input is also important to prevent error propagation as the identification is carried out se-386

quentially. Poor modal parameter identification might affect the identification of the other modes.387

The main pivot point of the method is solving the unconstrained optimization problem. Therefore,388

there is a risk of solver reaching a local solution instead of global solution. Moreover, optimization389

might become a difficult task in situations where a large number of DOFs are monitored. It should390

also be noted that the current method is limited to real-valued modes as it solely relies on modal391

decomposition.392

393

CONCLUSIONS394

This study presents a novel output only modal parameter estimation technique, capable of iden-395

tifying of modal parameters in brief time windows. The method is based on the principle of mode396

superposition and assumes that the system is linear time-invariant and the modes are real-valued.397

The method is an output-only modal parameter identification technique and is thus not limited to398

any type of input loading. This feature is important, since many other system identification methods399

rely on assumptions about the input loading, such as that it is broad band white noise. Thus, the400

approach presented can provide a better insight into structures subjected to strong ground motion401

events, assuming the structure does not exhibit strong non-linearities.402

403

The method is validated using a simulated data for a 4 DOF time-invariant system, which404

represents a simplified version of a bridge pier and provides excellent validation since the truth is405
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known. The results show the method is capable of identifying modal parameters within 7% relative406

error in the presence of 20% RMS noise added.407

408

Finally, the presented general mode identification procedure can be easily implemented into409

more complex MDOF systems as it does not need to rely on any of physical parameters.410

411

DATA AVAILABILITY STATEMENT412

Some or all data, models, or code generated or used during the study are available from the413

corresponding author by request. The following items can be provided: input earthquake excitation414

dataset, numerical simulation and system identification codes written in MATALB.415

ACKNOWLEDGEMENTS416

The scholarship support of the New Zealand Earthquake Commission (EQC) for the first author417

is greatly acknowledged.418

419

REFERENCES420

Allemang, R. J. (2003). “The Modal Assurance Criterion –Twenty Years of Use and Abuse.”421

SOUND AND VIBRATION, 1(August), 14–21.422

Amezquita-Sanchez, J. P. and Adeli, H. (2015). “Synchrosqueezed wavelet transform-fractality423

model for locating, detecting, and quantifying damage in smart highrise building structures.”424

Smart Materials and Structures, 24(6), 065034.425

Astroza, R., Ebrahimian, H., Conte, J., Restrepo, J., and Hutchinson, T. (2013). “Statistical analysis426

of the identifiedmodal properties of a 5-storyRC seismically damaged building specimen.” Safety,427

Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures - Proceedings of428

the 11th International Conference on Structural Safety and Reliability, ICOSSAR 2013, number ii,429

4593–4600.430

20 Poskus, January 11, 2020



Astroza, R., Ebrahimian, H., Conte, J. P., Restrepo, J. I., and Hutchinson, T. C. (2016a). “Influence431

of the construction process and nonstructural components on the modal properties of a five-story432

building.” Earthquake Engineering & Structural Dynamics, 45(7), 1063–1084.433

Astroza, R., Ebrahimian, H., Conte, J. P., Restrepo, J. I., and Hutchinson, T. C. (2016b). “System434

identification of a full-scale five-story reinforced concrete building tested on the NEES-UCSD435

shake table.” Structural Control and Health Monitoring, 23(3), 535–559.436

Astroza, R., Ebrahimian, H., Conte, J. P., Restrepo, J. I., and Hutchinson, T. C. (2016c). “System437

identification of a full-scale five-story reinforced concrete building tested on the NEES-UCSD438

shake table.” Structural Control and Health Monitoring, 23(3), 535–559.439

Bodeux, J. B. and Golinval, J. C. (2001). “Application of ARMAV models to the identification440

and damage detection of mechanical and civil engineering structures.” Smart Materials and441

Structures, 10(3), 479–489.442

Brincker, R., Ventura, C., and Andersen, P. (2001). “Damping estimation by frequency domain443

decomposition.” 19th International Modal Analysis Conference, 698–703.444

Brownjohn, J. M., Magalhaes, F., Caetano, E., and Cunha, A. (2010). “Ambient vibration re-445

testing and operational modal analysis of the Humber Bridge.” Engineering Structures, 32(8),446

2003–2018.447

Caicedo, J. M. (2011). “Practical guidelines for the natural excitation technique (NExT) and the448

eigensystem realization algorithm (ERA) for modal identification using ambient vibration.”449

Experimental Techniques, 35(August), 52–58.450

Carden, E. and Brownjohn, J. M. (2008). “ARMAmodelled time-series classification for structural451

health monitoring of civil infrastructure.” Mechanical Systems and Signal Processing, 22(2),452

295–314.453

CEN (2004). “Eurocode 8: Design of structures for earthquake resistance.” 120, 1–229.454

Chopra, A. K. (1995).Dynamics of structures : theory and applications to earthquake engineering.455

Prentice Hall.456

da Silva, S., Dias Júnior, M., Lopes Junior, V., and Brennan, M. J. (2008). “Structural damage457

21 Poskus, January 11, 2020



detection by fuzzy clustering.” Mechanical Systems and Signal Processing, 22(7), 1636–1649.458

Doebling, S., Farrar, C., Prime, M., and Shevitz, D. (1996). “Damage identification and health459

monitoring of structural and mechanical systems from changes in their vibration characteristics:460

A literature review.” The Shock and Vibration Digest, LA–13070-(August 2016), 127.461

Ewins, D. J. (2000). Modal testing : theory, practice, and application. Research Studies Press.462

Farrar, C. R., Doebling, S. W., Cornwell, P. J., and Straser, E. G. (1996). “Variability of modal463

parameters measured on the Alamosa Canyon Bridge.” Report no., Los Alamos National Lab.,464

NM (United States).465

Fraraccio, G., Brügger, A., and Betti, R. (2008). “Identification and Damage Detection in Structures466

Subjected to Base Excitation.” Experimental Mechanics, 48(4), 521–528.467

Hong, A. L., Betti, R., and Lin, C.-C. (2009). “Identification of dynamic models of a building468

structure using multiple earthquake records.” Structural Control and Health Monitoring, 16(2),469

178–199.470

Jacobsen, N.-J., Andersen, P., and Brincker, R. (2008). “Applications of frequency domain curve-471

fitting in the EFDD technique.” Proceedings IMAC XXVI Conference.472

Juang, J.-N. and Pappa, R. S. (1985). “Eigensystem realization algorithm for modal parameter473

identification and model reduction.” Journal of Guidance, Control, and Dynamics, 8(5), 620 –474

627.475

Juang, J.-N., Phan, M., Horta, L. G., and Longman, R. W. (1993). “Identification of ob-476

server/KalmanfilterMarkov parameters: theory and experiments.” Journal ofGuidance, Control,477

and Dynamics, 16(2), 320–329.478

Luş, H., Betti, R., and Longman, R. W. (2002). “Obtaining refined first-order predictive models of479

linear structural systems.” Earthquake Engineering and Structural Dynamics, 31(7), 1413–1440.480

Luş, H., Betti, R., Yu, J., and De Angelis, M. (2004). “Investigation of a System Identification481

Methodology in the Context of the ASCE Benchmark Problem.” Journal of Engineering Me-482

chanics, 130(January), 71–84.483

Moaveni, B., He, X., Conte, J., and de Callafon, R. (2008). “Damage identification of a com-484

22 Poskus, January 11, 2020



posite beam using finite element model updating.” Computer-Aided Civil and Infrastructure485

Engineering, 23(5), 339 – 359.486

Moaveni, B., He, X., Conte, J. P., and Restrepo, J. I. (2010). “Damage identification study of a487

seven-story full-scale building slice tested on the UCSD-NEES shake table.” Structural Safety,488

32(5), 347–356.489

Moaveni, B., Stavridis, A., Lombaert, G., and Conte, J. P. (2013). “Finite-Element Model Updating490

for Assessment of Progressive Damage in a 3-Story Infilled RC Frame.” Journal of Structural491

Engineering, 139(10).492

Moncayo, H., Marulanda, J., and Thomson, P. (2010). “Identification and Monitoring of Modal493

Parameters in Aircraft Structures Using the Natural Excitation Technique (NExT) Combined494

with the Eigensystem Realization Algorithm (ERA).” Journal of Aerospace Engineering, 23(2),495

99–104.496

Nagarajaiah, S. and Basu, B. (2009). “Output only modal identification and structural damage497

detection using time frequency&wavelet techniques.” Earthquake Engineering and Engineering498

Vibration, 8(4), 583–605.499

Pappa, R. S., James, G. H., and Zimmerman, D. C. (1998). “Autonomous Modal Identification of500

the Space Shuttle Tail Rudder.” Journal of Spacecraft and Rockets, 35(2), 163–169.501

Ren, W.-X. and De Roeck, G. (2002). “Structural damage identification using modal data. II: Test502

verification.” Journal of Structural Engineering, 128(1), 96–104.503

Saaed, T. E. and Nikolakopoulos, G. (2016). “Identification of building damage using ARMAX504

model: a parametric study.” Diagnostyka, 17.505

Schoettler, M. J., Restrepo, J., Guerrini, G., Duck, D. E., and Carrea, F. (2012). “A Full-Scale,506

Single-ColumnBridge Bent Tested by Shake-Table Excitation.”Report No. August, PEERReport507

No. 2015/02, Department of Civil Engineering,University of Nevada.508

Singhal, A. andKiremidjian, A. S. (1996). “Method for probabilistic evaluation of seismic structural509

damage.” Journal of Structural Engineering, 122(12), 1459–1467.510

Sohn, H. and Farrar, C. R. (2001). “Damage diagnosis using time series analysis of vibration511

23 Poskus, January 11, 2020



signals.” Engineering Analysis, 10(3), 446–451.512

Vicario, F., Phan, M. Q., Betti, R., and Longman, R. W. (2015). “Output-only observer/Kalman513

filter identification (O3KID).” Structural Control and Health Monitoring, 22(5), 847–872.514

Zhou, C., Chase, J. G., Rodgers, G. W., Tomlinson, H., and Xu, C. (2015). “Physical param-515

eter identification of structural systems with hysteretic pinching.” Computer-Aided Civil and516

Infrastructure Engineering, 30(4), 247–262.517

Zhou, C., Chase, J. G., Rodgers, G. W., and Xu, C. (2017). “Comparing model-based adaptive518

LMS filters and a model-free hysteresis loop analysis method for structural health monitoring.”519

Mechanical Systems and Signal Processing, 84, 384–398.520

24 Poskus, January 11, 2020



List of Tables521

1 Calculated modal parameters of a 4 DOF system . . . . . . . . . . . . . . . . . . . 26522

2 Identified modal frequencies for different signal noise levels . . . . . . . . . . . . 27523

3 Identified equivalent modal damping for different signal noise levels . . . . . . . . 28524

4 Identified mode shape coefficients for different levels of signal noise . . . . . . . . 29525

5 Identified modal frequencies for different signal noise levels based on earthquake526

response data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30527

6 Equivalent modal damping for different signal noise levels identified from response528

to earthquake excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31529

7 Identified mode shape coefficients for different levels of signal noise based on the530

response to earthquake excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32531

25 Poskus, January 11, 2020



TABLE 1. Calculated modal parameters of a 4 DOF system

Mode 1 2 3 4

Modal frequency, f (Hz) 1.39 1.45 6.46 8.1
Modal damping, b (%) 3.00 2.94 4.00 4.80
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TABLE 2. Identified modal frequencies for different signal noise levels

Mode 5<>34;, �I 5̂83,0, �I Δ 5 ,% 5̂83,5%, �I Δ 5 ,% 5̂83,20%, �I Δ 5 ,%

Mode 1 1.392 1.396 0.29 1.396 0.27 1.394 0.14
Mode 2 1.449 1.459 0.68 1.459 0.68 1.459 0.67
Mode 3 6.457 6.440 -0.27 6.439 -0.29 6.448 -0.14
Mode 4 8.103 8.074 -0.36 8.074 -0.37 8.061 -0.52
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TABLE 3. Identified equivalent modal damping for different signal noise levels

Mode b<>34; b̂83,0 Δb,% b̂83,5% Δb,% b̂83,20% Δb,%

Mode 1 0.030 0.035 15.7 0.034 14.3 0.035 16.33
Mode 2 0.029 0.026 -10.2 0.026 -10.2 0.026 -10.88
Mode 3 0.040 0.042 6.0 0.042 5.7 0.041 3.25
Mode 4 0.048 0.049 1.7 0.049 1.5 0.049 2.08
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TABLE 4. Identified mode shape coefficients for different levels of signal noise

Mode q<>34; q̂83,0 Δq,% q̂83,5% Δq,% q̂83,20% Δq,%

Mode 1

q̂1,1 1.00 1.00 0.00 1.00 0.00 1.00 0.00
q̂2,1 -0.22 -0.22 2.62 -0.23 3.31 -0.22 2.02
q̂3,1 0.00 0.00 -0.33 0.00 -0.35 0.00 -0.34
q̂4,1 0.00 0.01 1.03 0.01 1.06 0.01 1.04

Mode 2

q̂1,2 0.00 0.01 0.60 0.01 0.61 0.01 0.58
q̂2,2 0.00 0.01 0.80 0.01 0.80 0.01 0.77
q̂3,2 1.00 1.00 0.00 1.00 0.00 1.00 0.00
q̂4,2 0.21 0.21 -0.14 0.21 -0.09 0.21 0.00

Mode 3

q̂1,3 1.00 1.00 0.00 1.00 0.00 1.00 0.00
q̂2,3 0.93 0.93 -0.44 0.93 -0.57 0.92 -1.08
q̂3,3 0.00 0.02 2.11 0.02 1.99 0.02 2.42
q̂4,3 0.00 -0.04 -4.44 -0.04 -4.45 -0.05 -4.52

Mode 4

q̂1,4 0.00 0.00 -0.09 0.00 -0.13 0.00 0.02
q̂2,4 0.00 0.00 0.03 0.00 0.04 0.00 0.00
q̂3,4 -0.61 -0.62 0.23 -0.62 0.41 -0.61 -0.65
q̂4,4 1.00 1.00 0.00 1.00 0.00 1.00 0.00
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TABLE 5. Identified modal frequencies for different signal noise levels based on earthquake
response data

Mode 5<>34;, �I 5̂83,0, �I Δ 5 ,% 5̂83,5%, �I Δ 5 ,% 5̂83,20%, �I Δ 5 ,%

Mode 1 1.392 1.397 0.32 1.396 0.31 1.397 0.34
Mode 2 1.449 1.451 0.11 1.451 0.11 1.451 0.12
Mode 3 6.457 6.433 -0.37 6.434 -0.37 6.435 -0.35
Mode 4 8.103 8.032 -0.88 8.033 -0.87 8.033 -0.87
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TABLE 6. Equivalent modal damping for different signal noise levels identified from response to
earthquake excitation

Mode b<>34; b̂83,0 Δb,% b̂83,5% Δb,% b̂83,20% Δb,%

Mode 1 0.030 0.028 -6.7 0.028 -7.0 0.028 -7.00
Mode 2 0.029 0.028 -3.4 0.028 -3.7 0.028 -3.40
Mode 3 0.040 0.039 -1.8 0.039 -1.8 0.039 -1.75
Mode 4 0.048 0.046 -4.6 0.046 -5.0 0.046 -4.79
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TABLE 7. Identified mode shape coefficients for different levels of signal noise based on the
response to earthquake excitation

Mode q<>34; q̂83,0 Δq,% q̂83,5% Δq,% q̂83,20% Δq,%

Mode 1

q̂1,1 1.00 1.00 0.00 1.00 0.00 1.00 0.00
q̂2,1 -0.22 -0.21 -2.07 -0.21 -1.88 -0.21 -2.25
q̂3,1 0.00 0.00 -0.04 0.00 -0.03 0.00 -0.03
q̂4,1 0.00 0.00 0.13 0.00 0.11 0.00 0.09

Mode 2

q̂1,2 0.00 0.00 0.05 0.00 0.08 0.00 0.07
q̂2,2 0.00 0.00 0.07 0.00 0.11 0.00 0.09
q̂3,2 1.00 1.00 0.00 1.00 0.00 1.00 0.00
q̂4,2 0.21 0.20 -4.13 0.20 -4.17 0.20 -4.13

Mode 3

q̂1,3 1.00 1.00 0.00 1.00 0.00 1.00 0.00
q̂2,3 0.93 0.93 -0.10 0.93 0.04 0.94 0.58
q̂3,3 0.00 0.05 4.50 0.05 4.53 0.04 3.89
q̂4,3 0.00 -0.07 -6.79 -0.07 -6.85 -0.07 -6.83

Mode 4

q̂1,4 0.00 0.00 -0.15 0.00 -0.17 0.00 -0.01
q̂2,4 0.00 0.00 0.05 0.00 0.06 0.00 0.00
q̂3,4 -0.61 -0.62 0.39 -0.61 -0.21 -0.61 0.10
q̂4,4 1.00 1.00 0.00 1.00 0.00 1.00 0.00
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Fig. 1. (a) FRF fitting, frequency bandwidth and shape function estimation (b) Shape function, #8,
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Step 1: Collect acceleration data X =
[
x1 x2 · · · xm

]T , create a random
orthogonal mode shape matrix, Φ̂init , transform the data into the frequency do-
main, Y , using Equation (3). Initialize mode number i = 1.

Step 2: Pick the mode, ye,max , with the strongest energy, where emax is
the mode index number. Rearrange the approximated mode shape matrix,
Φ̂init (:, [i emax]) = Φ̂init (:, [emax i])

Step 3: Identify the peak from the ith mode FRS, yi , and create shape func-
tion, Nmode

i , using Equation (12) for the ith mode. Calculate yisoi (Φ̂init ) ,
using Equation (10). Calculate the initial correlation coefficient Riter=0 =

Corr iso,i
(
φ̂initi

)
per Equation (13).

Step 4: Create optimization matrix, Φ̂orth = ˆΦinit . Define the optimization
matrix ith column as a function of φ̂orthj,i : φ̂orthi =

[
φ̂orth1,i φ̂orth2,i · · · φ̂orthm,i

]T .
Define the correlation coefficient as a function of φ̂orthj,i

Corr iso,i
(
φ̂orthi

)
= Corr iso,i

( [
φ̂orth1,i φ̂orth2,i · · · φ̂orthm,i

]T ) .
Step 5: Solve linear unconstrained optimization problem using Equation (16)
and obtain the optimized mode shape coefficients for the ith mode, φ̂orthi

Step 6: Orthogonalize the remaining mode shape coefficients ( j = 1...m, j , i)
with respect to identified mode shape coefficients, φ̂orthi , using modified Gram-
Schmidt method, per Equation (17).

Step 7: Calculate the total correlation coefficient, Riter = Corr iso,i
(
φ̂initi

)
as per

Equation (13), and check the convergence, Conviter , using Equation (19).

Step 8: Update the approximated mode shape matrix’s ith mode and the rest of
unidentified modes (uidm), Φ̂init (:, [i uidm]) = Φ̂orth(:, [i uidm]).

Riter < 1e−6

Is the ith mode the
newly identified?

Step 9: Verify the
newly identified mode
and re-evaluate all the
identified modes .

Step 10: Step to next mode.

iter = 1
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Fig. 3. Flow chart for initial mode-by-mode optimization for any given time window
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Fig. 4. A simplified 4 DOF model of a bridge pier test structure
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Fig. 5. Input ground motion time histories and frequency spectra for (a) white noise 2.5%g RMS
and (b) selected earthquake ground motions
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Step 1: Collect acceleration data X =
[
x1 x2 · · · xm

]T , create a random
orthogonal mode shape matrix, Φ̂init , transform the data into the frequency do-
main, Y , using Equation (3). Initialize mode number i = 1.

Step 2: Pick the mode, ye,max , with the strongest energy, where emax is
the mode index number. Rearrange the approximated mode shape matrix,
Φ̂init (:, [i emax]) = Φ̂

init (:, [emax i])

Step 3: Identify the peak from the ith mode FRS, yi , and create shape func-
tion, Nmode

i , using Equation (12) for the ith mode. Calculate yisoi (Φ̂
init ) ,

using Equation (10). Calculate the initial correlation coefficient Riter=0 =

Corr iso,i
(
φ̂initi

)
per Equation (13).

Step 4: Create optimization matrix, Φ̂orth = ˆΦinit . Define the optimization
matrix ith column as a function of φ̂orthj,i : φ̂orthi =

[
φ̂orth1,i φ̂orth2,i · · · φ̂orthm,i

]T .
Define the correlation coefficient as a function of φ̂orthj,i

Corr iso,i
(
φ̂orthi

)
= Corr iso,i

( [
φ̂orth1,i φ̂orth2,i · · · φ̂orthm,i

]T ) .
Step 5: Solve linear unconstrained optimization problem using Equation (16)
and obtain the optimized mode shape coefficients for the ith mode, φ̂orthi

Step 6: Orthogonalize the remaining mode shape coefficients ( j = 1...m, j , i)
with respect to identified mode shape coefficients, φ̂orthi , using modified Gram-
Schmidt method, per Equation (17).

Step 7: Calculate the total correlation coefficient, Riter = Corr iso,i
(
φ̂initi

)
as per

Equation (13), and check the convergence, Conviter , using Equation (19).

Step 8: Update the approximated mode shape matrix’s ith mode and the rest of
unidentified modes (uidm), Φ̂init (:, [i uidm]) = Φ̂orth(:, [i uidm]).

Riter < 1e−6

Is the ith mode the
newly identified?

Step 9: Verify the
newly identified mode
and re-evaluate all the
identified modes .

Step 10: Step to next mode.
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