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ABSTRACT 

This project may be described in three parts. The first part mainly involves the evaluation 

of existing soil models under undrained conditions. The second part of the project is to evaluate 

the currently used methods for representation of the pile installation process. The third part of the 

work involves the study of the axially loaded pile problem, and particular interest is paid to the 

investigation of pile load displacement, shear transfer and load diffusion along the pile. Three 

different soil model have been used to represent the soil for this problem. Theoretical solutions 

have been compared with field test results. 

The modified Cam-clay model and the more advanced bounding surface model 

developed from classical plasticity theories, and the rate-type model founded upon hypoelasticity 

theory have been studied. Model predictions of these three models were compared and evaluated 

base on results of triaxial tests and direct simple shear tests under undrained conditions. Both the 

modified Cam-clay model and the rate-type model are closely related by the similarity of their yield 

surfaces, but the rate type model requires only three soil parameters and provided reasonable 

agreement with test results on normally to heavily overconsolidated clay. The modified Cam-clay 
'. I 

model is relatively restricted to the lightly overconsolidated clay. The sophisticated bounding 

surface model provides remarkable model prediction power to fit the test results, but numerous 

model parameters are required. 

The cylindrical cavity expansion approach and the simple pile method, both of which 

may be used to simulate the pile installation process have been investigated. The rate-type model 

has been choosen to represent the soil. The simple pile method attempts to include the tip effect 

due to pile advancement which has been ignored in the cylindrical cavity expansion approach. The 

simple pile method approximates the strain field around the pile by an ideal fluid, but it is found 

that this method results in unrealistic pile-soil interaction. The predicted excess pore pressures 

from both methods were compared with field test results. This indicated that the simple pile 

method provided better agreement with test results than did the cylindrical cavity expansion 

approach. 

An idealized one-dimensional pile model has been proposed. The modified Cam-clay 

model, bounding surface model and the rate-type model have all been used to simulated the soil 

response due to axial pile loading. Theoretical solutions were compared with three well 

documented pile test results. The pile tests were carried out in lightly to heavily overconsolidated 

clay deposits. The pile model predicted good agreement with test results, especially in regard to the 

pile load displacement response, shear transfer and load diffusion along the pile at low stress level. 
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CHAPTER ONE 

INTRODUCTION 

Within the last two decades, development of large digital computers and a wide range of 

numerical techniques such as the finite element, finite difference, and boundary element methods, 

together with constitutive laws for soils have rendered possible solution of many complex problems 

in the various fields of geomechanics. 

It may be possible to employ realistic soil models with the use of the finite element 

method to approach close approximation to general geotechnical engineering problems. However, 

most of the recently developed soil models require numerous model parameters which need extensive 

test results to be identified, and are verified only under quite limited stress or strain paths such as 

triaxial or plane strain conditions etc. It may be notable from existing engineering literature that no 

constitutive law developed at this time would be capable of predicting all stress paths with an 

equal degree of agreement with soil test results. In addition, use of the finite element method for 

most problems requires large scale efforts in data preparation and complicated solution techniques, 

especially when dealing with non-linear material such as hardening or softening soils. Therefore, 

the primary aim of this work is to investigate the effectiveness and efficiency of currently 

available soil models and to make use of three selected isotropic hardening soil models to predict or 

reproduce actual field measurement, particularly the pile penetration problem and the axially 

loaded pile problem. Realistic loading configurations are employed without the need of 

sophisticated or time consuming numerical methods. 

The theory of plasticity is not a recently developed theory. The study of metal plasticity 

was first originated by Tresca, Saint Venant and Levy in the 1870's but the first historical plasticity 

theory may be attributed to Coulomb(1773). He proposed a yield criterion for soils. Prior to about 

1940, the theory was mostly applied to metal and very few studies had been made in the area of soil 

mechanics. The rheological behaviour of soils differs from that of metals in that, in general, soil is 

a pressure sensitive material but metal is a pressure insensitive material. By 1950, the problems of 

soil mechanics were still analyzed on the basis of elasticity theory. Drucker et al. (1957) proposed 

the first soil model using plasticity theory. Roscoe et al.(1958) of Cambridge University interpreted 

a series of experimental test results on both drained and undrained (remoulded) Weald clay. The 

well known critical state theory and the Cam-clay model, which considered soil as an isotropic 

hardening material, were then proposed. Furthermore, the fast growth of computer techniques in 

the past two decades enabled the use of numerical methods to study the behaviour of soils. A wide 

variety of soil models based upon the theory of plasticity have since been proposed. A review of the 

basic concept and formulations of many plasticity models can be found in Desai and Sirivardane 

(1984). 

In 1955, Truesdell introduced the hypoelasticity theory which offers an alternative 

material description to the plasticity theories. The general hypoelastic material model describes 
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the material behaviour in terms of a mathematical series expansion and requires 12 response 

functions. Green (1956) proposed a special hypoelastic constitutive equation which corresponds to an 

isotropic hardening model, following associative flow rule, of classical plasticity theory during 

loading conditions. Davis and Mullenger (1978,1979) followed the basic assumptions given by 

Romano (1974). They proposed two soil models which incorporate the concept of critical state 

theory. Their models are classified by Truesdell and Noll (1965) as the rate-type fluid models, or 

simply rate-type models. Independently, Gudehus and Kolymbas (1979) also proposed a rate-type 

model for sand. 

Davis and Mullenger(1979) employed some basic ideas from the critical state theory and 

selected a certain choice of material parameters, the yield surface implied in the rate-type model 

reduces to the elliptical yield surface proposed in the well known modified Cam-clay model of 

Roscoe and Burland (1968). Inside the yield surface, it is assumed that loading and unloading 

processes may involve inelastic deformations and a linear elastic domain may not exist. This rate­

type model is applicable to both normally consolidated and overconsolidated clay and requires few 

soil parameters (i.e., three for undrained conditions). Another advantage of this model is that, in 

the sense of plasticity theory, soil yielding and plastic flow are incorporated within the model 

without an additional flow rule or hardening rule and thus it greatly simplified the model 

formulation and application. However, the model violated the condition of continuity in such a way 

that it is limited to either monotonic loading conditions or undrained cyclic loading conditions. 

Verification of this model requires comparisons between model predictions and soil test results, and 

this will be studied in chapter two. 

The modified Cam-clay model of Roscoe and Burland (1968) and the cap model of 

DiMaggio and Sandler (1971) are based on the concept of continuous yielding of soils. Both models 

assume the soils is an isotropic material, and differ only in the form of the yield condition, which is 

important in the quantitative description of a stress-strain response. It is noted that the so-called 

isotropic model considers that the principal stress rotations are neglected and also both the yield 

and potential surfaces are expressed in terms of stress invariants (i.e., symmetric functions of the 

principal stresses). In the modified Cam-clay model of Roscoe, the yield surface has the shape of an 

ellipse on the deviatoric stress versus pressure ( p - q) plane but no elastic shear strain is considered. 

In 1978, a more general formulation including elastic shear strain has been introduced in this model 

by Banerjee and Stipho. In their model, plastic flow may occur when the stress state lies on the 

yield surface. For any stress state inside the yield surface, the material response is elastic. This 

model is efficiency in the sense that it requires only four soil parameters which can normally be 

obtained from standard soil tests. The modified Cam-clay model of Banerjee and Stipho (1978) has 

been employed to represent the behaviour of one dimensional normally to heavily over­

consolidated soils for pile driving problems, by Randolph et al. (1978a,b) and by Wroth et al. 

(1978). Unfortunately, this model possesses certain disadvantages, such as it may predict excessive 

elastic response and cannot predict hysteretic behaviour beneath the yield surface. 
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The modified Cam-clay model has been extended, with some degree of modification, to 

describe cyclic soil response ( Eekelen and Potts ,1978, and Carter et al., 1982). However, soils are 

always anisotropic to some degree because of their geological history. Jn an attempt to take account 

of an anisotropy in plastic constitutive equations of soils, Prevost (1977,1978) adopted the combined 

isotropic and kinematic hardening theory proposed by Mroz(1967) and by Iwan(1967) for metals. 

Prevost replaced the single yield surface by several nested yield surfaces. The locations and sizes of 

the yield surfaces reflect the past stress-strain history of the soil element. Similar to most of the 

anisotropic hardening soil models, Prevost's model assumes an associative flow rule. In the class of 

anisotropic hardening soil models, Provost's model can be considered as relatively simple. However, 

the model predicts only undrained soil behaviour and the effective stress state cannot be predicted. 

Furthermore, determination of the excess pore pressure during shearing requires an additional pore 

pressure model. 

Beginning in 1975, Dafalias and Popov (1975,1976) and Krieg (1975) introduced the concept 

of "bounding surface" which is conceptually similar to that of Mroz (1967). This concept considered a 

yield surface which lies within a bounding surface. Both surfaces were allowed to translate in stress 

space subject to the isotropic/kinematic hardening rule. Mroz et al. (1978, 1979, 1981) adopted this 

concept and the critical state theory, and developed anisotropic hardening soil models with various 

degrees of sophistication. The yield surface of these models may degenerate into one point, (i.e., the 

current stress state), and the plastic flow direction is defined normal to the bounding surface at the 

intersection of the direction of the stress rate. However, this formulation may result in a plastic 

flow direction which is depends on the direction of the stress rate and the flow rule is non-linear in 

rate of stress. 

On the other hand, Dafalias(1979) adopted another approach in applying bounding 

surface plasticity to clays. He assumed the yield surface has degenerated into one point and it 

coincided with the current stress state. This allows the soil model reduce to an isotropic hardening 

model. Dafalias derived his model from the modified Cam-clay model but he transformed the 

elliptical yield surface into the bounding surface. He also introduced a mapping rule which relates 

the current stress state to an image stress state on the bounding surface which in turn defines the 

plastic flow direction at the current state. As a result of these modifications, overconsolidated clays 

were able to experience plastic deformation; this was not predicted by the modified Cam-clay 

model. In 1980, Dafalias revised the shape of the bounding surface in order to improve the 

description of soil response for both normally consolidated and overconsolidated clays. We have 

found that this model performs reasonably well without the need of sophisticated solution 

techniques, but this model requires 11 model parameters. 

In chapter two, we will investigate the modelling features of the modified Cam-clay 

model, the rate-type model of Davis and Mullenger (1979), and the bounding surface model of 

Dafalias and Herrmann (1980). The reason that we selected these three soil models is that in the 

case of static loading conditions, especially the pile problem that we consider later in this work, it 

may be convenient to employ isotropic hardening soil models to represent the soils. Furthermore, 
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both the modified Cam-clay model and the rate-type model are developed based on similar 

assumptions but different theories. Therefore it may be interesting to compare the resulting response 

obtained from both models. The bounding surface model adopted the tirl.vanced idea of the bounding 

surface plasticity theory without over-complicating the mathematical formulation. The modelling 

features of these models will be evaluated on the basis of soil test results. 

In chapter three, the cylindrical cavity expansion approach and the recently developed 

simple pile method for investigating pile driving or cone penetration effects in soils will be studied. 

Because of the simplicity of the rate-type model of Davis and Mullenger (1979), this model will be 

used to represents the soil. It may be expected that pile driving may cause significant disturbance in 

soils which will eventually affect the subsequent pile load carrying capacity. However theoretical 

development for predicting pile capacity is made difficult by a variety of factors (i.e., soil types, 

details of pile installation such as pre-drilled pilot hole, pile wrapping, drag down of soil from 

upper layer to lower layer, stress changes in soils due to pile driving and subsequent 

reconsolidation). Among these factors affecting the pile capacity, the stress changes in soils due to 

pile installation may be important for theoretical development of pile capacity predictions. 

For long piles in clay where no significant stronger strata lies beneath the pile tip, the 

pile load carrying capacity mainly come from the shaft. Empirical pile design rules, such as a,~ 

and A methods which will be discussed in chapter three, utilize coefficients which provide an 

estimate of the limiting skin friction for pile design. These coefficients are evaluated based on 

limited full scale pile load test results. All the factors affecting the limiting skin friction are 

lumped into these coefficients. In 1971, the petroleum industry initialized the idea of using the 

effective stress method for prediction of pile shaft capacity for driven piles in clays. Thereafter, 

extensive work involving both theoretical and experimental studies has been made in this area and 

several pile capacity models to compute the limiting skin friction have been proposed (Focht and 

Kraft 1981, Kraft 1982, Kirby et al. 1983). The development of these pile capacity models are based 

on the concept of the critical state soil mechanics. Pile driving is simulated by plane strain 

cylindrical cavity expansion approach. Reconsolidation processes are considered by assuming pore 

water flows radially outward from the pile. 

The use of the cylindrical cavity expansion approach to simulate pile driving effects in 

soils is based on an idealized assumption that at depth pile whipping and surface effects due to pile 

driving may vanish. Furthermore, the pile tip effect is ignored. These assumptions greatly simplify 

the method and may allow more realistic soil models to be considered. Alternatively, the recently 

developed simple pile method (Baligh 1984) initially appeared to be an attractive approach to 

investigate the pile driving problem, because the pile tip effects due to pile advancement may be 

included. Baligh (1984, 1985, 1986a,b) assumed that, in the case of deep penetration, the strain field 

around the simple pile may be estimated by an ideal fluid flow field. The stress field around a 

simple pile is evaluated from a soil model and the pre-determined strain field. This method has 

also been extended to estimate the strain field around the pile or cone pcnctrometer with various tip 

conditions, Levadoux and Baligh(1980), Tumay et al. (1985). Both the cylindrical cavity expansion 
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approach and the simple pile method are strain control problems and require no complicated 

solution methods. However, the cylindrical cavity expansion approach may over simplify the 

deformation pattern experienced by the soil while the simple pile method ignores the resistance to 

distortion of soil in the displacement calculation. Solutions for both methods will be studied and 

compared with pile test results in chapter three, and we will show that the simple pile method 

predicts unrealistic pile-soil interaction around the pile shaft. 

In chapters four and five, we will employ the modified Cam-clay model, the bounding 

surface model and the rate-type model in applying to the prediction of the response of a single 

axially loaded friction pile. A one-dimensional idealized pile model will be proposed in chapter 

four. The theoretical solutions will be compared with actual field measurements of three full size 

pile tests in lightly to heavily overconsolidated clay deposits. In this work, particular interest will 

be paid to the axial pile load versus displacement response and the load diffusion along the pile 

length. 

Prediction of the response of axially loaded piles involves an analysis of a pile-soil 

interaction problem. Currently used methods in this area may be broadly categorized into three 

classes: 

(1) Load-transfer method: This method was first introduce by Seed and Reese (1957) and 

extended by Coyle and Reese (1966). The relationship between the shear stress at the 

pile shaft and pile displacement, the so-called t-z curve, may be established from 

either measurement of instrumented pile test results, [ Coyle and Sulaiman 1967, Reese 

et al. 1969, O'Neill et al. 1982a,b], or theoretical predictions, [ Kraft et al. 1981, 

Heydinger and O'Neill, 1986]. 

(2) Elastic theory: The widely used method is mainly based on Mindlin's solution, a point 

load acting in an elastic-half space. Extensive work has been done in this area with the 

aid of Mindlin's solution may be attributed to Poulos and his co-worker, [ Poulos and 

Davis 1968, Mattes and Poulos 1969, Poulos 1979]. 

(3) Finite element method: This method is mainly used for research purposes. Earlier work 

employing this method considered that soil is represented as a linearly elastic 

material,[ Cooke and Price 1973, Randolph and Wroth 1977]. Recently, plasticity 

models have been widely used to represent the soils, [ Ottaviani and Marchetti 1979, 

Potts and Martins 1982, Nystrom 1984]. 

Among these three methods, the load-transfer method may be the simplest one if the t-z 

curve is predetermined. The one-dimensional pile model that we will use belongs to this class. The 

t-z curves in our work will be determined from the soil models. However the major disadvantages in 

this method are that displacements in upper soil layers due to movements in lower layers are not 

taken into account and the three dimensional features of pile-soil behaviour are not incorporated. 

Nevertheless, the error induced from this one-dimensional idealization may be less than that 
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resulting from difficulty in accurate determination of soil properties, such as the shear modulus, as 

is commonly encountered in geotechnical problems. 

Mullenger et al. (1984) approached the axially loaded pile problem assuming infinite pile 

length and a homogeneous stress field with no shear stress initially in the soil. Initial stress 

conditions corresponding to normally to heavily over-consolidated "undisturbed" clay as well as the 

stress state after cylindrical cavity expansion have been considered in their work. They 

demonstrated that the induced shear traction at the pile shaft due to pile displacement is 

relatively independent of the initial stress conditions. In this work, we assume that the pile is 

embedded in "undisturbed" layered clays. Results obtained from this simplified approach will be 

compared with actual pile test results. Although we assumed that the soil is unaffected by pile 

installation and the limiting skin friction problem has not been incorporated in our pile model, we 

find that the results of this idealized pile model compare favourably with the test data, 

particularly with regard to load diffusion behaviour and the low stress, load-displacement 

response. 
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CHAPTER TWO 

EFFECTIVE STRESS SOIL MODELS 

The concepts of critical state theory were developed (Schofield and Wroth 1968) based on 

the general observations of saturated soil response under triaxial loading conditions in laboratory 

tests. Many recently developed soil models employ these concepts to describe the mechanical 

behaviour of soils. A brief review of the concepts of critical state theory will be given and three 

existing soil models employing these concepts will then be studied. The first two models are the 

modified Cam-clay model of Banerjee and Stipho (1978) and the bounding surface model of Dafalias 

and Herrmann (1980). Both models were developed from ideas associated with classical theories of 

plasticity. The third model is the rate-type model of Davis and Mullenger (1979) founded upon the 

theory of hypoelasticity. Undrained, monotonic loading conditions for these three models are of 

particularly interest in this work, because the models will be adopted to study the monotonic 

loading conditions of an axially loaded pile. The response of the rate-type model under cyclic 

loading conditions will also be studied because the condition of continuity of the loading and 

unloading equations for this model have been violated. Further, comparisons of model predictions 

with triaxial test and direct simple shear test results will be discussed. 

SECTION 2.1 Concept of Critical State Theory 

2.1.1 The Critical Void Ratio 

Casagrande (1936) proposed the concept of critical void ratio based on the results of direct 

shear tests on loose and dense sand with the same initial vertical effective stress. The vertical 

effective stress was held constant during shear in all tests. He suggested that the void ratio of a 

sand at large strain approached a constant value which was independent of its initial void ratio 

and vertical effective stress. The void ratio at this state was called the critical void ratio. Later 

findings of Taylor (1948) from the results of constant volume triaxial tests on sand indicated that the 

critical void ratio was in fact a function of the effective vertical stress, contrary to Casagrande's 

earlier belief. 

2.1.2 The Critical State Concept 
' 

Roscoe' (1958) developed the critical state theory using two stress parameters together with the 

void ratio. The two stress parameters were 

q = O'a -O'r 

p = (cra + 2crr )/3 

(2.1.a) 

(2.1.b) 
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in which cra and crr represent the axial and radial effective stresses in triaxial conditions. The stress 

parameters p and q are derived from the first invariant of the stress tensor, and the second invariant 

of the deviatoric stress tensor. Physically, p represents the isotropic ~ffective pressure while q is a 

measure of deviatoric stress in the soil. Using the parameters p and q together withe the void ratio, 

the state of a soil element can be defined in e-p-q space. During isotropic loading and unloading of an 

isotropically normally consolidated clay element, q is zero and the normal consolidation and 

swelling lines can be depicted as shown in Fig. 2.1. Both lines are approximated as straight lines in 

the e-ln p plane. The slopes of the normal consolidation and swelling lines are denoted by A. and K 

respectively. 

In an attempt to study the stress and strain behaviour of soils, Roscoe and his co-workers 

(1958, 1963, 1968) adopted the concepts of Casagrande (1936) and Taylor(1948). They analyzed 

HenKel's (1956) drained and undrained triaxial compression test results on saturated remoulded 

samples of Weald clay. Roscoe (1958) found that the clays monotonically sheared to sufficiently 

large strain would reach a state at which continuous deformation occurred with no further change in 

the parameters e, p and q. This state was referred to as the critical state (Roscoe 1968). Roscoe also 

proposed that there existed a unique critical void ratio line, also known as the critical state line 

(Schofield & Wroth 1968), in e-p-q space. For a given clay this line is independent of the 

consolidation history and of the drained or undrained loading conditions (except perhaps for very 

heavily overconsolidated clay). The projections of the critical state line into the e-ln p plane and 

the q-p plane are straight lines. The critical state line is parallel to and located on the left side of 

the normal consolidation line in the e-ln p plane as shown in Fig. 2.1. The slope of the critical state 

line in the q-p plane is denoted by M. Soil states located between the critical state line and the 

normal consolidation line in e-p or e-ln p plane are called 'wet' of critical while soil states on the 

left side of the critical state line are called 'dry' of critical. 

2.1.3 The State Boundary Surface 

In the development of constitutive relations for soils, the so-called state path in e-p-q 

space is extremely important. In limit analysis, only the final or critical state is of interest, but in 

the critical state theory, then entire state path must be considered. 

From Gilbert's (1954) drained and undrained triaxial compression results on normally and 

over-consolidated Weald clay, Roscoe (1958) found that the state paths of the normally 

consolidated clay samples formed a continuous surface connecting the normal consolidation line with 

the critical state line. This surface became known as the Roscoe surface (Atkison & Bransby 1978). 

General soil responses of normally and heavily over-consolidated clay under drained and undrained 

tests together with the state boundary surface are depicted in Figs. 2.2. The state paths of the 

heavily overconsolidated clay samples climbed from the e-p plane and (the peak) reached a 

surface which joined the critical state line with the Roscoe surface from the 'dry' side. This surface 

had previously been referred to as the well known Hvorslev surface. The projection of the swelling 

line on the Roscoe and Hvorslev surfaces is shown in Fig. 2.3. The Roscoe and Hvorslev surfaces were 
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obtained from results of triaxial compression tests. One might expect that similar surface would be 

obtained from results of triaxial extension tests. Since the deviatoric stress q is negative for triaxial 

extension conditions, the Roscoe and Hvorslev surfaces determined fr0m this type of test lie on the 

negative side of the p-q plane along the p axis as shown in Fig. 2.3. The slope of the critical state 

line in the q-p plane determined from triaxial compression tests may be denoted by Mc while the 

slope found from extension test is denoted by Me. Mc and Me may be given by 

and 

6 sin <l>c 
Mc=---

3 - sin <l>c 

Me=----
3 + sin <l>e 

(2.2.) 

(2.3) 

where <Pc and <Pe are the effective angle of friction of the soil at critical state determined from 

triaxial compression and extension test respectively. The Hvorslev and the Roscoe surfaces formed a 

boundary surface which enclosed a region in e-p-q space where all possible states of the soil must 

lie. Therefore the Hvorslev and the Roscoe surfaces came to be called the state boundary surface. 

The state path of a soil element inside the state boundary surface can be determined from 

the constitutive relations. Purely elastic or elastic-plastic deformations may occur depending on the 

particular assumptions used in development of soil models. 

SECTION 2.2 Modified Cam-clay Model 

The modified Cam-clay model of Banerjee and Stipho (1978) employed the classical 

theory of plasticity and assumed that the soil was an isotropic hardening material. The model was 

founded upon the concepts of critical state theory. In the original Cam-clay theory (Roscoe and 

Burland, 1968), no elastic shear strains were considered. However, the more general condition of 

including elastic shear strain has been introduced in the model formulation by Banerjee and Stipho 

(1978). They assumed that there exists a yield surface which encloses a purely elastic region. 

Hardening or softening may occur in the material when the stress state reaches the yield surface. 

This model was originally developed for normally to lightly over-consolidated clays, but it has 

been used (Wroth et al. 1978, Randolph et al. 1978a,b) to simulate stress changes in normally to 

heavily over-consolidated clays due to pile driving and subsequent reconsolidation process. 

However, the yield surface of this model encloses a relatively large purely elastic region. Thus the 

model may predict excessive purely elastic response or tensile stresses inside the yield surface before 

plastic deformation occurs; this is contrary to observations from test on overconsolidated soils, 

[Banerjee and Stipho 1979]. Clearly this model may not be good for soils under cyclic loading as large 

magnitude purely elastic cyclic response may occur inside the yield surface. Nevertheless it may be 

useful in modelling some aspects of soil behaviour under monotonic loading conditions. This is the 
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case in our study, and we will attempt to employ the model to simulate the soil response subject to 

monotonic pile loading. 

The modified Cam-clay model assumes the yield surface has the following general 

expression 

p 
F= F(cr .. , ekk)= O 

lj (2.4) 

where cr1j represents the effective stress while the plastic volumetric strain ekk provides a measure of 

hardening. Purely elastic deformation occurs when F < 0. Plastic deformation may occur when F= 0, 

however no meaning is associated with F> 0. During plastic deformation the strain rate eij is 

decomposed into elastic and plastic parts 

(2.5) 

in which the superscripts e and p denote elastic and plastic components respectively. If the plastic 

loading direction coincides with the direction of the unit normal vector nij to the yield surface, and 

H is defined as the plastic modulus associated with the stress rate crij , the loading function L is 

given by 

Here 

cr ij Ilij 
L=-­

H 

and g = [ ~ ~ ]1/2 
acr .. acr .. 

lj lj 

(2.6) 

(2.7) 

Plastic loading ,neutral loading and elastic unloading and can be defined by the sign of the loading 

function. Using the associative flow rule, the plastic strain rate can be expressed by 

.p 
£ •• = <L> n·· 
lj lj 

in which < > has the following definition 

<L> =L 

<L>=L 

<L>=0 

when L> 0, Loading 

when L= 0, neutral loading 

when L< 0, unloading 

(2.8) 

(2.9) 

Eq. 2.9 implies that the material is purely elastic during unloading. Using Eq. 2.4 and 2.6 to 2.8, the 

plastic modulus can be obtained by means of the consistency condition satisfying F equal to zero. We 

find 

(2.10) 

The inclusion of Hin the loading function allows Eq. 2.8 to describe plastic deformation for unstable 

(softening) materials. This may be the case when His negative, however plastic loading may occur 

(i.e., L> 0) when both scalar quantities crij nij and Hare negative. 
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Substituting Eq. 2.8 into 2.5 and assuming undrained conditions (i.e., ekk is zero) as well as 

elastic incremental constitutive relations governed by Hooke's law, and finally inverting the 

resulting relationship, we arrive at the following equation 

(2.11) 

where 6ij is the Kronecker delta. G and B denote the elastic shear and bulk modulii and L becomes 

2 G £kl nkl 

H + B ~m + 2 G( 1 - ~n/3) (2.12) 

During undrained deformation, the total stress may be determined from equilibrium considerations. 

The total stress o{j is related to the effective stress by 

t 
cr-•= cr,.+ u O·· 

lj lJ lJ 

u= ~u +ui (2.13) 

in which u denotes the pore water pressure, du and ui represent the excess and initial pore pressure, 

respectively. Eq. 2.11 is a general formulation of the isotropic elastroplastic soil model independent 

of the exact form of the yield surface itself. The choice of the yield surface may be choosen 

differently for each particular soil. 

For general stress states, it is convenient to introduce the stress invariants 

Ji= O'kk 

* * }i=O'ij O'ij 

crf = O'ir O"id< &j / 3 (2.14) 

where O"ij denotes the deviatoric part of cr11 . Ji represents the first invariant of cr11 and Ji denote the 

second invariant of cr'f;. Ji and Ji are equivalent to 3 p and 2/3 q2 in triaxial conditions. In the modified 

Cam-clay model, purely elastic deformation would occur on the curved surface abed of Fig. 2.2c, the 

so called elastic wall. The state bounding surface was choosen as the yield surface. In terms of stress 

invariants J1 and Jz, a particular form of the yield surface for clay was earlier proposed by Roscoe 

(1968). It was 

(2.15) 

where Jo = Jo ( ekk ), the hardening parameter, is the intersection of the yield surface with h axis. Eq. 

2.15 is the equation of an ellipse in the J1 - ✓72 plane as shown in Fig. 2.4. For isotropic normally 

consolidation processes with no deviatoric stress initially in the soil, Jo is equal to h. The soil state 

is considered to be "wet" of critical in this model when h > Jo/2, or to be "dry" of critical when 

J1 <Jo/2. N is the slope of the critical ·state line in the J1 - ✓h plane and is a constant in this model. 

The assumption that N remains constant requires that the material be isotropic in the sense that the 

projection of Eq. 2.15 in the 1t plane is a circle, (i.e., extended von Mises failure criterion), as shown in 

Fig. 2.5. Since N is a constant, Mc of Eq. 2.2 is equal to Me of Eq. 2.3 and both are related to N by 



(2.16) 

However, this assumption requires that <l>e is much larger than <l>c, which is contrary to general 

experimental observations (Parry 1960, Wu et al. 1963, Parry and Nadarajah 1973) 

During isotropic consolidation processes, the void ratio rate of change, e, is given by 

(2.17) 

Upon isotropic swelling process, the elastic void ratio rate of change, ee is expressed as 

(2.18) 

The plastic volumetric strain rate is given by 

(2.19) 

where ei is the initial void ratio. If we consider Jo to be the value of Ji for isotropic consolidation, 

then the change in the hardening parameter Jo is related to eh as follows 

(2.20) 

the plastic modulus can be determined from Eqs 2.10, 2.15 and 2.20. It is given by 

(2.21) 

The plastic modulus determined from Eq.2.21 may be positive or negative depending upon 

whether Ji >J0/2 or J1 < Jo/2. During plastic loading, the yield surface may expand or contract in 

stress space depending upon whether the location of the stress state lies on the wet or dry side of 

the critical state. 

Using Eqs. 2.7, 2.15, 2.20 and 2.21, the effective stress in undrained deformation may be 

obtained from Eqs. 2.11 and 2.12. The elastic shear and bulk modulii may be functions of stress 

invariants and may be expressed in the following form. 

(2.22a) 

and 
J 1 (1 + ei)(l - 2u') 

G=------
2 1e ( 1 + u') (2.22b) 

where u' is the Poisson's ratio. Since Poisson's ratio is not:,easy to be measured)accurately, it is 
,_ -- - - - . ~/ 

commonly assumed that it is choosen to be a constant. In this case, both the bulk and shear 

modulii are proportional to Ji or the effective pressure. It should be noted that when the stress state 

lies within the yield surface, the model predict~urely non-linear}~ elastic response. However, for 
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elastic loading conditions, problems may arise because of the assumption of Eqs. 2.22; some energy 

is created or extracted from the soil during closed stress cycles and the energy may becomes 

dependent upon the stress path. This results in the model violating thermodynamics principles. 

An alternative formulation to overcome this contradiction is discussed by Zytynski et al. (1978). 

They assumef that a constant shear modulus be adopted. Further, Wroth (1971) analyzed the 

undrained triaxial test results on samples of "undisturbed" London clay. These results indicated 

that the ratio of shear modulus to h increases with overconsolidation ratio increase. This implies 

Eq. 2.22b is not adequate to estimate the shear modulus from Ji. For these reasons, we will not use 

Eq. 2.22b to determine the shear modulus but instead we will assume G is a constant. However, a 

constant value of G combined with a variable bulk modulus B implies a variation of Poisson's 

ratio with effective pressure. 

Finally we note that the modified Cam-clay model employs five model parameters, ( A, 1-:, 

G, N, ei) and one initial value of the hardening parameter Jo. These parameters can be directly 

evaluated from conventional experiments. 

SECTION 2.3 Bounding Surface Soil Model 

The concept of the bounding surface was originally introduced by Dafalias and Popov 

(1975) for metals. Independently, Krieg (1975) also introduced a two-surface model which employed 

similar ideas to the concept of the bounding surface. Dafalias and Popov (1976) used the concept of 

the bounding surface and of the plastic internal variables. They proposed a general formulation of 

equations for rate-independent plasticity. Both formulations of Dafalias and Popov (1976) and 

Kreig (1975) incorporated a yield surface which lies within the bounding surface. The yield surface 

and the bounding surface were allowed to move in stress space subject to the isotropic / kinematic 

hardening rules. The bounding surface formulation was later extended to incorporate cohesive 

soils by Dafalias and Herrmann. It was the so-called 'Bounding surface soil plasticity model', 

Dafalias and Herrmann (1980, 1982). Similar to the modified Cam-clay model. This model was built 

within the frame work of the critical state soil theory. 

Dafalias and Herrmann (1980) considered that the yield surface has been shrunk to the 

stress state inside the bounding surface. Their model assumes that the actual stress has an image 

stress point on the bounding surface, and the plastic flow direction is defined by this image stress. 

The plastic modulus associated with the actual stress is related to the image stress by the distance 

between these two stress points. As a result of these assumptions, the bounding surface model 

allows plastic deformation to occur inside the bounding surface and a purely elastic domain may 

not exist. 
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The general form of the bounding surface is expressed by 

- p F= F(cr .. ,Ekk)= 0 
lJ (2.23) 

in which crij is the 'image' stress state of the actual stress crij projected on the bounding surface. The 

relationship between crij and crij may be given by the so-called 'radial mapping' rule, defined by 

- p 
O"•· = a( cr .. , Ekk) O"·· 

lJ lJ lJ (2.24) 

The concept of the radial mapping rule is illustrated in Fig. 2.6. The distance factor a is determined 

from Eqs. 2.23 and 2.24, with realistic values of a ranging between 1.0 and infinity. Note that the 

image stress cannot be defined from Eq. 2.24 when the stress state is located at the origin. Other 

choices of mapping rules relating the image stress and the actual stress are possible; such as the 

image stress may be defined on the bounding surface by mapping from the actual stress and a pole 

situated outside the origin of the stress space. However this may require the existence of a small 

pure elastic region enclosing the pole, so that the image stress can be defined everywhere inside the 

bounding surface during plastic loading conditions. The distance o between crij and crij in stress space is 

evaluated from 

- - 1/2 1/2 o =[ ( cr .. - cr.. ) ( cr .. - cr.. ) ] = ( a - 1 ) [ cr .. cr. . ] 
lJ lJ lJ lJ lJ lJ (2.25) 

For stress states inside the bounding surface, the plastic loading direction is defined by the normal 

vector to Fat the" image " stress crij • Assuming an associative flow rule, Dafalias (1980) arrived at 

the following equations 

. . 
crij Ilij (j ij ~j 

L=---=--
H H 

1 ,.JP [ aF aF ]1' 2 
Ilij = - --:::- ' g = -=- -=-

g acr.. acr .. acr .. 
lJ lj lj (2.26) 

in which H and Hare defined as the plastic modulii associated with ~ij and crij respectively.His 

determined from the condition of consistency satisfying F'=O, while H is interpolated from H 
dependent upon crij and a as defined below. 

The general formulations of Eqs 2.5 to 2.10 for elastroplastic soil are equally valid for the 

bounding surface model, but they are now determined using the bounding surface of Eq. 2.23 and the 

'image' stress crij instead of the yield surface of Eq. 2.4 and crij • The plastic modulus H which 

appeared in Eqs. 2.6 and 2.10 should be replaced by H. The effective stress in undrained conditions is 

determined from both Eqs. 2.11 and 2.12. 

The bounding surface soil plasticity model does not employ the concept of a yield surface 

and therefore no purely elastic region is defined. However, a quasi-elastic domain enclosed by a 

surface of similar shape to the bounding surface is indirectly defined by Eqs. 2.8 and 2.26 at the stress 

point crij . This quasi-elastic surface is considered as the neutral loading path emanating from crij as 

shown by the dashed line in Fig. 2.6. Elastic deformation occurs when the stress point moves inward 

from the surface but plastic reloading occurs immediately if the loading direction is reversed. It may 
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also be possible to define a purely elastic domain of similar shape to the bounding surface by 

selecting a maximum value of a, <Xmax, so that if a is larger than <Xmax then the model allows elastic 

deformation only. 

In the ✓ Jz versus h invariant space illustrated in Fig. 2.7, the slope of the critical state line 

N may depend upon the stress invariants. One convenient form for such dependence uses the Lode 

angle co which is defined by 

7t 1 . -1[ r: J3 l 7t - - :,; CO= - SID 3y 6 - :,; -
6 3 J3/2 6 

2 (2.27) 

where h is the third stress invariant of cr'1; (i.e., h=det( crij )). Specific values of N determined from 

triaxial compression and extension tests will be denoted Nc and Ne respectively. For other strc:::s 

states, N may be expressed as a function of co. 

N(co)=-------
1 + n - (1 -n) sin 3co (2.28) 

where n=Ne/Nc. To ensure convexity of the bounding surface, n must range between 0.7 and 1. This is 

illustrated in Fig. 2.5. Thus the general shape of the bounding surface may depend upon the Lode 

angle. Two alternative shapes for the bounding surface have been used by Dafalias and 

Herrmann(1980). The choice of surface depends upon the current dimensionless stress 11 = ✓h/Ji. 

Whenever O < Tl :s;; N, the bounding surface is elliptic in shape, defined by 

( J ) 2 - 0 - R-1 - 2-R 2 
F = J1 - 2R J1 + ( N J J2 + R Jo = o 

(2.29) 

in which Risa new material parameter and J1, f2 are the invariants of o\j.Similar to the modified 

Cam-clay model, the hardening parameter Jo is again a function of E~k and the relationship between 

Jo and Ekk has been choosen identical to Eq. 2.20. When R=2, Eq. 2.29 has a similar form with Eq. 2 .15 

of the modified Cam-clay model. In contrast, if 11 > N, a hyperbolic surface is used, defined by 

( - Jo )- ½ (1 Ac)/½. 2 Ac 2 
F = J1 - 2 - J1 - - + 2 Jo .- + - - - - - Jo= o 

R N2 R Ne N R Ne (2.30) 

Here Ac is also a material constant, representing the fraction of Jo by which the critical state line 

lies below the asymptote to the hyperbolic surface for triaxial compression, as illustrated in Fig. 

2.7. The ratio of Ae to Ac must be equal to the ratio of Ne to Nc maintaining compatibility of both 

surfaces. Using Eqs. 2.29 and 2.30, the analytic expressions for nij, a and H are summarized in 

Appendix (A) and are not repeated here. H is related to H by the so-called interpolation rule 

0 
H=H+T--

60 - 0 (2.31) 

where 80 is a reference stress which may be used to capture the stress history of the soil, but it has 

been taken as the distance between crij and the origin for simplicity (Dafalias 1980). Using Eq. 2.25, 

Eq. 2.31 becomes 
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H = H +T ( a -1) (2.32) 

in which T is the hardening shape function 

-x j { oF f ~ oF r l 1 T =Pat (co) [ 1 + 111 / NI J ~ + -- -
ar1 3 a[½ g2 

(2.33) 

and Pa is atmospheric pressure providing correct dimensions. Here t(ro) has the same form as N(ro) 

with tc and te being parameters measured from triaxial compression and extension tests. The 

exponent x has been taken as 0.2 which ensures H becomes singular if 11 approaches zero, and hence 

purely elastic loading results. 

The plastic modulus H evaluated from the elliptic surface is positive. It is negative for the 

hyperbolic surface. However, even if H is negative, H may be positive provided CJ. is sufficiently 

large. Also, when a.= 1, the stress point crij has arrived at the bounding surface, and then H equals H. 

Dafalias and Herrmann(1980) assumed both G and B are given by Eqs. 2.22. For the 

bounding surface model, G is not necessarily assumed to be constant since no purely elastic domain is 

used and the second law of thermodynamics will not be violated under cyclic loading condition. 

However, since G value determined from Eq.2.22b may not be representative for most soils, we 

assume G is constant and B is defined by Eq. 2.22a as used in the modified Cam-clay model. 

Using Eqs. 2.29 through 2.33, the effective stress during plastic loading in undrained 

conditions is determined from Eqs. 2.11 and 2.12. We note that the bounding surface model require six 

material parameters in addition to the five Cam-clay model parameters. These six new parameters 

may be determined from soil test results. Procedures are discussed in Dafalias(1980,1982). 

In conclusion, the bounding surface soil plasticity model may be restricted to small 

deformation problems because a frame indifferent stress rate is not incorporated. The constitutive 

equations do not satisfy the principle of material frame-indifference for arbitrary motions. 

Incorporation of the co-rotational stress rate in this model may complicate the solution methods. 

The bounding surface expands or contracts subject the isotropic hardening rule while the stress state 

can experience plastic loading inside the bounding surface. This is one of the advantages of this 

model over the modified Cam-clay model. The model does not account for anisotropy which 

simplifies the formulations and reduces the number of model parameters required. Sophisticated 

anisotropic hardening soil models can be found in Mroz et al.(1978,79,81) where a relatively small 

yield surface is assumed inside a bounding surface. The bounding surface model may provide a wide 

range of possible responses, and this is reflected in the number of model parameters required. 
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SECTION 2.4 Rate-type Model 

The rate-type model of Davis and Mullenger(1979) was founded upon the theory of 

hypoelasticity (Truesdell and Noll, 1965). It was proposed as an alternative to plasticity models 

for constitutive modelling oe,~ehaviour of soils 

In 1956, Green discussed a special hypoelastic constitutive equation which he considered to 

be a generalization of incremental plasticity. It was found by Mroz(1980) that a full correspondence 

exists between Green's formulation of hypoelastic theory and the isotropic hardening model of 

classical plasticity theory during loading conditions. Romano(1974) combined the basic concepts of 

hypoelasticity and with those of critical state theory. He developed a model for granular material 

with the critical void ratio being the key parameter. Following similar ideas to Romano's model, 

Davis and Mullenger (1979) proposed a rate-type model in which a elliptic yield surface, similar to 

the yield surface for modified Cam-clay, was embedded in the model. The term yielding that we 

use here is defined as in the sense of classical plasticity theory. Inside the yield surface, it is 

assumed that loading and unloading processes may involve inelastic deformations and a linear 

elastic domain may not exist. Mroz (1980) and Hashiguchi (1980) pointed out that the rate type 

model of Davis and Mullenger(1978), violated the continuity condition between loading and 

unloading domains. However, the rate type model (Davis and Mullenger 1979) with which we are 

particularly concerned in this work is well founded for monotonic loading. Also, any discontinuities 

in both loading and unloading equations will vanish for isochronic or undrained deformation 

problems. This will be illustrated here. 

2.4.1 Model Formulation 

The constitutive equation of a hypoelastic material may be written (Truesdell and Noll, 

1965) in the following form 

,, 
a .. = r .. ( cr )[ Dmn] 1J 1J mn (2.34) 

where ;-,.ij = 6-ij- Wim crmj + crim Wmj is the co-rotational stress rate. Wij and Dij are the components of 

spin and rate of deformation tensors. The tensor function rij is linear in Drnn and is isotropic in both 

crmn and Dmn· The general form of Eq. 2.34 is given by 

,, 
crij = ( a1 Dkk + a2 crmkDkm + a3 crmncrnkcrkm) 0ij 

+ ( a4 ~k + a5 crmkDkm + ¾i O'mncrnkDkm) O'ij 

+ ( a7 Dkk+ ag crmkDkm + ll() O'mncrnkDkm) crilcrlj 

+ a10 Dij + a11 ( crnDlj + Dncr1j) 

+ a12 ( Ducr1ncrnj + crilcrlnDnj) 

in which the coefficients a1 to a12 are functions of stress invariants. 

(2.35) 

Romano (1974) and later Davis and Mullenger (1979) assumed that Eq. 2.34 can be replaced 

by 
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* 
cr .. = r .. ( cr , e )[ Dmn] 

13 lJ mn (2.36) 

for granular material. It follows that the coefficients a1 to a12 become functions of the stress 

invariants and the void ratio e. The constitutive equation with the form of Eq. 2.36 has been 

classified as rate-type fluid by Truesdell and Noll (1965). 

Following ideas similar to those employed in Romano (1974) and Davis and Mullenger 

(1978), we use the sign of the stress power <I>= <Jij Dij to define loading, neutral loading and unloading 

processes. A loading or neutral loading process is defined by <I>> 0 or <I>= 0 respectively, while <I>< 0 

indicates unloading. 

Davis and Mullenger (1979) assumed that the non-zero coefficients of Eq. 2.35 are a1, a2, a4, 

as, a10, and are functions of e only. Based on the critical state theory, Davis and Mullenger made the 

following two assumptions in the rate type model for loading conditions. 

(i) 

(ii) M = M ( e) = 3 Nc Pc 

(2.37) 

(2.38) 

where Pc is the critical state pressure and Pe is the virgin consolidation pressure at void ratio e or the 

so-called equivalent pressure, [Atkinson and Bransby 1978]. The relationship between Pc and Pe in 

the e - In p plane is depicted in Fig. 2.8. M represents the soil strength at the critical state. 

Employing the idea proposed by Tokuka(1971), Davis and Mullenger(1979) assumed that yielding is 

defined when the constitutive matrix becomes singular. Furthermore, they have choosen the non­

zero coefficients a1 to a10 to be 

2 
a1 = -3G 

2Gpc 
a2 = a4 = 22 

2G 
as = - 22 

a10 = 2G 

Using Eq. 2.39 in Eq. 2.35 the rate-type model for loading conditions has the form 

(2.39) 

(2.40) 

We refer the reader to the original reference cited above for details of the derivation of Eq. 2.40. In 

this model, G is the elastic shear modulus and is a function of void ratio only. It is noted that a bulk 

modulus has been indirectly introduced in Eq. 2.40 when choosing the coefficients a1 to a10 in Eq. 2.39, 

and has the following form. 

2G 2 
B = - ( 2 Pc p - p ) 

-2 
M (2.41) 
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This expression of the bulk modulus allows this model predicts hydrostatic yielding when p 

approaches the virgin consolidation pressure Pe· 

" __ ......----, 
It shou]~ be mentioned that an elliptic yield surface having the following form is 

( implicitly embedded )nto the loading equation of the rate type model. This is given by 
"'---------- ----- -- __ ./ 

2 
F = ( p - Pe ) p + J2 I ( 3Nc) (2.42) 

and is illustrated in Fig. 2.9. Here p is equal to Ji /3. The yield surface of this model has the 

identical shape to that of the modified Cam-clay model in the p - q plane for triaxial conditions, 

but they are different in e-p-q space. The yield surface of the rate-type model is located on the 

constant e plane, whereas that of the modified Cam-clay model is obtained from the projection of 

the isotropic swelling line on the state boundary surface. Pc and Pe used in the rate-type model cire 

only functions of e and thus the yield surface remains stationary during undrained deformation. 

Note that Jo defined in the modified Cam-clay model is a function of plastic volumetric strain ekk' It 

follows that the yield surface may expand ( or possible contract) during undrained deformation. The 

relationship between Jo used in the modified Cam-clay model and Pe defined in the rate-type model 

is also illustrated in Fig. 2.8. 

Assuming that unloading follows non-linear elastic constitutive relationship, Davis and 

Mullenger derived that the non-zero coefficients of Eq. 2.35 are given by 

2 G ( 2 1 -2) a1 =- Pc - -M 
M2 3 

a10 = 2 G 

Using Eq. 2.43 into Eq. 2.35, the rate type model for unloading conditions has the form 

,, 2 G [ 2 1 -2 -2 ] er .. = - ( p - -M ) Dkk o .. + M D .. 
IJ -2 C 3 IJ lJ 

M 

The bulk modulus implicitly introduced in the unloading Equation 2.44 is given by 

2 
Pc 

B=2G-
-2 
M 

(2.43) 

(2.44) 

(2.45) 

The bulk modulus in Eq. 2.45 is choosen to match the bulk modulus for loading conditions in 

Eq. 2.41 only at p= Pc· As a result of this adoption, a discontinuity in the bulk modulus occurs at the 

beginning of the unloading process. Further, for the neutral loading conditions, the condition of 

continuity requires that both the loading and unloading equations should coincide so that uniqueness 

can be ensured. However, for a general deformation problem, Eqs. 2.40 and 2.44 will not be equal 

when <P = 0. Therefore, for general problems, this model violates the condition of continuity. Use of 

Eqs. 2.40 and 2.44 to describe cyclic loading response should be limited tu problems where this 

discontinuity does not exist. If we consider undrained conditions the rate-typl' rnudel will not violate 

the continuity condition. The loading equation 2.40 reduces to 
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,, 2 G -2 
O'·· = - [M D1·1· - ( cr .. - Pc0") a kDkml 

lj -2 lJ lJ ffi 
M (2.46) 

From Eqs. 2.37 and 2.38, we note that Pc Mand G become constants in Eq. 2.46. The unloading equation 

2.44 becomes 

,, 2 G -2 
a .. = - [ M D·J· ] 

lJ -2 1 
M (2.47) 

Here Eq. 2.47 implies linear elastic unloading. Now we see that when <I> = 0, the conditions of 

continuity and uniqueness can be satisfied by Eqs. 2.46 and 2.47. Since only undrained deformations 

are considered in this work, violation of the continuity condition will not be a problem. 

2.4.2 Investigation of Undrained Cyclic Loading Responses 

Davis and Mullenger (1984) have employed the loading equation 2.46 to solve some simple 

boundary value problems such as triaxial deformation, simple shear and pure torsion. Here we 

attempt to investigate the use of both loading and unloading equations 2.46 and 2.47 under undrained 

conditions. Two hypothetical examples for lightly and heavily overconsolidated soil subjected to 

arbitrary cyclic loading in triaxial conditions will be considered. The analytic solutions for this 

problem are summarized in Appendix (B). Two conditions will be used to clarify the initial state of 

the soil. They are 

and 

/i,o 
~=--­

M 

G 

Cus 

- Pi • Pc Pi - Pc 
P·=~=--

1 '12 M 2 Cus 

(2.48) 

(2.49) 

where ~ represents the initial rigidity of the soil and is the rigidity index defined by Vesic (1972). 

The constant Cus denotes the undrained shear strength in plane strain shearing of the soil, and Pi is 

the initial effective pressure. Pi may be used to classify the state of overconsolidation of soils. When 
-

Pi Hes on the 'wet' side of Pc, then Pi is positive for normally to lightly overconsolidated soils. In 
-contrast, Pi is negative for heavily overconsolidated soils. 

We have choosen ~ = 50 for the lightly overconsolidated soil element with Pi= 0.5. For the 

heavily overconsolidated soil element we take ~ = 50 but set Pi to -0.5. Using these initial conditions 

and the analytic solutions given. in Appendix(B) for the rate type model, the cyclic loading 

responses of these two soil elements are obtained for this problem. We note from equations B.8 (see 

Appendix B) that the normalized deviatoric stress q / 2Cus versus axial strain response is 

independent of the initial effective pressure for isotropically consolidated soil. Also, the 

normalized expression for effective pressure ( p - Pc)/ 2Cus versus axial strain is identical for both 

selected soils except the sign is different. For these reasons, only one curve will be shown for 

illustration. The results are given in Figs. 2.10 to 2.13. Fig. 2.10 to 2.13 indicated thc1t 
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(a) The deviatoric stress response for reloading in triaxial extension (curve b'-b") is similar 

to that for initial loading in compression. Both triaxial compression and extension 

conditions predict identical magnitude of deviatoric failure stress. 

(b) Unloading from compressive state at high deviatoric stress levels (line a'-b') results in 

relatively large magnitude linear elastic response. 

(c) Repetitions loading at high deviatoric stress levels result in ratchetting such as curves 

b-c, c-d and d-e in Figs. 2.10. 

(d) There is no change in effective pressure during unloading but each loading process brings 

the effective pressure closer to the critical pressure. 

(e) The rate-type model exhibits positive pore water pressure for lightly overconsolidated 

soils and negative pore pressure for heavily overconsolidated soils. 

From the above results, we note that the model does not reflect the preconsolidation 

history of the soils in their deviatoric stress and strain response. Large magnitude linear elastic 

response results from unloading and a ratchetting effect results from repeated loading which may 

not be realistic for general soil response. Therefore, use of this model to predict undrained cyclic 

loading should be limited to the case where the unloading and reloading stress reversal is not 

significant. The similarity between the deviatoric stress and strain response in compression and 

extension conditions may be attributed to the consideration that the soil is isotropic in the model 

formulation. However, the predicted excess pore pressure for both lightly and heavily 

overconsolidated soils during loading conditions exhibits some salient features of real soil response. 

In conclusion, the rate type model employs the co-rotational stress rate and thus is not 

restricted to small deformation problems. In the sense of classical plastic theory, soil yielding and 

plastic flow are incorporated within the model without an additional flow rule or hardening rule. 

The rate-type model requires few material parameters which simplifies application of the model 

to the practical problems, but on the other hand this also means that the response of the model is 

less general. Despite this loss of generality, same salient features of real soil response are captured 

by the model. The rate type model does not allow translation of the yield surface, it thus cannot 

account for anisotropy. The continuity condition limits the model to predictions of monotonic loading 

or undrained cyclic loading conditions. The ratchetting effect predicted by the model for cyclic 

loading response may not be realistic for cyclic loading of real soils. However, if unloading and 

reloading reversal is not significant or is of limit extent, the model may remain valid. 

SECTION 2.5 Determination Of Soil Parameters 

In order to make use of the Modified Cam-clay model, the bounding surface model or the 

rate type model, we must define the initial stress state, stress history, and material parameters for 

the soils. For initially isotropically consolidated and one-dimensionally consolidated soils, the soil 

parameters may be obtained from the following formulation. 
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2.5.1 Isotropically Consolidated Soil 

The slopes of the isotropic normal consolidation and swelling lines A and 11.'. , may be 

related to more familiar compression and swelling indices Cc and ½· They are given by 

(2.50) 

K = C8 / ln 10 

If the soil is unloaded isotropically from the normally consolidated state, the overconsolidation 

ratio is given by 

PO 
OCR=­

Pi (2.51) 

where Po is the virgin consolidation pressure. Note that Po is equal to Jo /3 for both the modified 

Cam-clay and the bounding surface model. 

The undrained shear strength in triaxial compression, Cu, is required to characterize the 

soil's strength. It is given by 

3 ff Cu= - - Ne Pc 
2 2 (2.52) 

We assume that elastic unloading from virgin consolidation state follows the isotropic 

swelling line, as illustrated in Fig. 2.8. From Eqs. 2.37, 2.42 and Fig. 2.8, the critical pressure Pc for the 

rate-type model is predicted by 

_ 1 . ( OCR )(1 - Kl'}.,,) 
Pc - 2 P1 

(2.53) 

Similarly, for the modified Cam-clay and the bounding surface models, Pc may be obtained from Eq. 

2.29. It is given by 

OCR ( 1 - KIA) 
Pc= Pi ( R) 

in which R is equal to 2 for the modified Cam-clay model. 

(2.54) 

When 11.'. or 'A are not available from existing test results, it may be possible to assume that 

(2.55) 

for soils with <l>c less than 35° Schofield and Wroth(1968) suggested that Eq. 2.55 may be appropriate 

for most clays. We have used 87 existing data of clay samples from Mayne(1980) to check the 

validity of Eq. 2.55. The results are summarized in Appendix ( C ). We find that Eq. 2.55 successfully 

predicted 54 data with less than 25% error. Therefore assumption of Eq. 2.55 is, in general, valid for 

most clays. 
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2.5.2 One-Dimensionally Consolidated Soil 

The naturally deposited soil history may be considered to consist of one-dimensional 

consolidation and (possibly) swelling processes. If we assume no vertical and horizontal shear stress 

initially in the soil,it may be possible to characterize the stress history of naturally deposited soil 

by the vertical stress cr zi , the coefficient of lateral earth pressure at rest, K, and the 

overconsolidation ratio OCR. For one-dimensionally consolidated soil, the OCR is defined as 

-- O"znc 
OCR=-

0zi (2.56) 

where crznc is the preconsolidation pressure. The overburden stress O'zi may be obtained directly frv:m 

measurement of soil bulk unit weight and pore pressure, and the value of K may be measured by 

means of oedometer tests or pressuremeter tests. 

The value of K and OCR are not independently determined. For normally consolidated 

soils, K may be estimated using Jaky's formula 

Knc = 1 - sin tj> (2.57) 

For overconsolidated soils, K may be approximate by, ( Parry 1977) 

(2.58) 

During a one-dimensional virgin consolidation process, the state path of the soil should be 

located on the state boundary surface. The hydrostatic pressure Pnc and the deviatoric stress <Inc 

experienced by the soil are given by 

1 
Pnc = 3 er znc ( 1 + 2 ¾c ) 

(2.59) 

and 
qnc = er znc ( 1 - Knc ) (2.60) 

The one-dimensional consolidation line, Pnc and <kc• is shown in Figs 2.14. When one-dimensional 

unloading occurs, the state path departs from the state boundary surface but remains on the elastic 

wall, as illustrated in Figs. 2.14. 

The projections of the one-dimensional consolidation and swelling lines in the e - ln p plane 

are theoretically parallel to the isotropic normal consolidation and swelling lines, respectively. 

Therefore A and K can be used for both isotropically consolidated and one-dimensionally 

consolidated soils. 

The undrained shear strength Cu is also given by Eq. 2.52. But the critical pressure is 

obtained as follows. For the rate-type model, Pc is obtained from Eqs 2.37, 2.42 and 2.56 through 2.60 

with the aid of Figs. 2.14. It is given by 
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i (l 2 ll" J~( 1 - Kl'A. ) p -- + •,ic 2 
Pc= OCR --- [ Xnc + 1 ] 

1 + 2 K0 c 

2 
2 2 ( 1 - Knc) 

X =-------nc 3 2 2 
Nc ( 1 + 2 Knc) 

(2.61) 

(2.62) 

(2.63) 

In contrast, the critical pressure predicted from the modified Cam-clay and the bounding surface 

model is obtained from Eq. 2.29. It is given by 

( 1 - KIA ) 

= . [ OCR (1 + 2 ¾c J ]( 1 
- KIA 1 R ( 1 + ( R - 1 l x;c ) l 

Pc P1 R 1 + 2 K J ~ 2 
1 + ( R - 1) 1 +R(R-2)xnc (2.64) 

or 

( J ) ( 1 - KIA ) 
K/A l 0 

Pc= Pi 3R (2.65) 

Again, R is equal to 2 for the modified Cam-clay model. 

SECTION 2.6 Comparison Of Model Predictions 

In this section, two sets of test results will be used to evaluated the performance of the soil 

models. The first set of test results is obtained from triaxial compression tests and direct simple 

shear tests on normally consolidated (undisturbed) Drammen clay. The model parameters evaluated 

from results of triaxial compression tests will then be used in the soil models to predict the results of 

the direct simple shear tests. The second set of the test results is obtained from triaxial compression 

and extension tests on normally to heavily over consolidated ( remoulded) Kaolin. 

2.6.1 Triaxial Tests 

(i) Drammen Clay 

Shown in Figs. 2.15 and 2.16 are triaxial compression test results of isotropic normally 

consolidated Drammen clay. The soil was consolidated up to 400 kpa before being sheared to failure. 

Typical properties of this soil have been summarized in Table 2.1. This set of test results is 

available from Anderson (1976), Eekelen and Potts(1978) and from Dyvik et al.(1987). 

The results predicted from all three soil models are also shown in Figs 2.15 and 2.16 for 

comparisons. The selected model parameters for the models have been summarized in Tables 2.2 to 

2.3. It is notable that, in this case, for isotropic normally consolidated soils, the predicted results of 
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the bounding surface model will be identical to that of the modified Cam-clay model if the selected 

bounding surface model parameter R is taken to be 2 instead of 2.55 . 

From results given in Figs. 2.15 and 2.16, we find that both the bounding surface model and 

the rate-type model predict the test results reasonably well. However, the modified Cam-clay 

model overestimates the failure strength of the soil and predicts the effective stress path to be 

significantly different from the measured results at high stress levels. 

(ii) Kaolin 

The test soil that we consider here is normally to heavily over-consolidated Kaolin, 

reported by Banerjee and Stipho(1978,1979). The soil was fully remoulded into a slurry and was 

subsequently allowed to consolidate vertically in a special consolidation cell. Specimens of 

diameter 7.5cm by 15cm in height were trimmed from the consolidated samples. Each specimen was 

installed in a triaxial cell for further consolidation to a predetermined isotropic consolidation 

pressure. For overconsolidated tests, the specimens were allowed to swell isotropically from the 

normally consolidated state. Typical properties of this soil, reported by Banerjee and Stipho, are 

summarized in Table 2.4. Further, the initial pressure Pi, overconsolidation ratio OCR, and the void 

ratio for all these specimens are summarized in Tables 2.5 and 2.6. 

Shown in Figs. 2.17 to 2.26 are triaxial compression and extension test results reported by 

Banerjee and Stipho(1978,1979). All tests were conducted under stress controlled conditions. The cell 

pressure was held constant during shearing (i.e., the total radial stress remains constant), while the 

applied total vertical stress was increased or decreased for triaxial compression or extension, 

respectively. 

This set of test results was previously used to verify the modified Cam-clay model by 

Banerjee and Stipho(1978), and the bounding surface model by Dafalias and Herrmann(1980). In 

their work, the G modulus has been assumed to be function of h and was evaluated from Eq. 2.22b. 

However, in this work we assume G is constant and evaluate the G value from the initial slope of 

the deviatoric stress and strain curves (q vs ea) as has been summarized in Tables 2.5 and 2.6. All the 

necessary parameters for these three soil models have been summarized in Tables 2.7 to 2.9. In Table 

2.7, the bounding surface model parameter te/tchas been taken to 1.5 [ instead of 2 used by Dafalias 

and Herrmann(1980)] to provide a reasonably close prediction to the triaxial extension test results. 

Note that the elementary assumptions of both the modified Cam-clay model and the rate-type 

model make N independent of the Lode angle. We therefore assumed Ne is equal to Ne for these two 

models. 

The results predicted by these three models are compared with the measur~¢-~~~ts in 
' I 

Figs. 2.17 to 2.26. It is found that the modified Cam-clay model predicts unrealistit tl'nsile strrsses 

for samples with OCR larger than 5, and thus these results will be rejected. From Fj_p. 2. l 7tcf 2.26, 

we note that 



26 

(a) The bounding surface model 

-The sophisticated bounding surface model provided remarkable predictions to all test 

results of the normally to heavily overconsolidated Kaolin. 

--In these comparisons, the deviatoric failure stresses q are predicted quite close to the 

measured results from both triaxial compression and extension tests. Because this model 

allows the N value to depend upon the Lode angle and the critical pressure Pc can be 

adjusted by the parameter R to provide reasonable deviatoric failure stresses to fit the 

test results. 

--Since the shape of the response curves may be adjusted by the parameter t0 te, Ac, R and 

n, a wide range of possible responses are covered by this model to fit the test results. 

(b)The rate-type model 

--In the comparisons of model response with triaxial compression test results, response of 

the rate type model compared favourably with the test results. However, as the failure 

stress is a.pproached, stiffer response deviating from measured results were obtained. 

Therefore, we find that, in this range, the rate-type model trends to overestimate or 

underestimate the pore pressure response for lightly or heavily overconsolidated clays 

respectively. 

--The model response compares less favourably with extension test results. This is mainly 

attributed to the basic model assumption that the strength parameter M is determined 

from Ne, Eq. 2.38, for all conditions. Thus the rate-type model provided better 

predictions for triaxial compression results than for extension results. 

I 

--This model demonstrated that it captured some realistic features of the real soil response 

and it provided reasonable predictions for normally to heavily over-consolidated clays. 

:<c)The modified Cam-clay model 

-This model suffered excessive strength softening in predicting the response for heavily 

overconsolidated soils. 

--The model significantly over-predicted the deviatoric failure stresses in these 

comparisons. However, it may be improved by allowing the from of elliptic yield surface 

to be controlled by an additional parameter (i.e., such as the form of Eq. 2.29 of the 

bounding surface model). 

-The model was less successful in these comparisons, but it also demonstrated the 

capability to capture' some salient features of the response of normally to lightly over 

consolidated clay. 

- This model requires fewer parameters than does the bounding surface model, therefore, in 

many cases where insufficient test results exist to evaluate the model parameters for 

more sophisticated models, the modified Cam-clay model remains an efficient model to 
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provide comprehensive studies on general geotechnical engineering problems for 

normally to lightly over-consolidated clays. 

2.6.2 Direct Simple Shear Tests 

In section 2.6.1, the soil models are verified under conditions where the directions of the 

principal stresses remain unchanged during the tests. In the case of simple shear conditions (i.e., 

plane strain deformation ), rotations of the principal stress axes will occur during shearing. The 

direct simple shear test is one of the standard soil tests that is capable of applying this condition. 

Therefore in this section, we will attempt to predict the simple shear test results. 

The test results that we consider here are available from Dyvik et al.(1987). The test soil 

is undisturbed Drammen clay. The soil properties have been summarized in Table 2.1. Circular 

specimens were consolidated under one-dimensional conditions. The consolidation pressure, O'znc, is 

equal to 255kpa which is about twice the in situ preconsolidation stress. The measured value of Knc 

is 0.49 which agrees well with that predicted from Eq. 2.57. During the test, the specimen was 

sheared allowing for shear distortion, 'Yxz , in the horizontal direction and the applied total 

vertical stress was held constant. The pore pressure and horizontal shear stress, O'xz, were measured. 

In modelling these tests, we assume that the stress condition and shear distortion of the 

specimen in a direct simple shear device are identical to those in an idealized simple shear strain 

conditions as shown in Fig. 2.27. Ideally, the direct simple shear test should develope a condition of 

uniform simple shear strain in the sample under undrained conditions. However, inside the direct 

simple shear device, the complementary shear stress may not be developed on the vertical sides of 

the specimen, and slippage may occur between the clay sample and the upper and lower cap. Hence, 

the stress conditions in the specimen may be different from those in an idealized simple shear strain 

conditions. 

Figs. 2.28 to 2.30 compare predictions of the soil models with the test results. The required 

model parameters have been shown in Table 2.1. Both the modified Cam-clay model and the 

bounding surface model require numerical integration. Fortunately, analytic solution for the rate­

type model for this problem are possible and are summarized in Appendix (B). Predicted results 

indicate that all three soil models over-estimate the horizontal shear stress, O'xz· However, the 

bounding surface model provides a better prediction to the test results than the other two models. 

The difference between the predicted and measured results may be due to 

(a)Lack of complementary shear stresses developed on the vertical sides of the specimen 

and, more important, the stress conditions in the specimen during the test which are, in 

general, non-uniform [ Airey and Wood (1987)]. These may alter the distributions of 

shear and effective normal stresses and prevent the idealized simple shear strain 

conditions from taking place during the test. 

(b)Strength anisotropy exhibited by the soil has not been incorporated in both the 

modified Cam-clay model and the rate-type model (i.e., the deviatorn ,;tress at failure 
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is the same in both triaxial and simple shear strain conditions). Therefore these two 

models significantly over-estimate the soil strength under simpie shear strain 

conditions. 

The bounding surface model allows the predicted soil strength to vary depending upon the 

loading stress path (i.e., N depends upon the Lode angle). However, we find that because the 

bounding surface model follows an associative flow rule, the Lode angle of the stress state at failure 

is governed by the shape of the bounding surface in the deviatoric plane, or by the ratio n=Ne/Nc· 

Similar findings have been extensively discussed by Eekelen (1980) and Potts and Gens (1984). We 

note that the Lode angle is zero when n=l, the stress condition corresponding to the intermediate 

principal stress being equal to the mean value of the major and minor principal stresses. From above 

analysis, we selected n=0.72, the predicted Lode angle of the stress state at failure is approximately 

equal to 19° as shown in Fig. 2.31. Therefore the predicted deviatoric stress at failure in plane strain 

deformation is not significantly different from that in triaxial compression conditions. The model 

predicts the deviatoric stress at failure in simple shear conditions is lower than that in triaxial 

compression conditions, and provides a better prediction of O'xz than the other two models. However, 

a 25% over prediction of measured crxz has been found. 

SECTION 2.7 Summary 

In this section, the modified Cam-clay model, the bounding surface model and the rate­

type model have been studied. All three soil models consider that the soil is an isotropj$,ma~rial. 

Anisotropy has not been included within these models. Only the rate-type model empltyes t~i~ co­

rotational stress rate and thus may not be restricted to small deformation problems. In trt_~/dass of 

simple boundary value problems that we have considered here, analytic solutions have been 

obtained from the rate-type model while the other two models require numerical integration. The 

rate-type model has been criticized in that it violates the conditions of continuity. However, we 

have found that any discontinuities in both loading and unloading equations of this model vanish __ 

for isochronic or undrained deformation problems. Also, this model may be valid to describe cyclic · 1; 
/,' 

response of soils under undrained conditions if unloading and reloading reversal is not significant. : 1 

The model predictions have been compared with test results in triaxial and simple shear 

strain conditions. In the case of triaxial conditions, the bounding surface model provides remarkable 

predictions to fit all test results of normally to heavily over-consolidated soils. However, the 

bounding surface model requires more model parameters, which need sufficient test results to be 

evaluated than that of the modified Cam-clay model and the rate-type model. The rate-type 

model predicts reasonable results for the normally to heavily over-consolidated soils. The 

predictions of the modified Cam-clay model are less successful in these comparisons, and are 

restricted to the application to normally to lightly over-consolidated soils. 
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In comparisons of the model predictions with truely undrained direct simple shear test 

results, both the modified Cam-clay model and the rate-type model significantly over-estimate 

the measured horizontal shear stress. This is mainly because the ~xtended von Mises failure 

criterion has been adopted in these two model. Since the bounding surface model allows the 

projection of the bounding surface model on the deviatoric stress plane or the 7t plane to be adjusted 

by inclusion of the Lode angle, more reasonable results than those of the modified Cam-clay model 

and the rate-type model have been achieved. 

The disadvantage of the modified Cam-clay model shown in these comparisons can be 

easily removed by changing the shape of the yield surface on both the 'wet' and 'dry' side of the 

critical state. However, the model parameters required by both the modified Cam-clay model and 

the rate-type model are essentialiy similar. The advantages demonstrated by the rate-i.ype model 

may indicate that it may be an alternative for the modified Cam-clay model especially for 

undrained deformation problems. The bounding surface model provides more reasonable responsy­

than do the other two models, but it requires numerous model parameters. The rate-type model and 

the modified Cam-clay model are useful because of the few parameters which need to be specified 

in order that the model may be used. 
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Material Parameters 

A, 0.14 

1( 0.05 

<l>c 300 

Ne 0326 

¾c 0.49 

liquid limit 55 

plasticity index 28 

natural water 45% 

content 

Table 2.1 Soil properties of Drammen clay , 

( after Eekelen 1978, Dyvik 1987) 

triaxial compression 

test 

G ( kpa) 16000.0 

Pi ( kpa) 400.0 

O'zi (kpa) 400.0 

ei 1.02 

simple shear 

test 

13000.0 

168.3 

255.0 

1.15 

Table 2.2 Initial conditions of Drammen clay for undrained triaxial compression 
and simple shear tests. 

triaxial compression simple shear 

test test 

Pc ( kpa) 200.0 119.0 

M (kpa) 195.0 117.0 

Table 2.3 Rate-type model parameters for Drammen clay 
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Material Parameters 

'A 0.14 

K 0.05 

Ne 0.231 

Ne 0.286 

Table 2.4 Soil properties of Kaolin, ( after Banerjee & Stipho, 1978). 

OCR Po Pi G ~ 

(kpa) ( kpa) {kpa) 

1 366.0 366.0 10650.0 0.94 

12 366.0 304.0 6350.0 0.95 

5 380.0 76.0 2750.0 0.95 

8 386.0 48.0 1670.0 0.95 

12 413.0 35.0 1100.0 0.95 

Table 2.5 Initial conditions of Kaolin for undrained triaxial compression tests, 
( after Banerjee & Stipho, 1978 ,1979 ). 

OCR Po Pi G Eq 

(kpa) ( kpa) (kpa) 

1 414.0 414.0 11000.0 0.93 

1.2 414.0 345.0 10150.0 0.93 

6 551.0 92.0 3675.0 0.95 

10 414.0 41.4 1932.0 0.95 

Table 2.6 Initial conditions of Kaolin for undrained triaxial extension tests, 
( after Banerjee & Stipho, 1978 ,1979 ). 
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Model Parameters 

n 0.8 

Ac 0.085 

tc 11.0 

te/tc 1.5 

R 2.6 

Table 2.7 Bounding surface model parameters for Kaolin, 
( after Dafalias & Herrmann 1980 ). 

-
OCR Pc (kpa) M (kpa) 

1 183.0 157.0 

1.2 171.0 147.0 

5 107.0 92.0 

8 92.0 79.0 

12 85.0 73.0 

Table 2.8 Rate-Type model parameters for Kaolin, ( undrained triaxial 
compression tests ). 

-
OCR Pc M 

(kpa) ( kpa) 

1 207.0 178.0 

1.2 194.0 166:0 

6 145.0 124.0 

10 91.0 78.0 

Table 2.9 Rate-Type model parameters for Kaolin, ( undrained triaxial 
extension tests). 
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Figure 2.3 State boundary surface in p - q plane. 
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Figure 2.5 Projection of the failure surfaces on 1t plane. 
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Figure 2.8 Relationship between critical pressure and equivalent pressure in 
e - In p plane. 

Figure 2.9 Elliptic yield surface of the rate-type model in p - ✓ h plane. 
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Figure 2.10 Deviatoric stress and axial strain response of the rate-type model 
under undrained triaxial and cyclic loading conditions. 
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Figure 2.11 Effective pressure and axial strain response of the rate-type model 
under undrained triaxial and cyclic loading conditions. 
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Figure 2.13 Pore pressure and axial strain response of the rate-type model 
for heavily overconsolidated soil under triaxial and cyclic 
loading conditions. 
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Figure 2.15 Predicted and measured stress-strain curves for undrained triaxial 
test on normally consolidated Drammen clay. 
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Figure 2.16 Predicted and measured effective stress path for undrained 
triaxial test on normally consolidated Drammen clay. 
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direct simple shear test on one-dimensionally normally 
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CHAPTER THREE 

EFFECTS OF PILE INSTALLATION: 

The Cylindrical Cavity Expansion Approach and The Simple Pile Method 

SECTION 3.1 Introduction 

It has long been recognized that pile driving processes may significantly alter the initial 

stress state in a soil. Pile driving in saturated clay generates significant pore pressure in surrounding 

soils and may cause remoulding around the pile (see for example: Lo and Stermac 1965, Koizumi and 

Ito 1967, Bakholdin and Bolshakov 1973, Meyerhof 1976). Dissipation of pore water pressure 

follows immediately after pile driving. At completion of the reconsolidation process, a gain in soil 

shear strength around the pile may govern the ultimate capacity ( Kraft 1982, Kirby et.al 1983). 

Traditional pile design methods which have been used to estimate pile shaft capacity 

largely rely on empirical coefficients deduced from limited numbers of full scale pile test results in 

various soil conditions. Various factors (i.e., details of pile installation, pile type, and soil type, 

etc) affecting the subsequent load carrying capacity are included"in these empirical coefficients. 

Among these factors, the effect of pile installation in soils appeared to be important. Recently 

developed effective stress methods in predicting pile shaft capacity (Focht and Kraft 1981, Kraft 

et.al 1982, Kirby et.al 1983) employ a theoretical approach to investigate the effect of the pile 

driving on subsequent shaft capacity. Hence, in this section, we will briefly review some empirical 

and theoretical pile design methods, and then we discuss the recently developed methods in 

simulating the pile installation effects in soils. 

The popular empirical "a." method for pile design work (Tomlinson 1971, API 1981) relates 

the limiting ski~ frict~n the pile shaft to the average in-situ undrained shear strength&) of 

clay over each soillayer by an empirical 'adhesion factor a.'. API 1981 defined the value of a. to 

range from 1 for soft clay to 0.5 for stiff clay. The value of Cu is normally determined from unconfined 

compression tests. Tomlinson (1971) analyzed 93 pile load test results. He concluded that drag down 

of overlying soil into a lower layer may affect the skin friction developed between the pile and the 

soil. He therefore considered that a. is a function of soil profile, average undrained strength and 

penetration depth of the pile. The effects of pile installation, subsequent reconsolidation, and pile 

length effects, as well as other factors are lumped in this adhesion factor. Thus the choice of the 

value a in practical pile design work depends largely upon judgement and experience of the design 

engineer. 

Burland (1973) considered that the limiting skin friction at the pile shaft for driven piles 

is governed by effective stress at the pile-soil interface. For a normally consolidated clay, he 

deduced a simple expression correlating the limiting skin friction to the in-situ average effective 

overburden pressure O"zi by a factor " ~ " which depends upon the coefficient of lateral earth pressure 
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at rest and angle of friction between pile material and soil. This method is the so called "13 " 
method. Meyerhof (1976) extended this concept to predict driven pile shaft capacity in 

overconsolidated clay. However, it might be expected that after pile installation the coefficient of 

lateral earth pressure on the pile shaft may be differ from the coefficient of lateral earth pressure 

at rest. From pile test results on soft to stiff clay, Tomlinson (1971) found that at a greater depth, 

failure due to vertical pile loading was found to have occurred in the soil and not at the pile-soil 

interface. The rupture surface in the soil was comprised of numerous vertical laminations similar to 

those occurring in one dimensionally normally consolidated clay in the simple shear test at large 

strain (Randolph and Wroth 1981, Airey and Wood 1987). Therefore, the pile material may have a 

comparatively minor effect on ultimate pile capacity. 

Relying on the concept of Rankine passive earth pressure theory, Vijayvergiya and Focht 

(1972) estimated the skin friction for long pile explicitly with inclusion of the effect of initial 

overconsoldation of soil through the ratio of Cu/ O'zi by a dimensionless coefficient A. The values of A 

are evaluated based on 47 load tests on pipe piles embedded in clays. This method is referred to as 

the "A " method and is claimed to be especially useful in offshore pile design. However, the stress 

state in soil after pile installation may not be similar to that in a Rankine passive state. Therefore, 

this correlation between the pile shaft capacity and soil state appears arbitrary. 

The a, 13 and A methods have been widely used in both past and current design practice. 

However, individual effects (such as details of pile driving, reconsolidation, pile length, etc) on 

pile shaft capacity are not fully understood, while all these factors have been lumped in the 

coefficients a, 13 or A, 

Details of pile installation (i.e., jacking, driving and pre-drilled pilot holes, etc.) may 

have considerable influence in subsequent pile shaft capacity. Especially for overconsolidated stiff 

clay, based on some field evidence obtained by excavating soil from around piles after pile loading 

to failure, Tomlinson (1971) found that the effects of lateral vibrations or movement (i.e., whipping) 

of the pile during driving may form a gap between the soil and the upper part of the pile. Water 

and debris infiltration may close the gap with little adhesion between pile and soil, or result in a 

lack of pile-soil contact. However, the pile and soil at a greater depths remain in good bonding 

contact. A tightly-adhering clay coating on the pile shaft was discovered. This may be due to high 

constraining pressures on pile movement at greater depths. For piles in overconsolidated soils, it can 

be found from Aurora et.al (1980) and O'Neill et.al (1982a,b) that pile driving generally results in a 

very low skin friction to undrained shear strength ratio at the upper part of the embedded pile 

length. Tests results of jacked piles in overconsolidated clay reported by Cooke (1979) indicate that 

the effect of pile lateral movement is less severe for jacked piles than for driven piles. 

Originated by the petroleum industry in 1970's, based on the concept of critical state soil 

mechanics and a modified Cam-clay model, Randolph et.al (1978a, b) and Wroth et.al (1978) 

carried out a systematic approach to simulate the stress changes in soil due to pile driving and 

reconsolidation. In their work, pile driving was represented by a cylindncal cavity expansion 
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problem, while drainage during reconsolidation was assumed to occur in the radial direction only 

with no straining of the soil in the vertical and hoop directions. These assumptions are based on the 

consideration that at a greater depth pile whipping and surface effocts due to pile driving may 

vanish. The pile tip effect in soil has also been ignored. This concept has been used to develop new 

generation pile capacity models (Focht and Kraft 1981, Kraft 1982, Kirby et.al 1983) to estimate 

pile shaft capacity for offshore piles. However, the cylindrical cavity expansion method may not 

correctly include the strain path history of the surrounding soil caused by pile advancement. 

Therefore it may be questionable that cavity expansion methods can provide sufficient details of 

pile driving effects. 

Baligh (1984, 1985) introduced the so-called "simple pile method". He considered that in 

the case of the deep penetration problem, the strain field around the rigid 'simple pile' may be 

determined by an ideal fluid flow field. This method may be used to investigate the effects of pile 

driving, since the complicated strain path experienced by the soil due to pile advancement is given 

in advance. However, the simple pile method is an approximation, because the strain field around 

the simple pile has been assumed identical to that in an ideal fluid. 

Both the cylindrical cavity expansion approach and the simple pile method are efficient 

in investigating effects of pile driving in the sense that no complicated numerical procedure is 

required. Therefore, it is our attempt in this chapter to study the solutions of these two methods and 

compare their results with existing test results. 

The rate-type model (Davis and Mullenger 1979) will be used to represent the soil in this 

chapter. This model is a rate-independent soil model, the strain rate effects and strain softening 

characteristics in soils under undrained conditions are not incorporated. The rate-type model may 

not, in general, provide sufficient flexibility to model any particular soil. Nevertheless, the model 

was built within the frame work of the critical state soil mechanics. It requires fewer model 

parameters than many other soil models and it possesses some salient response features exhibited by 

many soils as we have shown in chapter two. Therefore, the rate-type model becomes a useful tool in 

this work to investigate the pile driving problem. 

The strain, effective stress and pore pressure fields in a infinite soil mass predicted from 

the cylindrical cavity expansion approach and the simple pile method will be compared in this 

chapter. Pile driving is considered as steady driving or steady pile penetration. 
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SECTION 3.2 The Deformation Field 

3.2.1 General 

Palmer (1972) and Vesic (1972) considered an infinite cylindrical cavity expanding from an 

finite radius in infinite soil mass. This method has previously been used to determine the in-situ soil 

properties from results of pressuremeter tests (Ladanyi 1972, Windle an<l Wroth 1977). Also, the 

method has been used to study pile driving effects in surrounding soils by other researchers 

(Butterfield and Bannerjee 1970, Desai 1978, Wroth et.al 1979, Kraft et.al 1982). Ignoring the 

precise detail of soil movement near the pile tip due to pile advancement and assuming soil 

particles are displaced radially outward only, the one dimensional idealized cylindrical cavity 

expansion provided a simplified approach to the study of pile driving effects. Since pile drivinb 

displaces the soil rapidly, the saturated soil can be assumed incompressible. The strain field during 

cylindrical cavity expansion is predetermined and is independent of shearing characteristics of 

soils. Because of this simplification, analytic solutions for this problem are sometimes possible using 

soil models with various degree of complexity (Vesic 1972, Prevost and Hoeg 1975, Davis et.al 1984). 

In contrast to the cavity expansion methods, Baligh (1984, 1985) introduced the 'simple 

pile solution' to investigate the deep penetration problem in saturated soft clay. He considered that 

in the case of deep penetration, the strain field around the pile tip is not very sensitive to soil 

behaviour because of high constraint in the surrounding soil. Therefore he assumed that the deep 

penetration problem is essentially strain controlled. This is contrary to the shallow foundation 

problem where it is basically stress controlled (Lambe 1967, Lambe and Marr 1979). The simple pile 

method may be used to simulate pile installation effects. This method retained the advantages of 

the cavity expansion approach in that the problem is completely strain-controlled. The simple pile 

method incorporates the strain path history of the soil as it passes around the so-called 'simple 

pile' without over-complicating the problem. The strain field around the simple pile is determined 

by superposition of solutions of a spherical source and a uniform flow field within an ideal fluid. 

This is the so-called 'Rankine half-body' problem in fluid mechanics (Eskinazi 1962). The velocity 

field around the simple pile is also predetermined. It follows that the stress field can be 

immediately obtained from the adopted constitutive relationship without using complicated 

numerical methods. 

The major disadvantage is that the simple pile method determines the strain field within 

the fluid without considering the constitutive relation or shearing responses of the medium and 

therefore the strain field is an approximation and will not provide a stress field which in general 

satisfies the equilibrium conditions. Further, the surface roughness of the simple pile has not been 

considered, therefore realistic pile-soil behaviour may not be predicted. This will be investigated 

in this work. 
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In concurrent developments, the strain field around a driven pile, sampling tube or 

penetration cone with various end conditions may be found in Levadoux and Baligh (1980), Baligh 

(1985) and Tumay et.al (1985, 1986). 

3.2.2 Cylindrical Cavity: Expansion 

A solution for the strain field resulting from a cylindrical cavity expansion in the infinite 

soil mass is available in Davis et.al (1984). The results given there are summarized in this section. 

The sign convention of strain components in a cylindrical coordinate system is shown in Fig. 3.1 for 

our later illustration. The sign convention we define here is choosen to coincide with that which 

will be used in the 'simple pile method'. 

We consider an infinite length cylindrical cavity with its center located on the z axis, 

expanding from zero radius to a cavity with radius a at time t. We assume that expansion occurs 

sufficiently rapidly so that no drainage in the soil is allowed and thus incompressibility is implied. 

After expansion, a particle initially located at a0 has moved radially outward to a position 

r=r(a0,t). The relationship between a0 and r, is given by, as shown in Fig. 3.2, 

2 2 2 
r =ao+a (3.1) 

where a is the radius of the cavity and is a function of time t. From Eq. 3.1, we note that only radial 

deformation will occur in the soil mass. The radial velocity of the particle is given by 

differentiating Eq. 3.1 . It is 

a • 
vr =- a 

r (3.2) 

In a cylindrical coordinate system, with compressive deformation considered to be positive, the non­

zero components of the rate of deformation tensor obtained from Eq. 3.2 are given by 

d VT 
D =--

rr a r 
VT 

Dee=--; 

(3.3) 

where the subscript 0 denotes the tangential or the hoop component. For an incompressible material, 

the continuity equation (Malvern 1969) requires that Dkk = O.Applying this condition to Eq. 3.3, we 

obtain 

, 0 Vr Vr 
/;=--=-a r r . (3.4) 

Using Eqs. 3.1 and 3.2 and integrating Eq. 3.4, the natural radial strain Srr and hoop strain See in the 

soil are given by 

I;=-<; =-~,l-a2] rr 99 2 2 
r (3.5) 
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We note that infinite strain results on the cavity surface. The strain field in the soil mass is 

described by the analytic expression in Eq. 3.5. 

3.2.3 Simple Pile Penetration 

In this section, we describe the strain field around the so-called 'Simple pile' following 

the development of Baligh (1984, 1985). The usual sign convention adopted in penetration problems, 

considering the positive z-direction pointing upward and the origin of coordinates near the pile tip, 

will be used in this chapter. 

To investigate the deep penetration problem, Baligh (1984) considered a semi-infinite 

slender object being pushed into an infinite soil mass. He represented the soil deformation during 

penetration by inserting a spherical source into a uniform flow field of an ideal fluid with constant 

velocity V z in the z direction, as shown in Figs. 3.3. and 3.4. The spherical source discharges an 

incompressible material at a volumetric rate VR. The pile shaft radius is then given by 

a2= VR/ (rcV z). In a cylindrical coordinate system, the non-zero velocity components are given by 

where 

and 

2 
a Yz 

vr= --sin q> 
2 

4p 

2 
a Yz 

V z = -- cos <p + V z 
2 

4p 

2 2 2 
p =r + z 

-1 
<p = tan ( r / z ) 

(3.6) 

(3.7) 

(3.8) 

Here, vr and Vz denote the velocity components of soil in rand z directions respectively. The stream 

line of a soil particle initially located at a0 may be obtained from integration of Eqs. 3.6. This is 

given by 

r2 ai 1 
- = - + - ( 1 + cos cp ) 
2 2 2 a a (3.9) 

Here, we have used the boundary condition r = a0 at cp = re to obtain Eq. 3.9. As the soil particle moves 

along the stream line, the angle <p changes from 1t to 0. The shape of the simple pile is also 

described by Eq. 3.9 by setting a0 to zero, as shown in Fig. 3.4. We find that the simple pile tip is 

located at z=-0.Sa below the origin of the coordinate system. The pile radius increases from zero at 

the tip to a at a distance far above the tip in the z direction. The deformation field described by Eqs . 
. ~I 

p',ff to 3.9 is well known in fluid mechanics; the Rankine half body problem. Since the flow 

considered is nonviscous, the flow in the internal part of the Rankine body can be considered solid 

without altering the configuration of the flow on the outside. 
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Considering compressive deformation to be positive and using soil velocity components 

given in Eqs. 3.6, the components of the rate of deformation tensor in the soil mass are given by 

2 
a Vz 2 2 

Drr = -- ( 2 sin <p - cos <p ) 
3 

4p 
2 

a Yz 
D =---00 3 

4p 

2 
a Yz 2 2 

Dzz = --3 ( 2 cos <p - sin <p ) 

4p 

o,, ~ lv:(~,in 2· l 
4p 

(3.10) 

The components of the spin tensor Wij are all zero. Therefore, the flow field is irrotational. 

Variation of the components of the rate of deformation tensor with respect to angle <pare depicted in 

Fig. 3.5. Integration of Eqs. 3.10 along each stream line gives the natural strain components Srr, See, 
Szz and Srz experienced by a soil particle. 

We have shown the stream lines of three soil particles initially located at a0 =0.2, 1 and 

3a, respectively, beneath the simple pile tip in Fig. 3.4. The strain paths experienced by these three 

particles are shown in Fig. 3.6. The final strain predicted by the cylindrical expansion approach are 

also given in Fig. 3.6 for comparison. For soil particles with a0 larger than 3a, the strain path is 

basically similar to that experienced by the particle at a0 =3a but it experiences a lower strain 

level. From these results, we note that 

(a) Approximately within the range from <p =165° to 1800,a region beneath the tip, the 

strain field is found to be similar to that found in undrained triaxial compression 

conditions, where Srr = See =-Szzl 2. This is similar to the findings given in Baligh 

(1985). 

(b) Only the hoop strain Saa decreases monotonically during the penetration process. This is 

because after the particle has passed around the tip, the radial distance between the 

pa,rticle and the pile shaft is reduced. In order to maintain constant volume, the soil 

mass has to expand laterally. This is similar to the cylindrical cavity expansion. 

(c) As the soil particle moves along the stream line, the radial strain Srr reverses from 

extension to compression. Far behind the tip, for a soil particle initially located at 

a0>a, the strain components Srr and Sae approximately arrive at the final strain values 

predicted by the cylindrical cavity expansion approach. This does not imply that the 

simple pile method and cylindrical cavity expansion approach will predict similar 

stress fields because the stress state of a soil particle is strain path dependent. 

(d) The soil particles were compressed vertically beneath the tip; however, reversal of 

vertical strain Szz may bring the particles to an extension state as motion occurs along 

the stream line. Note that in the far field (say a0 ~3a), Szz vanish above the tip. In 
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contrast, the cylindrical cavity expansion approach assumes no vertical deformation 

occurs everywhere within the soil mass. 

(e) The shear strain Srz reaches its maximum value at <p =90°. Far above the tip, as <p 

approaches zero, Srz approaches zero in the far field while in the near field, Srz 

approaches a finite value despite Drz approaching zero at <p =0. 

It is notable that the strain field is completely independent of the uniform flow velocity, 

V z, and the strain level depends upon the particle position, r and z only. Thus the strain field 

around the simple pile is rate independent. 

For engineering purposes, the quantity called the octahedral shear strain, Yoct, is often used 

as a measure of deviatoric strain level. Here, Yoct is defined by 

(3.11) 

The octahedral shear strain around the simple pile is shown in Fig. 3.7. From this result we note 

that Yoct is increasing monotonically for each stream line without reversing level. 

In this section we have briefly reviewed some particular characteristics of the strain field 

obtained from the simple pile method. The strain field around the 'simple pile' has been studied 

extensively by Baligh (1985). For further details, the reader is referred to original references cited 

above. 

Finally, we note from Fig. 3.4, the simple pile shape may initially appear to be 

unrealistic for most driven piles. In fact, the shape may be a reasonable representation. Soil 

conditions beneath a flat-ended pile after driving into dense sands and clays as reported by the BCP 

committee (1972) and by Randolph et.al (1979) are shown in Fig. 3.8 and Fig. 3.9, respectively. We 

note that a core of soil was formed beneath the pile tip. Similar findings from model jacked piles in 

soft clay can also be found in Vesic (1977). Vesic (1977) suggested that during driving, the soil 

beneath a flat ended pile is carried downward from the upper soil layers. A relatively rigid core is 

formed beneath the pile tip. Considering the soil core beneath the tip, we see that the tip condition 

of a flat ended pile may be similar to that of the simple pile. Therefore, from a practical point of 

view, the idealized shape of the simple pile may remain a valid approximation to model a flat 

ended pile. However, the resulting stresses around the simple pile require further investigation in a 

later section. 
I 
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SECTION 3.3 The Effective Stress Field 

3.3.1 Stress and Strain Relationship due to Cylindrical Cavity Expansion 

Following Davis et.al (1984), we use the following dimensionless stress components 

1 1 
5 .. = ✓-----= ( CJ .. - Pc o .. ) = -- ( CJ .. - Pc o .. ) 

lJ 2 M 1J lJ 2 Cus 1J lJ (3.12) 

where Sij are the components of the dimensionless stress tensor. Using Eq. 3.12 in the undrained 

loading equation 2.44 for the rate-type model, we obtain the following expression for the loading 

equation 
,~ 
Sij = ~ [ Dij - 2 Sij ( SmnDmn)] 

Upon unloading, the form of Eq. 2.47 becomes 
I) 

s .. - r:i. n .. 
lj - t-' lj 

where the co-rotational stress rate is given by 

,~ . 
Sij = 8ij - Wimsmj + 8im Wmj 

The term Srnn Dmn in Eq. 3.13 is the stress power. 

(3.13) 

(3.14) 

(3.15) 

It is convenient at this point to introduce dimensionless stress invariants for this model. 

They are 

- 1 
P=3Skk 

- * * J2 = 8ij 8ij 
\ 

(3.16) 
* 

sij = sij - Poij 

where st denotes the deviatoric part of Sij· Here, P is the first invariant of Sij and J2 is the second 

invariant of st. It is notable that the initial pressure P has the form of Eq. 2.49 expressed as Pi. Soil 

arrives at the critical state when P=O and f2= 0.5. Use of these two dimensionless invariant forms 

will simplify later comparisons. 

Davis et.al (1984) assumed the dimensionless effective stresses due to cylindrical cavity 

expansion have the form 

((J Ut /,, 7 

(3.17) 

The sign convention of stress components in a cylindrical coordinate system is also shown in Fig. 3.10. 

The dimensionless total stress Tij is related to the effective stress Sij by 

T .. = S· · + U o .. 
lj lj lj (3.18) 
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where U is the dimensionless pore pressure given by 

(3.19) 

Suppose the initial dimensionless effective stresses when time t= 0 are given by 

(3.20) 

where the subscript i denotes initial state. Since no unloading occurs during expansion, only the 

loading equation 3.13 will be used. Integration of Eq. 3.13 with the use of Eqs.3.3, to 3.5 and 3.17 as 

well as 3.20, leads to the following analytic expressions for the dimensionless effective stresses. 

1 
see=-

2 

(3.21a) 

(3.21b) 

(3.21c) 

To illustrate stress changes in soils due to a cylindrical cavity expansion, we have adopted 

two dimensionless initial stress conditions, i\= 0.5 and -0.5, for lightly and heavily over­

consolidated soils, respectively, with p =50 and 200. The results are shown in Figs. 3.11 and 3.12. We 

find 

\,/ 

(a) Inside the critical state region, the effective stress is only affected by the undrained shear 

" strength and effective angle of friction at the critical state. The stresses are completely 

independent of the initial stress state and the soil rigidity. 

(b) Remote from the critical state region, the hoop stress See trends to reduce because the soil 

mass expands laterally. The radial stress Srr increases due to radial compression caused by 

the outward movement of the soil particles. 

(c) Throughout the soil mass, the vertical stress remains the intermediate principal stress. 

The radial stress and the hoop stress are major and minor principal stresses, respectively. 

For one-dimensionally consolidated soils, this may occur only in the critical state region. 
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(d) For heavily overconsolidated soils, dil~tion trends to increase the radial effective stress 

around the pile shaft. 

3.3.2 Stress and Strain Relationship due to Simple Pile Penetration 

In this section, we will use the rate-type model to investigate the stress field around a 

simple pile. The results obtained here will also be compared with Baligh's existing solutions. The 

shortcomings of the 'simple pile' method will be investigated. 

(i) Stress and Strain Relationship 

During a simple pile penetration, four non-zero dimensionless stress components in a 

cylindrical coordinate system are present. They are 

(3.22) 

Using the components of the rate of deformation tensor, Eq. 3.10, and the dimensionless 

stress tensor, Eq. 3.22, in the constitutive equation 3.13 or 3.14, it is possible to obtain the stress and 

strain relationship in the soil by integrating along each stream line, Eqs. 3.9. However, analytic 

solutions may not be obtained, and numerical integration is required. The details of integration to 

obtain the stress field around the simple pile are summarized in Appendix (D). 

(ii) Soil Parameters 

Baligh (1986a) used a hyperbolic elastic-perfectly plastic model to investigate the 

penetration of a simple pile in Boston Blue clay. We will use the rate-type model and compare the 

deviatoric stress field around the simple pile with Baligh's (1986a) results. Note that the 

hyperbolic model is a total stress model. Before yielding occurs, the model predicts non-linear 

elastic soil response. Soil yielding is defined by the von-Mises yield criterion. The post-yield 

behaviour of the soil follows the associative flow rule. Since the hyperbolic model is an elastic­

perfectly plastic model, we assume the soil arrives at the critical state when yielding occurs. This 

model cannot predict the total pressure in the soil, therefore the total pressure must be determined 

from equilibrium considerations. Further, the effective stress in the soil cannot be predicted by this 

model, thus an additional pore pressure model (Bishop and Henkel 1964, Baligh 1986b) is required 

in determining the effective stress and pore pressure. 

Baligh (1986a) used the test results of resedimented Boston Blue clay to evaluate soil 

parameters for the hyperbolic model. The samples were isotropically normally consolidated before 

being sheared to failure. All samples were tested under undrained triaxial compression or extension 

conditions.The results are shown in Figs.3.13 and 3.14. Baligh (1986a) made two assumptions. 

(a) The isotropic consolidation pressure p1 is equal to 3Cus. 
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(b) The non-linear elastic response of the hyperbolic model is controlled by varying the 

soil rigidity from p =1000 at the beginning of the loading process to P =20 when 

yielding occurs. 

The response of the hyperbolic model is also shown in Figs.3.13 and 3.14. 

In evaluating the model parameters for the rate type model, we assume an effective angle 

of friction in triaxial compression of <l>c =28°. Using Eqs. 2.37, 2.38, and 2.49, we find the dimensionless 

initial effective pressure i\ = 0.78, which also gives Pi"" 3Cus. We have chosen p =200 for the rate­

type model. The response of the rate-type model is also illustrated in Figs.3.13 and 3.14. 

Comparisons in these figures indicate 

(a) Reasonable agreement is obtained from the prediction of the rate-type model in 

triaxial compression, while the hyperbolic model predicts a higher initial stiffness 

for the sample. 

(b) Both models predicted the deviatoric stress, q, at failure close to the test results in 

triaxial compression as they were selected to match the test results. 

(c) The rate-type model predicts soil failure at a lower strain level while the hyperbolic 

model predicts failure at a higher strain level. 

(d) Both models are isotropic in the sense they predict identical magnitude of deviatoric 

failure stress in both triaxial compression and extension conditions. Therefore both 

models over-predict the extension failure stress. However, the hyperbolic model 

exhibits better agreement for the test result at low strain level (-ea <0.1 %) than does 

the rate-type model. 

(iii) Stress Distribution 

Fig. 3.15 shows the dimensionless deviatoric stress ✓f2 contours around the simple pile 

evaluated from the rate-type model and from the hyperbolic model available from Baligh(1986a). 

The selected parameters i\=0.78 and p =200 have been used for the rate-type model. Comparing 

these figures, we find 

(a) The size of the critical state region predicted from the rate-type model covers a larger 

region than that from the hyperbolic model. This is because the rate-type model 

approaches critical state at a lower strain level. 

(b) Both models predicted similar ✓f2 distribution at the contour level ✓f2 =0.6. 

(c) Outside the region bounded by the ✓f2 =0.6 contour, the hyperbolic model predicts 

higher ✓f2 levels than are predicted by the rate-type model. This is mainly due to the 

fact that the initial soil rigidity of the hyperbolic model is five times larger than the 

value selected for the rate-type model. 

(d) Assuming initially isotropic stress conditions throughout the soil mass no soil particle 

experiences a decrease in ✓f2 • No unloading occurs in the rate-type model (the stress 

power Sij Dij remains larger than zero). 
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The effective stress distribution around the simple pile is not predicted from Baligh's 

hyperbolic model. We therefore only present the results obtained from the rate-type model for 

Boston Blue clay in Fig 3.16. In order to illustrate the effects of stress history, the effective stress 

around the simple pile for a soil with initial isotropic overconsolidated stress state, f\ =-0.25 and ~ 

=200 (which approximately corresponds to a one-dimensionally overconsolidated soil with <l>c=28° 

and OCR=3 ) are also shown in Fig. 3.17. It is noted that the deviatoric stress ✓f2 contours and the 

shear stress Srz contours around the simple pile are independent of initial isotropic stress state. 

Results obtained from Figs.3.16 and 3.17indicate 

(a) Within four pile radii around the pile, well inside the critical state region, the effective 

stress distributions are identical for both normally and over-consolidated soils; the 

soil history has been completely erased in this region. This is slighty different to the 

results of the cavity expansion appproach as we have mentioned in section 3.3.1 

where the "erasing" of stress history covers the entire critical state region. 

(b) Around the pile shaft, both Srr and Saa are less than the value of the Szz stress 

component; this is significantly different from the result for the cylindrical cavity 

expansion. 

(c) Beneath the tip, soil failure occurs in a triaxial compression mode. 

Results obtained above appear different to those evaluated from the cavity expansion approach as 

may be expected. It is notable that simple pile penetration predicts non-zero shear stresses in the 

surrounding soil. Beneath the tip, negative shear stress indicate that inner soil particles are being 

pushed down with respect to outer particles. However, close to the pile shaft, the Srz stress 

component changes sign. This implies that the shear stress may produce "tensile " stress in the pile 

at some distance above the tip. Therefore, we will first investigate the stress changes along the 

stream line predicted by the rate-type model. Later we will consider the effective stress distribution 

and surface tractions to evaluate the effectiveness of the simple pile model. Further evaluation of 

the simple pile method in predicting penetration resistance will be shown in a later section where 

the solution for pore pressure is found. 
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(iv) Stress Changes along a Stream Line 

In order to investigate the stress changes along a stream line using the rate-type model, 

we will use the following variables to represent the components of deviatoric stress as proposed in 

Baligh (1986a). 

81 = ff. [ Szz -} ( Srr + See ) ] 
- 1 
s2 = ✓2 ( srr - see ) 

(3.23) 

s3 = ✓2 8rz 
We note that 

(3.24) 

From the deviatoric stress tensor, Sij, in Eqs. 3.16 , we find that 51 denotes a measure of vertical 

deviatoric stress, s:vand 52 represents the difference of deviatoric stress components s!r and s!a in 

the radial and hoop directions. S3 measures the stress due to simple shear. As we have 
- -demonstrated in section 3.3.1 for the cylindrical cavity expansion approach, S1 and S3 are zero for -soils with initial isotropic stress conditions. Therefore S2 is a measure of the deviatoric stress due to 

cylindrical cavity expansion. It should be noted that the stress paths of the 51, 52 and 53 

components and the deviatoric stress components st of Eq. 3.16 predicted from the rate-type model 

are independent of the isotropic initial stress state in the soil. 

To illustrate stress changes along the stream line we have choosen three soil particles 

initially located at a0=1, 10, and 20a respectively. ~ is choosen to be 200 as used for a Boston Blue clay. 

With reference to the ✓f2 contours given in Fig. 3.15(b), the particle initially located at a0 =a remains 

close to the pile, well inside the critical state region. The stream line of the particle with a0 =10a 

passes outside the edge of the critical state region. The particle with a0 =20a is sheared to a ✓f2 level 

about half of that experienced by the particle at a0 =lO)and is mainly within the elastic range , 

Results for deviatoric stress components S1, S2 and S3 for each soil particle moving along 

each of the stream lines are plotted against the angle <pin Figs. 3.18. From these figures, we note 

(a) For soil beneath the tip, the action of simple pile penetration is similar to a 

combination of vertical compression and cylindrical cavity expansion. 

(b) Close to the pile shaft, the cavity expansion stress Sz and the vertical compression 

stress S1 arrive at their maximum and minimum values at <p =90° respectively. The 
-shear stress vanishes near this depth. Far above the tip (as <p approaches zero), the S2 

component nearly vanishes. 

(c) As the soil particle initially located at a0 =lOa moves along the stream line, significant 

reversal of 51 and 83 occurs. However, for <p < 90°, the effect of 51 is significantly 

reduced, and the stress state is mainly governed by the cavity expansion strl's~ 52 and 

shear stress Srz· 
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(d) The soil response experienced by the particle initially located at a0 =20a is mainly 

elastic. When the soil particle moves above the tip, both S1 and S3 become negligible 

small and the stress state is dominated by the cylindrical cavity expansion stress Si· 

The above results predicted from the rate-type model are very similar to those findings 

discussed in Baligh (1986a} for soils response outside the critical state region (a0 >10a). But the 

results we obtain here indicate that the shear stress component S3 for the soil particle initially 

located at a0=a does not reduce to a negligibly small value when q> approaches zero. Therefore,a 

further investigation of the effective stress distribution along the "simple-pile" shaft is given 

below. 

Figs.3.19 show the effective stress distribution along the pile shaft. Values of soil rigidity 

of J3 =10, 100, 200 are used. Since soil failure beneath the pile tip (i.e., q> =180°) occurs in a triaxial 

compression state, Srr =S80 = - Szz/2, independent of soil rigidity and initial stress state, the stress 

states for all three cases at q> = 180° are the same. These results are obtained by numerical 

integration. Soil with J3 equal to 10 corresponds to a very soft clay while a soil with J3 equal to 200 

corresponds to a medium stiff clay. From these figures we find that 

(a) Within the region between q> values of 145° and 180°, the soil rigidity has no effect on 

the effective stress distribution (i.e., around the tip). 

(b} As the soil moves along the shaft, the shear stress, Srv reverses sign from negative to 

positive at 90°. 

(c) For the J3= 10 case, the residual value of shear stress Srz as q> approaches zero exceeds 

60% of the undrained shear strength, Cus. When J3 increases the residual value of Srz 

reduces but remains finite. 

(d) For a stiffer clay, the stress state at a depth far above the tip is similar to a triaxial 

compression state. 

Also, comparing Figs. 3.19 with Fig.3.5, we realize that the effective stresses along the pile shaft 

are directly related to the components of rate of deformation, Dij" 

The shear stress, Srv in the range between q> equal to 900 and 180° appeared reasonable as it 

may provide an upward resistance to the simple pile during penetration. But, above the tip, the 

shear stress is unrealistic. Our results are different from the analytic solution obtained by Baligh 

(1986a).The difference mainly lies in the fact thflt Baligh ignored the importance of the elastic 

strain rate in his model; resulting in a rigid plastic constitutive relationship. However, the results 

given here demonstrate that the elastic strain rate must not be ignored. In fact, the similarity 

between the stress distribution and the rate of deformation components clearly suggests that a more 

accurate velocity field model is required for the penetration problem. 
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(v) Surface Tractions 

The surface roughness has not been incorporated into consideration of the simple pile 

method. The stress distribution along the simple pile is directly governed by the soil model and the 

velocity field determined from the ideal fluid. It is possible to directly evaluate the surface 

tractions acting on the simple pile. 

......:::.. 
We consider the unit normal vector, NV, to the simple pile as shown in Fig. 3.20, 

_.::., _. ....,, 
NV=cosµi-sinµk (3.25) 
....,. _,, 

in which i and k are the unit vectors in positiver and z directions, respectively. Here,µ, represents 

the slope angle of the simple pile and is obtained from Eq. 3.9. It has the form of 

tanµ= 

( 1 a2 cos <p l 2+----
2 -- y (3.26) 

where 

1 2 
y= 2 ( 1 + cos <p ) ( 1 + cot <p ) 

(3.27) 

Let the normal and shear tractions due to the effective stresses crnv and 'tnv be non-dimensionalized by 

the following expressions. 

and 

Cinv - Pc 2 . 2 . 
Scr = --- = Srr cos µ + S22 sm µ - Srz sm 2µ 

2Cus 

'tnv 1 
S = -- = - ( Srr - Szz ) sin 2µ + Srz cos 2µ 

't 2 Cus 2 

(3.28) 

(3.29) 

where Sa and 5-c are dimensionless normal and shear tractions, respectively. The directions of crnv and 

'tnv are indicated in Fig. 3.20. 

Using the effective stress distribution along the pile given in Figs 3.19 and Eqs. 3.26 to 3.29, 

the surface tractions Sa and S-c for soils with p = 10, 100 and 200 are shown in Figs. 3.21. Note that 

negative S0 does not necessary imply tensile normal stress, but it implies that normal traction is less 

than the critical pressure of soils. Figs. 3.21 indicate that 

(a) The simple pile methods results in relatively low effective normal stress acting on the 

pile shaft ( when q> ~ 40°). 

(b) The shear traction is acting downward along the pile everywhere. 

(c) A maximum downward shear traction as high as 85% of Cus is found. 

(d) For soft clay, the downward shear traction is significantly higher than for stiff clay. 

These results demonstrate that the shear traction on the pile surface> will eventually 

produce a tensile stress in the pile at some distance above the tip. This is physic,1'1,· unacceptable. 
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Furthermore, the resulting surface condition does not correspond to a smooth pile condition; this is 

contrary to the discussion given in Baligh (1986a). The idea of the simple pile method is founded 

upon the assumption that the velocity field in soft clay due to pile penetration can be closely 

approximated by that in an ideal fluid flow. However, we have found that an unrealistic 

downward shear traction results the effect for a soft clay is significantly higher than that in a 

stiffer clay. 
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SECTION 3.4 Pore Pressures 

During undrained deformation, changes in effective stress in the soil mass will normally be 

associated with changes in pore water pressure. Since the rate-type model is an effective stress soil 

model, the pore pressure in the soil mass must be determined from equilibrium considerations. In this 

section, we will investigate the pore pressure distribution evaluated from both the cylindrical 

cavity expansion method and the simple pile method. 

3.4.1 Equilibrium Consideration 

Equilibrium of the undrained deformation problem is governed by the total stress, Tii' 

Eq.3.18. We may assume that the dimensionless pore pressure U is composed of two parts. They are 

where 

and 

.6.u 
~U=-

2Cus 

u· 1 
U·=-

1 2Cus 

(3.30) 

(3.31) 

(3.32) 

Here, ti U is the dimensionless excess pore pressure due to shearing and Ui is the dimensionless 

initial pore pressure in the soil. Ui may be a function of r and z in a cylindrical coordinate system, but 

we will assume it is a constant. For axially symmetric problems, assuming zero body forces and using 

Eqs.3.18 and 3.30, we arrive at the following two equilibrium equations. In the r direction 

a ,i U ( a Srr a Srz 1 ) * 
-- = - - + -- + - < srr -see ) = f ar ar az r (3.33) 

and in the z direction 

(3.34) 

In general, integration of either Eqs.3.33 and 3.34 along the r or z direction, respectively, would lead 

to a solution for tiU in the soil mass. A unique solution for L'1U can be obtained from Eqs.3.33 or 3.34 

only when the following condition is satisfied. 

ar* a g* 
az-~ (3.35) 

However, if Eq.3.35 is not satisfied, then equilibrium is violated and the solution for tiU is not 

unique but is integration path dependent. 
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3.4.2 Pore Pressure Around a Cylindrical Cavity 

During cylindrical cavity expansion in an infinite soil mass, the equation of equilibrium in 

the z direction is trivially satisfied. Thus the excess pore pressure, AU, is uniquely determined from 

the equation of equilibrium in the r direction, Eq. 3.33. Using the effective stresses given in Eqs. 3.21 

for the rate-type model, we can evaluate AU by carrying out the integration of Eq. 3.33. The 

theoretical boundary condition for this problem is AU = 0 at 00• However, the analytic solution for 

AU may not be obtained even through analytic expressions for the effective stress distribution have 

been found. Thus, we have carried out the integration numerically. 

The excess pore pressure associated with the effective stress field for the initial conditions 

we have used in the cylindrical cavity expansion problem, section 3.3.1, are given in Figs.3.22 a.ii.d 

3.23, from which we note that 

(a) Cylindrical cavity expansion generates higher AU in normally or lightly over­

consolidated soil than in heavily over-consolidated soil. 

(b) Heavily over-consolidated soil exhibits slightly negative excess pore water pressure 

outside the critical state region, while lightly over-consolidated soils exhibit 

positive excess pore water pressure everywhere. 

(c) The generated AU distribution in the soil decreases log-linearly as r increases. Thus 

large generated pore pressure can only exist close to the pile shaft. 

(d) As soil rigidity increases, the generated AU increases as expected. 

3.4.3 Pore Pressure Around the Simple Pile 

In this section, we will first compare the so-called 'shear induced pore pressure' predicted 

by the rate-type model with that measured in Boston Blue clay under triaxial conditions and results 

obtained by Baligh's (1986b)" shear induced pore pressure model". The excess pore pressure around 

a simple pile obtained by the rate-type model will then be investigated, and these results will also 

be compared with Baligh's existing solution (1986b). 

(i) Shear Induced Pore Pressure 

Baligh's (1986a) hyperbolic model is a total stress model, hence he requires an additional 

so-called shear induced pore pressure model to determine the excess pore pressure in the soil. More 

precisely, the so-called "shear induced pore pressure", Au5, is the difference in effective pressure 

before and during shearing. Therefore, when ~ ~ffective stress model is used, the effective pressure 

and excess pore pressure during shearing can be directly predicted. However, if a total stress model 

is used, the excess pore pressure is composed of two parts: (1) the increase in total pressure which is 

determined from equilibrium considerations and (2) the shear induced pore pressure. 

Fig.3.24 shows the 'shear induced pore pressure' measured for Boston Blue clay under 

triaxial conditions as reported in Baligh (1986b). Since the test results for Au5 in Boston Blue clay are 
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similar in both triaxial compression and extension conditions, we only show the triaxial compression 

results here. Baligh (1986b) used these results to evaluate the values of two soil parameters for the 

shear induced pore pressure model. His shear induced pore pressure model predicts equal magnitudes 

of <1u8 in both triaxial compression and extension conditions. This feature is similar to the rate-type 

model. Thus only the prediction of the rate-type model and results of Baligh(1986b) for triaxial 

compression conditions are shown for comparison, but we note that no additional soil parameters are 

required for the rate-type model in predicting the shear induced pore pressure. Fig. 3.24 shows that 

(a) The rate-type model over-estimates <1u5 when the axial strain Ea is less than 3.5% and 

it under-estimates '1u5 for Ea greater than 3.5%. 

(b) Baligh's shear induced pore pressure model gives a better fit to the test results. This is 

expected since two additional soil parameters are used. 

(ii) Integration Path 

Unlike the cylindrical cavity expansion approach, the equation of equilibrium in the z­

direction is not trivially satisfied by the simple pile method. The terms in the right hand of 

equilibrium equations 3.33 and 3.34 may be obtained from the known effective stresses for the rate­

type model. However, since analytic expressions for the effective stresses around the simple pile are 

not obtained from the rate-type model, the partial derivatives of the effective stress components in 

Eqs. 3.33 and 3.34 must be estimated by using numerical differentiation. The numerical 

differentiation scheme that we have used in this problem provides the exact solution for a 

quadratic function. In regions close to the pile tip, where high gradients of stress occur, intervals of 

increment in the r and z directions have been taken to be 0.025a for numerical differentiation. 

Recalling that the strain field around the simple pile is approximated by an ideal flow 

field, it follows that the effective stress associated with this strain field will in general not satisfy 

the condition of equilibrium, Eq. 3.35. The resulting value of <1U evaluated from Eqs.3.33 and 3.34 is 

integration path dependent. Therefore we will use two integration schemes and compare the 

resulting <1U distribution around the simple pile. The integration schemes we will use are 

(1) Integrating both of Eqs.3.33 and 3.34 along the stream line of each soil element 

(2) Carrying out the integration of only Eq.3.33 along the r-direction, as discussed by 

Levadoux and Baligh(1980). 

The discrepancy between the resulting .1U values estimated from the above integration schemes may 

be a good measure of the validity of equilibrium for this problem. 

When the integration is carried out along the steam line, it is necessary to obtain .1 U from 

the following expression. 

a(L\U) a(bU) 
d ( bU) = a r dr + a z dz (3.36) 
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Note that Eq.3.36 is mainly governed by the term cl(AU)/oz, because the stream lines are basically 

vertical except in the region close to the tip. 

When the excess pore pressure is to be determined from the eqmlibrium equation 3.33 in the 

r-direction only, we find that it is convenient to evaluate the term AU+Srr directly from the 

integration of Eq.3.33. The AU distribution is then obtained from the known effective stress field Srr. 

This is because only one numerical differentiation for the term asrz/clz is required. 

Finally we will assume the boundary condition AU =0 at z=-200a and r=200a where the 

theoretical boundary condition at z=-= and r= oo, is imposed. 

(iii) Results 

Figs. 3.25 show the excess pore pressures resulting from both integration schemes mentioned 

in section 3.4.3(ii). The soil parameters evaluated from the isotropically normally consolidated 

Boston Blue clay for the rate-type model have been used. From Figs. 3.25 we note that 

(a) For depl:h z<-6a and r> 15a, reasonable agreement for AU is found from both integration 

schemes. This indicates that equilibrium is essentially satisfied in this region. 

(b) Within one pile radius around the pile tip, the integration scheme carried out along 

the r-direction predicts higher excess pore pressures than those obtained from the 

integration scheme carried out along the stream lines. 

(c) Inside the critical state region, integrating the equilibrium equations along the stream 

line predicts significant negative AU (i.e., Au< -3Cus) around the pile shaft. Contrary 

to this, no negative excess pore pressures are obtained by carrying out the integration in 

r-direction. 

Similar findings have also previously been reported by Levadoux and Baligh (1980). From our 

discussion given in section 3.3.2, we have found that the 'simple pile' method gives an unrealistic Srz 

distribution, especially close to the pile shaft. This results from the fact that the simple pile 

solution ignores the shearing resistance within the soil in its basic formulation. The rate of 

deformation component Drz is evidently poorly modelled leading to an incorrect shear stress Srz· 

This may be a central cause of path dependence of solutions for Au. 

It should be noted that the difference of the solutions for AU from the two integration 

schemes may be a measure of validity of equilibrium for this problem. We have found that 

significant discrepancy of AU occurs close to the pile shaft where the critical state has been 

reached. In this region, we may expect that the inaccurate shear stress distribution may also effect 

the Srr' See and Szz distributions, especially inside the critical state region. 

Further examination of the path dependence of solutions for AU can be carried out. We may 

compare the equilibrium equations 3.33 and 3.34 with reference to the effective stress contours in 

Figs. 3.16. We note that 
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(a) When we evaluate ~U from the integration along the stream line, the effect of the term 

aszz/az in the equilibrium equation 3.33 diminishes above z>8a. It follows that 

solutions for ~U are mainly governed by the term asrz;ar + Srzlr, thus slightly 

inaccuracies in Srz may directly affect the resulting LlU distribution 

(b) When equilibrium is satisfied in the r-direction only, the resulting ~U distribution is 

less affected by the Srz distribution because the term asrz/az in Eq.3.33 is generally 

small; except in the region around the pile tip. 

Of the two equilibrium equations, Eq. 3.33 is less dependent upon the shear stress Srz for 

this problem. Also, only one numerical differentiation for the term asrz/az is required. Thus the 

inherent error from numerical differentiation is minimized, and therefore the solution for ~U 

estimated from Eq.3.33 in the r-direction would in general be expected to provide a better 

approximation in this problem. Note that a similar method has also been used in Baligh (1986b) to 

estimate Ll U. 

Again, using the rate-type model, and satisfying equilibrium in r-direction, the 

dimensionless excess pore pressure of isotropically overconsolidated clay with initial state i\= -0.25 

and~ =200 which has been discussed in section 3.3.2 (iii) is given in Fig.3.26. Comparing this result 

with those in Fig.3.25(b) evaluated from the rate-type model for normally consolidated Boston Blue 

clay, we note that 

(a) No negative excess pore pressure was predicted for both soils inside the critical state 

region. 

(b) Simple pile penetration causes higher dimensionless excess pore pressure, LlU, in 

isotropically normally consolidated soil than in overconsolidated soil with the same 

rigidity. This is indicative that the shear induced pore pressure in a normally 

consolidated soil is higher than that in a overconsolidated soil,(i.e., shear induced 

pore pressure is negative for this overconsolidated soil). 

(c) Both soils show the same trend that maximum excess pore pressure is generated around 

the tip, with ~U gradual reducing in magnitude along the pile shaft. 

Further, Fig. 3.27 shows the results obtained by Baligh(1986b) using his hyperbolic soil 

model with the shear induced pore pressure relationship for Boston Blue clay. Comparing results 

given in Fig.3.27 and the prediction of the rate-type model given in Fig. 3.2S(b), we note that 

(a) Outside the critical state region state region, Baligh's results predict higher excess 

pore pressure than does the rate-type model. This is because the hyperbolic model 

predicts stiffer response at low strain level (c.f. Figs. 3.15) and thus predicts a higher 

increase in total pressure. 

(b) Along the boundary of the critical state region, both models predicted similar LlU 

distributions. 
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(c) Within the area of one pile radius around the tip, the AU distributions obtained from 

both models are similar 

(d) Along the pile shaft, the excess pore pressure predicted from the rate-type model 

decreases in magnitude gradually in the z-direction and approaches a constant value 

above z=20a. 

The discrepancies found here may be due to the numerical procedures used and individual 

features of the models. The use of either total stress or effective stress models in predicting response 

in the undrained penetration problem will have different advantages. Both the hyperbolic model 

and the rate-type model are simple in the sense that only a few model parameters and no complex 

curve fitting procedures are required to determined these soil parameters. In our calculations with 

the rate-type model, we have used three model parameters <!>, Cus and G, and one initial stress 

parameter Pi· The hyperbolic model with the shear induced pore pressure relation uses a total of 

four soil parameters and, additionally, an initial stress parameter Pi and the soil shear strength 

Cus. 

SECTION 3.5 Evaluation of the Simple Pile Method in Prediction of Penetration Resistance 

In the previous section, we found that the simple pile method results in unrealistic surface 

shear tractions, and tensile stress in the pile is inevitable. However, we also noted that the simple 

pile penetration induced significant high excess pore pressure around the pile tip, which may lead 

to high total stress around this region. Therefore, it may be interesting to investigate the maximum 

penetration resistance predicted from this method and the point at which tensile stress first occurs 

in the pile. The results obtained here may be an indication of error resulting from this method. 

Let us assume that no initial pore pressure exists in the soil and define the penetration 

resistance of the simple pile by 

1 f . Qsp = 2 [ ( O'nv + u ) sm µ - 'tnv cos µ ) d Asp 

1t a A 
sp 

J 

(3.37) 

Here Osp is the force in the pile divided by the cross sectional area of the pile shaft and has units of 

stress. Asp is the surface area of the pile which may be obtained from 

A,p = - .,2 r ✓ 1+ ,ot2 µ ( ½ ,m 'If )av 
1t 

It i{:::::v that µ is obtained from Eq.3.26. We will 

(3.38) 

use the initial stress state of the 

isotropically normally consolidated Boston Blue clay with p equal to 10, 100 and 200 to illustrate 

the results. Using Eq. 2.53 and Pi of 3Cus for this soil, the critical pressure Pc is 1.SCu" Results for Osp 

are plotted against the angle cp in Fig. 3.28. From this figure, we note that 
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(a) Tensile stress occurs in the pile when q> is less than 12°, 4.5° and 3.5° (i.e., when z is 

larger than 5, 13 and 16.Sa), for soil with p equal to 10, 100, 200, respectively. 

{b) The maximum penetration resistance Osp ranges from 5 to 9 Cus for p between 10 and 

200. This occurs approximately at q>= 400 or z=l.2a. 

Since the pile shaft radius at depth z=1.2a is approximately equal to 0.95a, we will assume that the 

region below this depth is effectively the tip of the pile and the maximum penetration resistance 

Osp corresponds to the tip resistance of the pile. It is possible to rearrange Eq. 3.37 into the following 

form. 

~p= Bcf Cus + Pi {3.39) 

where Bcf may be considered a bearing capacity factor, Terzaghi{1943). Note that Bcf determined here 

is independent of the OCR and the initial stress state for isotropically consolidated soils. Using the 

maximum value of Osp obtained above in Eq.3.39, Bcf ranges from 2 to 6 for p, ranging between 10 

and 200. These values are lower than those obtained by Vesic{1972, and 1977) using the spherical 

cavity expansion approach, but may be representative for some clays. 

Since the simple pile method predicts tensile stress in the pile at depths not far above the 

tip, the resulting effective stresses distribution close to the pile shaft may be less than reliable. 

Results obtained here warn against using the velocity field evaluated from an ideal fluid to 

approximate the response of soils. 

SECTION 3.6 Comparisons of The Methods 

3.6.1 Theoretical Solutions 

(i) Comparison of Effective Stresses 

In order to directly compare the results of the cylindrical cavity expansion approach and 

the simple pile method, we will use the results for the normally and over-consolidated soils that 

were discussed in section 3.3.2 (iii). The results of the simple pile method are evaluated at various 

depths : z=0, 5 and 20a. Comparisons for the dimensionless deviatoric stress ✓f2 and effective 

pressure Pare shown Figs.3.29. The effective stresses are given in Figs.3.30 and 3.31. These figures 

indicate the following 

(a) Despite the strain paths predicted by both methods being quite different, the deviatoric 

stress ✓j2 and effective pressure P distributions in the surrounding soil are similar. 

(b) Above the pile tip, the critical state region predicted from the simple pile method is 

only slightly larger (i.e., about 2a) than that from the cylindrical cavity expansion 

approach. 

(c) For depths of z=0 and z=Sa similarity in the effective stress distributions is found only 

in the low stress region, where soil response is mainly elastic. 
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(d) For the depth z=20a, the effective stress distributions outside the critical state region 

from both methods are very similar. 

(e) Inside the critical state region, the predicted stress distributions are quite different at 

all depths. 

Both methods have been used by recent researchers to investigate pile driving in soils. The 

simple pile method includes the pile tip effect due to pile advancement, while the cylindrical 

cavity expansion approach ignores the details of the strain path in the soil and considers the final 

radial strain only. In this study, during pile penetration, the stream lines outside the critical state 

region ( r > 15a) are essentially straight lines. Thus, in this region, the strain field determined from 

an ideal fluid may be similar to that experienced by a soil with shearing resistance, and both 

methods result in similar effective stress distributions. Inside the critical state region, especially 

within a few pile radii of the pile shaft, the strain field estimated from the simple pile method 

may not be an appropriate approximation for the strain field for a material such as soil with 

shearing resistance. Therefore, the strain and stress distribution close to the pile shaft predicted 

from both methods are suspect. Both methods retain the advantage of simplicity, with no 

sophisticated or time consuming numerical procedure required. 

(ii) Comparison of Pore Pressures 

Figs 3.32 show the excess pore pressure generated around the simple pile and a cylindrical 

cavity. The isotropically normally and overconsolidated soils mentioned in section 3.3.2 (iii) have 

again been used. The results of the simple pile method are evaluated at various depths : z=O, 5, 20 

and 50a. These results indicate that 

(a) Outside the critical state region, (r>9a), the excess pore pressure distributions 

predicted from both methods are essentially small and similar. 

(b) High excess pore pressures predicted from both methods are mainly generated within 

the critical state region. 

(c) Both methods predict similar excess pore pressure at the pile shaft near the depth 

z=Sa. Little similarity in the excess pore pressure distributions can be observed away 

from the pile shaft. 

(d) The cylindrical cavity expansion method predicts a higher excess pore pressure than 

does the simple pile method at the pile shaft, but these are lower than the excess pore 

pressures around the tip in the simple pile method. 

Here, we find that both methods predict high excess pore pressures mainly generated 

inside the critical state region. Since the excess pore pressure is mainly governed by the effective 

stress, a realistic estimate of the effective stress distribution inside the critical state region becomes 

important. However, both methods considered may not provide sufficiently good modelling to 

estimate the effective stress distribution in this region. 
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3.6.2 Field Test Results 

(i) Soil Description and Pore Pressure Measurements 

Well documented pile test results with pore pressure measurements were reported by Roy et 

al. (1981). The tests were carried out using jacked piles in a sensitive clay at St.Alban, Canada. 

Sensitivity of St.Alban clay is reported as 14 and 22 measured at 3 and 6m below the ground surface, 

respectively (Tavenas and Leroueil 1977). The soil is lightly over-consolidated. Immediately after 

pile driving, in-situ vane tests indicated a 25% to 40% decrease in undrained shear strength close to 

the pile shaft. In regions outside six pile radii, no decrease in undrained shear strength was 

indicated. 

The piles were 0.22m diameter, 7.7m long flat ended circular steel pipe. Six piles were used 

in this test. The excess pore pressure was measured by means of pore pressure cells and a piezometer 

cell beneath the tip and at various locations along the pile shaft as well as in the surrounding soil. 

Before jacking, a 0.3m diameter and 1m deep pilot hole was drilled. The free water surface was 

found at 0.45m below the ground surface. The rate of penetration was varied for each pile. Excess 

pore pressures in the surrounding soil reported by Roy et al. are obtained for the piles with rate of 

penetration approximately equal to 2cm/rnin. A 20% increase in tip resistance occurred when the 

rate of penetration was increased from 2cm/rnin to 7crn/rnin. This suggests a rate effect involved in 

penetration resistance in this soil. 

The soil profile at this site is shown in Fig.3.33. The overconsolidation ratio for the soil is 

less than 2.4 at depths below 2m from the ground surface. A ratio of shear modulus, G, to shear 

strength, Cu, in undrained conditions of 300 is suggested (Roy et al. 1981). This corresponds to~ equal 

to 260 for the rate-type model. The excess pore pressure at 3 and 6m below the ground surface was 

reported. Measurements of excess pore pressure when the tip and the shaft pass through these 

depths are also given in Figs.3.34. Roy et al. reported that the piezometer cell measured a maximum 

excess pore pressure when the pile tip is 0-2 pile radius above the cell. The excess pore pressure 

decreases and reaches an equilibrium value after the pile tip has penetrated to a depth 15 or 20 pile 

radii below the cell. This is a general feature of pore pressure predicted from the simple pile 

method as we have shown in Sec 3.4.3(iii). 

(ii) Soil-Parameters 

Tavenas and Leroueil (1977) conducted consolidated undrained triaxial compression tests on 

undisturbed St.Alban clay under various confining pressures. Their results indicate that this clay 

exhibits a peak strength at low strain levels and there is strain softening after the peak. The soil 

arrives at the critical state at very large strain levels. Although this type of response cannot be 

closely simulated by the rate-type model under undrained conditions, we estimate the rn ·, , ·-.,sary soil 

parameters directly from available information in Tavenas and Leroueil (1977), and Roy et al. 

(1981). 
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The effective angle of friction for St. Alban clay at critical state is <j> =27°, this gives 

Nc=0.29. Using Eqs.2.55 to 2.61 for the rate-type model and using the effective overburden pressure as 

well as the preconsolidation pressure from Fig.3.33, we obtain the parameters for the rate-type 

model given in Table 3.1. We note that St. Alban clay is one dimensionally lightly overconsolidated 

clay. The initial stress state of this soil is close to hydrostatic conditions. 

The coefficient of earth pressure at rest, K0 c, decreases with depth from about 0.9 at 2m to 

0.7 at 8m, Roy et al. (1981). This coincides with the K0 c value predicted from Eq.2.58. We note from 

Fig.3.33 and Table 3.1 that Eq.2.61 predicts Cu values which agree well with the in situ vane 

strength. However, vane measurements often underestimate the peak strength obtained from 

undrained triaxial tests. 

(iii) Model Predictions 

In this section, both solutions of the cylindrical cavity expansion approach and the simple 

pile method will be used to compare with the measured excess pore pressure. We have evaluated 

the excess pore pressure from the simple pile method at z=O and 20a to compare with the measured 

excess pore pressure around the pile tip and the shaft respectively. The predicted results are also 

shown in Fig.3.34 for comparison, where it can be seen that 

(a) The cylindrical cavity expansion method highly underestimates the excess pore 

pressure around the pile tip. Also, this method overestimates 6.U at the shaft but 

under estimates the excess pore pressure in regions outside 2 pile radii from the pile 

shaft. 

(b) The simple pile method predicts excess pore pressures around the pile shaft which are 

close to the measured test results. However, this method also underestimates the 

excess pore pressure by about 2Cus outside one pile radius from the tip. 

In this comparison, the simple pile method gives a better prediction for excess pore 

pressure around the pile shaft than does the cylindrical cavity expansion approach. Also, outside 

the region 3 pile radii from the pile shaft, comparing both measured and predicted t.U distributions, 

we find that the cylindrical cavity expansion method predicts excess pore pressures dissimilar to 

measured values. Although unrealistic pile soil interaction has been found, especially in regions 

close to the pile shaft in the simple pile method; the simple pile method remains a better 

approximation to the excess pore pressure distribution than does the cylindrical cavity expansion 

approach. 

SECTION 3.7 Summary 

In this chapter, two existing methods, the cylindrical cavity expansion appmc1ch and the 

simple pile method, are used to investigate pile installation effects. The rate-type mpd,·I has been 

used to represent the soil. Results obtained from both methods have been compared Also, the 

predicted pore pressure has been compared with measured field test results. 
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The cylindrical cavity expansion approach is a simple method and allows analytical 

solutions to be obtained. However, the tip effects due to pile advancement cannot be considered. 

Both the cylindrical cavity expansion and simple pile method yield similar effective stress 

distributions outside the critical state region, but quite different results inside the critical state 

region. 

The simple pile method attempts to include the tip effect, but results in unrealistic pile­

soil interaction. The surface conditions of the simple pile do not correspond to a smooth surface, but 

we have found that the surface shear traction is acting downward along the pile body and results in 

tensile stress in the pile. The simple pile method is founded upon the idea that the velocity field in 

an ideal fluid flow may be provide sufficient approximation to that in a soil due to pile penetration. 

Contrarily, we find that the unrealistic surface traction is significantly higher in soft clay than 

that in stiff clay. Because of the unrealistic shear distribution along the pile, it may be expected 

that the effective stress distribution in the critical state region may be not reliable. 

Since equilibrium conditions are violated in the simple pile method, the excess pore 

pressure is evaluated based on a selected integration path which is less reliant on the shear stress. 

From our results, high excess pore pressures are generated within the critical state region. However 

both the cylindrical cavity expansion and simple pile methods may not provide sufficiently good 

modelling of the effective stress distribution in this region and thus may affect the predicted pore 

pressure. Nevertheless, comparison of predicted pore pressures with measured field test results 

indicated that the simple pile method predicts more satisfactory results than does the cylindrical 

cavity expansion method. 



Depth (Jzi (JZI\C OCR Koc 

(m) (kpa) (kpa) 

3 20.0 48.0 2.4 0.9 

6 37.5 82.0 2.2 0.85 

Remark Eq. 2.58 

Table 3.1 Rate-type model parameters for St. Alban test site. 

Pc Cu 

( kpa) (kpa) 

19.2 10.3 

33.5 18.0 

Eq. 2.61 Eq.2.52 

Cus 

(kpa) 

11.9 

20.7 

0) 
0 
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Figure 3.1 Sign convention of strain components in a cylindrical coordinates. 
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Figure 3.2 Cylindrical cavity expansion. 
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Figure 3.4 Simple pile and stream lines. 
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Figure 3.9 
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Soil conditions beneath a flat-ended model pile in clay, 
{after Randolph et al. 1979). 
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CHAPTER FOUR 

ONE DIMENSIONAL INFINITE PILE MODEL 

In this chapter, a one-dimensional model for the axially loaded elastic pile will be 

proposed. The pile tip resistance is assumed to be negligible, therefore the pile model is applicable 

to pile-soil behaviour for a so-called 'floating' pile where no significantly stronger strata lies 

beneath the tip. Three soil models discussed in chapter two will be used to represent the soils 

around the pile shaft. The solution method for the problem will be discussed. Even though the 

pile itself is of finite length, the modelling procedure initially assumes it is infinitely long. 

Quantities of interest such as load versus displacement response and load diffusion along the pile 

length are determined by considering a finite segment of the infinite pile shaft. 

SECTION 4.1 Relationship Between Shear Traction and Pile Displacement 

Recent researchers (Randolph 1977, Ottaviani and Marchetti 1979, Potts and Martins 1982, 

Nystrom 1984) have employed finite element methods to investigate pile-soil behaviour of axially 

loaded piles. The finite element method may be used to represent the three dimensional nature of 

the pile problem, but this method requires complex solution techniques especially for elastro­

plastic soils (Nayak and Zienkiewicz 1972). Also required is a large effort on data preparation for 

computer analysis. Because of these shortcomings, we will not use the finite element method. 

Instead we assume the pile has infinite length. This assumption reduces the problem to one spatial 

dimension. From this one dimension{Jdealization, the induced shear distribution in the 

surrounding soil due to vertical pile displacement can be easily determined. It follows that the 

induced shear traction at the pile shaft and the pile displacement response, the so-called t-z curve 

(Seed and Reese 1957, Coyle and Reese 1966, Kraft et al. 1981), can be determined from the modified 

Cam-clay model, the bounding surface model, or the rate-type model. 

Davis et al. (1984) adopted the cylindrical cavity expansion to simulate pile driving effects, 

using the rate-type model to represent the soil. At the same time, Mullenger et al. (1984) 

approached the axially loaded pile problem assuming infinite pile length and a homogeneous 

stress field with no shear stress initially in the soil. Considering the initial stress conditions 

corresponding to normally and heavily over consolidated 'undisturbed' clays as well as the stress 

states of soil after cylindrical cavity expansion, Mullenger et al. (1984) demonstrated that the 

induced shear traction at the pile shaft due to pile displacement is relatively independent of the 

initial stress conditions. From Mullenger's work, we note that the vertical pile displacement will 

only seriously affect the stress state of the soil within approximately one pile radius from the pile 

shaft. For simplicity, we therefore consider only homogeneous initial stress states surrounding the 
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pile and assume a pre-existing cylindrical cavity in the "undisturbed" semi-infinite soil mass. The 

assumption that the surrounding soil is 'undisturbed' with zero shear stress may not be realistic for 

driven piles, but it does provide a simplified attempt to study the pile load behaviour of the 

axially loaded pile problem. 

In this chapter, we followtm the us{;kign convention of soil mechanics and take the z-axis 

pointing downward, and further assume all soil displacements are vertical so that the only non­

vanishing strain is 

1 d Uz 
E =---
rz 2 a r 

(4.1) 

where uz is the vertical component of displacement within the soil at a radial distance r from the 

pile axis. 

If we further assume that the gradient of total vertical stress in the z-direction is equal to 

the total unit weight of the soil, equilibrium in the z-direction requires that (Butterfield and 

Bannerjee 1970, Mullenger, et al. 1984) 

(4.2) 

where a denotes the pile radius, and (crrz)a is the induced shear traction at the pile-soil interface. 

Eq. 4.2 implies that the shear diffusion from the pile shaft to the soil in the radial direction is 

independent of soil properties. Using the modified Cam clay model, the bounding surface model or 

the rate-type model, we may construct a relationship of the following form 

(4.3) 

To arrive at Eq. 4.3 it is necessary to integrate the constitutive equations for the special case where 

Erz is the only non-zero strain. Using the rate-type model, analytic expressions for the function x<trz ) 

of soils with various initial stress conditions were obtained by Mullenger et al. (1984). From their 

results, it has been verified by Cheung (1985) that the following analytic expressions can provide a 

sufficient approximation to x<erz ) for the case of one-dimensionally normally to heavily over­

consolidated soils. This is given by 

(4.4) 

Here, p and Cus have been assumed constant and are referred to the "undisturbed" state of the soil in 

r direction. Solutions of Eq. 4.3 using the modified Cam-clay model or the bounding surface model 

require numerical integration. We have used the Runge-Kutta-Fehlberg method with equal step 

size (Burden et al. 1981) to carry out the numerical integration. Because of the high resolution power 

of this method, the accuracy of the numerical solution can be maintained at a hi~h level. 



113 

Integration of Eq. 4.1 in the r direction will lead to a relationship between vertical 

displacement uz and shear strain Erz . If that relationship is then used in Eq. 4.3; and further, Eq. 4.2 

is used to eliminate cr;z , there results an expression of the form 

(4.5) 

Also, when r is equal to a, Eq. 4.5 can be expressed as 

(4.6) 

where ~a is the displacement at the pile shaft. Here, rm is the so-called 'radius of influence'. We 

assumed uz is zero at this radius. The pile-soil displacement associated with the idea of Eqs. 4.5 und 

4.6 is depicted in Fig. 4.1. For an infinitely long pile embedded in a semi-infinite soil mass, rm should 

theoretically be infinity. However, integration of Eq. 4.5 with rm= oo leads to infinite displacement. 

Assuming an elastic soil, Randolph and Wroth (1977) analyzed a finite length pile which was 

embedded in a semi-infinite soil mass, and compared the results with that of Eq. 4.5. For 

incompressible soil, they suggested that the radius of influence could be correctly estimated by 

(4.7) 

Here, LP is the embedded pile length and the shear modulus G is assumed to vary linearly with 

depth z. 

The functional relationship between tla and (crrz)a is the so-called t-z curve. Using Eq. 4.4 of 

the rate-type model in Eq. 4.5, we may arrive at the following analytic expression 

(4.8) 

where 

C = 2 a ~ [ ( 0 rz )aj~ 
1 ~ 2 Cus 

r ✓ ~ - 1 (4.9) 

The pile shaft displacement tla is also obtained from Eqs. 4.8 and 4.9 by setting r equal to a. We note 

that Eq. 4.8 is independent of initial stress state. For the modified Cam-clay model and the 

bounding surface model, numerical integration is required to obtain Eqs. 4.5 or 4.6. 

It is noted that Eq. 4.6 may be expressed as a function of depth, z, so that it is possible to 

consider the load diffusion from the pile into non-homogeneous and layered soils and to predict the 

load-displacement response of the pile. 
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SECTION 4.2 Basic Analysis For a Single Floating Pile 

We have derived the t-z curve for the infinitely long pile in section 4.1. For pi~e problems 

with finite length, we shall consider the pile length to be a segment of the infinitely long 

idealization. 

Consider a cylindrical pile with length LP, uniform shaft radius a, and loaded with an 

axial force Q0 at the ground surface, as shown in Fig. 4.2. We assume the pile is acted upon by a field 

of uniform shear traction (crrz)a around its periphery and that the tip resistance is negligibly small. 

The surface of the pile shaft is assumed to be rough, implying perfect bonding between pile and soil. 

Vertical equilibrium of a small pile element,as shown in Fig. 4.3, is given by 

clQP 
- = -2 1t a ( cr )a a z rz 

(4.10) 

where, QP represents the axial load in the pile at depth z . Using Hooke's law, the axial strain in 

the pile is given by 

a Aa Qp 
-=--
az 8r~ (4.11) 

where 

(4.12) 

in which ai represents the inside radius if the pile is hollow and AP is the cross sectional area of the 

pile Here EP is Young's modulus of pile material. The pile displacement in Eq. 4.11 can be 

decomposed into 

(4.13) 

where AP and ~b denote the elastic shortening of the pile at depth z and pile tip displacement 

respectively. Then Eq. 4.11 becomes 

a AP Qp 
-=--
az 8r~ 

The boundary conditions for a floating pile are 

Op< o) = Oo 

Op<½,)= o 

AP( LP)= 0 

(4.14) 

(4.15) 

(4.16) 

(4.17} 

Once the t-z curve of Eq. 4.6 and the pile tip displacement Ab are known, integration of Eqs. 

4.10 and 4.14 with the use of Eq. 4.13 will yield 

(a) The load diffusion in the pile at any depth. 

(b) The shortening of the pile at any depth. 

(c) The pile displacement at any depth. 
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The shear traction acting on the pile shaft can be obtained from inversion of Eq. 4.6. 

Eqs. 4.10 and 4.14 must be integrated numerically, even in the case where an analytic 

representation for Aa is available. One method which has been found to be efficient is integrating 

from the pile tip to the pile head and using Eqs. 4.16 and 4.17 as initial conditions. The constant 

stiffness method (Zienkiewicz 1977) may be used to evaluate the pile tip displacement Ab which 

may be used to yield a solution Op from Eq. 4.10 satisfying the boundary condition of Eq. 4.15. 

SECTION 4.3 Summary 

In this section, a one dimensional pile model was proposed. The surrounding soil was 

assumed to be" undisturbed" due to pile driving. The t-z curves for the pile can be obtained for the 

modified Cam-clay model, the bounding surface model and the rate-type model. We have obtained 

an analytic expression for the t-z curve using the rate-type model, while the modified Cam-clay 

model and the bounding surface model require numerical integration. This pile model can be used to 

analyze the pile-soil behaviour of the finite length floating pile. 
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Figure 4.1 Vertical soil displacement in a infinite soil mass. 
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Figure 4.3 Equilibrium of a pile element in vertical direction. 
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CHAPTER FIVE 

VERIFICATION OF THEORETICAL PILE MODEL WITH TESTRESULTS 

Three pile tests previously reported in the literature are used for comparison with the 

model predictions. The first test was carried out at Hendon, in London clay, and was reported by 

Cooke et al.(1979). The second test was carried out near Houston and described by O'Neill et al. 

(1982a,b, 1983). In these two pile tests, closed end steel piles were used and were placed in heavily 

overconsolidated clay deposits. The Houston soil profile included three district strata, whereas the 

Hendon profile exhibited a more smoothly varying inhomogeneity. In both cases relatively 

complete descriptions of the soils involved are available, and shear transfer and load-displacement 

data were obtained during the tests. Since the soils are heavily over-consolidated, only the rate­

type model and the bounding surface model will be used to describe the soil response. The third pile 

test (Cox et al. 1979 & Kraft et al. 1981) involved a open-ended steel pile driven into a relatively 

uniform lightly overconsolidated soil. All three soil models can be used to represent the soil 

response. However, only the t-z curves and the load-displacement relationships during these tests 

are available for our comparisons. 

SECTION 5.1 Hendon Test Site 

5.1.1. General Description 

The pile test reported by Cooke et al. (1979) was carried out at Hendon, North London. 

London clay at this test site extends from the ground surface to a depth of 30m. The clay is heavily 

overconsolidated. Properties for this soil are available from several sources (Cooke et al. 1979, 

Windle and Wroth 1977, Marsland and Randolph 1977). The liquid limit and the plastic limit lie in 

the range 60-80 and 25-30, respectively. The water content is found to be approximately equal to the 

plastic limit. Observations at the site indicate that the free standing water table is located 0.75 to 

1.0m below the ground surface. The bulk unit weight is approximately equal to 19kN/m3• 

Three 168mm diameter closed-end steel pipe piles were used in this test. The pile wall 

thickness is 6.4mm. Young's modulus of the pile material is approximately equal to 2.1 x 108 kN/m2• 

The piles were jacked into London clay up to a depth of 4.6m. The first pile (pile "A") was load 

tested up to 80% of installation load, ten weeks after its installation. During the loading test, soil 

displacement and shear stress transfer along the pile shaft were recorded. After completion of the 

load test on pile A, the second and third test piles ("B" and "C") were then installed 500mm on each 

side of pile A. After 18 months following the installation of pile C, piles B and C were load tested to 

failure. The load-displacement curves of these two piles were also reported. 
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5.1.2 Soil Properties 

Shown in Table 5.1 is the effective angle of friction at critical state for London clay. The 

slopes of isotropic consolidation and swelling lines ').. and JC also shown are taken from Schofield and 

Wroth(1968). All these data are obtained for remoulded London clay, and will be used for the model 

predictions in our later discussion. 

The undrained shear strength, Cu, profile for the test site is shown in Fig. 5.1. The 

measured data are obtained from tests of 98mm diameter soil specimens by Cooke et al. (1979) and by 

Marsland and Randolph (1977). Fig. 5.1 suggests that Cu increases linearly from about 3SkN/m2 at 

the surface to about 90kN/m2 at a depth of 6m. 

Fig. 5.2 shows the measured shear modulus for this test site. Two sets of data have been 

shown. The first set of data are measured below a depth of 6m by Marsland and Randolph (1977) by 

means of 865mm diameter plate bearing test. The tangent and secant shear modulus were also 

measured. We have extrapolated these results to the top 6m in Fig. 5.2. The second set of data are 

available from Windle and Wroth (1977). They conducted self-boring pressuremeter tests at the test 

site and evaluated the shear modulus from the initial slope of the measured pressure vs. radial 

strain curve. Fig. 5.2 indicated that despite the anisotropic nature of this clay, Windle's results 

agree closely with the results of secant shear modulus obtained from the plate bearing test. 

Finally, the measured coefficient of lateral pressure at rest, K0 C1 available from Windle 

and Wroth is shown in Fig. 5.3. The values of Koc were calculated based on the measured pressure at 

which the membrane of the pressuremeter starts to expand radially. These values range from 1.5 to 

3.0, indicating that the soil is heavily overconsolidated. 

5.1.3 Pile Test Results 

The first test pile (pile A) was load tested up to 65kN, about 80% of its installation load, 

or about 55% of its ultimate load carrying capacity, about ten weeks after installation. The 

measured shear stress transfer and load diffusion along the pile shaft at different loading stages are 

shown in Figs. 5.4 and 5.5. 

Figs. 5.6 shows the measured soil displacements for the applied load equal to 20 and 60kN. 

The displacements are measured at depths 0.45, 1.87, 3.16 and 4.34m by means of inclinometers 

installed horizontally in the radial direction of the pile. 

Fig. 5.7 is the measured t-z curve at the working load. We construct these t-z curves based 

on the measured shear transfer and pile shaft displacement available from Cooke et al.(1979). 

However, since the pile was not loaded to failure, the complete t-z curve for this test is not known. 

Finally, we have shown in Fig. 5.8 the load-displacement response of tlw -., ·rnnd and third 

test piles B and C. These two piles were installed after finishing the loading tl'-.1 pf pile A. Also 

these two piles were load tested until failure, 18 months after installation. 
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5.1.4 Model Prediction 

(i) In Situ Stress Conditions 

Table 5.2 summarizes the values of effective overburden stress O'zi, coefficient of lateral 

earth pressure at rest K0 c, and overconsolidation ratio OCR for the top 4.6m for the Hendon site. The 

selected values of K0 c, are also compared with measure data in Fig. 5.3. The values of OCR are 

determined based on Eqs. 2.57 and 2.58. 

(ii) Undrained Shear Strength 

Predicted values of undrained shear strength, Cu, are compared with measured values in 

Fig. 5.1. We obtained these values from Eqs. 2.52 and 2.64 of the bounding surface model by assuming 

R equal to 2 and using the data available from Tables 5.1 and 5.2. Average values of Cu were used 

over 1.0m interval giving the block-like distribution shown in Fig. 5.1. Comparison of these values 

with measured results in Fig. 5.1 indicates that the predicted Cu profile agrees closely with the 

measured data. 

We will not use the rate-type model to predict the undrained shear strength profile in this 

chapter, because the predicted t-z curve, Eq. 4.8, of the rate-type model requires only two soil 

parameters, Cus and G, and also these two parameters can be easily determined from measured test 

results. However, we will adopt the predicted Cu values of the bounding surface model to evaluate 

the parameter Cus for the rate-type model to provide a consistent comparison with the bounding 

surface model. 

(iii) Shear Modulus 

Fig. 5.2 also shows the selected shear modulus profile for the top Sm at the Hendon site. 

These selected values will be adopted for our later model prediction. From Fig. 5.2, we note that the 

selected G values are higher than those resulting from the pressuremeter tests, but the selected 

values are lower than those extrapolated from results of plate bearing tests. 

(iv) Model Parameters 

Table 5.3 summarizes the model parameters required for the rate-type model while the 

initial value of Jo required by the bounding surface model is summarized in Table 5.2. Jo is calculated 

from Eqs. 2.64 and 2.65. To evaluate the model parameters for the bounding surface model, we have 

assumed that the effective angle of friction <I> is approximately the same in both triaxial 

compression and extension conditions; this gives n approximately equal to 0.8 but we have assumed 

that te=tc for simplicity. 

It would be possible to evaluate the remaining bounding surface model parameters Ac and tc 

from the predicted and measured t-z curve. However, the complete t-z curve of this test is not known, 

(only the t-z curves at low stress level is given ). We therefore evaluated these twll r;:irameters by 
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fitting the model response to agree with the rate-type model. We selected that Ac and tc equal to 

0.05 and 180 respectively. The shear stress and strain response of the two models are illustrated in 

Fig. 5.9. The responses predicted from both models are basically similar at low stress level as 

expected, but rate-type model predicts a higher failure strength. This is because the inherent 

assumption of strength isotropy for the rate-type model. 

(v) Radius of Influence 

The expression for the radius of influence given in Eq. 4.7 will be examined here. Observing 

Figs. 5.6 of the measured soil displacement, it is interesting to find that the radius of influence, rnv 

at varies depths is approximately the same. This suggests that it may be appropriate to assume 

that the radius of influence is constant throughout the pile depth. Also, we have found that th~ 

radius of influence only slightly increased, by about four pile radii, when the applied load 

increased from 20 to 60kN. 

From our selected shear modulus profile, Fig. 5.2, the ratio of G(LP/2) to G(LP) is 0.65, 

which gives rrn=45a. However, the measured soil displacements vanish at about r=22a. This 

suggests that the use of the radius of influence evaluated from Eq. 4.7 will result in overestimating 

the soil displacement in regions remote from the pile shaft in this case. Using the measured shear 

transfer along the pile shaft given in Fig. 5.5 and rrn=45a, a trial analysis was carried out. It was 

found that the calculated soil displacement using Eq. 4.5 obtained from both models only 

overestimated the pile shaft displacement about 20%, but highly overestimated the displacement 

in the surrounding soil. For this reason, we will adopt a more appropriate value of rrn=25a. 

(vi) Prediction of Shear Transfer and Soil Displacement 

Figs 5.6 and 5.7 show the comparisons between calculated and measured results. Eqs. 4.5, 4.6 

and 4.8 were used to obtain the soil displacement shown in Figs. 5.6, and the calculated t-z curves of 

Fig. 5.7 for both soil models. In Figs. 5.6, because the soil displacement and the induced shear stress 

on the shaft are measured at working load conditions ( less than 50% of the ultimate pile capacity) 

and mainly within the elastic range, both soil models predicted basically similar results and thus 

only one line will be shown. Comparisons of theoretical solutions with measured results in Figs. 5.6 

and 5.7 indicate that 

(a) For soils above 2m and at low stress levels, reasonable agreement between the predicted 

and measured displacement at the pile shaft was obtained. The soil displacements 

outside r=2a were generally overestimated; resulting from underestimation of the 

shear modulus at these shallow depths. 

(b) Below a depth of 3m, good matching between the predicted and measured 

displacements was found. 

(c) The rate-type model predicted an abrupt failure point in the calculated t-z curves. The 

failure points are marked (f). Once the failure point is reached the shear transfer 

remains constant as the pile shaft displacement increases. 
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(d) The predicted shear transfer and pile shaft displacement response from both soil 

models are essentially linear up to 75% of the maximum shear transfer. They compared 

favourably with the measured t-z curves at low stress lev~l. 

An examination of these results suggests that, at a greater depth, after pile installation 

and completion of reconsolidation, the soil shear modulus probably returns to a value close to its 

original value, perhaps with the exception of the region within 1 or 2 pile radius of the pile shaft. 

Therefore assuming a constant shear modulus in the radial direction for a jacked pile may be valid. 

On the other hand, for soils at shallow depths, perhaps because of relatively low 

confining pressure and dilatancy due to overconsolidated soils, the pile installation process 

probably causes excessive disturbance or possibly with cracks occurring in the soil in a region close to 

the pile. This may results in a significant reduction in soil shear modulus. We have used Eq. 4.8 of 

the rate-type model to calculate the soil displacement which matches the measured soil 

displacement outside r=7a for soils at depths of 0.45 and 1.87m. It was found that a G value 

approximately equal to 30MN/m2 is required. This value is close to the tangent modulus obtained 

from the plate-bearing tests. This suggests that reduction of shear modulus due to pile installation 

at shallow depths is more severe than that at greater depths. 

( vii) Prediction of Load Diffusion and Shear Transfer along the Pile 

The predicted load diffusion and shear transfer along the pile are compared with 

measured results in Figs. 5.4 and 5.5. The theoretical solutions are obtained from Eqs. 4.6, 4.10 and 

4.14. The predicted results from both soil models are essentially the same, therefore only one line 

will be shown. The eight pairs of curves shown in these figures represent values at different 

increasing applied loads. From Figs.5.4 and 5.5, we note that 

(a) In the range of working load, the tip resistance is less than 10% of the applied load. 

(b) Good agreement between predicted and measured load diffusion and shear transfer were 

obtained up to about half the ultimate load. 

From these results, we conclude that within the range of the working load, the tip 

resistance may be ignored and reliable results still be obtained. In spite of the simplicity of our one­

dimensional pile model and the assumption of initial stress state corresponds to "undisturbed" clay, 

reasonable simulation of load transfer in the range of the working load is clearly possible. Finally, 

despite the reduction in shear modulus caused by pile installation at the top 2m of the soil, the 

measured shear transfer throughout the pile depth suggests that sufficient bonding between pile and 

soil has been developed, at least up to 50% of the ultimate load. 
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(viii) Prediction of Pile Load and Displacement Response 

Illustrated in Fig. 5.8 are the predicted and measured pile load vs. head displacement "· 

response. These results indicate that the rate-type model predicts abrupt failure in the load­

displacement curves. The load-displacement curve remains relatively linear nearly to the ultimate 

load. When the failure point is reached, the curve becomes horizontal immediately. The failure 

points are marked (f) in Figs. 5.8. The predicted results from both models exhibit only slight 

differences at high stress levels. The theoretical pile model correctly predicts the pile load and 

displacement response up to about 70% of the ultimate load. Both models slightly over-predict the 

ultimate load of the test pile, possibly because limiting skin friction has not been considered in the 

theoretical pile model. In general, measurements show that when approaching the ultimate load, 

the mobilized tip resistance will increase rapidly (see for example: Brand and Juta-Sirivmgse 197'1., 

Vesic 1977).In this comparison we have ignored the tip resistance but this evidently results in the 

predicted ultimate load coming quite close to the measured ultimate load. 
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SECTION 5.2 Houston Test Site 

5.2.1 General Description 

Test results and soil descriptions are available from O'Neill et al. (1982 a, b), O'Neill 

(1983) and Heydinger and O'Neill (1986). The test involved a closely driven pile group, and two 

driven and separately tested single piles. The piles are closed-end steel pipe with 273mm outside 

diameter and 9.3mm wall thickness. All piles are driven through heavily overconsolidated clays 

and into a sandy clay. 200mm diameter and 3m deep pilot holes were drilled prior to driving the 

piles. The embedded length of all piles was 13.lm. In this study, we will consider the results 

reported for the single piles. 

5.2.2 Site Description and Soil Properties 

The Houston test site was composed of three distinct strata. The soils in these three strata 

are insensitive.Soil properties are summarized in Table 5.4. The measured undrained shear strength 

profile is shown in Fig. 5.10. The undrained shear strengths are measured by means of undrained 

triaxial tests and pressuremeter tests, while the shear modulii shown in Table 5.4 are evaluated 

from the pressuremeter test results. The angle of friction for these soils shown in Table. 5.4 are 

measured from the peak strength of the samples. The soils in strata B and C exhibited little 

effective cohesion and possibly reached the critical state, therefore the measured angle of friction 

may refer to the value at a critical state. The soil in stratum A shows an effective cohesion 

approximately equal to 20% of the measured shear strength and the soil may not be sheared to its 

critical state. Because the angle of effective friction of this soil at critical state is not available, we 

thus will adopted the reported value in our later calculation. 

Strata A and B are very stiff, saturated heavily overconsolidated Beaumant clays. The 

free standing water table was located about 2m below the ground surface. The plastic limit and 

liquid limit for stratum A are approximately equal to 10 - 15 and 35 - 50 respectively, while the 

plastic limit and liquid limit for stratum B are roughly 15 -25 and 50-70 respectively. The water 

content of these soils has been found to be about 2-8% higher than the plastic limit. 

At the top of stratum C, a 1.5m thick layer of silty clay with relatively low shear 

strength, as shown in Fig. 5.10, has been reported. Below this lies a very stiff sandy clay. The sand 

content increases from 15% to 40% moving from top to bottom of this stratum. Since no available soil 

properties for this silty clay have been reported, we will ignore the silty clay and consider that 

stratum C is composed of stiff sandy clay only. However, the existence of the silt layer does affect 

the measured pile shaft capacity in the region close to this layer, and thus will be discussed in a 

later section. The plastic limit and liquid limit of the sandy clay are 10-20 and 28-33 respectively, 

while the water content is close to the plastic limit. 
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5.2.3 Pile Test Results 

Fig. 5.11 shows the load-displacement response of the test piles. The load-displacement 

response is taken from the combined data of two single piles during loading tests. Two response 

curves are shown in Fig. 5.11. The response curve exhibiting the lower load capacity is taken from 

the pile test (test 1) which was carried out 18 days after pile installation. The second curve is also 

obtained from these two piles, but from a later test (test 2) carried out 90 days after completion of 

test 1, (or 108 days after installation). 

The load diffusion and shear transfer along the pile at working load, 273KN, are shown in 

Figs. 5.12 and 5.13, respectively. These reported results were obtained from test 1. The shear transfer 

measured when the pile plunged to failure, and the maximum shear transfer adjacent to pile 

occurring at various loading stages, are shown in Fig 5.14. It should be noted that the residual stress 

which occurs at the pile-soil interface has been excluded from the test results that we have 

summarized in this section. 

Finally, illustrated in Figs. 5.15 are the measured t-z curves for stratum A to Cat depths 

1.5, 4.5 and 11.Sm below the ground surface. These curves were obtained from test 1. 

5.2.4 Model Predictions 

(i) Prediction of Undrained Shear Strength 

Summarized in Table 5.5 are the selected soil parameters for the Houston soils. The ratio 

n=N elN c is evaluated based on the assumption that the effective angle of friction <I> is 

approximately the same in both triaxial compression and extension conditions. 

The unit weight of the test site soil was 20.1 ±0.8kN/m3 and relationships for K0 c and OCR 

were reported as 

¾c = 3.Sz-0,55 

OCR = 16.0z-o,ss 

for depths z in excess of 3m. Using Eq. 2.64 and assuming the parameter R = 2, the predicted 

undrained shear strength is directly compared .with experimental values in Fig.5.10. Measured 

strengths seemed to agree well with calculated values except in stratum A. The relatively high 

measured strength in stratum A is possibly due to drying of the surface soils. 

(ii) Model Parameters 

The model parameters prepared for the rate-type and the bounding surface models are 

summarized in Table 5.6. In this section, we maintained the assumption te=tc ,similar to that 

discussed in section 5.1.4, for the bounding surface model. We evaluated the parameters Ac and tc by 

adjusting the response curve which will later give a close simulation to the measured t-z curve and 

by comparing its response with that of the rate-type model. Using data in Tables 5.5 and 5.6, the 
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shear stress and strain response at three selected depths, 1.5, 4.5 and 11.Sm, where the t-z curves are 

measured, for both models.are illustrated in Figs. 5.16. From these results, we note that the rate­

type model provides relatively stiff response compared with the bounding surface model. The rate­

type model predicts that the stress state arrives at the critical state at very low strain levels, 

while the bounding surface model predicts the stress state approaches the critical state at 

relatively high strain levels. 

(iii) Prediction of Shaft Displacement and Shear Transfer 

Before we establish the shaft displacement and shear transfer curves from the soil models, 

it is necessary to reexamine the radius of influence of Eq. 4.7 for this pile test. We will assume that 

the radius of influence is constant throughout the pile depth. Using Eq. 4.7 and the r:i.tio 

G(~/2) /G(~) equals 0.61, and the radius of influence is given by rm=lOm or 75a. No measurements of 

soil displacement during these tests has been reported, however O'Neill (1982b) has measured 

displacements around a pile group during loading tests at this test site. These results suggest that 

the soil displacement during the loading test may vanish at a distance about 6-7m from the edge of 

the pile group. Since the size of the pile group is significantly larger than the radius of the single 

pile, we estimate that the radius of influence for a single pile in this soil may not be larger than rm 

= 6m or rm=45a. Therefore, rm=45a will be used in establishing the t-z curves from the soil models. 

Shown in Figs. 5.15 are the shear transfer and shaft displacement responses predicted from 

the two soil models. These theoretical solutions are also directly compared with measured results 

at depths 1.5, 4.5 and 11.5m. Comparing these results, we note that 

(a) All theoretical solutions significantly overestimate the maximum shear transfer at the 

pile shaft,except at depth 4.5m for soils in stratum B. 

(b) The rate-type model gives better predictions at low stress levels than does the bounding 

surface model. 

(c) The bounding surface model provides a smooth transition from the initial loading state 

to the ultimate stress state, while an abruptly failure point is predicted by the rate­

type model. 

From the measure t-z curve at depth 1.5m, a significant degradation of shear transfer is 

apparent as the shaft displacement increases after the peak shear transfer. This probably suggests 

slipping between pile and soil occurs at this depth. Contrary to this, the measured t-z curves at 

greater depths indicate no significant degradation in shear transfer after the peak was reached. 

This observation may imply that the soils at a greater depth were strained to a state close to the 

critical state so that large deformation could not cause significant reductions in shear transfer. 

The theoretical shear transfer and pile displacement at depths 4.5 and 11.5m can be 

improved to give a closer fit to the measured t-z curves by doubling in-situ measured value of the 

shear modulus. This probably implies that the pressuremeter test underestimated the in-situ soil 

modulus for these soils. 
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A trial calculation with increased radius of influence from rm=45a to rm=75a only increased 

by 15% the predicted shaft displacement at the same shear stress level. This suggests that Eq. 4.7 

giving the radius of influence proposed by Randolph and Werth (1977), remains a valid 

approximation for soil displacement calculations at the pile shaft. 

The overestimation of maximum shear transfer at the pile shaft results mainly due to the 

fact that we assumed the soil is undisturbed. Therefore effects in the soil due to pile installation 

and subsequent consolidation have not been incorporated in our one-dimensional pile model. 

(iv) Prediction of Pile Load and Displacement Response 

Illustrated in Fig. 5.11 are comparisons of theoretical solutions of pile load and 

displacement response with measured test results. 

The theoretical solutions resulting from both models again show only slight differences at 

high stress levels. The theoretical solutions compare favourably with test results obtained from 

test 2 ( tested 108 days after pile installation), while significantly overestimating the ultimate 

load measured from test 1. 

Surprisingly, in spite of the simple assumptions of our theoretical model, without 

considering the actual three-dimensional pile-soil system, the theoretical solutions correctly 

predicted the pile load and displacement relationship up about 80% of the ultimate load measured 

from the pile tests. Further, the bounding surface model predicted the ultimate load quite closely. 

(v) Prediction of Load Diffusion and Shear Transfer 

The load diffusion and shear transfer along the pile predicted from both soils models and 

the measured values of test 1 at working load, 273kN, will be compared. The theoretical solutions 

are also shown in Figs. 5.12 and 5.13. Clearly, these results obtained from both soil models show 

quite good agreement with measured data. 

Comparison of predicted maximum shear transfer from the bounding surface model with 

the measured maximum shear transfer adjacent to the pile shaft at various loading stages and the 

measured shear transfer when pile plunged to failure are shown in Fig. 5.14. This result indicates 

that the bounding surface model predicts reasonable maximum shear transfer along the pile from 

stratum A and B. Over prediction of the pile shaft capacity mainly comes from overestimation of 

maximum shear transfer within stratum C. Nevertheless, the overall results appear to be reasonbly 

good. 
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SECTION 5.3 Empire Test Site 

5.3.1. General Description 

In this section, the test results from a 35.6cm (14in) diameter open-ended steel pipe pile 

will be compared with model prediction. The wall thickness of this pile was 9.5mm (0.375in). The 

pile test was conducted at a site one mile south of Empire, Louisiana. At this site, the lightly 

overconsolidated plastic Empire clay extends from a depth of 30m to 54m, (zone 1), below the ground 

surface. The pile was driven into this clay and embedded between depth 35 to 50.3m. The pile was 

tested 7 days after installation. The test results and site description are available from several 

sources (Cox, et al. 1979, Kraft, et al. 1981, Heydinger and O'Neill 1986, Azzonz and Lutz 1986). The 

t-z curves and the pile load-displacement response are available for later comparisons. 

5.3.2 Soil Properties 

Summarized in Table 5.7 are soil properties for the Empire clay. These data are available 

from Kraft et al. (1981), and from Azzonz and Lutz (1986). The plastic limit and liquid limit of this 

clay are found to be 20-27 and 80-100, respectively. The water content ranges between 40 and 50%. 

Based on measured total unit weight and static pore pressure, the effective overburden 

pressure has been found to increase linearly from 150kN /m2 at a depth 33.5m to 260kN /m2 at 50.3m. 

Fig. 5.17 shows the undrained shear strength of the clay obtained by different methods 

(Azzonz and Lutz 1986). Both results of unconsolidated-undrained (UU) and vane tests exhibit 

significant scatter, without a clear trend with depth, while the SHANSEP DSS (Direct simple 

shear) strength profile (Ladd and Foott 1974) exhibits a clear trend that the undrained strength 

increases with depth. 

5.3.3 Pile Test Results 

Figs. 5.18 shows the t-z curves measured during pile testing. These two curves represent the 

average shear transfer and shaft displacement relationship over the pile sections 40 to 45.75m and 

45.75 to 50.33m, respectively. These two curves are reproduced from Heydinger and O'Neill (1986). 

Kraft et al. (1981) analyzed stress-strain curves for Empire clay from simple shear tests, reporting 

that this clay exhibits some strain softening behaviour. However, the strain softening behaviour 

that may occur in the measured t-z curves has probably been ignored by Heydinger and O'Neill in 

their work. 

Fig 5.19 shows the load-displacement response during the compression testing. This 

measured result may involve 15% error due to malfunction in the data logging device (Kraft, et al. 

1981). This result indicates a slight amount of strain-softening behaviour. 
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5.3.4 Model Prediction 

(i) Predicted Undrained Shear Strength 

The predicted values of Cu are shown and compared with test results in Fig. 5.17. These 

values are evaluated from Eq. 2.64 for the bounding surface model, using soil properties given in 

Table 5.7 and the effective overburden pressure given in section 5.3.2. The parameter R in Eq. 2.57 

has been chosen to be 2.75 while the OCR value has been taken to be 1.3 instead of the measured 

OCR value 1.7, in order to provide a more reasonable strength profile when compared with the 

SHANSEP strength profile. 

(ii) Selected Shear Modulus Profile and Radius of Influence 

Since the shear modulus profile of this site is not found from available engineering 

literature, we therefore will assume that the rigidity index~= G/Cus is taken to be 150 throughout 

the soil layer. This assumption may be reasonable for the lightly overconsolidated plastic clay. 

Based on this assumption and the predicted Cu profile, (Fig. 5.17), the calculated G profile is 

summarized in Table 5.8. 

Finally, the radius of influence is calculated to be rm=85a which is obtained from Eq. 4.7 

and from the assumed shear modulus profile given in Table 5.8. 

(iii) Model Parameters 

Summarized in Table 5.8 are the model parameters required for the rate type model and for 

the bounding surface model. In our calculations, we will use the parameters Ne=0.75Nc, te=tc and 

tc=230 for the bounding surface model. Additional parameters for this model have been given in 

Table 5.7. 

From Eq. 2.64, we find that the initial stress state of the Empire clay is located on the 'wet' 

side of the critical state. We, therefore, will also use the modified Cam-clay model in this 

comparison. Further, we wili assume the yield surface of the modified Cam-clay model has the 

same form as the elliptical bounding surface, Eq. 2.29, of the bounding surface model, so that the 

stress parameters given in Table 5.8 are identical for both the modified Cam-clay and bounding 

surface models. 

Figs. 5.20 shows the shear stress and strain response of all three soil models the pile at two 

selected depths 42.Sm and 48.Sm. Both the rate-type model and the bounding surface model provide 

smooth responses but the modified Cam-clay model predicts a distinguishable yield point at around 

0.5% shear strain. Also, the rate-type and modified Cam-clay models should predict identical 

maximum shear stresses, but the modified Cam-clay predicts the stress state approaching the 

critical state at very large strain (about 15%). 
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(iv) Prediction of Shaft Displacement and Shear Transfer Response 

Figs. 5.18 shows the comparisons between the measured and predicted t-z curves from all 

three soil models for soils at depths of 42.5m and 48m. From results in Figs. 5.18, we note that all 

three models predict reasonable agreement with measured results, except the rate-type model and 

the modified Cam-clay model overestimate the shear transfer by 20-35% at large displacements 

In this comparison, response of the rate-type model and the modified Cam-clay model 

come quite dose together, while the bounding surface model predicts remarkable good results 

especially for soils at the greater depth, 48.Sm. 

(v) Prediction of Pile Load and Displacement Response 

Fig. 5.19 shows the comparison between the measured and predicted pile load and 

displacement response from all three soil models. All models predicted reasonable ultimate pile 

load carrying capacity when compared with the measured peak capacity. Since the measured pile 

load-displacement response curve exhibits strain softening behaviour after the peak capacity was 

reached, it is believed that the measured t-z curves should also exhibit strain softening behaviour, 

but this has evidently been ignored by Heydinger and O'Neill (1986) in producing the t-z curves for 

this test. 

SECTION 5.4 Summary 

The results of the one-dimensional idealized pile model have been compared with results 

from three separate pile tests. The rate-type model and the bounding surface model have been used 

to represent lightly to heavily overconsolidated soils, while the modified Cam-day model has 

only been used to represent the lightly overconsolidated soil at the Empire test site. 

Comparisons of theoretical solutions with measured pile test results in heavily 

overconsolidated days, at the Hendon and Houston test sites, suggest that 

(a) The theoretical expression Eq. 4.7, for the radius of influence will generally over­

estimating the vertical soil displacement outside one pile radius during pile loading 

(i.e., the actual radius of influence is much smaller). 

(b} At a greater depths, the elastic soil shear modulus around a jacked pile probably 

returns to a value close to its original disturbed value after the reconsolidation process. 

(c) Good agreement between theoretical predictions of load diffusion, shear transfer and 

actual measured data is found for both Hendon and Houston test piles at working loads. 

(d) The predicted pile capacity compared favourably with measured long term pile 

capacity in heavily overconsolidated clays. 

Further, reasonable agreement between the theoretical solutions and measured results is 

found for the pile test in lightly overconsolidated clay at Empire. 
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From the results of this chapter, the selected value of the elastic shear modulus appeared 

to be an important factor affecting the predicted shear transfer, load diffusion along the pile and 

the pile load-displacement response. It may be more appropriate to consider the elastic shear 

modulus is expressed as a function of radial direction but this value may be difficult to determine; 

both experimentally and theoretically. Therefore, assuming a constant G distribution in the radial 

direction may be reasonable from a practical point of view. The radius of influence predicted from 

Ra~dolph's (1977) equation 4.7 generally provides reasonable representation of shear transfer and 
( 

pile shaft displacement relationship. 

Finally, the one-dimensional pile model which used has grossly oversimplified the actual 

three dimensional pile-soil system. Nevertheless, surprisingly overall agreement between 

theoretical predictions and actual measured data is found. 

For the class of problems considered here, however, all soil models appear to give roughly 

equally good predictions. This is only slightly surprising in light of the relatively simple but non­

homogeneous, deformation field which has been used, nevertheless it emphasizes the point that use 

of more complex modelling methods is not always justified. 
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Soil Properties 

ei 0.795 

<l>c 22.5° 

NC 0.238 

A 0.161 

K 0.062 

bulk unit 19.0 

weight, kN/m3 

Table 5.1 Soil properties of London clay at Hendon test site. 

--
Depth Ka: OCR O':zj_ Jo 
(m) (kN/m2 ) (kN/m2) 

0.5 3.3 28.5 9.5 815.3 

1.5 2.5 16.5 23.5 1156.6 

2.5 2.3 14.0 32.5 1355.7 

3.5 2.1 11.5 41.5 1444.7 

4.3 2.0 11.0 48.8 1607.6 

Table 5.2 Initial stress state of London clay at Hendon test site. 

Rate- type model 

parameter 

Depth Shear modulus, G, Cus 

(m) (kN/m2) (kN/m2) 

0.5 12750.0 35.4 

1.5 18750.0 56.7 

2.5 24750.0 69.0 

3.5 30375.0 76.6 

4.3 34500.0 86.3 

Table 5.3 Model parameters for London clay at Hendon test site. 
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Stratum Depth <l>c "- G 

(m) (kN/m2 ) 

A 0 - 2.6 220 0.06 - 0.144 24000 

B 2.6 - 7.9 230 0.06 - 0.144 35000 

C 7.9 - 14.6 270 0.04 - 0.057 57500 

Table 5.4 Summary of soil properties at Houston test site. 

Stratum A X Ne n ~ 

A 0.13 0.06 0.233 0.8 0.53 

B 0.14 0.06 0.245 0.8 0.72 

C 0.057 0.016 0.292 0.75 0.45 

Table 5.5 Selected soil parameters for Houston test site. 



Rate-type model 

parameters 

Stratum Depth Cus Ar; 

(m) ( kN/m2 ) 

0.5 14.9 

A 1.5 44.9 0.08 

2.3 65.6 

3.3 77.7 

4.5 81.5 

B 5.5 85.0 0.05 

6.5 88.7 

7.45 92.3 

8.5 128.3 

C 10.5 132.2 0.1 

11.5 136.4 

12.55 140.5 

Table 5.6 Initial values of the soil models for Houston test site. 

Bounding surface 

model parameter 

tc crri O":zj_ 

(kN/m2 ) (kN/m2 ) 

20.8 10.1 

12.0 62.4 30.2 

91.6 44.2 

98.6 54.3 

101.7 66.5 

35.0 104.9 76.5 

108.3 86.7 

111.6 96.3 

122.0 127.0 

100.0 125.3 137.1 

128.5 147.3 

132.1 158.9 

Jo 
( kN/m2 ) 

288.0 

864.0 

1267.0 

1346.0 

1388.0 

1432.0 

1478.0 

1524.0 

1559.0 

1599.0 

1642.0 

1684.0 

I-' 
w 
,J::,. 
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Soil Properties 

ei 1.22 

<l>c 25.00 

NC 0.267 

). 0.234 

K 0.058 

Knc 0.61 

Koc 0.75 
--OCR 1.3 ** 

** measured OCR= 1.7 ± 0.5 

Table 5.7 Soil properties of Empire test site. 

Depth G Cus O':zi (j'ri Jo 
(m) (kN/m2) (kN/m2) (kN/m2) (kN/m2) (kN/m2) 

35.5 8630 57.5 162.9 122.2 757.5 

36.5 8970 59.8 169.5 127.1 787.7 

37.5 9310 62.1 176.0 132.0 817.8 

38.5 9660 64.4 182.4 136.8 848.0 

39.5 10000 66.7 188.9 141.7 878.1 

40.5 10350 68.9 195.4 146.5 908.2 

41.5 10690 71.2 201.9 151.4 938.3 

42.5 11030 73.5 208.4 156.3 968.5 

43.5 11370 75.8 214.8 161.2 998.6 

44.5 11720 78.1 221.3 166.0 1028.8 

45.5 12060 80.4 227.8 170.0 1059.0 

46.5 12400 82.7 234.3 175.7 1088.9 

47.5 12750 85.0 240.8 180.6 1119.2 

48.5 13090 87.3 247.3 185.5 1149.4 

49.5 13430 89.6 253.8 190.3 1179.5 

Table 5.8 Initial values of the soil models .for Empire test site. 



Undrained Shear Strength, Cu (kN/m2 ) 

0 20 40 60 80 100 o, I I '! \ I I I I I I I 

1 1-- L-.~ -I 

~ 2r ., 
1 

•• 
..c:: . 

~ 3 
C) 

41-- L.\, -I 

• Cooke !1979 J • I\ 
~ 5 I- -- Marsland 0977) 

-·- Predicted value 

6• I I I I I I I I ti I 

Figure 5.1 Predicted and measured undrained shear strength, 
Hendon test site. 

Shear Modulus . G ( MN/m 2) 

00 10 20 30 40 50 
I 

. \ \ i...."\1 Tangent 
~ .~modulus 

2 r • ·7 
'f L. 

~ 4 i Secant ;) • 
{ . modulus •\ 

~ 6 • \. 
\ J c::i . • \. 

Br . •\ • 
• • 

10 ~ •1 Marsland/I'll?. 
---Select Gvalues 

• • Wind le (1977) 
I 

12 

Figure 5.2 Selected and measured shear modulus, 
Hendon test site. 

f-' 
w 
0\ 



Coeffecient of Lateral Earth Pressure 
at Rest, Koc 

00 1.0 2.0 3.0 4.0 5.0 

2 

4 -E --s 6 
Cl 
Cl, 

Cl 

8 

10 

,._.J 

~ . ~ 
• I 
• i 

• 
• 

• 
• 
•• 
• • 
•• 

• w;ndle (1977) 
-•-Selected value 

12 ....._....___.____,____...__Jo.-. ....... _.___, _ _.___, 

Figure 5.3 Selected and measured coefficient of lateral earth pressure at rest, 
Hendon test site. 

I-' 
w 
-.J 



Shear Transfer (kN/m2) 

o? 5 10 15 20 25 30 35 1.0 
I I i I I I I 

Measured, 
Cooke 0979) 

I -- ·- - Pred ic fed 
I 

1.0 ~ h 4, 4,4-7 I 
7 

I I 
I I 
I I 

E 2.0 Ll Ll 
.._ 

I I I 
-C ..... I I I 
Q.. 
(lJ I I I 

C) 

~ Ll 3.0 

I I I 

l.O ~ ~ 4 '--i \ L,J7\ j 
I\ 1\/\ I"\)\~ 

t0kN 20kN~ l0kN 50kN 60kN 

5.0 I I I I li;pplied, load~ I I 
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CHAPTER SIX 

CONCLUSSION 

This work may be separated into three parts. The first part mainly involves the 

evaluation existing soil models under undrained conditions. The second part of the work is to 

evaluate the currently used methods for representation of the pile installation process. The third 

part of the work involves comparing the soil models in particular application to the axially loaded 

pile problem. 

In chapter two, three soil models, the modified Cam-clay, the bounding surface and the 

rate-type model, have been reviewed briefly. All these soils models employ the concepts of critical 

state theory .The modified Cam-clay model and the bounding surface model are developed based on 

plasticity theory, the rate-type model is founded upon hypoelasticity theory. In our work, no 

attempt has been made to modify these three soil models but, instead, particular interest is paid to 

comparing their modelling features. All three soil models are compared in triaxial and simple 

shear under undrained and monotonic loading conditions. 

The modified Cam-clay model and the rate-type model are closely related by the 

similarity of their yield surfaces. In our comparisons, the rate-type model provided better 

predictions than did the modified Cam-clay model. The modified Cam-clay model is relatively 

restricted for predictions of normally consolidated to lightly overconsolidated clay, but the rate­

type model does not exhibit this limitation. For the special case where only monotonic loading and 

undrained conditions are concerned, the choice of the rate-type model rather than the modified 

Cam-clay model to represent overconsolidated clay is more appropriate. Another advantage of 

using the rate-type model for undrained conditions is that only three soil parameters, G, Cus and Ne 

are required and all these can be easily evaluated from standard soil test results. 

In some boundary value problems, even monotonic application of structural loading may 

involve unloading in some parts of the soil mass. However, theoretically, the rate-type model is 

valid for monotonic loading or undrained cyclic loading conditions only. The formulation of the 

loading equation of the rate-type model is well founded, therefore, future development will require 

further investigation of the formulation for the unloading equation so that violation of the 

condition of continuity does not exist. Furthermore, the feature of the rate-type model which defines 

the loading-unloading condition based on the sign of the stress power or work rate has been 

criticized by Mroz (1980) because it may not be applicable for some materials such as metals. 

Therefore, further work with the rate-type model is requirQto compare soil test results under 

various stress and strain conditions in order to evaluate the validity of using tlw stress power to 

differentiate loading or unloading conditions. 
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The bounding surface model developed by Dafalias applies bounding surface plasticity 

theory to clays. The yield surface previously defined in classical plasticity theory, such as the 

yield surface of the modified Cam-clay model, becomes a bounding surface in this model. For stress 

state inside the bounding surface, (i.e., a overconsolidated clays), the model may predict plastic 

deformation. This is achieved by relating the plastic modulii H and H by the distance o. The radial 

mapping rule, which determines the distance o, adopted in this model can be considered as a 

special form, another choice of mapping rule may be possible. The new ideas employed by the 

bounding surface model make it possible to predict soil test results for normally consolidated to 

heavily overconsolidated clays successfully. However, this model requires 11 model parameters 

which needs extensive soil test results to be determined. 

Among the modified Cam-clay model, the bounding surface model and the rate-type 

model, particularly in their application to undrained deformation problems, the rate-type model 

appears to be most efficient, especially when insufficient soil test results exist to evaluate the 

model parameters for the more complicated soil models. 

In chapter three, solutions for both the cylindrical cavity expansion approach and the 

simple pile method have been studied. Both metheay be employed to investigate stress and pore 

pressure changes in soils due to pile installation. The advantage of these two methods is that they 

do not require complex numerical techniques and solution methods. The newly introduced simple pile 

method initially appeared to have advantages over the cylindrical cavity expansion approach 

because it may include the pile tip effect due to pile advancements. Baligh (1984) considered that, 

for deep penetration in soft clay at high confining pressure, the strain field around the pile tip is 

less affected by shearing response of the medium. As a result of this consideration, Baligh 

approached the problem by assuming that the strain field in a soft clay due to pile installation can 

be approximated by an ideal fluid. 

In our analysis, we have used the rate-type model to represent the soil. We found that the 

simple pile method results in unrealistic pile-soil interaction. The surface shear traction is acting 

downward along the simple pile and eventually results in tensile stress in the pile at some distance 

above the pile tip. Furthermore, as the soil rigidity decreases, the magnitude of the downward 

shear traction increases. For very soft clay, the downward shear traction may be as high as 60% of 

the Cus value. This is contrary to the basic consideration of this method. In addition to this, from 

our results, the stress distribution around the tip is directly affected by the components of the rate of 

deformation. As a result of these findings, the effective stress distribution especially close to the 

pile shaft may be less than reliable. Therefore accurate determination of the strain field of the soil 

around the pile is important and further development of the pile installation problem incorporating 

realistic pile-soil interaction is necessary. 

Comparisons between the solutions of the cylindrical cavity expansion approach and the 

simple pile method indicates that some similarity of stress distributions outside the critical state 

region may be expected,(i.e., where soils are mainly elastic ), but stress distributions inside the 
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critical state region are quite different. Inside the critical state region, especially within a few pile 

radii of the shaft, the stress distribution predicted from both methods are suspect. Firstly, the pile 

tip effects have not been captured in the cylindrical cavity expansion approach. Secondly, the 

unrealistic shear distribution results from the simple pile method will directly influence the stress 

distributions of components Srv See and Szz in this region. 

Comparisons between the predicted excess pore pressure distributions obtained from both 

methods also show dissimilarity inside the critical state region. The excess pore pressures 

evaluated from the simple pile method are based on selecting an integration path where the 

equilibrium equation is less dependent upon the shear component, Srz· The results are also compared 

with field measurement from full size pile test results. The simple pile method was found to provide 

better agreement with test results than does the cylindrical cavity expansion approach. 

The simple pile method may be useful to approximate the excess pore pressure for the deep 

penetration problem. However, since this method may not reasonably predict the effective stress 

especially in regions close to the pile, the use of these results to develop the effective stress pile 

capacity model may not be successful except until a more realistic pile soil interaction has been 

developed. 

In chapter four, we approached the axially loaded pile problem by using an idealized one­

dimensional pile model. We considered that the soil is "undisturbed" by pile installation and that 

soil displacement caused by pile loading occurs vertically only. The formulation and solution 

method for this pile model has been discussed. An analytic solution for shear transfer and pile shaft 

displacement were obtained from the rate-type model. Numerical solutions were required for the 

modified Cam-clay and bounding surface model. 

In chapter five, the pile models were used to predict actual measurements of pile test 

results. All three soil models have been used to represent the soils and compared in this way. 

Three well documented pile test results available from engineering literature have been 

used. The test soil at the Empire test site is lightly overconsolidated while the test soils in both 

Hendon and Houston test sites are heavily overconsolidated. The rate-type model and the bounding 

surface model have been used to represent lightly to heavily overconsolidated soils, while the 

modified Cam-clay model has only been used to represent the lightly overconsolidated soils at the 

Empire test site. 

/\ 

In this compariso+)the rate-type model and the bounding surface model represent extremes 

of sophistication. The bounding surface model is quite complex and offers an wide range of possible 

responses, while the rate-type model is particularly simple but encompasses a far more limited 

response range. These facts are clearly reflected by the number of paramctL·rs required for each 

model: eleven for the bounding surface model versus two for the particular application of rate-type 

model in this problem. The modified Cam-clay model is less complex than the bounding surface 

model, but is more restricted to represent lightly overconsolidated clays. 
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The select value of the elastic shear modulus appeared to be an important factor affecting 

the predictions of shear transfer, load diffusion and pile load-displacement response of our one­

dimensional pile model. Generally , reliable estimation of the changE jn soil shear modulus before 

and after pile installation is difficult, (i.e., especially as the measured value of shear modulus 

generally depends on the type of shear test and testing device such as pressuremeter, plate bearing 

test or triaxial test, etc), therefore assumption of a constant shear modulus distribution in the radial 

direction may remain a useful approximation. Further, this approximation may be appropriate for 

the soil at a greater depth around a jacked pile as we have found that the pile model gives good 

agreement between predicted and measured soil displacements at Hendon test site. 

From both pile test results in heavily overconsolidated soil, it has been found that 

Randolph's equation overestimates the actual size of the radius of influence measured from test 

results. This leads to overestimation of soil displacements from about one pile radius outside the 

pile shaft. But it has been pointed out that reasonable shear transfer and pile shaft displacement 

relationships may be possible using Randolph's equation. 

The one-dimensional pile model which has been used here may oversimplify the actual 

three dimensional soil-pile system. We have not considered the limiting skin friction problem. 

Nevertheless, surprisingly good agreement between theoretical predictions of load diffusion, shear 

transfer, pile load-displacement response and actual measured data is found for all test piles at 

working loads. 

Finally, for the class of problems considered here, all soil models appear to give roughly 

equally good predictions. This is only slightly surprising in light of the relatively simple 

deformation field which has been used, nevertheless, it emphasizes the point that use of more 

complex modelling methods is not always justified. 
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APPENDIX A 

FORMULATIONS FOR BOUNDING SURFACE MODEL 

( i ) Distance factor a, 

The relationship between crij and crij is given by 

- p 
a .. = a( <J .. , ekk) cr .. lJ lJ !J Eq.(2.24) 

Substituting Eq. 2.24 into 2.23, we may arrive at the following expression 

p 
F = F ( a. crij ' Jo( £kk ) ) = 0 (A.1) 

Using Eq. 2.24, we find that the stress invariants corresponding to the image stress are related to Ji, 
Ji and fa by 

J1 = a J1 

- 2 
12 = a 12 (A.2) 
- 3 
J3 = a J3 

When crij lies on the elliptic bounding surface, a. can be evaluated from Eqs. 2.24, A.1, and A.2. It is 

given by 

where 

-E + ✓ E2 -4 De 
f/.=------

2D 

2- R 2 
e = R Jo 

2 

D = JI + ( R ~ 1 ) J2 

2 Jo J1 
E=---

R 

(A.3) 

(A.4) 

In contrast, when crij lies on the hyperbolic bounding surface , a. is also given by Eq. A.3, replacing E, 

C and D as follows 

2 J5 Ac 
e=--­

R Ne 
2 

Da li-(~J 
E = 2 Jo ( ~ + Ac ) /½ -2 Jo J1 

R Ne N R 

(A.5) 
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(ii) Normal Vector nil 

where 

The normal vector to the bounding surface is given by 

1 a F 
nij = - ----=----

g a a .. 
lJ 

[ a F a F ] 112 
g= ----

a "cJ .. a "iJ .. 
lJ lJ 

The term a F / a crij has the form 

a F a F dJ1 a F d✓r2 a F a N dro 

a cr .. = a r1 dcr .. + a ✓f2 dcr .. + a Naro do .. 
IJ IJ lj lj 

Using Eq. 2.27, Eq. A.8 can be expressed as 

where 

a F a F a F crij a F 0 ikcrkj ✓r2 1 . _ * * ( * * l 
- =-=- 8,, + ~ ,v- +- IT ~ - - 8 .. - ,, sm(3ro) CJ .. 
a a.. a 11 1J a "12 "12 a N "12 3 1J '16 1J 

lJ 

3./6N ( 1-n) 
[I=---------

( 1 + n - ( 1 - n) sin 3ro ) f2 

Substituting Eqs. A.9 and A. 10 into A.7, we have 

- 2 

( a F J2 ( a F J2 ( a F )2 J2 IT g2 = 3 , a T1 + a ✓f2 + a N -6- [ 1 - sin\ 3ro )] 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

The normal vector is obtained form Eqs. A. 9, and A. 11 when the form of the bounding surface is 

known. The unit normal vector to the elliptic bounding surface is obtained from Eq. 2.29 and A.6. It is 

given by 

and 

where 

[ ( ( ** ]\I] 1 -* crikcrkj ✓f2 1 . -* 11 
n .. = - Q 5 .. + V CJ .. + W --- - - 6 .. - -r; sm( 3ro) a .. , I 

lJ g lJ lJ ✓J2 3 lJ '16 lJ ~ 

( 
2 \ 

2 2 2 W .2 
g = 3 Q + V J2 1 + - [ 1 - sm ( 3ro )] 

6 I 

Q = 2 ( r1 - : ] 

V=2(R~1J 

3/6 ( n - 1 ) 
W=--------

[ 1 + n - ( 1 - n ) sin 3ro ] 

(A.12) 

(A.13) 

(A.14) 

Similarly, the unit vector to the hyperbolic surface is obtained form Eq. 2.30, A.12 and A.13 by 

replacing Vin Eq. A.14 as follows 
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(A.15) 

( iii ) Plastic Modulus of the Bounding Surface 

The plastic modulus of the bounding surface is given by Eq. 2.10. However, it can be 

rewritten as 

Using Eq. 2.20 in A. 16, we have 

- a F ( 1 + ei ) Iljj 
H=-- -- Jo-a Jo A, - 1( g 

(A.16) 

(A.17) 

when crij lies on the elliptic bounding surface, His obtained form Eq. 2.29 and A.17. It has the form 

H = ~ [ Jj_ - ( 2 - R )Jo JJo ( 1 + ei )_g_ 
R l-K 2 g (A.18) 

Finally, for crij lies on the hyperbolic bounding surface, Eq. 2.30, His given by 

- 6 [ - ( 1 Ac ) ✓f2 Ac ] ( 1 + ei ) Q H = - J 1 - R - + - - + 2 - Jo Jo -- --
R R Ne N Ne A. - K 2 g (A.19) 
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APPENDIX B 

FORMULATIONS OF THE RATE-TYPE MODEL: 

Undrained Triaxial and Simple Shear Conditions 

( i ) Triaxial Conditions 

Following Davis and Mullenger(1984), the effective stress <Jij is non-dimensionalized by the 

following expression. 

cr .. - Pc 6 .. 
lj lj 

Sij = ✓2 M ( B. 1) 

Using Eq. B.1 in Eqs. 2.44 and 2.47, the loading equation becomes 
,, 
Sij = ~ [ Dij - 2 Sij ( SmnDmn)] ( B. 2) 

and the unloading equation is expressed by 

( B. 3) 

Here, SmnDmn is the stress power. Loading or unloading occurs when SmnDmn is~ or< 0, respectively. 

For undrained triaxial conditions the deformation field is given by 

[ o,; J ~ [: 
( B. 4) 

where I; represents the natural compressive axial strain.The effective stress field is given by 

0 

il ( B. 5) 

where subscripts a and r represent the axial and radial directions in the soil, respectively. 

During loading, when Sij Dij ~ 0, we obtain the following expressions from Eqs. B. 2, B.4 and 

B. 5. 

( B. 6) 

We assume that Si denotes the initial strain, and the initial pressure Pi and deviatoric stress Qi are 

given by 

( B. 7) 
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where Sai and Sri represent the initial stresses in axial and radial direction respectively. The 

effective stress in the soil may be obtained by integrating Eqs. B. 6. 

where 

1 
Sa = Pi cosh ( Cl ) sech ( ✓3 ~ S + C2) + ✓3 tanh ( ✓3 ~ S + C2 ) 

1 
Sr = Pi cosh ( Cl ) sech ( ✓3 ~ S + C2 ) --✓ tanh ( ✓3 ~ S + C2 ) 

2 3 

-1 ( 2 ) Cl = tanh ✓3 Qi 

C2 = Cl - ✓3 ~ Si 

However when Sij Dij < 0, unloading occurs. Using Eqs. B. 4 and B. 5 into B. 3, we have 

Sa = ~ S + ( S ai - ~ Si ) 
Sr = -~ c,/2 + ( Sri + ~ s/ 2 ) 

( B. 8) 

( B.9) 

( B.10) 

Finally, the pore pressure can be evaluated from the equilibrium considerations and the effective 

stress field. 

(ii) Simple Shear 

In a simple shear deformation problem, we assume that the deformation of a soil element 

is describled by the following expressions. 

x=X-ITZ 

y=Y 

z=Z (B.11) 

where X, Y and Z are the initial coordinate of a soil element in the reference configuration at time t 

= 0. Here, II = II ( t ) is a function of time which describes the position of the soil element, x, y and z, 

after deformation for time t #- 0. When the deformation is small, II is approximately equal to the 

engineering shear strain 'Yxz which produces positive shear stress as illustrated in Fig. 2.27. Using Eq. 

B.11, we find that the components of the rate of deformation and spin tensor are given by 

1 . 
0 0 -IT 

2 

[ n .. J -lJ - 0 0 0 
1 . 
-IT 0 0 
2 (B.12) 

and 

0 0 
1 . 
-n 
2 

[ Wij J = 0 0 0 
1 . 

--n 0 0 
2 (B.13) 

where 

· ax 
Il=--a z 
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If we assume that the non-zero effective stress tesor has the form 

0 

Syy 

0 

then, using Eq.B.12 to B.14 in Eq. B.2, we have the following four equations. 

. . 
Sxx = ( - 2 13 Sxx + 1 ) Sxz II . . 
~yy = ( - 2 13 Syy ) Sxz II. 

Szz = ( - 213 Szz - 1 ) Sxz II 

2 
• 2 13-l+\J' 
Sxz = ( -2 13 Sxz + ----) II 

2 13 

where '¥ is given by 

(B.14) 

(B.15) 

(B.16) 

If we consider that Sxxi, Syyi and Szzi are the initial stress state of the soil element in the X, Y and Z 

directions, then, when time t= 0, Eq. B.16 has the following form. 

q, i = 1 - 13 ( Sxxi - Szzi ) 

Integrating Eqs. B.15, we obtained the following analytic expressions. 

where 

or 

1 1 
Sxx = ( Sxxi - - ) :E + -

213 213 
Syy = Syyi :E 

1 1 
Szz = ( Szzi + - ) :I:- -

213 213 

1 J 2 2 
Sxz = -( 1- l::) [ ( 13 -1) + ( 13 -1 + 2 \J'i) :E] 

213 

qt 
l::=­

q,. 
l 

2 
2(13 -1) m 

:E=-------------
2 2 2 

(til - q,i) + ( 13 - 1 ) ( 13 - 1 + 2 q,i) 

in which m is given by 

(B.18) 

(B.19) 

(B.20) 

(B.21) 

The solution method arriving Eq. B.18 and B.19 may be found from Mullenger et al.(1984). 

(B.17) 
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APPENDIX C 

APPROXIMATION FOR THE RATIO OF 1<: TO A 

Summarized below is a list of 87 data for clays available from Mayne (1980). Column (i) is 

the clay type, column (ii) and (iii) are measured effective angles of friction and the ratio of IC to A, 

respectively. In some cases when the ratio of IC to A is not available or only either K or A is available 

for the clay, it may be possible to use Eq. 2.55 to obtain the approximate values of ratio of K to 11,. 

Using the angle of friction given in column (i) and Eq. 2.55, the resulting value of ratio of K to A is 

summarized in column (iv) while the resulting error expressed in percentage is shown in column (v) 

for comparison. From these results, we note that Eq. 2.55 successfully predicted 54 data with less 

than 25% error. Therefore, use of Eq. 2.55 to obtain approximate values of the K/A ratio may be 

appropriate for most clays. 

(ii) (iii) (iv) (v) 

angle of measured approximation error% 

(i ) friction <jl 0 (1- KIA) (1- KIA) 

1 Agnew 25.0 0.49 0.66 -33.6 

2 Alaskan Gulf 34.S 0.70 0.93 -33.4 

3 Amuay 29.9 0.60 0.80 -33.7 

4 Atchafalaya 21.0 0.77 0.54 29.7 

5 Backswarnp 22.2 0.64 0.58 10.1 # 

6 Bangalore 

Kaolinite 25.S 0.33 0.67 -105.6 

7 Bangalore 

Montmorillonite 12.5 0.17 0.31 -87.4 

8 Bangkok 25.4 0.73 0.67 8.2 # 

9 Bath Kaolinite 24.5 0.43 0.64 -48.9 

10 Bentler 22.7 0.59 0.59 -8.5 # 

11 Boston Blue 26.8 0.75 0.71 5.9 # 

12 Bradwell 20.0 0.38 0.51 -36.9 

13 Buckshot Clay 26.7 0.68 0.70 -3.0 # 

14 Calcium Illite 24.2 0.59 0.63 -7.3 # 

15 Calcium 

16 Montmorillonite 12.5 0.19 0.31 -61.1 

17 Calcutta 30.2 0.54 0.81 -48.1 
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18 Concord Blue 24.8 0.68 0.65 4.4 # 

19 Connecticut V arved 20.9 0.72 0.54 25.2 

20 Drammen Clay 28.0 0.88 0,74 15.2 # 

21 Drammen Clay 30.7 0.78 0.82 -5.0 # 

22 Drammen Clay 25.1 0.88 0.66 25.0 # 

23 East Atchafalaya 18.8 0.52 0.48 6.7 # 

24 East Atchafalaya 21.5 0.49 0.56 -14.1 # 

25 East Atchafalaya 21.7 0.60 0.56 6.1 # 

26 Ghana 20.8 0.29 0.54 -85.2 

27 Grundite 32.3 0.41 0.87 -109.9 

28 Hackensack Varved 19.0 0.76 0.49 35.9 

29 Halloysite 34.3 0.84 0.93 -10.8 # 

30 Hokkaido Clay 34.0 0.79 0.92 -16.6 # 

31 Hokkaido Silt A 35.1 0.77 0.95 -24.0 # 

32 Hokkaido Silt B 34.9 0.80 0.94 -18.6 # 

33 Hokkaido Silt B 35.1 0.85 0.95 -11.5 # 

34 Illite 24.60 0.49 0.64 -31.3 

35 Japanese 33.7 0.73 0.91 -24.9 # 

36 Kanpur Clay 29.0 0.66 0.77 -16.5 # 

37 Kaolin 22.00 0.32 0.57 -78.9 

38 Kaolin 235 0.39 0.61 -58.0 

39 Kaolinite 29.2 0.13 0.78 -497.5 

40 Kars Leda 28.3 1.00 0.75 24.8 # 

41 Kawasaki 35.9 0.84 0.97 15.4 # 

42 Keuper Marl 25.9 0.76 0.68 10.1 # 

43 Khor-al-Zubair 27.3 0.68 0.72 -5.5 # 

44 Kinnegar 27.0 0.86 0.71 16.8 # 

45 Lagunillas 265 0.59 0.70 -18.7 # 

46 Lansisalmi 19.5 0.36 0.50 -37.6 

47 Lilla Edet 24.3 0.37 0.64 -71.0 

48 Liskeard 26.1 0.85 0.69 18.8 # 

49 Little Belt 21.0 0.45 0.54 -19.5 # 

50 London Clay 18.4 0.38 0.47 -22.5 # 

51 Long Island coastal 22.8 0.48 0.59 -23.1 # 

52 Massachusetts 30.5 0.22 0.81 -265.3 

53 Milazzo 23.0 0.63 0.60 4.9 # 

54 Modndal 27.0 0.72 0.71 1.0 # 

55 New England 32.0 0.72 0.86 -20.0 # 

56 New Providence 30.5 0.72 0.81 -13.1 # 
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57 Newfield 305 0.51 0.81 -61.3 

58 Ohio Silt 32.9 0.71 0.88 -24.7 # 

59 Oslo 27.0 0.62 0.71 -15.4 # 

60 Ottawa Estuarine 35.3 0.83 0.95 -15.3 # 

61 Plastic Holocene 32.9 0.71 0.88 -23.9 # 

62 Portland 32.00 0.77 0.86 -11.9 # 

63 Portsmouth 21.0 0.71 0.54 23.5 # 

64 Range De Fleuve 28.6 0.92 0.76 17.5 # 

65 Rann of Kutch 26.0 0.45 0.68 -50.8 

66 Regina 20.0 0.56 051 7.4 # 

67 Saint Alban 27.0 0.97 0.71 26.6 

68 San Francisco Bay 

69 Mud 35.2 0.57 0.95 -67.5 

70 Sault Ste Marie 28.9 0.74 0.77 -3.4 # 

71 Scott 33.4 0.92 0.90 2.5 # 

72 Seatcle 28.8 0.52 0.77 -48.6 

73 Shellhaven 23.0 0.78 0.60 23.1 # 

74 Simple Clay 23.1 0.55 0.60 -9.4 # 

75 Sodium Illite 20.7 0.37 0.53 -44.8 

76 Soft Bangkok 20.0 , 0.65 051 21.2 # 

77 Spestone Kaolin 17.2 0.74 0.44 40.9 

78 Spestone Kaolin 22.6 0.70 0.59 16.5 # 

79 TerraRoxa 29.2 0.87 0.78 10.9 # 

80 Texcoco 34.0 0.73 0.92 -26.4 

81 Tiipanundjang 35.0 0.47 0.95 -101.6 

82 Toledo 20.0 0.62 0.51 16.8 # 

83 Vicksburg 25.9 0.73 0.68 65 # 

84 Vienna 25.8 0.67 0.68 -1.2 # 

85 Virgina coastal 285 0.48 0.76 -57.0 

86 Weald 22.0 0.53 057 -75 # 

87 Weirton 19.0 0.50 0.49 2.22 # 

# error less than 25% 
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APPENDIX D 

EVALUATION OF EFFECTIVE STRESSES FOR THE SIMPLE PILE METHOD 

The effective stresses around the simple pile may be obtained from the rate-type model by 

directly carrying out the integrations along each stream line in a cylindrical coordinate system. But 

we have found that the following method significantly reduced the computation time. 

We introduce a new coordinate system ( X.1, X.2, X.3 ), as shown in Fig. D.l, which is related 

to the cylindrical coordinate by a clockwise rigid rotation of the r, z plane. Any seconcd order tensor 

functions in the original cylindrical coordinates may be related to new coordinate system by the 

following orthogon.al transformation. 

(D.1) 

or 

(D.2) 

where Hij and Hij represent the components of a tensor function in the cylindrical coordinates and in 

the new coordinates, respectively, and, Rij is the transformation tensor given by 

[ 
cos (jl 

[ Rij ] = .0 

Slil (jl 

0 

1 

0 (D.3) 

If we assume that the soil particle along the stream line is always located on the X3 axis, then the 

new coordinate frame has an angular velocity which is defined by 

V z sin q> 
<p=---­

p (D.4) 

Using Eq. 3.10 and 3.22 in Eq. D.l, the components of the the stress tensor and that of rate of 

deformation tensor in the new coordinate frame may be denoted by Sij and Dij , respectively. They 

have the following form 

(D.5) 

and 
0 

Ll (D.6) 

where D11 = -2D22= -2D33= 2 (a2 V z/ 4 p3 ). Using Eq.D.2, D.5 and D.6 in the Eq.3.13, we arrive at 
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(D.7) 

where 

[ 
2 l-1 1 ao 1 

A = - - sin q, - + - ( 1 + cos cp ) 
4 2 2 

a (D.8) 

Numerical solution of Eq.D.7 is well behaved throughout the soil mass except for a0:s;0.05a. 

To evaluate the effective stress along the pile surface, it is necessary to integrate Eq.D.7 by changing 

the independent variable cp into time, t, together with Eqs. 3.6 and 3.7 by assuming a constant value 

for the uniform flow velocity V z• Finally, the resulting effective stress, Sij, may be obtained from §ij 

using Eq.D.2. 
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r 

Figure D.1 Rotation of a coordinate system in r-z plane. 
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