
Noname manuscript No.
(will be inserted by the editor)

A hybrid 2D/3D user interface for radiological diagnosis

Veera Bhadra Harish Mandalika1,4,5, Alexander I. Chernoglazov1,4, Mark
Billinghurst2, Christoph Bartneck1,5, Mike Hurrell3, Niels de Ruiter1,3,4,5, Anthony
P. H. Butler1,3,4, and Philip H. Butler1,4

1University of Canterbury, Christchurch, New Zealand
2University of South Australia, Adelaide, Australia
3University of Otago, Christchurch, New Zealand
4MARS Bioimaging Ltd., Christchurch, New Zealand.
5HIT Lab NZ, Christchurch, New Zealand

Received: date / Accepted: date

Abstract This paper presents a novel 2D/3D desk-

top virtual reality hybrid user interface for radiology

that focuses on improving 3D manipulation required

in some diagnostic tasks. An evaluation of our system

revealed that our hybrid interface is more efficient for

novice users, and more accurate for both novice and ex-

perienced users when compared to traditional 2D only

interfaces. This is a significant finding because it indi-

cates, as the techniques mature, that hybrid interfaces

can provide significant benefit to image evaluation. Our

hybrid system combines a zSpace stereoscopic display

with 2D displays, and mouse and keyboard input. It al-

lows the use of 2D and 3D components interchangeably,

or simultaneously. The system was evaluated against a

2D only interface with a user study that involved per-

forming a scoliosis diagnosis task. There were two user

groups: medical students, and radiology residents. We

found improvements in completion time for medical stu-

dents, and in accuracy for both groups. In particular,

the accuracy of medical students improved to match

that of the residents.

Keywords 3D input · hybrid user interface · diagnos-

tic radiology · medical visualization · user interface

1 Introduction

Imaging modalities such as X-ray computed tomogra-

phy (CT), magnetic resonance imaging (MRI), ultra-

sound and nuclear imaging are the basis for diagnostic

radiology. The quality of diagnosis depends on the radi-

ologist’s ability to identify features or anomalies within

Veera Bhadra Harish Mandalika
HIT Lab, University of Canterbury, New Zealand
E-mail: harish.mandalika@pg.canterbury.ac.nz

the data, and accurately measure and report the find-

ings. Some diagnosis tasks involve the rotation of one

or more of the three anatomical planes. These tasks are

often difficult using conventional radiology software as

they involve using a 2D input device, such as a mouse,

to manipulate a 2D plane in 3D. Mouse input is precise

for 2D manipulation tasks; however, previous research

shows that using the mouse for 3D manipulation can

be difficult [1–3]. A study also showed that radiologists

were faster with a 6 degrees of freedom (DOF) device

compared to the mouse, in reformatting a slice in 3D

data [4]. It is challenging to design a system that im-

proves 3D manipulation while maintaining the benefits

of mouse interaction.

In this paper, we introduce a hybrid system com-

bining 2D and 3D interface components for diagnostic

radiology. The 3D component consists of 3D stylus in-

put and a stereoscopic 3D display with head tracking,

while the 2D component consists of mouse input and a

2D display (see Fig. 1). Our system displays anatom-

ical objects in 3D along with a 2D slicing plane, on

the zSpace stereoscopic display [5]. The anatomical ob-

ject, as well as the 2D plane, can be manipulated in

3D using 3D stylus input. The plane is also displayed

synchronously on the 2D display. This enables expe-

rienced users to utilize familiar 2D views to see slice

information while using 3D stylus input for interaction.

It also allows less experienced users to utilize the 3D

display, to gain an overview of the anatomy, which in

turn helps them identify interesting slices and explore

the information within.

We also present an evaluation of our system for a

scoliosis radiology diagnosis task comparing our hybrid

interface to a standard 2D interface, and a 3D only in-

terface. We chose two groups: radiology residents as our

more experienced group, and medical students as our
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Fig. 1 An image of the hybrid interface showing the 2D dis-
play at the top, followed by the zSpace display at the bottom.
The image also shows mouse, keyboard and the 3D stylus in-
put.

less experienced group. The results demonstrate that
our hybrid system improves the performance of diagno-

sis by providing improved 3D manipulation compared

to the 2D interface.

The next section discusses related work in 3D user

interfaces, virtual reality (VR), 3D manipulation, stereo-

scopic 3D, 3D input and hybrid interfaces in the med-

ical domain. This is followed by a formal description

of our prototype hybrid system, how the system was

evaluated, the results of the user study, a discussion of

results, and a plan for future work.

2 Related Work

Researchers have long investigated virtual reality (VR)

for viewing and interacting with medical volumetric

datasets. An overview of VR in the medical domain can

be found in [6], [7] and [8]. More recently, a VR user in-

terface for viewing 3D medical images was proposed by

Gallo et al.[9]. One of the key elements of using VR for

medical visualization is being able to support intuitive

3D interaction. This is a challenging topic in VR, with

a lot of research conducted in 3D input techniques. An

overview can be found in Hand’s survey of 3D interac-

tion techniques[10].

Performing 3D manipulation using a 2D mouse is a

common task in fields such as computer-aided design

(CAD), 3D modeling, surgery simulations, and desk-

top VR. Particularly, 3D rotation is commonly used for

exploring medical data. The most commonly used 3D

rotation techniques for mouse input include Shoemake’s

ARCBALL[11] and a virtual trackball surrounding the

object[12]. A study comparing these techniques by Bade

et al. [13] concluded that design principles were crucial

for 3D rotation. The study also highlighted the need for

intuitive interaction techniques.

As an alternative to using the mouse for 3D ma-

nipulation, 3D input devices were developed to offer

more DOF for 3D manipulation. Some early 3D input

devices, developed particularly for exploring volumet-

ric medical data, include Hinckley’s prop system [14]

and the Cubic mouse [15]. More recently the Wiimote

[16], and the Leap Motion controller[17] have been used

to capture the natural gesture input. Furthermore, re-

searchers focused on using contact free gesture input.

For example, a controller-free tool for exploring medical

images [18], and a touchless interface for image visual-

ization in urological surgery [19].

Previous research suggests that 3D input devices

outperform the mouse for the 3D manipulation tasks.

A 1997 study by Hinkley et al., compared usability of

3D rotation techniques and found that 3D orientation

input devices were faster than 2D input without sac-

rificing the accuracy[2]. Balakrishnan et al. modified a

traditional mouse by adding two additional DOF form-

ing the Rockin’Mouse, which was able to achieve 30%

better performance for 3D interaction over mouse input

[20]. A study from Dang et al. compared input devices

for 3D exploration and found that a wand interface

provided the best performance[21]. A study evaluating

glove input in 2D and 3D for medical image analysis

from Zudilova et al. showed that using more DOF im-

proved performance and accuracy [22].

Contrary to the above studies, a study from Bérard

et al.[23] found that 2D mouse (with 2 DOF) used with

three orthographic views outperformed 3D input de-

vices (with 3 DOF) used with a stereoscopic perspec-

tive view. A later modification to the task that involved

adding pop-up depth cues within the stereoscopic per-

spective view, showed that the 3D input device out-

performed the 2D mouse [24]. These studies led us to

expect that the 3D stylus input with 6 DOF from zS-
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pace should also provide similar benefits/improvements

in 3D manipulation over 2D mice.

Most systems still strongly rely on some level of

2D user interaction. Hence, researchers started finding

ways to combine 2D and 3D interaction to form hy-

brid user interfaces. Since VR hardware had limited

resolution, early hybrid interfaces focused on provid-

ing means for completing high-resolution tasks in vir-

tual environments[25]. The most common approach has

been integrating handheld and touchscreen devices into

virtual environments for 2D interaction [26–30]. Others

have focused on providing hybrid input, such as the

Virtual Tricoder [31], Pinch Glove based 2D/3D cursor

approach [32], Pick and Drop approach [33] and other

tangible user interfaces [34].

A summary of VR in health care can be found in

[35], where they highlighted the need for more research

focused on applications of VR in health care. A sum-

mary of VR in medicine can be found in [36], where

they discuss the VR research in the medical domain,

outlining major breakthroughs, and its impact in pro-

viding healthcare services. A more recent meta-analysis

of VR research in medicine can be found in [37].

Some developments involved multi-display setups,

for example, the hybrid interface for visual data explo-

ration combining the 3D display (with glove input) and

a tablet PC, which was proposed by Baumgärtner et

al.[38]. Similarly, in the medical domain, another hy-

brid interface for manipulation of volumetric medical

data for liver segmentation refinement was developed

by Bornik et al[39]. This interface combined a tablet PC

and an immersive VR environment to improve 3D ma-

nipulation. We extend their approach, our aim was to
combine desktop VR with stylus input and traditional

2D displays to improve 3D manipulation for diagnostic

radiology.

A 3D volume navigation tool for diagnostic radiol-

ogy, that used a 3D mouse to provide both 2D as well

as 3D input for exploring volumetric data, was devel-

oped by Teistler et al[40]. A tool for post-mortem CT

visualization using a 3D gaming controller for interac-

tion along with an active stereo screen was proposed

by Teistler et al[41]. Another approach from Graves et

al[4], used a fixed 6 DOF controller to reformat a slice

in 3D data and found that radiologists were faster with

their approach, compared to mouse input from the stan-

dard radiology workstation.

The literature shows that a number of researchers

explored the benefits of hybrid interfaces for 3D ob-

ject manipulation. However, as far as we are aware,

there are very few medical interfaces that use hybrid in-

put, and none that combine 2D and 3D screen viewing

with stylus interaction in diagnostic radiology. Hence,

we present a hybrid user interface for diagnostic radiol-

ogy and an evaluation against the existing 2D interface,

comparing novice and experienced users.

3 Hybrid User Interface

This section describes the prototype hybrid interface

we have designed. It starts by reviewing the hardware

and software components, followed by an overview of

interface design and walkthrough. Finally, we discuss

various interaction tools.

3.1 Hardware Setup

The hardware setup consists of two parts: the zSpace

desktop VR system, and a traditional 2D system. The

zSpace consists of a 24 inch (1920x1080 pixels) passive

stereo display with a refresh rate of 120 Hz. The zSpace

screen also has embedded cameras for tracking. A pair

of tracked circularly polarized glasses is used for viewing

the stereo display. The zSpace also uses a 6 DOF 3D

stylus, with a polling rate of 1000 Hz. The user’s head

and 3D stylus are tracked in 6 DOF by the cameras

embedded in the display. The display is angled at 45◦

from the desk for convenient viewing (see Fig. 1).

The 2D component of our system consists of a 2D

monitor, and keyboard and mouse input. The 2D mon-

itor is placed perpendicular to the desk, above the zS-

pace display. The distance from the 2D screen to the

user is approximately 30 cm. The keyboard is placed at

the center below the zSpace display, with the mouse

and 3D stylus, placed to the side. A single workstation

PC (3.6GHz Intel Core i5-3470, NVidia Quadro K5200)

is used to drive both systems.

3.2 Software Setup

The software system consists of a single application that

drives the desktop VR system as well as the 2D sys-

tem. The application is built on top of the MARS Vi-

sion framework[42–44]. MARS Vision contains DICOM

dataset handling code based on DCMTK[45] for load-

ing volumetric datasets, as well as the 2D desktop user

interface, which is built using the Qt toolkit[46]. The

desktop VR user interface uses a custom rendering en-

gine built with OpenGL[47] and CUDA[48] APIs. The

software was programmed in C++ with Visual Studio

IDE for the Windows 7 operating system.

Once an anatomical dataset is loaded, it is visualized

on both systems simultaneously. The three anatomical

planes showing slice information are displayed on the
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2D system along with other application controls, while

an extracted 3D model and a 3D user interface are dis-

played on the VR system (see Fig. 1). Interaction with

the data is possible with either system; however, the

dataset loading and application controls are limited to

the 2D desktop system. User interaction with the 2D

system is performed using the 2D mouse while the VR

system uses a 3D stylus. A keyboard is used for text

input in both systems.

3.3 Interface Design

3.3.1 2D Interface

The 2D user interface was designed to closely resem-

ble the standard radiology diagnosis tool, Inteleviewer

PACS Viewer (Intelerad Medical Systems)[49]. This

was done to minimize the differences for the users al-

ready familiar with traditional radiology software. The

functionality, keyboard and mouse controls were also

mapped in a similar fashion to that of Inteleviewer.

Fig. 2 2D interface showing the three anatomical planes, and
the arbitrary plane (top right) in a 2x2 grid. The application
controls tab lies to the left of the screen.

The 2D interface contains a fixed application con-

trols tab on the left, followed by the three anatomi-

cal planes and an arbitrary plane in a two by two grid

layout as shown in Fig. 2. The grid layout can be re-

arranged to the desired format. Each slice view also

displays a scale, that is positioned to the right and bot-

tom edges of the slice view. The user can interact with

the 2D interface using mouse input alone, or in combi-

nation with a keyboard.

The mouse can be used to select and interact with

the 2D slice views using the left mouse button. The user

can hold the left mouse button and move the mouse

to pan the slice, and use the scroll wheel for scrolling

through slices. This can also be done by selecting the

Fig. 3 2D interface showing the slice view. The scroll bar to
the left, slice control buttons including the PRS (preset win-
dow/level), ruler button to change interaction modes between
annotation and measurement, slice spinner to the top right
and the scale to the right and bottom edges showing length.

scroll bar at the left of each slice view with the left

mouse button and dragging it or using the spinner at

the top right corner of the slice view, see Fig. 3. The

scroll wheel can be used while holding the ’Shift’ key on

the keyboard for changing the scale of the slice content.

The window and level can be changed by holding the

middle or scroll mouse button and moving the mouse

horizontally or vertically. Preset window and level set-

tings can be directly selected using the ’PRS’ button

at the top of the slice view. The right mouse button
is used to place annotations and measurements on the

slice based on the interaction mode. Interaction modes

can be changed using the application controls tab to

the left (see Fig. 2), or the ’ruler’ icon at the top of the

slice view (see Fig. 3).

We also allow the possibility to remap functional-

ity to any mouse buttons or the scroll wheel. This was

done to allow experienced users, who had been using

the mouse a certain way, the ability to remap the func-

tionality to match their desired way. This would elim-

inate the need for experienced users to unlearn their

preferred mouse interaction methods in favor of a fixed

mapping in our 2D interface.

3.3.2 3D Interface

The 3D interface contains a 3D scene that shows a

model, representing an iso-surface extracted from the

volumetric CT data, with a strip of user interface but-



A hybrid 2D/3D user interface for radiological diagnosis 5

tons at the bottom as shown in Fig. 4. The scene is ren-

dered in stereoscopic 3D relative to the user’s tracked

head position. The buttons are distinct 3D models cre-

ated to represent various functions such as enabling

the 2D plane, and changing between various interac-

tion modes such as the 3D annotation mode and the 3D

measurement mode (see Table 1). Buttons can be se-

lected by touching them with the stylus. When selected,

each button enlarges, its function is described under-

neath, and a translucent billboard with stylus controls

is displayed for reference. While selected, a button can

be triggered by pressing the front stylus button, see

Fig. 5. The 3D stylus is the primary input for the 3D

interface, while the keyboard is still used for text input.

Fig. 4 3D interface showing the zSpace display with stylus
interaction. A model extracted form the CT dataset is shown
along with the anatomical plane, and the 3D buttons at the
bottom of the screen.

Fig. 5 zSpace 3D stylus showing its front, left and right but-
tons.

The stylus contains three buttons: front, left and

right buttons, see Fig. 5. The front button is always

used for picking and manipulating the model or the

anatomical plane, as well as triggering all the 3D but-

tons. The functionality of the left and right buttons

depends on the selected mode (see Table 1).

3.4 Interface Walkthrough

When a CT dataset is loaded, the 2D interface displays

the three anatomical planes. The arbitrary plane is ini-

tially set to replicate the coronal plane.

Table 1 Functionality of stylus ‘left’and ‘right’buttons for
various 3D interaction modes

Interaction

Mode

Left

Button

Right

Button

Model

Manipulation

Translate

without rotating.

Increase or

decrease the

model scale.

Point

Annotation

Delete the

selected annotation.

Insert annotation

at the end of

the stylus.

Line

Measurement

Delete the entire

line connected by

the selected point.

Insert an

endpoint of the

line to measure.

Angle

Measurement

Clear selected

lines.

Select lines

to measure the

angle between.

A 3D mesh is extracted in real-time from the CT

dataset using the Marching Cubes algorithm[50]. The

mesh extraction is performed on the GPU using CUDA.

This is done each time it requires a change and not

every frame.

However, the extraction time (15 milliseconds) is

fast enough to be real-time. This mesh model is dis-

played on the 3D interface. Once the model is extracted,

the rendering cost for one frame (for both eyes) is about

3 milliseconds. This results in an average frame rate of

330 frames per second (FPS) per eye.

The user can interact with the 2D interface by se-

lecting and scrolling through any anatomical plane us-

ing the mouse. If the 3D plane is enabled in the 3D

interface, its position and orientation on the object are

synchronized to match the selected 2D plane. This con-

cept of a synchronized slice being displayed in both 2D

and 3D views is similar to the approach used by Teistler

et al[40].

The part of the model in front of the plane is ren-

dered translucent, where the level of transparency can

be adjusted by the user. The model’s front portion can

also be made completely transparent, which is sim-

ilar to the plane clipping technique used by Dai et

al.[51]. The plane displays the CT densities from the

CT dataset. This provides a rapid assessment of the

arbitrary plane’s position in the model. The user can

synchronize the arbitrary plane orientation and posi-

tion to any of the three orthogonal planes by selecting

the orthogonal plane by left clicking on it while holding

down the [control] key.

The user can rotate the arbitrary plane to a desired

orientation using the mouse in the 2D interface. This

can be done by holding down the [shift] key on the key-

board along with the left mouse button and moving the

mouse. Horizontal movement rotates the plane around
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the y-axis while vertical movement rotates the plane

around the x-axis. The slice is always rotated about

its own center point. This is similar to the interaction

method used in Inteleviewer.

When the arbitrary slice is selected, its guidelines

are displayed on the other orthogonal views. These

guidelines can also be used to manipulate the position

and orientation of the arbitrary slice. These actions are

synchronized with the plane in the 3D interface.

Annotations are placed by right clicking on the slice,

while the annotation mode is selected. Lines can be

drawn by right clicking on the slice to start the line

and dragging to the desired endpoint, while the line

measurement mode is selected. The line can then be

moved, or modified by moving its endpoints.

Angle measurement mode allows the selection of two

lines to measure the angle. If only two lines are drawn,

they are automatically selected and the angle between

them is displayed. Annotations and measurements on

the slice view, are also displayed in the 3D interface.

Displaying 2D measurements in 3D is similar to the

approach used by Preim et al[52].

In the 3D interface, the 3D model resides mostly

in the negative parallax region. The stereoscopic screen

being angled from the desk, combined with the head

tracking, makes the model appear to float over the

screen.

The 3D model can be manipulated by simply touch-

ing it with the stylus, and pressing the front stylus but-

ton to pick it up. Once picked up, the model is attached

to the end of the stylus, and it follows the hand motion

and orientation in a one to one fashion. The user can

release the front button once the desired position and

orientation is reached, see Fig. 6.

Similarly, the user is able to simply pick and move

or rotate the arbitrary plane as desired, see Fig. 6. The

plane maintains its relative position to the 3D model

when the model is manipulated. Changes made to the

plane orientation are always updated in the 2D inter-

face. This can be seen in Fig. 1, where the 3D plane and

the arbitrary plane (top right) are showing the same in-

formation.

The user can also perform other functions, such as

annotations or measurements, in the 3D interface, as

shown in Fig. 7. Annotations and measurements can

be placed using the stylus, by first selecting the appro-

priate mode using the 3D mode buttons at the bottom

of the 3D interface, see Fig. 7.

Annotations can be placed in by pressing the right

stylus button. An annotation is placed at the end of the

virtual stylus, represented by a sphere. Once placed, the

keyboard is used to enter a name for it. The left stylus

button can be used to delete an annotation.

Line measurements can be placed using the right

stylus button to place the start and end points of the

desired line, sequentially. The points are inserted at the

end of the stylus each time the right stylus button is

pressed. The endpoints are represented using spheres,

with a 3D line between them. The line can be deleted,

by touching one of its endpoints and pressing the left

stylus button.

Angle can be measured using the right stylus but-

ton to select two lines for measuring the angle. The

selected lines are displayed as white lines. The angle is

displayed as white 3D text between the selected lines,

once two lines have been selected. The line selection can

be cleared using the left stylus button.

At any stage, the annotations or measurements can

be picked and moved using the front stylus button.

They maintain their relative position to the 3D model

when the model is manipulated. They also scale with

the model. All the stylus interaction modes and button

mappings are shown in Table 1.

If the arbitrary plane is enabled while placing anno-

tations or measurements, they will automatically snap

to the slice plane, if they are within the distance of 1 cm

from it. This makes it easy for the user to place mea-

surements on a slice plane, using the 3D stylus input.

Annotations such as 3D points are shown in the 2D

interface on the corresponding slice; however 3D mea-

surements such as 3D lines are not shown in the 2D

interface. The user can choose to interact with the 2D

or 3D interface, or a combination of both in order to

perform a diagnosis task as seen in Fig. 1.

3.5 Interaction Tools

Clinical information, such as the present symptoms and

prior medical conditions, is used by the radiologist to

rank the likelihood of various possible diagnoses when

interpreting the scans.

Such information may also indicate the need to ob-

tain diagnostic measurements, in which case the mea-

surement task would typically comprise three steps: in-

spection, annotation (optional), and obtaining the mea-

surement itself.

For our hybrid interface, the DICOM data load-

ing and the 2D user interface, including the orthogo-

nal views were part of the MARS Vision framework.

We developed the arbitrary view, and the annotation

and measurement tools, specifically for the purpose of

testing our hybrid interface.
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(a) The 3D model before rotation (b) The 3D model after rotation

(c) The arbitrary slice plane before rotation (d) The arbitrary slice plane after rotation

Fig. 6 An image of the 3D interface showing model and slice plane rotation using the 3D stylus input.

3.5.1 Inspection

The first step involves the visual inspection of slices

from the CT dataset to find the region of interest (ROI)

within a slice image. The user can use a set of tools that

we refer to as the “2D slice manipulation tools” to per-

form the inspection. These tools include controls that

not only allow the user to pan, scale or scroll through

the slices, but also adjust the gray-scale window width

and level to optimally display the slice. These tools also

provide controls for rotating the slice planes. The in-

spection using our hybrid system additionally allows

the user to use the 3D stylus to directly manipulate

and re-orient a slice, to perform the inspection.

3.5.2 Annotation

Annotation tools are used to either annotate an ROI or

an entire slice. Annotations contain text that provides

additional information regarding the ROI or slice. An-

notations can be used by radiologists to share findings.

Annotations can also be used as a prerequisite for mea-

surements. Typical annotation tools include point and

line annotations as well as controls for annotating var-

ious ROIs within a slice or the entire slice. We only

support point annotations in our system (see Fig. 8).

3.5.3 Measurement

Measurement tools are used to quantify various aspects

of CT datasets. These measurements often include se-

lecting a finite ROI on a slice using shapes such as rect-

angles, circles, or ellipses. The tool then provides min,

max, and average values. The tool can also be used

to measure the length, or area of certain parts of the

slice. Measurements often form the basis for diagnosis

reports. We have implemented most of the measure-

ment tools for our 2D interface (see Fig. 8), along with

line and angle measurement tools for our 3D interface

(see Fig. 4).

3.6 Hybrid Interaction

Hybrid interaction can be performed in two ways, se-

rial and parallel. In the serial approach, the tasks are
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Fig. 7 An image of the 3D interface showing annotations and
measurements tools used for a scoliosis angle measurement
task.

Fig. 8 2D interface demonstrating the annotation and mea-
surement tools used for a scoliosis angle measurement task
on the arbitrary slice.

performed using the 2D and 3D components indepen-

dently in a sequential manner. The diagnosis task can

be divided into multiple steps, each of which can be per-

formed using 2D or 3D components alone. Since both

the components are synchronized with each other, the

user can proceed with either interface for the next step.

In the parallel approach, both the 2D and 3D com-

ponents can be used together at the same time to per-

form a single step in the diagnosis task. For example,

a user can use the stylus to manipulate the arbitrary

plane, while looking at the slice content on the 2D in-

terface. The user can also choose to scroll through a

slice using the mouse while looking at the 3D model

to understand its relative position. Ambidextrous users

can use the mouse and stylus together to manipulate

the slice and the 3D model simultaneously.

Both approaches are supported in our system, how-

ever we only test the serial approach in our evaluation,

as it requires considerably less training for users who

have prior experience with the 2D component. Since

the serial approach uses only mouse or stylus input at

any given time, it can be easier and faster to learn the

system.

We believe that the hybrid interaction method can

have considerable advantages. The 2D component can

be used for high precision tasks such as measuring line

lengths, angles between lines, or marking 2D ROIs.

Data inspection can also be performed in higher res-

olution since it is possible to view the slice information

with a one to one mapping between the slice data and

pixels. This is not ideal using the 3D component since

slice information is textured on a 3D plane, which can

appear distorted due to a non-optimum viewpoint when

viewing it in the 3D view. Additionally, the circular po-

larization of the stereoscopic screen also reduces image

brightness making it harder to view the slice informa-

tion in the 3D view.

The 3D component can be used to gain a quick

overview of the anatomy by manipulating the displayed

anatomical object. It can also be used for tasks such as

slice plane orientation, and 3D line and 3D ROI mea-

surements. The speed/accuracy trade-off will depend

heavily on the type of diagnosis task. The key factors

would be the flow of actions in performing a particu-

lar diagnosis task, the level of synchronization and the

user’s ability to shift focus between the 2D and 3D com-

ponents.

4 Evaluation

The goal of this evaluation was to determine the effec-

tiveness of our hybrid interface for a specialized radio-

logical diagnosis task, compared to a more traditional

2D interface. We wished to test the effect of providing

an easier means for rotating the arbitrary plane, on task

performance and accuracy, compared to using the 2D

mouse. We achieved this by comparing the traditional

2D slice manipulation tools with our hybrid interaction
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tools. We also chose a specialized task that required

arbitrary slice rotation.

Since our hybrid interface is a combination of 2D

and 3D components, we also included a 3D only in-

terface to eliminate the possibility of the observed dif-

ference being due to the 3D component alone. We also

implemented 3D measurement tools, specifically for the

3D only interface. So we evaluated three interface con-

ditions: 2D, 3D, and hybrid.

4.1 Method

The key research question was to determine if our hy-

brid interface provides any improvements over the ex-

isting 2D interface in terms of task performance and ac-

curacy. Furthermore, we wanted to study how the user’s

prior experience with the 2D interface influenced their

task performance with our hybrid interface. Hence, the

experiment was set up as a mixed within/between study

in which the interface (2D, 3D, hybrid) was the within

factor, and experience (student, resident) was the be-

tween factor. We obtained human ethics approval for

our user study from University of Canterbury Human

Ethics Committee (Ref# HEC 2016/35/LR-PS)[53].

4.1.1 Participants

For the evaluation, we chose two groups of partici-

pants: fourth-year medical students, and radiology resi-

dents (physicians training to become radiologists). The

fourth-year medical students have the necessary medi-

cal background to perform the diagnosis tasks but have

little to no experience using any diagnosis tools. Res-

idents have at least one or two years experience using

a 2D only interface; using it daily for various diagnosis

tasks.

Since our hybrid interface uses a stereoscopic 3D

display with 3D stylus interaction, we only chose par-

ticipants with binocular or stereo vision, who had no

hand related disabilities that would prevent them from

using the stylus input. We had 31 participants for the

evaluation. The student group consisted of 21 partici-

pants (11 male and 10 female) with an average age of

22, ranging from 21 to 27. The resident group consisted

of 10 participants (6 male and 4 female) with an average

age of 32, ranging from 28 to 38.

4.1.2 Task

Most diagnosis tasks are performed by exploring one or

more of the three anatomical planes, namely sagittal,

coronal, and transverse planes. The procedure for diag-

nostic radiology widely varies for each diagnosis task.

The conventional radiological workstation software al-

lows exploration of 2D slices for diagnosis. Radiologists

receive intense training on how to mentally visualize

three-dimensional anatomical objects from these slices,

and they require a lot of experience to do this task

well[54].

Creating a 3D mental model helps them associate

the location of each slice with its position inside the

anatomical object. They find and examine the interest-

ing slices, identify anomalies or features within these

slices and report their findings. Although it is possible

to render 3D anatomical objects from 2D slice data (for

example volume rendering[55]), radiologists seldom rely

on it. They find it easier and faster to diagnose using

only the 2D slices.

We had two major criteria for selecting an evalua-

tion task. Firstly, we wanted the task to have an ele-

ment of 3D rotation for testing the effectiveness of our

hybrid interface. Secondly, we wanted the task to be

easy enough for medical students to perform, without

much training.

After consultation with experienced radiologists, we

chose to use a real diagnosis task, namely obtaining a

scoliosis angle measurement task from abdominal CT

scans. This task consisted of three simple steps: correct-

ing the coronal slice orientation, annotating the spinal

column, and measuring the scoliosis angle. Hence, the

task could be performed by anyone with a basic knowl-

edge of human anatomy.

We only chose abdominal CT scans where the pa-

tient’s spinal column was not parallel to the coronal

plane, as this was a very common scenario for such

scans. Hence, the diagnosis task involved 3D manip-

ulation of the coronal plane to correct its orientation.

There were three similar, but different, datasets used

for the experiment.

4.1.3 Process

Each participant first received a five-minute interface

demonstration from an instructor followed by another

five minute practice period. During the practice period,

the participant was allowed to perform the diagnosis

task with a practice dataset and was free to ask ques-

tions regarding the task or interface. Later, the partici-

pant performed the actual diagnosis task on a different

data.

The scoliosis task consisted of three steps. The first

step was is to adjust the orientation of the arbitrary 2D

(coronal) slice to optimally display the spine. The sec-

ond step was to examine the coronal slice and annotate

the vertebrae. Finally, the user drew two lines between

two sets of vertebral discs, and measured the scoliosis
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angle between them. This procedure was repeated for

each interface condition. The order of the conditions,

and the use of datasets were both counterbalanced us-

ing a balanced latin square method [56].

The keyboard was used to label the annotations in

all conditions. The 2D condition involved a 2D mouse,

while the 3D condition used the 3D stylus. The hybrid

condition was a mixture of both, utilizing the 3D stylus

input for the first step, and mouse input for the rest of

the task.

After each diagnosis task, participants were required

to complete several questionnaires (see Section 4.1.4).

At the end of the experiment, participants were asked

to comment on their experience in a semi-structured

interview.

To better control the environment of the task, the

window/level settings to make the bones clearly visi-

ble within the slice were pre-set. This guaranteed the

same initial conditions for the second step. In addition,

we also chose task datasets that required the same set

of vertebral discs to be measured for the scoliosis an-

gle. This was communicated to the participants prior

to starting each diagnosis task. Participants were also

given reference cards showing a labelled diagram of a

healthy spinal column, and illustrating the interface

controls for all conditions.

4.1.4 Measures

Prior to the experiment, the scoliosis angle was mea-

sured by an expert radiologist using each of the three

interface conditions. This was repeated three times with

every interface, for each dataset. We observed only a

very minor difference of about 0.5◦ over repeated angle

measurements from the expert. An average of the mea-

sured angle was then recorded as the best solution for

each dataset, to establish a baseline for comparison.

The effectiveness of our hybrid system can be quan-

tified with task completion time and accuracy. For each

task, a snapshot of the labeled vertebrae, the com-

pletion time, and the resulting scoliosis angle were

recorded. The snapshot was used to verify the correct

annotation of the spinal column.

The measured angle was later compared with the

base line measurement provided by an expert, to estab-

lish an accuracy measure for each diagnosis task. The

absolute difference in the angle was computed as the

absolute error for comparison.

Additionally, since the 3D condition involved mul-

tiple mode changes for performing the diagnosis task,

we also recorded the number of mode changes for each

participant.

Another key measure is the usability of the sys-

tem, which was measured by the System Usability Scale

(SUS) questionnaire [57]. We also chose to measure

physical and mental task load using the NASA TLX

[58] questionnaires. We only used the physical and men-

tal task load scales from the NASA TLX questionnaire

for our study.

4.2 Results

The key question we wished to answer was whether our

2D+3D hybrid interface was more effective than the

existing 2D interface, or 3D interface, in a radiological

diagnosis task. To answer this question we conducted

a two-way mixed ANOVA with two factors: interface

condition (2D, 3D, hybrid) and experience ( student,

resident) on the resulting experimental data with com-

pletion time, absolute error, SUS score, Physical task

load and Mental task load as the dependent variables.

We will refer to our interface condition as an interface

for the remainder of this section.

There were two significant outliers in the data, as

assessed by inspection of a boxplot for values greater

than 3 box-lengths from the edge of the box. The cause

for these outliers was a hardware malfunction during

the experiment. Therefore, both these outliers were re-

moved from the analysis.

The data was normally distributed, as assessed by

Shapiro-Wilks test of normality (p > 0.05). There was

homogeneity of variance (p > 0.05) and covariances

(p > 0.05), as assessed by Levenes test of homogene-

ity of variances and Boxs M test, respectively.

Mauchlys test of sphericity indicated that the as-

sumption of sphericity was met for the two-way inter-

action for completion time (χ2(2) = 1.238, p = 0.538),

absolute error (χ2(2) = 1.324, p = 0.516), physical

task load (χ2(2) = 0.262, p = 0.877), and mental task

load (χ2(2) = 3.394, p = 0.183), however it was vio-

lated for SUS score (χ2(2) = 20.934, p < 0.0005). The

Greenhouse-Geisser correction was used for SUS score

(ε < 0.75)[59].

There was a statistically significant interaction be-

tween the interface and experience on completion time

(F (2, 54) = 37.835, p < 0.0005, partial η2 = 0.584),

absolute error (F (2, 54) = 4.416, p = 0.017, partial

η2 = 0.141), SUS score (F (1.288, 34.772) = 13.604,

p < 0.0005, partial η2 = 0.335, ε = 0.644), and

physical task load (F (2, 54) = 5.564, p = 0.006, par-

tial η2 = 0.171), but the interaction was not statisti-

cally significant for mental task load (F (2, 54) = 0.053,

p = 0.948, partial η2 = 0.002).

For the mental task load, since the interaction was

not statistically significant, we investigated main ef-
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fects, but there was no statistically significant difference

in mental task load between interfaces (p = 0.089) or

groups (p = 0.161). For other variables, since statisti-

cally significant interaction implies that the impact of

the interface is dependent on the group, we have not

investigated main effects directly. Instead, we investi-

gated the simple main effects of interface for each group

individually and vice-versa, which are reported in two

parts.

The first part consists of the effects of each inter-

face on experience groups for the dependent variables.

This is done by first splitting the data into two expe-

rience groups: students and residents, followed by run-

ning one-way repeated measures ANOVA on each group

with the interface as the repeating factor. The mean

(M), standard error (SE) and p-value are reported for

each combination of interfaces.

The second part consists of effects of each experi-

ence group on the interfaces for the dependent vari-

ables. This is done by running independent samples t-

test on the dependent variables for all interfaces with

experience as the grouping variable with two defined

groups: students and residents. The results are reported

as mean ± standard error (M ± SE), followed by the

t-value and p-value for the mean difference. We also

compute and report the effect size (d) for the t-test us-

ing Cohen’s d [60].

4.2.1 Effects of interface and group on Completion

Time

For the student group, the task completion time was

statistically significantly higher using 2D compared to

3D (M = 24.21, SE = 7.91 seconds, p = 0.020), 2D

compared to hybrid (M = 51.26, SE = 8.77 seconds,

p < 0.0005), and 3D compared to hybrid (M = 27.05,

SE = 9.92 seconds, p = 0.042). For the residents,

the task completion time was statistically significantly

lower using 2D compared to 3D (M = 113.3, SE =

16.27 seconds, p < 0.0005), and 2D compared to hy-

brid (M = 44.7, SE = 11.67 seconds, p = 0.012).

However, task completion time was statistically signif-

icantly higher in 3D compared to hybrid (M = 68.6,

SE = 15.68 seconds, p = 0.005).

The completion time of students, when compared

to residents, was statistically significantly higher using

the 2D interface (26 ± 10.15 seconds, t(27) = 2.563,

p = 0.016, d = 1.0), but was statistically significantly

lower using the 3D interface (111.51 ± 17.38 seconds,

t(27) = 6.415, p < 0.0005, d = 2.51), and hybrid inter-

face (69.96 ± 11.19 seconds, t(27) = 6.255, p < 0.0005,

d = 2.44).

Fig. 9 Mean Completion Time

4.2.2 Effects of interface and group on Absolute Error

For the student group, the absolute error was statis-

tically significantly higher using 2D compared to 3D

(M = 4.29, SE = 0.91◦, p = 0.001) and 2D compared

to hybrid (M = 4.789, SE = 0.86◦, p < 0.0005) but

the absolute error was not statistically significantly dif-

ferent between using 3D and hybrid interfaces (M =

0.502, SE = 0.743◦, p = 1.0). For the resident group,

the absolute error was statistically significantly higher

using 2D compared to hybrid (M = 1.97, SE = 0.50◦,

p = 0.01), but the absolute error was not statisti-

cally significantly different between 2D compared to 3D

(M = 0.91, SE = 0.47◦, p = 0.257) and 3D compared

to hybrid (M = 1.06, SE = 0.44◦, p = 0.117).

Fig. 10 Mean Absolute Error
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The absolute error of students, when compared to

residents, was statistically significantly higher using the

2D interface (3.15 ± 0.70◦, t(25.7) = 4.494, p = 0.001,

d = 1.38). There was no statistically significant dif-

ference in absolute error between students and resi-

dents using the 3D interface (−0.22 ± 0.7◦, t(27) =

−0.320, p = 0.751, d = 0.12), and the hybrid interface

(0.34 ± 0.51◦, t(23.901) = 0.657, p = 0.517, d = 0.2).

4.2.3 Effects of interface and group on SUS score

For the student group, the SUS score was statistically

significantly lower for 2D compared to 3D (M = 14.08,

SE = 3.87, p = 0.006) and for 2D compared to hybrid

(M = 13.29, SE = 4.45, p = 0.024) but the SUS score

was not statistically significantly different between 3D

and hybrid interfaces (M = 0.79, SE = 1.47, p = 1.0).

For the resident group, the SUS score was statistically

significantly higher for 2D compared to 3D (M = 11.8,

SE = 3.25, p = 0.016) and for 2D compared to hybrid

(M = 6.8, SE = 1.79, p = 0.013) but the SUS score

was not statistically significantly different between 3D

and hybrid interfaces (M = 5.0, SE = 2.44, p = 0.213).

Fig. 11 Mean SUS Score : Higher score represents better
usability.

The SUS score of students, when compared to resi-

dents, was statistically significantly lower for the 2D in-

terface (8.83±4.23, t(27) = 2.085, p = 0.047, d = 0.82),

but was statistically significantly higher for the 3D in-

terface (17.05 ± 3.2, t(27) = 5.336, p < 0.0005, d =

2.08), and hybrid interface (11.26±3.56, t(27) = 3.166,

p = 0.004, d = 1.24).

4.2.4 Effects of interface and group on Physical Task

Load

Fig. 12 Mean Physical Task Load

For the student group, the physical load was sta-

tistically significantly lower for the 2D interface com-

pared to 3D (M = 10.0, SE = 1.83, p < 0.0005) and

for 2D compared to hybrid (M = 6.05, SE = 2.25,

p = 0.045) but the physical task load was not statis-

tically significantly different between 3D and hybrid

interfaces (M = 3.947, SE = 2.08, p = 0.221). For

the residents group, the physical task load was sta-

tistically significantly lower for the 2D interface com-

pared to 3D (M = 21.0, SE = 3.06, p < 0.0005) and

for 2D compared to hybrid (M = 8.5, SE = 2.59,

p = 0.028) but the physical task load was statistically

significantly higher for the 3D interface compared to

hybrid (M = 12.5, SE = 2.5, p = 0.002).

The physical task load for students, when compared

to residents, was statistically significantly lower for the

3D interface (12.18 ± 2.71, t(27) = 4.504, p < 0.0005,

d = 1.76). There was no statistically significant differ-

ence in physical task load between students and resi-

dents for the 2D (1.18 ± 2.13, t(27) = 0.555, p = 0.583,

d = 0.22), and hybrid (3.63 ± 2.92, t(27) = 1.244,

p = 0.224, d = 0.49) interfaces.

4.2.5 Mode changes with the 3D interface

We compared the average mode changes using the 3D

interface between students(M = 4.58, SD = 1.07) and

residents(M = 7.5, SD = 3.28) by running the inde-

pendent samples t-test. The number of mode changes

by residents was statistically significantly higher than
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students (2.92 ± 0.81, t(27) = 3.590, p = 0.001, d =

1.40).

4.2.6 Age Correlations with 3D interface

We found a strong positive correlation between age and

completion time using the 3D interface (r(29) = 0.715,

p < 0.0005). We also found a strong negative correlation

between age and SUS score for the 3D interface (r(29) =

−0.623, p < 0.0005). However, there was no statistically

significant correlation between age and task accuracy

(r(29) = −0.027, p = 0.889).

4.2.7 Participant feedback from interview

All participants appreciated the availability of 3D

model, as it offered a quick and complete view of the

patient’s anatomy. Most medical students reported feel-

ing more confident while performing the diagnosis task

in the 3D and hybrid conditions as the 3D model helped

them orient the slice quickly. They also reported that

3D rotation of the arbitrary plane using the 2D mouse

was difficult and that the guidelines on the other or-

thogonal planes were hard to follow and confusing.

The residents reported feeling more confident in the

2D and hybrid conditions, as they found it easy to use

the 2D slice guidelines to verify the integrity of their

slice orientation. All of them reported difficulty per-

forming precise annotations and measurements with the

stylus in the 3D condition. They suggested that some

form of stabilization, or scaling, was essential for using

the stylus.

Most participants felt that the mouse was more ac-
curate for annotation and measurement steps. All par-

ticipants felt that learning to use the stylus was not

only very natural but straightforward and easy. They

reported finding it difficult to annotate and measure us-

ing the 3D interface due to unsteady hands while using

the stylus. A few participants mentioned that the lim-

ited virtual stylus length forced them to reach further,

and thus made them experience more hand fatigue.

4.2.8 Observations

The stylus seemed very intuitive as no participant had

any difficulty maneuvering the stylus. In the 3D condi-

tion, we observed that some participants found it dif-

ficult to perform precise tasks such as annotations and

measurements using the stylus. To improve hand sta-

bility, most participants rested their elbow on the table,

and some participants tried using their non-dominant

hand to support their dominant hand.

All participants seemed to enjoy the stylus input

and stereoscopic display. Near the end of their prac-

tice session, they often reloaded the dataset and ex-

plored the anatomical features of the 3D model using

the stylus, in 3D and hybrid conditions. While in the

2D condition, they would proceed to start the evalua-

tion task. Some participants even requested additional

time at the end of their experiment, to further explore

the 3D model.

In the 2D condition, medical students seemed con-

fused by the slice guidelines on other orthogonal planes.

They found it difficult to make precise 3D rotations us-

ing these guidelines. Medical students appeared more

comfortable using the 3D interface compared to resi-

dents. The resident group seemed to have difficulty re-

membering the location and functions of 3D buttons in

the 3D interface. They referred to the 3D control ref-

erence card a lot more frequently compared to medical

students.

4.3 Discussion and Conclusion

Each participant only received five minutes of training

followed by five minutes of practice time to familiarize

themselves with the interface. Despite this, they were

able to complete the task in less than five minutes with

any interface. This showed that not much training was

required to learn the interface and tools necessary for

performing the diagnosis task.

The fastest condition for students was the hybrid in-

terface followed by the 3D and 2D interfaces. They were

also more accurate with the hybrid and 3D interfaces

compared to 2D. The medical students’ slow and inac-

curate performance with the 2D interface could proba-

bly be attributed to their inexperience with 2D tools,

and the difficulty of performing 3D rotation of the slice

plane using the 2D mouse input.

Using the hybrid interface, students were able to

achieve the same performance as the more experienced

users. Since they had no prior experience with any in-

terface, it shows that they were not only able to learn

our hybrid interface quickly, but also to use it very effi-

ciently. We believe this has major implications for im-

proving diagnostic radiology training. While their accu-

racy using the 2D interface was low, using our hybrid

interface, their accuracy improved significantly and was

even comparable to that of the residents.

The fastest condition for residents was the 2D inter-

face followed by the hybrid and 3D interfaces. However,

much to our surprise, the residents were most accurate

using the hybrid interface followed by 3D and 2D inter-

faces. Since the residents had been using the 2D inter-

face daily for over a year, it is no surprise that they were
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fastest with the 2D interface and significantly outper-

formed the students with it. Their expertise with the

2D interface made them faster with our hybrid inter-

face as well, since annotation and measurement were

still performed using the 2D tools.

The lower accuracy of residents using the 2D inter-

face despite their prior experience could be attributed

to the difficulty in orienting the arbitrary slice using the

2D mouse input. Such difficulty can result in a habit of

considering measurements with potentially lower accu-

racy, as acceptable.

By providing an easier way to rotate the arbitrary

slice in our hybrid interface, despite the habit of “rough

measurements”, we observe that the accuracy has in-

creased. This is a significant finding. However, it should

be noted that the cause could also be the novelty of our

hybrid interface, leading to more attention from the res-

idents during the diagnosis task. A future study looking

at the use of our interface over multiple sessions could

help identify the true cause of this effect.

We observed that residents found it difficult to cope

with the different task workflow and relied more heav-

ily on the interface reference cards. Our results show

that using the 3D interface, on average, residents made

significantly more mode changes than the medical stu-

dents. This indicated that they found it difficult to fol-

low the task workflow in the 3D condition. The resi-

dents did not have this problem in the hybrid condition,

as it did not involve any 3D mode changes.

The 3D stylus had a one to one mapping of hand

motion. While this was very natural for exploring the

3D model, precise movements were difficult. Unsteady

hands made it even harder to perform precise interac-

tions. This explains why participants experienced dif-

ficulties with annotation and measurements in the 3D

condition. The stylus interaction also demanded higher

physical hand movement compared to the 2D mouse.

This explains the higher physical task load score for

the 3D and hybrid interfaces.

We found a strong positive correlation between age

and task completion time, with older participants tak-

ing longer to complete the task in the 3D condition.

This behavior is similar to that observed by Zudilova

et al [61] in their study, although their evaluation task

was quite different. We also found a strong negative cor-

relation between age and the 3D SUS score, with older

users rating the 3D interface lower. However, their ac-

curacy scores were not affected by age.

The resident group was the older user group, with

age ranging from 28 to 38 years 4.1.1. Hence, we believe

that the observed correlation is a result of their prior

extensive experience with Inteleviewer’s 2D interface.

It is hard to unlearn certain behaviors, that are similar

in context but differ in interaction.

Feedback from the subjects in the unstructured in-

terview, showed that most participants preferred the

hybrid interface among the three conditions, since it

combined the 3D model (showing the patient anatomy),

the stylus input for 3D slice manipulation, the synchro-

nized 2D view for verification, and the familiar and pre-

cise 2D tools (for annotations and measurements).

The medical students, in particular, appreciated

having the 3D model, since it helped them better un-

derstand the patient’s anatomy, compared to the 2D

interface. This is likely the reason why they gave the

lowest SUS score for the 2D interface and a relatively

high SUS score for the 3D and hybrid interfaces despite

the stylus precision issues. The residents gave the low-

est SUS score to the 3D interface due to the change in

task workflow, and stylus precision problems for the an-

notations and measurements. Their SUS score for the

2D interface was higher, but this was expected due to

their familiarity with the system.

A baseline SUS score of 68 is often used to determine

major usability issues with a user interface [62]. All the

SUS scores we obtained were higher than this baseline

score, within the margin of error. This shows that there

were no major usability issues with any interface.

The 3D model was intended to give an overview of

the anatomy for inexperienced users so that they could

quickly and easily understand the position and orienta-

tion of a slice, relative to the entire scan. Although we

used a mesh for visualizing the anatomy, other volume

rendering techniques could be used to better represent

soft tissues.

The stereoscopic 3D is a key component of our 3D

interface. It was required to simulate the holographic

3D experience by rendering the 3D model in the nega-

tive parallax region. We made sure the scene contrast,

eye separation, and scene depth were within the op-

timal range[63]. Since the maximum task completion

time did not exceed 5 minutes, we believe that it is less

likely that users experienced any ill effects from stereo-

scopic 3D. We did not get any feedback from the users,

that would suggest otherwise.

4.3.1 Limitations

There were a limited number of radiology residents,

hence the sample size for the resident group was rela-

tively small. In the 3D condition, the lack of stylus sta-

bilization, and the fixed virtual stylus length appeared

to most negatively impacted task performance and con-

tributed to increased fatigue.
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For our prototype setup, a standard 2D screen was

used for the 2D interface. We did not use a specialized

12-bit gray-scale radiology calibrated screen. Since our

evaluation task only involved looking at bones, we be-

lieve that our standard 2D screen had sufficient contrast

to perform the task. In the 2D interface, the users were

required to hold the [shift] key in order to rotate the

slice. This might have resulted in a minor disadvantage

for the 2D condition.

In diagnostic radiology, the need for 3D measure-

ments is rare compared to 2D measurements. Hence

tasks that require 3D measurements are perceived

as very specialized. Difficulty in performing 3D mea-

surements can lead to simplified surrogate measure-

ments being obtained. For example, abdominal aortic

aneurysm maximum diameter measurements are per-

formed horizontally in the transverse plane rather than

representing the true maximum aneurysm diameter, in-

troducing a small potential measurement error. Thus

by making 3D manipulation and measurement easy, we

can avoid the need for such surrogate measurements in

diagnostic radiology.

The radiology diagnosis task used for our evalua-

tion is a specialized case. We chose a diagnosis task

that required some level of 3D manipulation to fairly

evaluate our system, while still being easy enough for

medical students. Only a limited number of diagnostic

radiology tasks require 3D manipulation.

Fatigue from long diagnosis tasks can lead to mis-

takes in diagnosis. However, we believe that this might

not be the case in our study, since the maximum task

completion time for any of the interface conditions, did

not exceed 5 minutes. Hence, the total task time for all

three tasks was under 15 minutes. The effects of fatigue

can be explored in a future study, by choosing a rela-

tively complex diagnosis task and measuring the fatigue

of subjects, using the full NASA TLX survey[58].

One of the issues mentioned was the mapping of but-

tons on the 3D stylus. While some participants were sat-

isfied with the way stylus buttons were mapped, others

preferred that the left and right buttons on the stylus

to be mapped similar to a mouse, even though this was

not ergonomic. The left button on the stylus was harder

to reach with the index finger while holding the stylus.

Despite this, participants preferred the most common

functions to be mapped to the left stylus button, as this

would be similar to the traditional mouse (where most

functions are performed with the left mouse button).

4.3.2 Future Work

The 3D stylus precision can be improved by using some

form of scaled manipulation such as PRISM[64] intro-

duced by Frees et al. The speech input could be ex-

plored to improve the mode switching. Interaction with

the 3D components could be improved by exploring

other forms of 3D input such as freehand input.

Further studies can be run with different diagnostic

radiology tasks, possibly with a larger pool of residents

to observe differences in performance. Additional exper-

imental data could be captured such as hand and head

tracking to study user behavior in more detail. More

subjective feedback could be gathered for future stud-

ies about the individual components within the hybrid

interface. It would be interesting to explore effects (es-

pecially fatigue) while using the interface for a longer

period of time.

Users would be expected to perform even better

with additional training with the hybrid interface. It

would be interesting to explore long-term learning ef-

fects.

4.3.3 Summary

We introduced a hybrid interface for improving 3D ma-

nipulation in radiological diagnosis. This interface com-

bined the zSpace stereoscopic system with a 2D dis-

play, and mouse and keyboard input. We also presented

an evaluation involving a user study diagnosing scol-

iosis for three conditions with two groups. The study

results show that the hybrid interface allows users to

achieve higher accuracy in tasks involving 3D rotation

of anatomical planes, compared to the traditional 2D

interface.

Users were able to learn all the interfaces (2D, 3D,

and hybrid) after a five-minute training session and

were later able to perform the scoliosis diagnosis task.

Compared to the 2D interface, the novice users were

able to perform the task faster and with a significant

increase in accuracy using our hybrid interface. The ex-

perienced users were slightly slower using our hybrid

interface, but their diagnosis was more accurate.
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