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Abstract

We review the theoretical foundations and the most important physical applications of the
Pinch Technique (PT). This general method allows the construction of off-shell Green’s
functions in non-Abelian gauge theories that are independent of the gauge-fixing param-
eter and satisfy ghost-free Ward identities. We first present the diagrammatic formulation
of the technique in QCD, deriving at one loop the gauge independent gluon self-energy,
quark-gluon vertex, and three-gluon vertex, together withtheir Abelian Ward identities.
The generalization of the PT to theories with spontaneous symmetry breaking is carried
out in detail, and the profound connection with the optical theorem and the dispersion rela-
tions are explained within the electroweak sector of the Standard Model. The equivalence
between the PT and the Feynman gauge of the Background Field Method (BFM) is elab-
orated, and the crucial differences between the two methodsare critically scrutinized. A
variety of field theoretic techniques needed for the generalization of the PT to all orders are
introduced, with particular emphasis on the Batalin-Vilkovisky quantization method and the
general formalism of algebraic renormalization. The main conceptual and technical issues
related to the extension of the technique beyond one loop aredescribed, using the two-
loop construction as a concrete example. Then the all-ordergeneralization is thoroughly
examined, making extensive use of the field theoretic machinery previously introduced; of
central importance in this analysis is the demonstration that the PT-BFM correspondence
persists to all orders in perturbation theory. The extension of the PT to the non-perturbative
domain of the QCD Schwinger-Dyson equations is presented systematically, and the main
advantages of the resulting self-consistent truncation scheme are discussed. A plethora of
physical applications relying on the PT are finally reviewed, with special emphasis on the
definition of gauge-independent off-shell form-factors, the construction of non-Abelian ef-
fective charges, the gauge-invariant treatment of resonant transition amplitudes and unsta-
ble particles, and finally the dynamical generation of an effective gluon mass.

Key words: Non-Abelian gauge theories, Gluons, gauge bosons, Gauge-invariance,
Schwinger-Dyson equations, Greens functions, Dynamical mass generation
PACS:12.38.Aw, 14.70.Dj, 12.38.Bx, 12.38.Lg

prepared for Physics Reports

Preprint submitted to Elsevier Preprint 14 September 2009

http://arxiv.org/abs/0909.2536v1


Contents

1 Introduction 7

2 The one-loop pinch technique in QCD 14

2.1 The QCD Lagrangian, gauge-fixing, and BRST symmetry 14

2.2 Gauge cancellations in theS-matrix and the origin of the pinch technique 16

2.3 The pinch technique mechanism of gauge fixing parameter cancellations at one loop 18

2.3.1 The box 20

2.3.2 The quark-gluon vertex 22

2.3.3 The quark self-energy 23

2.3.4 Final cancellation of all gauge fixing parameter dependence 25

2.4 The one-loop pinch technique Green’s functions 26

2.4.1 The one-loop pinch technique quark-gluon vertex and its Ward identity 26

2.4.2 The pinch technique gluon self-energy at one loop 29

2.4.3 Process-independence of the pinch technique 31

2.4.4 Intrinsic pinch technique and the gauge-independentthree-gluon vertex at one
loop 32

2.4.5 The pinch technique four-gluon vertex at one loop 38

2.5 The absorptive pinch technique construction 38

2.5.1 Optical theorem and analyticity 38

2.5.2 The fundamentals-t cancellation 45

3 The background field method and its correspondence with thePT 51

3.1 The background field method 51

3.2 Background field gauges 54

3.2.1 Generalized background gauges 56

3.3 Advantages over the conventional formalism 57

3.3.1 Preliminaries: Green’s function andS-matrix calculation in the BFM 57

2



3.3.2 Special transversality properties of the BFM 58

3.4 The pinch technique/background Feynman gauge correspondence 61

3.5 The pinch technique/background Feynman gauge correspondence: conceptual issues 63

3.5.1 Pinching within the background field method 64

3.6 Generalized pinch technique 66

4 The Pinch Technique one-loop construction in the electroweak sector of the Standard
Model 68

4.1 The electroweak lagrangian 68

4.2 Pinch technique with Higgs mechanism: general considerations 71

4.3 The case of massless fermions 74

4.3.1 Gauge fixing parameter cancellations 75

4.3.2 Final rearrangement and connection with the background Feynman gauge 79

4.3.3 A very special case: the unitary gauge 82

4.3.4 Pinch technique absorptive construction in the electroweak sector 84

4.3.5 Background field method away fromξQ = 1: physical versus unphysical
thresholds 89

4.4 PT with massive fermions: an explicit example 90

4.4.1 Gauge fixing parameter cancellations 92

4.4.2 Final rearrangement and comparison with the background Feynman gauge 96

4.4.3 Deriving Ward identities from the gfp-independence of theS-matrix. 98

5 Applications - I 101

5.1 Non-Abelian effective charges 101

5.1.1 QED effective charge: the prototype 101

5.1.2 QCD effective charge 104

5.1.3 Effective mixing (Weinberg) angle 106

5.1.4 Electroweak effective charges 108

3



5.1.5 Electroweak effective charges and their relation to physical cross-sections 109

5.1.6 The effective charge of the Higgs boson 112

5.1.7 Physical renormalization schemes vsMS 112

5.2 Gauge-independent off-shell form-factors: general considerations 116

5.2.1 Anomalous gauge boson couplings 117

5.2.2 Neutrino charge radius 120

5.2.3 The physical NCR 121

5.2.4 Neutrino-Nuclear coherent scattering and the NCR 125

5.3 Gauge-independent definition of electroweak parameters 126

5.3.1 TheS, T , andU parameters 126

5.3.2 The universal part of theρ parameter beyond one loop 128

5.4 Self-consistent resummation formalism for resonant transition amplitudes 131

5.4.1 The Breit-Wigner Ansatz and the Dyson summation 131

5.4.2 The non-Abelian setting 133

6 Beyond one loop: from two loops to all orders 143

6.1 The pinch technique at two loops 143

6.1.1 The one-particle reducible graphs 144

6.1.2 Quark-gluon vertex and gluon self-energy at two loops 146

6.1.3 The two-loop absorptive construction 151

6.2 The PT to all orders in perturbation theory 157

6.2.1 The four-point kernelAAqq̄ and its Slavnov-Taylor identity 157

6.2.2 The fundamental all-orders-t cancellation 159

6.2.3 The PT to all orders: the quark-gluon vertex and the gluon propagator 162

7 PT in the Batalin-Vilkovisky framework 166

7.1 Green’s functions: conventions 167

4



7.2 The Batalin-Vilkovisky formalism for pedestrians 168

7.3 Faddeev-Popov equation(s) 172

7.4 The (one-loop) PT algorithm in the BV language 173

7.5 The two-loop case 174

8 The PT Schwinger-Dyson Equations for QCD Green’s functions 178

8.1 SDEs for non-Abelian gauge theories: difficulties with the conventional formulation 178

8.2 The PT algorithm for Schwinger-Dyson equations 180

8.2.1 Three-gluon vertex 181

8.2.2 The gluon propagator 186

8.3 The new Schwinger-Dyson series 190

8.3.1 The PT as a gauge-invariant truncation scheme: advantages over the
conventional SDEs 191

8.3.2 Some important theoretical and practical issues 195

9 Applications part II: Infrared properties of QCD Green’s functions and dynamically
generated gluon mass 199

9.1 PT Schwinger-Dyson equations for the gluon and ghost propagators 201

9.2 Schwinger mechanism, dynamical gauge-boson mass generation, and bound-state
poles 205

9.3 Results and comparison with the lattice 208

9.4 The non-perturbative effective charge of QCD 210

10 Concluding remarks 214

A SU(N) group theoretical identities 216

B Feynman rules 217

B.1 Rξ and BFM gauges 217

B.2 Anti-fields 218

B.3 BFM sources 218

5



C Faddev-Popov equations, Slavnov-Taylor Identities and Background Quantum Identities
for QCD 220

C.1 Faddeev-Popov Equations 220

C.2 Slavnov-Taylor Identities 221

C.2.1 STIs for gluon proper vertices 221

C.2.2 STIs for mixed quantum/background Green’s functions 223

C.2.3 STIs for the gluon SD kernel 224

C.3 Background-Quantum Identities 226

C.3.1 BQIs for two-point functions 226

C.3.2 BQIs for three-point functions 228

C.3.3 BQI for the ghost-gluon trilinear vertex 230

References 231

6



1 Introduction

When quantizing gauge theories in the continuum one usuallyresorts to an appropriate gauge-
fixing procedure in order to remove redundant (non-dynamical) degrees of freedom originating
from the gauge invariance of the theory [1]. Thus, one adds tothe gauge invariant (classi-
cal) Lagrangian,LI, a gauge-fixing term,LGF, which allows for the consistent derivation of
Feynman rules. At this point a new type of redundancy makes its appearance, this time at the
level of the building blocks defining the perturbative expansion. In particular, individual off-
shell Green’s functions (n-point functions) carry a great deal of unphysical information, which
disappears when physical observables are formed.S-matrix elements, for example, are inde-
pendent of the gauge-fixing scheme and parameters chosen to quantize the theory are unitary
and well-behaved at high energies. Green’s functions, on the other hand, depend explicitly (and,
in general, non-trivially) on the gauge-fixing parameter (gfp) entering in the definition ofLGF,
contain unphysical thresholds, and grow much faster than physical amplitudes at high energies
(e.g., they grossly violate the Froissart-Martin bound [2]). Evidently, in going from unphysical
Green’s functions to physical amplitudes, subtle field-theoretic mechanisms are at work, enforc-
ing vast cancellations among the various Green’s functions. While it is clear that the realization
of these cancellations mixes non-trivially contributionsstemming from Feynman diagrams of
different kinematic nature (propagators, vertices, boxes), the prevailing attitude is to condense
all this down to the standard statement that the Becchi-Rouet-Stora-Tyutin (BRST) symmetry
[3,4] guarantees eventually the gauge-independence of physical observables, and nothing more.

It turns out, however, that all aforementioned cancellations inside physical amplitudes (such
asS-matrix elements, Wilson loops, etc) take place in a very particular way: not only is the
entire physical amplitude gauge-independent, but it may bedecomposed into kinematically dis-
tinct subamplitudes that are themselvesindividually gauge-independent. In addition to being
gauge-independent, these subamplitudes are endowed with further properties, such as analyt-
icity and a profound connection with the optical theorem. The precise field-theoretic method
that exposes this particular stronger version of gauge independence and enforces all ensuing
physical properties is the Pinch Technique (PT) [5–9]. The basic observation is that all rele-
vant cancellations are realized when a very particular subset of longitudinal momenta, circu-
lating inside vertex and box diagrams, extracts out of them,through the “pinching” of inter-
nal lines, structures that are in all respects propagator-like, and should therefore be reassigned
to the conventional self-energy Feynman graphs. This particular reshuffling of terms has far-
reaching consequences, giving rise to effective Green’s functions, which, in contradistinction
to the conventional unphysical Green’s functions, have properties generally associated with
physical observables. In particular, the PT Green’s functions are independent of the gauge-
fixing scheme and parameters chosen to quantize the theory (ξ in covariant gauges,nµ in axial
gauges, etc.) are gauge-invariant,i.e., they satisfy the all-order simple tree-level Ward Identi-
ties (WIs), associated with the gauge symmetry of the classical LagrangianLI, instead of the
ghost-infested Slavnov-Taylor identities (STIs), they display only physical thresholds, and they
are well-behaved at high energies.

But why should one worry at all about the gauge-dependence orother unphysical properties
that individual Green’s functions may have? After all, whenone uses them to construct observ-
ables, they do conspire to furnish the right answer, which isall that really matters. Things are
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not so simple, however; in fact, as we will explain in detail in this report, there are consider-
able theoretical and phenomenological advantages in reformulating the perturbative expansion
in terms of off-shell Green’s functions with improved properties.

Even within a fixed order perturbative calculation, the sharp difference between observables
and Green’s functions suggests a great deal of redundancy inthe conventional diagrammatic
formulation of gauge theories, in the sense that extensive underlying cancellations beg to be
made manifest and be explicitly exploited as early within a calculation as possible. Implement-
ing these cancellations at an early stage renders the book-keeping aspects more tractable [10].
Moreover, there is an unpleasant mismatch between our intuition based on Quantum Electro-
dynamics (QED) and the way non-Abelian theories seem to work; however, very often this
mismatch is not due to inherent properties of the non-Abelian physics, but is rather an artifact
of the quantization procedure, and of the way this affects individual Green’s functions. For ex-
ample, the text-book concept of the effective charge, so familiar in QED, becomes completely
obscured in a non-Abelian setting, because of the gauge-dependence of the vector meson’s self-
energy, a complication that is automatically resolved in the PT context.

The main reason that clearly favors employing the PT Green’sfunctions, however, is the
fact that a variety of important physical problems cannot beaddressed within the framework of
fixed-order perturbation theory,i.e., by simply computing all Feynman diagrams contributing
to a given process at a given order. This is often the case within Quantum Chromodynamics
(QCD), where, due to the large disparities of the physical scales involved, a complicated inter-
play between perturbative and non-perturbative effects takes place. Similar limitations appear
when physical kinematic singularities, such as resonances, render the perturbative expansion di-
vergent at any finite order, or when perturbatively exact symmetries prohibit the appearance of
certain phenomena, such as chiral symmetry breaking or gluon mass generation. In such cases
one often resorts to various reorganizations of the perturbative expansion, or to completely
non-perturbative techniques such as the Schwinger-Dyson equations (SDEs). One of the main
difficulties encountered when dealing with the problems mentioned above is the fact that several
physical properties, which are automatically preserved infixed-order perturbative calculations
by virtue of powerful field-theoretic principles, may be easily compromised when rearrange-
ments of the perturbative series, such as resummations, arecarried out. These complications
may, in turn, be traced down to the fundamental fact that we have emphasized from the outset:
in non-Abelian gauge theories individual off-shell Green’s functions are unphysical.

We now take a closer look at some of the aforementioned issues, in order to fully appreciate
the usefulness of the PT formalism.

∗ Non-Abelian effective charges.The unambiguous extension of the concept of the gauge-
independent, renormalization group invariant, and process-independent effective charge from
QED to QCD [7,11] is of special interest for several reasons [12]. The PT construction of this
quantity accomplishes the explicit identification of the conformally-variant and conformally-
invariant subsets of QCD graphs [13], usually assumed in thefield of renormalon calcu-
lus [14]. Moreover, the PT effective charge can serve as the natural scheme for defining the
coupling in the proposed “event amplitude generators” based on the the light-cone formula-
tion of QCD [15]. In addition, the electroweak effective charges constructed with the PT are
used to define the physical renormalization schemes [16], which provide a superior frame-
work for the study of gauge coupling unification.
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∗ Off-shell form-factors.In non-Abelian theories their proper definition poses in general prob-
lems related to the gauge invariance [17]. Specifically, if one attempts to define the form-
factors from the conventional vertices, for off-shell momentum transfers, one is invariably
faced with residual gauge-dependences, together with the various pathologies that these im-
ply. Some representative cases are the magnetic dipole and electric quadrupole moments of
theW [18], the top-quark magnetic moment [19], and the neutrino charge radius [20]. The PT
allows for an unambiguous definition of such quantities, without any additional assumptions
whatsoever: one must simply extract the corresponding physical off-shell form-factors from
the corresponding gauge-independent PT vertex. A celebrated example of such a successful
construction has been the neutrino charge radius; the gauge-independent, renormalization-
group-invariant, and target-independent neutrino chargeradius obtained from the correspond-
ing PT vertex constitutes a genuinephysicalobservable, since it can be extracted (at least in
principle) from an appropriate combination of scattering experiments [21].

∗ Resonant transition amplitudes.The Breit-Wigner procedure used for regulating the physical
singularity appearing in the vicinity of resonances (

√
s ∼ M) is equivalent to areorgani-

zationof the perturbative series [22]. In particular, the Dyson summation of the self-energy,
which is the standard way for treating resonant amplitudes,effectively amounts to removing
a particular term from each order of the perturbative expansion, since from all the Feyn-
man graphs contributing to a given order one only keeps the part that contains self-energy
bubbles. Given that non-trivial cancellations involving the various Green’s function gener-
ally take place at any given order of this expansion, the act of removing one of them from
each order may distort those cancellations; this is indeed what happens when constructing
non-Abelianrunning widths. The way the PT solves this problem is by ensuring that all un-
physical contributions contained inside the conventionalself-energies have been identified
and properly discarded,beforeany resummations are carried out [23].

∗ Schwinger-Dyson equations.The most widely used framework for studying in the continuum
various dynamical questions that lie beyond perturbation theory are the Schwinger-Dyson
equations (SDE) [24,25]. This infinite system of coupled non-linear integral equations for all
Green’s functions of the theory is inherently non-perturbative, and captures the full content of
the quantum equations of motion. Even though these equations are derived by an expansion
about the free-field vacuum, they finally make no reference toit, or to perturbation theory,
and can be used to address problems related to chiral symmetry breaking, dynamical mass
generation, formation of bound states, and other non-perturbative effects [26,27]. Since this
system involves an infinite hierarchy of equations, in practice one is severely limited in their
use, and the need for a self-consistent truncation scheme isevident. Devising such a scheme,
however, is far from trivial; the crux of the matter is that the SDEs, in their conventional
formulation, are built out of unphysical Green’s functions. Thus, the extraction of reliable
physical information depends crucially on delicate all-order cancellations, which may be
inadvertently distorted in the process of the truncation. The PT addresses this problem at its
root, by introducing a drastic modification already at the level of the building blocks of the
SD series, namely the off-shell Green’s functions themselves.
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Let us emphasize from the beginning that, to date, there is noformal definition of the PT proce-
dure at the level of the functional integral defining the theory. In particular, let us assume that the
path integral has been defined using an arbitrary gauge-fixing procedure (e.g., linear covariant
gauges); then, there is no known a priori procedure (such as,e.g., functional differentiation with
respect to some combination of appropriately defined sources) that would furnish directly the
gauge-independent PT Green’s functions. The definition of the PT procedure is operational, and
is intimately linked to the diagrammatic expansion of the theory (i.e., one must know the Feyn-
man rules). In fact, the starting point of the PT construction can be any gauge-fixing scheme
that furnishes a set of well-defined Feynman rules and gauge-independent physical observables.
Specifically, one operates at a certain well-defined subset of diagrams, and the subsequent re-
arrangements give rise to the same gfp-independent PT answer, regardless of the gauge-fixing
scheme chosen for deriving the Feynman rules. However, as wewill see in the last sections of
this report, the PT in its ultimate formulation is not diagrammatic, in the sense that one does not
need to operate on individual graphs but rather on a handful of classes of diagrams (each one
containing an infinite number of individual graphs).

Today’s distilled wisdom on the structure of the PT can be essentially captured by the pro-
found connection between the PT and the the well-known quantization scheme known as the
Background Field Method (BFM) [28–38]. The BFM is a special gauge-fixing procedure, im-
plemented at the level of the generating functional. In particular, it preserves the symmetry
of the action under ordinary gauge transformations with respect to the background (classical)
gauge fieldÂµ, while the quantum gauge fieldsAµ appearing in the loops transform homoge-
neously under the gauge group,i.e., as ordinary matter fields which happened to be assigned
to the adjoint representation [39]. As a result of the background gauge symmetry, the BFMn-
point functions〈0|T

[
Âµ1(x1)Âµ2(x2) · · · Âµn

(xn)
]
|0〉 satisfy naive QED-like Ward-identities,

but they do depend explicitly on the quantum gauge-fixing parameterξQ used to define the tree-
level propagators of the quantum gluons. It turns out that, to all orders in perturbation theory, the
gauge-fixing parameter-independent effectiven-point functions constructed by means of the PT
(starting from any gauge-fixing scheme)coincidewith the corresponding backgroundn-point
functions when the latter are computed at the special valueξQ = 1 (BFM Feynman gauge, BFG
in short) [40–42] . Some important conceptual issues related to this correspondence will be dis-
cussed extensively in the corresponding sections.

We now turn to a somewhat more technical issue, and discuss briefly the formal machinery
necessary for the implementation of the PT. Evidently, there is a gradual increase in the so-
phistication of the field-theoretic tools employed when going from the one-loop construction,
presented in the early articles, all the way to the recently derived new SD series.

The original one-loop [7] and two-loop [43] PT calculationsconsist in carrying out alge-
braic manipulations inside individual box- and vertex-diagrams, following well-defined rules.
In particular, one tracks down the rearrangements induced when the action of (virtual) longitu-
dinal momenta (k) on the bare vertices of diagrams trigger elementary WIs. The longitudinal
momenta responsible for these rearrangements stem either from the bare gluon propagators or
from a very characteristic decomposition of the tree-level(bare) three-gluon vertex. Eventually,
a WI of the formkµγµ = S−1(k/+ p/)− S−1(p/) gives rise to propagator-like parts, by removing
(pinching out) the internal bare fermion propagatorS(k/+p/). Depending on the order and topol-
ogy of the diagram under consideration, the final WI may be activated immediately, as happens
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at one loop, or as the final outcome of a sequential triggeringof intermediate WIs, as happens at
two loops. The propagator-like contributions so obtained are next reassigned to the usual gluon
self-energies, giving rise to the PT gluon self-energy.

The direct diagram-by-diagram treatment followed up untilthe two-loops cannot be possibly
used to generalize the PT to all orders. Indeed, the resulting logistic complexity clearly advo-
cates for the use of a non-diagrammatic approach,i.e., a method that treats at once entire subsets
of diagrams. The non-diagrammatic formulation of the PT introduced in [44] accomplishes this,
by recognizing that the aforementioned one- and two-loop rearrangements are but lower-order
manifestations of a more fundamental cancellation. This cancellation takes place when com-
puting the divergence (STI) of a special Green’s function, which serves as a common kernel to
all higher order self-energy and vertex diagrams. In addition, and most importantly, the parts
of the Feynman diagrams that are shuffled around during the pinching process are expressed in
terms of well-defined field-theoretic objects, namely the ghost Green’s functions appearing as
a standard ingredient in the STI satisfied by the three-gluonvertex [45]. These ghost Green’s
functions involve composite operators, such as〈0|T [sΦ(x) · · · ]|0〉, wheres is the BRST oper-
ator andΦ is a generic QCD field. It turns out that the most efficient framework for dealing
with these type of objects is the Batalin-Vilkovisky formalism [46]. In this framework, one
adds to the original gauge-invariant LagrangianLI the termLBRST =

∑
Φ Φ∗sΦ, thus coupling

the composite operatorssΦ to the BRST invariant external sources (usually called anti-fields)
Φ∗, to obtain the new LagrangianLBV = LI + LBRST. One advantage of this formulation is
that it allows one to express the STIs of the theory in terms ofauxiliary functions, which can
be constructed using a well-defined set of Feynman rules (derived fromLBRST). The Batalin-
Vilkovisky formalism, and in particular a multitude of useful identities derived from it, is used
extensively in the derivation of the new series of gauge-invariant SDEs.

We conclude by presenting a roadmap of the topics discussed in this report.

Section 2. This section contains a detailed introduction to the one-loop PT in the context of a theory like
QCD, i.e., without tree-level symmetry breaking. The method is implemented at the level of
every single one-loop Feynman diagram contributing to a quark-quark scattering amplitude.
The PT two-point functions at one-loop are derived, with particular emphasis on the PT gluon
self-energy and the quark-gluon vertex. The QED-like WI satisfied by the latter is derived in
detail. A similar construction is carried out for the one-loop three-gluon vertex, the corre-
sponding Abelian WI is presented, and the supersymmetric structure of its form-factors is
discussed. We dedicate a large part of the first section in establishing the precise connection
between the imaginary parts of the one-loop PT Green’s functions and the optical theorem,
together with the corresponding dispersion relations.

Section 3. Here we review the formal aspects of the BFM, and derive the corresponding set of Feynman
rules, emphasizing the dependence of thebarethree- and four-gluon vertices on the gfp, and
the characteristic ghost sector containing a symmetricÂc̄c vertex, and a neŵAÂc̄c four-field
vertex. We next establish the correspondence between the PTand the BFG at the one-loop
level, and clarify various conceptual issues regarding this correspondence and its correct in-
terpretation. The final item in this section is the introduction to the “generalized” PT, which is
a diagrammatic procedure that permits one to start out with any arbitrary conventional gauge
and be dynamically projected to the corresponding BFM gauge.
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Section 4. In this section, the one-loop PT construction for the electroweak sector of the Standard Model
(SM) is presented. This exercise is significantly more involved than in the case of QCD,
mainly due to the book-keeping complications introduced bythe proliferation of particles.
We pay particular attention to the modifications introducedto the PT procedure due to the
spontaneous breaking of the symmetry through the Higgs mechanism. We first present the
technically simpler situation of massless external test fermions, an assumption that consid-
erably simplifies the algebra. The absorptive constructionof the first section is repeated, and
the same underlying principles and patterns are recovered.The generalization of the method
to the case of massive external fermions is then discussed, and the central role of the would-
be Goldstone bosons for maintaining gauge-invariance is elucidated. We demonstrate how
in this latter case the requirement of the complete gauge-independence of the PT-rearranged
scattering amplitude furnishes non-trivial WIs relating the various PT Green’s functions.

Section 5. We present some of the most characteristic applications of the PT, that can be worked out
based on the material presented in the previous three sections. We focus on four particular
subjects. First, we study in detail the construction of non-Abelian effective charges that sat-
isfy the same properties as the prototype QED effective charge. The analysis includes the
QCD effective charge, as well as the those appearing in the electroweak sector, most notably
the effective electroweak mixing angle. We demonstrate howthe unitarity and analyticity
properties built into these charges allow (at least in principle) their reconstruction from ex-
periments. As a particularly interesting phenomenological application of the PT effective
charges, we focus on the so-called “physical renormalization schemes”, relevant for the cor-
rect quantitative study of the unification of the gauge couplings. Second, we explain how to
define gauge-independent off-shell form-factors with the PT. Particular emphasis is placed
on the more recent case of the neutrino charge radius, which is shown to be endowed with
a plethora of physical properties, and to constitute a genuine physical observable. The third
application is related to the gauge-independent definitionof some important electroweak pa-
rameters, such as theS, T , andU , and the universal part of theρ parameter. The fourth main
application is the gauge-invariant framework for treatingself-consistently resonant transition
amplitudes. The intricate nature of this problem requires an elaborate synthesis of practically
all the material that has been presented in the first three sections. In the corresponding subsec-
tions the reader may fully appreciate how tightly intertwined the various physical principles
really are, and eventually recognize the superiority of thePT-based resonant transition for-
malism over any other similar attempt that has appeared in the literature to date.

Section 6. The application of the PT beyond one loop is presented. We start with the explicit two-loop
construction, which still proceeds by applying the PT algorithm on individual graphs. The
upshot of the analysis is that all the PT properties known from the one-loop construction are
replicated at two loops, without any additional assumptions; most notably, it is established
that the PT-BFG correspondence persists at two loops. Next,we shift gears and turn into the
non-diagrammatic formulation of the PT: the all-order construction is carried out by recog-
nizing that all crucial PT cancellations are encoded into the STI satisfied by a special Green’s
function, and the PT-BFG correspondence is proven to be valid to all orders.
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Section 7. We introduce the powerful quantization formalism of Batalin and Vilkovisky, which will
allow us to streamline elegantly the entire PT procedure, ina way especially suited for ac-
complishing the important task of the next section. After introducing the basic formalism,
we revisit the one- and two-loop cases, and show how the various terms participating in the
construction are expressed in terms of the auxiliary Green’s functions characteristic of the
Batalin-Vilkovisky formalism. In addition, we derive a setof identities relating the conven-
tional and BFM Green’s functions, which will turn out to be ofparamount importance for the
SD analysis that follows.

Section 8. This section contains the holy grail of the PT. We first explain that the naive truncation of the
conventional SD series is bound to introduce artifacts, such as the violation of the transversal-
ity of the gluon self-energy. We then show that the application of the PT to the conventional
SDE for the gluon propagator and three-gluon vertex gives rise to new SDEs endowed with
special properties. The fully dressed vertices appearing in this new SD series satisfy Abelian
all-order WIs instead of the STIs satisfied by their conventional counterparts. As a result, and
contrary to the standard case, the new series can be truncated gauge-invariantlyat any order
in the dressed loop expansion, andseparatelyfor gluonic and ghost contributions.

Section 9. Here we present a highly non-trivial application of the new SD formalism derived in the pre-
vious section. In particular, after truncating the SD series gauge-invariantly, we solve the re-
sulting system of coupled integral equations, and determine the infrared behavior of the gluon
and ghost propagator (in the Landau gauge). We explain that,under very special assumptions
for the three-gluon vertex entering into the SDE, one can obtain an infrared finite gluon prop-
agator. The physics behind this behavior is associated withthe phenomenon of dynamical
gluon mass generation, which is the4 − d analogue of the2 − d Schwinger mechanism. In
addition, the numerical treatment of the SD system reveals that the dressing function of the
ghost propagator is also finite in the infrared. These results are then compared with several
recent large-volume lattice simulations, and are found to be in good qualitative agreement.

The review ends with some concluding remarks in Section 10, and three appendices collecting
material used in the main text.
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2 The one-loop pinch technique in QCD

In this section, we present in detail the PT construction at one-loop for a non-Abelian gauge
theory like QCD, where there is no tree-level symmetry breaking (no Higgs mechanism). The
analysis we present here applies to any gauge group [SU(N), exceptional groups, etc], but
for concreteness we will adopt the QCD terminology (thus talking about quarks, gluons, etc).
The calculations presented in this section are purposefully very detailed, and aim to provide a
completely self-contained guide to the one-loop PT.

2.1 The QCD Lagrangian, gauge-fixing, and BRST symmetry

Throughout this report we will adopt the conventions of the book by Peskin & Schröder [47].
The QCD Lagrangian density is given by

L = LI + LGF + LFPG. (2.1)

LI represents the gauge invariantSU(3) Lagrangian, namely

LI = −1

4
F µν
a F a

µν + ψ̄if (iγµDµ −m)ij ψ
j
f , (2.2)

wherea = 1, . . . , 8 (respectivelyi, j = 1, 2, 3) is the color index for the adjoint (respectively
fundamental) representation, while “f” is the flavor index.The field strength is

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , (2.3)

and the covariant derivative is defined as

(Dµ)ij = ∂µ(I)ij − igAaµ(t
a)ij, (2.4)

with g the (strong) coupling constant. Finally, theSU(N) generatorsta satisfy the commutation
relations

[ta, tb] = ifabctc, (2.5)

with fabc the totally antisymmetricSU(N) structure constants. Useful formulas involving the
SU(N) structure constants are reported in Appendix A.
LI is invariant under the (infinitesimal) local gauge transformations

δAaµ = −1

g
∂µθ

a + fabcθbAcµ δθψ
i
f = −iθa(ta)ijψjf δθψ̄

i
f = iθaψ̄jf (t

a)ji, (2.6)

whereθa(x) are the local infinitesimal parameters corresponding to theSU(N) generatorsta.
In order to quantize the theory, the gauge invariance needs to be broken; this is achieved

through a (covariant) gauge fixing functionFa, giving rise to the (covariant) gauge fixing La-
grangianLGF and its associated Faddeev-Popov ghost termLFPG. The most general way of
writing these terms is through the BRST operators [48,3] and the Nakanishi-Lautrup multiplier
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Ba [49,50] which represents an auxiliary, non-dynamical field, that can be eliminated through
its (trivial) equation of motion. Then

LGF =−ξ
2
(Ba)2 +BaFa,

LFPG =−c̄asFa, (2.7)

where
δBRSTΦ = ǫsΦ, (2.8)

with ǫ a Grassmann constant parameter, ands the BRST operator acting on the QCD fields as

sAaµ = ∂µc
a + gfabcAbµc

c sca = −1

2
gfabccbcc,

sψif = igca(ta)ijψ
j
f sc̄a = Ba,

sψ̄if = −igcaψ̄jf (ta)ji sBa = 0. (2.9)

We thus see that the sum of the gauge fixing and Faddev-Popov terms can be written as a total
BRST variation

LGF + LFPG = s

(
c̄aFa − ξ

2
c̄aBa

)
. (2.10)

This is of course expected, since it is well known that total BRST variations cannot appear in
the physical spectrum of the theory, implying, in turn, the gfp independence of theS-matrix
elements and physical observables.

As far as the gauge fixing function is concerned, there are several possible choices. The usual
linearRξ gauges, correspond to the covariant choice

Fa
Rξ

= ∂µAaµ. (2.11)

In this case one has

LGF =
1

2ξ
(∂µAaµ)

2,

LFPG = ∂µc̄a∂µc
a + gfabc(∂µc̄a)Abµc

c; (2.12)

the Feynman rules corresponding to such gauge are reported in Appendix B. One can also
consider non-covariant gauge fixing functions, such as [51–58]

Fa
η =

ηµην

η2
∂µA

a
ν , (2.13)

whereηµ is an arbitrary but constant four-vector. In general, we canclassify these gauges from
the different value ofη2, i.e., η2 < 0 (axial gauges),η2 = 0 (light-cone gauge) and, finally,
η2 > 0 (Hamilton or time-like gauge). In this case
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LGF =
1

2ξ(η2)2
(ηµην∂µA

a
ν)

2,

LFPG =
ηµην

η2

[
∂µc̄

a∂νc
a + gfabc(∂µc̄a)Abνc

c
]
. (2.14)

Notice that these non-covariant gauges are ghost-free, since it can be shown that, in dimen-
sional regularization, the ghosts decouple completely from theS-matrix [57,58]. Another non-
covariant gauge fixing function is the one determining the Coulomb gauge, which arises from
choosing

Fa =

(
gµν −

ηµην

η2

)
∂µA

a
ν . (2.15)

Finally, due to their central importance for the PT, the particular class of gauges known as
background field gauges [59,34] will be described in detail in Section 3.

Throughout this report we will use dimensional regularization to regulate loop integrals. We
will employ the short-hand notation

∫

k
≡ µ2ε(2π)−d

∫
ddk, (2.16)

whered = 4 − ǫ is the dimension of space-time andµ the ’t Hooft mass-scale, introduced to
guarantee that the coupling constant remains dimensionless in d dimensions. In addition, the
standard result ∫

k

1

k2
= 0, (2.17)

will be often used to set to zero various terms appearing in the PT procedure.

2.2 Gauge cancellations in theS-matrix and the origin of the pinch technique

Consider theS-matrix elementT for the elastic scattering of two fermions of massesm1 and
m2. To any order in perturbation theoryT is independent of the gfpξ. On the other hand, the
conventionally defined proper box, vertex, and self-energy, collectively depicted in Fig. 1(a),
(b), and(c), respectively, depend onexplicitly on the gfpξ already at one-loop level. Specifi-
cally, sinces+ t+ u = 2(m2

1 +m2
2), we have that

T (s, t,mi) = T1(t, ξ) + T2(t,mi, ξ) + T3(t, s,mi, ξ) . (2.18)

where the gfp-dependent subamplitudesT1, T2, andT3 are composed of self-energy, vertex,
and box diagrams, respectively; for example,T1(t, ξ) corresponds to the standard propagator,
depending kinematically only ont = (r1 − r2)

2 = (p1 − p2)
2, but not ons = (r1 + p1)

2 =
(r2 + p2)

2, nor on the external masses.
The central observation of the PT is that theξ-dependence of the proper self-energy will

cancel against contributions from the vertex- and box-graphs, which, at first glance, do not
seem to contain propagator-like parts. In turn, this cancellation can be employed to definegfp-
independentsubamplitudes with distinct kinematic properties. Indeed, given that the total sum
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(a) (b) (c)

r2

r1 p1

p2 r2

r1 p1

p2r2

r1 p1

p2

Fig. 1. The diagrams contributing to theS-matrix, grouped according to their topologies and their
dependence on the Mandelstam variabless, t, and u, with s = (r1 + p1)

2 = (r2 + p2)
2,

t = (r1 − r2)
2 = (p1 − p2)

2, andu = (r1 − p2)
2 = (p1 − r2)

2, with s + t + u = Σim
2
i . Evidently,

box-diagrams(a) depend ons, t,m2
i , vertex-diagrams(b) depend ont,m2

i , and self-energy diagrams(c)
depend only ont.

T (s, t,mi) is gfp-independent, it is relatively easy to show that Eq. (2.18) can be recast in the
form

T (s, t,mi) = T̂1(t) + T̂2(t,mi) + T̂3(t, s,mi), (2.19)

where theT̂i (i = 1, 2, 3) areindividuallyξ-independent. An immediate way to see this is by dif-
ferentiating both sides of (2.18) with respect toξ and s; the rhs vanishes because
dT (s, t,mi)/dξ = 0; on the lhs we have thatdT1(t, ξ)/ds = dT2(t,mi, ξ)/ds = 0. Thus,

d2T3(t, s,mi, ξ)

ds dξ
= 0, (2.20)

from which it follows thatT3 can be written as a sum of two functions, one independent ofξ
and one independent ofs, i.e.,

T3(t, s,mi, ξ) = T̂3(t, s,mi) + h(t,mi, ξ). (2.21)

So, we have
T (s, t,mi) = T1(t, ξ) + T̃2(t,mi, ξ) + T̂3(t, s,mi), (2.22)

whereT̃2(t,mi, ξ) ≡ T2(t,mi, ξ) + h(t,mi, ξ). The argument may be continued by differenti-
ating both sides of Eq. (2.22) with respect toξ andmi, now obtaining

d2T̃2(t,mi, ξ)

dmi dξ
= 0, (2.23)

and thus
T̃2(t,mi, ξ) = T̂2(t,mi) + f(t, ξ). (2.24)

The last step is to writêT1(t, ξ) ≡ T1(t, ξ) + f(t, ξ); clearly, sincedT (s, t,mi)/dξ = 0, we
must have thatdT̂1(t, ξ)/dξ = 0, and thereforêT1(t, ξ) = T̂1(t), thus arriving at Eq. (2.19).

The above proof is meant to demonstrate the possibility of decomposingT (s, t,mi) in terms
of individually gfp-independent subamplitudes, as in (2.19), but does not specify how this de-
composition is realized operationally, nor whether it is physically unique. To be sure, at the
level presented above, the decomposition is not mathematically unique, since one can always
add an arbitrary functiong(t) to T̂1(t) and subtract it from̂T2(t,mi); this changes the definition
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of what the individual subamplitudes are, without changingthe value of the fullT (s, t,mi).
However, when thêTi are endowed with physical properties, such as unitarity andanalyticity,
Dyson resummability, and invariance under the renormalization group (RG), to name a few, the
above arbitrariness disappears. As we will see in the rest ofthis review, the PT Green’s func-
tions, which, by construction, have all the aforementionedphysical properties built in, provide
the field-theoretically and physically unique way of realizing the decomposition of Eq. (2.19).

2.3 The pinch technique mechanism of gauge fixing parameter cancellations at one loop

Let us start by considering theS-matrix element for the quark-quark elastic scattering process
q(p1)q(r1) → q(p2)q(r2) in QCD. We have thatp1+r1 = p2+r2, and setq = r2−r1 = p1−p2,
with t = q2 the square of the momentum transfer. The longitudinal momenta responsible for
triggering the kinematical rearrangements characteristic of the PT stem either from the bare
gluon propagator,∆(0)

αβ(k), or from theexternalbare (tree-level) three-gluon vertices,i.e., the
vertices where the physical momentum transferq is entering.

To study the origin of the longitudinal momenta in detail, consider first the gluon propagator
∆αβ(k); after factoring out the trivial color factorδab, in theRξ gauges it has the form1

i∆αβ(q, ξ) = −i
[
Pαβ(q)∆(q2, ξ) + ξ

qαqβ
q4

]
, (2.25)

with Pαβ(q) the dimensionless transverse projector defined as

Pαβ(q) = gαβ −
qαqβ
q2

. (2.26)

The scalar function∆(q2, ξ) is related to the all-order gluon self-energy

Παβ(q, ξ) = Pαβ(q)Π(q2, ξ), (2.27)

through

∆(q2, ξ) =
1

q2 + iΠ(q2, ξ)
. (2.28)

SinceΠαβ has been defined in (2.28) with the imaginary factori factored out in front, it is
simply given by the corresponding Feynman diagrams in Minkowski space. The inverse of∆αβ

can be found by requiring that

i∆am
αµ (q, ξ)(∆−1)µβmb(q, ξ) = δabgβα, (2.29)

1 In the definition of the gluon propagator∆αβ we explicitly pull out ani factor on the lhs, which
accounts for the slightly unusual (but totally equivalent)form of writing Eq. (2.29). This is done in order
to be consistent with the definition of the Green’s functionsin terms of functional differentiation of the
generating functional introduced later on (Section 7).
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and it is given by

∆−1
αβ(q, ξ) = iPαβ(q)∆

−1(q2, ξ) +
i

ξ
qαqβ . (2.30)

At tree-level we have that

i∆
(0)
αβ(q, ξ)=−id(q2)

[
gαβ − (1 − ξ)

qαqβ
q2

]
,

d(q2)=
1

q2
. (2.31)

Evidently, the longitudinal (pinching) momenta are proportional to(1 − ξ), and vanish for the
particular choiceξ = 1, to be referred to as the “Feynman gauge”; in that gauge the propagator
is simply proportional togαβd(q2). The caseξ = 0, known as the “Landau gauge”, gives rise to
a transverse∆(0)

αβ(k), but does not eliminate the pinching momenta.
In order to gradually build up the concepts, and at the same time introduce some useful

notation, let us see what happens to the pinching momenta at tree-level. Defining

Vaα(p1, p2) = ū(p1)gt
aγαu(p2), (2.32)

the tree-level amplitude reads

T (0) = iVaα(r1, r2)i∆(0)
αβ(q)iVaβ(p1, p2). (2.33)

Then, since the on-shell spinors satisfy the equations of motion

ū(p)( 6p−m) = 0 = (6p−m)u(p), (2.34)

the longitudinal part coming from∆(0)
αβ vanishes, and we obtain

T (0) = iVaα(r1, r2)d(q2)Vaα(p1, p2). (2.35)

Let us next consider the conventional three-gluon vertex, to be denoted byΓamnαµν (q, k1, k2); of
course, in the case of the specific process we consider this vertex appears for the first time at
one loop. It is given by the following manifestly Bose-symmetric expression (all momenta are
incoming,i.e., q + k1 + k2 = 0)

iΓamnαµν (q, k1, k2) = gfamnΓαµν(q, k1, k2),

Γαµν(q, k1, k2) = gµν(k1 − k2)α + gαν(k2 − q)µ + gαµ(q − k1)ν . (2.36)

It is elementary to verify that the vertex satisfies the following WIs:

qαΓαµν(q, k1, k2) = k2
2Pµν(k2) − k2

1Pµν(k1),

kµ1 Γαµν(q, k1, k2) = q2Pαν(q) − k2
2Pαν(k2),

kν2Γαµν(q, k1, k2) = k2
1Pαµ(k1) − q2Pαµ(q). (2.37)
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To show how the relevant pinching momenta are identified in the conventional three-gluon
vertex, we splitΓαµν(q, k1, k2) into two parts,

Γαµν(q, k1, k2) = ΓF
αµν(q, k1, k2) + ΓP

αµν(q, k1, k2), (2.38)

with

ΓF
αµν(q, k1, k2) = (k1 − k2)αgµν + 2qνgαµ − 2qµgαν ,

ΓP
αµν(q, k1, k2) = k2νgαµ − k1µgαν . (2.39)

The vertexΓF
αµν(q, k1, k2) is Bose-symmetric only with respect to theµ andν legs. Evidently

the above decomposition assigns a special role to theq-leg, and allowsΓF
αµν(q, k1, k2) to satisfy

the WI

qαΓF
αµν(q, k1, k2) = (k2

2 − k2
1)gµν . (2.40)

where the rhs is the difference of two inverse tree-level propagators in the Feynman gauge. The
termΓP

αµν(q, k1, k2), which in configuration space corresponds to a pure divergence, contains
the longitudinal momenta that will pinch.

When considering a vertex or a box diagram, the effect of the pinching momenta, regardless
of their origin (gluon propagator or three-gluon vertex), is to trigger the elementary WI

kνγ
ν =(/k + /p−m) − (/p−m)

=−i[S−1
(0) (k + p) − S−1

(0)(p)], (2.41)

where the rhs is the difference of two inverse tree-level quark propagators. The first of these
terms removes (pinches out) the internal tree-level fermion propagatorS(0)(k+ p), whereas the
second term on the rhs vanishes when hitting the on-shell external leg, i.e. using the appropriate
Dirac equation of 2.34. Diagrammatically, what appears in the place where theS(0)(k + p) was
is an unphysical effective vertex,i.e., a vertex that does not appear in the original Lagrangian;
as we will see, all such vertices cancel in the full, gauge-invariant amplitude.

We next consider all one-loop graphs contributing to theS-matrix element shown in Fig. 2,
and isolate their gfp-dependent parts using the PT procedure; what we will find is that all gfp-
dependent parts, irrespectively of whether they come from box- or vertex-diagrams, are effec-
tively propagator-like (we emphasize that no integration over virtual momenta is necessary for
carrying out the pinching procedure).

2.3.1 The box

We start our one-loop analysis from the two box diagrams, direct and crossed, shown in
graphs(a) of Fig. 2 (for the kinematics used see Fig. 3). For the sum of the two graphs we have
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(b) (c)

(d)

(e)

(a)

Fig. 2. The diagrams contributing to the one-loop quark elastic scatteringS-matrix element.(a) box
contributions,(b) non-Abelian and(c) Abelian vertex contributions,(d) quark self-energy corrections,
and(e) gluon self-energy contributions.

(a) = g2
∫

k
ū(r1)γ

αtaS(0)(r2 − k)γρtru(r2)∆
(0)
αβ(k − q)∆(0)

ρσ (k) ×

× g2ū(p1)
{
γβtaS(0)(p2 + k)γσtr + γσtrS(0)(p1 − k)γβta

}
u(p2). (2.42)

To see how the PT works, we must now study the action of the longitudinal momenta appearing
in the product∆(0)

αβ(k − q)∆(0)
ρσ (k). Therefore, let us, for concreteness, see what happens to the

termkρkσ coming from∆(0)
ρσ (k). Using Eqs (2.41) and (2.34), we find that the contraction ofkσ

with the term contained in the brackets in the second line on the rhs of Eq. (2.42) gives rise to
the expression
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+
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b, β
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r1
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Fig. 3. Schematic representation of the propagator-like parts extracted from the boxes for a generalξ.
Black dots indicate effective vertices that do not exist in the original theory.

g2ū(p1)kσ {· · · }βσ u(p2)= g2ū(p1)γ
β {tatr − trta}u(p2)

= ig2farnū(p1)γ
βtnu(p2)

= gfarnP β
ν (q)ū(p1)igγ

νtnu(p2)

=
[
gfarnP β

ν (q)
]
iVnν(p1, p2). (2.43)

Notice that in the second step we have used the commutation relation of Eq. (2.5), while in
the third step we have used the fact that, for the on-shell process we consider, longitudinal
pieces proportional toqβqν may be added for free (since they vanish anyway due to current
conservation), thus convertinggβν toP β

ν (q). The term in the last line of Eq. (2.43) couples to the
external on-shell quarks as a propagator; evidently all reference to the internal (off-shell) quarks
inside the brackets has disappeared. To continue the calculation, (i) multiply the result bykρ,
(ii ) let kρ get contracted with theγρ in the first line of Eq. (2.42), (iii ) employ again the WI of
Eq. (2.41), and (iv) use thatifabctatb = −1

2
CAt

c, whereCA is the Casimir eigenvalues of the
adjoint representation, defined in Appendix A. The final result is a purely propagator-like term,
i.e., a term that only depends onq (even though it originates from a box diagram), and couples
to the external on-shell quarks as a propagator (see Fig. 3).Armed with these observations, it is
relatively easy to track down the action of all terms proportional to(1− ξ); settingλ ≡ (1− ξ),
we can write the two boxes as follows,

(a) = (a)ξ=1 + Vaα(r1, r2)d(q2)Παβ
box(q, λ)d(q2)Vaβ(p1, p2), (2.44)

where the gfp-dependent propagator-like termΠαβ
box is given by

Παβ
box(q, λ) = λg2CAq

4

[
λ

2
P αµ(q)P βν(q)

∫

k

kµkν
k4(k + q)4

− P αβ(q)
∫

k

1

k4(k + q)2

]
. (2.45)

2.3.2 The quark-gluon vertex

We next turn to the two vertex graphs, the non-Abelian graphs(b) and the Abelian graphs
(c), shown in Fig. 2. We will analyze only one graph per subgroup,since the mirror graphs
are to be treated in exactly the same way. As in the case of the boxes, we want to isolate
the gfp-dependent pieces coming from the internal gluon propagators. The action of the cor-
responding longitudinal momenta is determined following the PT procedure; again, they give
rise to effectively propagator-like terms, as shown schematically in Fig. 4, where the kinematics
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Fig. 4. Schematic representation of the propagator-like parts extracted from the one-loop vertex graphs
for generalξ.

used are explicitly shown. Note that we donot yet split the three gluon vertex as described in
Eq. (2.38); for the moment we simply collect the terms proportional to different powers ofλ.
After a straightforward calculation, we find for the corresponding results

(b)= (b)ξ=1 + Vaα(r1, r2)d(q2)Παβ
nav(q, λ)d(q2)Vaβ(p1, p2),

(c)= (c)ξ=1 + Vaα(r1, r2)d(q2)Παβ
av (q, λ)d(q2)Vaβ(p1, p2), (2.46)

with the propagator-like pieces given by

Παβ
nav(q, λ)=−λ

2

2
g2CAq

4P αµ(q)P βν(q)
∫

k

kµkν
k4(k + q)4

+λg2CAq
2

[
q2P αβ(q)

∫

k

1

k2(k + q)4
+ P βµ(q)

∫

k

kαkµ
k4(k + q)2

− P αβ(q)
∫

k

1

k4

]
,

Παβ
av (q, λ)=λg2

(
CA
2

− Cf

)
q2P αβ(q)

∫

k

1

k4
, (2.47)

whereCf is the Casimir eigenvalues in the fundamental representation, see again Appendix A.

2.3.3 The quark self-energy

Let us now turn to the one-loop corrections to the self-energy of the on-shell test quarks shown
in the group(d) of Fig. 2; notice that these four graphs are multiplied by a factor of 1

2
. Let us

then concentrate on one of these graphs, shown in Fig. 5. It reads

(d) =
1

2
Vaα(r1, r2)∆(0)

αβ(q)ū(p1)gγ
βtaS(0)(p2)Σξ(p2)u(p2), (2.48)
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Fig. 5. Schematic representation of the propagator-like parts extracted from (one of) the quark self-energy
corrections graphs for generalξ.

where
Σξ(p2) = g2Cf

∫

k
γρ∆(0)

ρσ (k)S(0)(p2 + k)γσ. (2.49)

Using the same methodology employed so far, it is easy to showthat

Σξ(p2)= Σξ=1(p2) − λg2Cf(/p2
−m)

∫

k

1

k4
S(0)(p2 + k)/k

= Σξ=1(p2) − λg2Cf

{
(/p2

−m)
∫

k

1

k4
− (/p2

−m)
∫

k

1

k4
S(0)(p2 + k)(/p2

−m)
}
.

(2.50)

We next insert the rhs of (2.50) back into Eq. (2.48). Clearly, the second term in the brackets
vanish on-shell as the second fermion inverse propagator will trigger the Dirac equation; also
the termΣξ=1(p2) gives simply(d)ξ=1. Thus the only term furnishing a propagator part will be
the first one in the brackets and we will have

(d) = (d)ξ=1 + Vaα(r1, r2)d(q2)Παβ
qse(q, λ)d(q2)Vaβ(p1, p2), (2.51)

where

Παβ
qse(q, λ) =

1

2
λg2Cfq

2P αβ(q)
∫

k

1

k4
. (2.52)

Notice thatΠαβ
qse is proportional toCf instead ofCA, and is in that sense of Abelian nature. In-

deed, after multiplying it by a factor of 2 (accounting for both quark fields),Πqse cancels exactly
against the part ofΠav proportional toCf in Eq. (2.47). ForCf = 1 this is simply the standard
QED gfp-cancellation between the elector-photon vertex and the electron wave-function.

Note that in obtaining the rhs of (2.50) we have not assumed that Σ(p2) is actually sand-
wiched between on-shell spinors, as indicated in Eq. (2.48). Thus, the gfp-independent quark
self-energy should be identified with the first term on the rhsof (2.50),i.e.,

Σ̂(p) = Σξ=1(p). (2.53)

A more thorough analysis [60,61], where an off-shellΣ(p) is embedded into a quark-gluon
scattering process [g(k1)q(k2) → g(k3)q(k4), with p = k1 + k2 = k3 + k4] and the pinching
procedure is repeated, shows that Eq. (2.53) is absolutely general: the gfp-independent off-shell
quark self-energycoincideswith the conventional quark self-energy calculated in the Feynman
gauge.
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Fig. 6. Schematic representation of the propagator-like parts extracted from the gluon self-energy cor-
rections graph for generalξ.

2.3.4 Final cancellation of all gauge fixing parameter dependence

We will now show that the propagator-like parts extracted from all the previous diagrams cancel
exactly against analogous terms contained in the conventional self-energy graphs(e) of Fig. 2.
Of course this cancellation is guaranteed to take place, regardless of how one may choose to or-
ganize the calculation, given that it amounts to the gfp-independence of the one-loop amplitude.
It is conceptually important, however, to establish a systematic way for extracting the relevant
terms from the conventional one-loop self-energy using nothing but tree-level WIs.

To that end, we concentrate only on the graph containing the three-gluon vertices (see Fig. 6);
the ghost and fermion graphs have no pinching momenta and thus will be inert. We have

(e) = Vaα(r1, r2)d(q2)Παβ(q, λ)d(q2)Vaβ(p1, p2). (2.54)

Then, we let the longitudinal momenta coming from the tree-level propagators act on the two
bare three-gluon vertices, triggering the two WIs of Eqs (2.37). It turns out that only the terms
proportional to the transverse projectorPαβ(q) survive, furnishing

Παβ(q, λ) = Παβ
ξ=1(q) + Παβ

gse(q, λ), (2.55)

with

Παβ
gse(q, λ) =

λ2

2
g2CAq

4P αµ(q)P βν(q)
∫

k

kµkν
k4(k + q)4

−λg2CAq
2

[
q2P αβ(q)

∫

k

1

k2(k + q)4
+ 2P βµ(q)

∫

k

kαkµ
k4(k + q)2

− P αβ(q)
∫

k

1

k4

]
.

(2.56)

We are now in the position of showing the cancellation of the gfp-dependent pieces; in fact,
adding all the terms we have been isolating, we find

Παβ
gse(q, λ) + Παβ

box(q, λ) + 2
[
Παβ

av (q, λ) + Παβ
nav(q, λ)

]
+ 4Παβ

qse(q, λ) = 0. (2.57)

In the above formula the multiplicative factor of 2 comes from the mirror vertex graphs and the
4 from the four external quarks. The contributions of each term to the different gfp-dependent
structures appearing in the PT process is shown in Table 1.
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λ2
∫
k

kµkν

k4(k+q)4 λ
∫
k

kµkν

k4(k+q)2 λ
∫
k

1
k2(k+q)4 λ

∫
k

1
k4

Πbox
1
2CA 0 −CA 0

2Πav 0 0 0 CA − 2Cf

2Πnav −CA 2CA 2CA −2CA

4Πqse 0 0 0 2Cf

Πgse
1
2CA −2CA −CA CA

Total 0 0 0 0
Table 1
Contributions of the box, vertex and self-energy diagrams to the differentξ-dependent structures ap-
pearing in the PT process. The sum of each column is zero, showing the well-known property of the
gfp-independence of theS-matrix elements.

In summary, all gfp-dependent terms have been eliminated ina very particular way. Specifi-
cally, due to the PT procedure employed, all gfp-dependent pieces turned out to be propagator-
like. As a result, all gfp-dependence has canceled giving rise to subamplitudes that maintain
their original kinematic identity (boxes, vertices, and self-energies), and are, in addition, in-
dividually gfp-independent. It is important to appreciatethe fact that the explicit cancellation
carried out amounts effectively to choosing the Feynman gauge, ξ = 1, from the beginning.
Of course, there is no doubt that this can be done for the entire physical amplitude consid-
ered; the point is that, thanks to the PT, one may move from general ξ to the specificξ = 1
without compromising the notion of individual topologies.Such a notion would have been lost
if, for instance, the demonstration of the gfp-independence involved the integration over vir-
tual momenta; had one opted for this latter approach, one would have eventually succeeded to
demonstrate theξ-independence of the entireS-matrix element, but would have missed out on
the ability to identify gfp-independent subamplitudes, aswe did. In addition, this result indi-
cates that there is no loss of generality in choosingξ = 1 from the beginning, thus eliminating a
major source of longitudinal pieces, that are bound to cancel anyway, through the special pinch-
ing procedure outlined above.

It would be tempting at this point to identify the gfp-independent subamplitudes obtained
here with theT̂i (i = 1, 2, 3) introduced in Eq. (2.19). While this identification would bejusti-
fied, as far as the gfp-independence is concerned, it will be postponed until the end of the next
two subsections, in order to endow theT̂i with one additional powerful ingredient: QED-like
WIs.

2.4 The one-loop pinch technique Green’s functions

2.4.1 The one-loop pinch technique quark-gluon vertex and its Ward identity

Let us now turn to the longitudinal terms contained in the pinching partΓP
αµν of the three-gluon

vertex [see Eq. (2.39)] appearing in the non-Abelian vertexgraph(b) (first line of Fig. 4), and
the two such vertices inside the gluon self-energy graph (Fig. 6). One may ask at this point
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a

iHa(p, q) = −gta +

d
p

q

Fig. 7. The auxiliary functionH appearing in the quark-gluon vertex STI. The gray blob represents the
(connected) ghost-fermion kernel appearing in the usual QCD skeleton expansion.

what is the purpose of carrying the PT decomposition of the vertex given that one has already
achievedξ-independent structures. The answer is that the effect of the pinching momenta of
ΓP
αµν is to make the effectiveξ-independent Green’s functions satisfy, in addition, QED-like

WIs instead of the usual STIs.
This is best seen in the case of one-loop quark-gluon vertexΓaα(p1, p2), composed by graphs

(b) and(c) of Fig. 2 now written (after theξ-cancellations described above) in the Feynman
gauge. It is well known that the QED counterpart ofΓaα(p1, p2), namely the photon-electron
vertexΓα(p1, p2), satisfies to all orders (and for every gfp) the WI

qαΓα(p1, p2) = ie
{
S−1
e (p1) − S−1

e (p2)
}
, (2.58)

whereSe is the (all-order) electron propagator; Eq. (2.58) is the naive, all-order generalization
of the tree-level WI of (2.41).

The quark-gluon vertexΓaα(p1, p2) also obeys the WI of (2.41) at tree-level (multiplied byta):

qαΓaα(p1, p2) = igta
{
S−1
e (p1) − S−1

e (p2)
}
. (2.59)

However, at higher orders it obeys an STI that is not the naivegeneralization of this tree-level
WI. Instead,Γαa (p1, p2) satisfies the STI [62]

qαΓaα(p1, p2) =
[
q2Daa′(q)

] {
S−1(p2)H

a′(q, p1) + H̄a′(p1, q)S
−1(p2)

]
, (2.60)

whereDaa′(q) andS(p) represents the full ghost and quark propagator respectively, andHa is
a composite operator defined as (see also Fig. 7)

iS(p)iDaa′(q)iHa(p, q) = −gtd
∫
d4x

∫
d4y eip·x eiq·y

〈
0
∣∣∣ T

{
q̄(x)c̄a

′

(y)
[
cd(0)q(0)

]}∣∣∣ 0
〉
,

(2.61)
whereT denotes the time-ordered product of fields, andH̄ is the hermitian conjugate ofH. At
tree-level,Ha

ij reduces toH(0)a
ij = taij .

After these general considerations, let us carry out the decomposition of Eq. (2.38) to the non-
Abelian vertex of graph(b) in Fig. 2. Then, let us write, suppressing again the color indices,

(b)ξ=1 = iVαa id(q2)ū(p1)iΓ̃
a
α(p1, p2)u(p2), (2.62)

and concentrate on the (one-loop) non-Abelian contribution to the quark-gluon vertex̃Γaα. We
have
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iΓ̂aα(p1, p2) =
ΓF

a, α
+

a, α

Fig. 8. Diagrammatic representation of the PT quark-gluon vertex at one-loop.

iΓ̃aα(p1, p2) =
1

2
g3CAt

a
∫

k

Γαµνγ
νS(0)(p2 − k)γµ

k2(k + q)2

=
1

2
g3CAt

a

{∫

k

ΓF
αµνγ

νS(0)(p2 − k)γµ

k2(k + q)2
+
∫

k

ΓP
αµνγ

νS(0)(p2 − k)γµ

k2(k + q)2

}
, (2.63)

where in this case

ΓF
αµν = gµν(2k + q)α + 2qνgαµ − 2qµgαν ,

ΓP
αµν =−(k + q)νgαµ − kµgαν . (2.64)

Despite appearances, if we use thatū(p2)( 6p2 −m) = 0 and( 6p1 −m)u(p1) = 0, the part of the
vertex graph containingΓP is in fact purely propagator-like:

∫

k

ΓP
αµνγ

νS(0)(p2 − k)γµ

k2(k + q)2

PT
DiracEq.−→ 2γα

∫

k

1

k2(k + q)2
. (2.65)

Thus, using the by now familiar methodology employed before, one obtains from the one-
loop quark-gluon vertex a propagator-like contribution, to be denoted byΠP

µν(q), given by

ΠP
µν(q) = g2CAq

2Pµν(q)
∫

k

1

k2(k + q)2
. (2.66)

This term, together with an identical one coming from the mirror vertex, will be reassigned to
the PT self-energy, soon to be constructed; for the moment let us concentrate on the remaining
terms in the vertex. In fact, the part of the vertex graph containing ΓF remains unchanged,
since it has no longitudinal momenta. Adding it to the usual Abelian-like graph, we obtain the
one-loop PT quark-gluon vertex, to be denoted byΓ̂aα, given by (see Fig. 8)

iΓ̂aα(p1, p2) = g3ta
{

1

2
CA

∫

k

ΓF
αµνγ

νS(0)(p2 − k)γµ

k2(k + q)2

+
(
Cf −

CA
2

) ∫

k

γµS(0)(p1 + k)γαS
(0)(p2 + k)γµ

k2

}
. (2.67)

Now it is easy to derive the WI that thêΓaα(p1, p2) satisfies, simply by contracting the rhs
of (2.67); this will trigger inside the integrands the corresponding tree-level WIs. Thus, using
Eqs (2.41) and (2.40), together with the definitions (2.49) and (2.53), we have that
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Π̂ab
αβ(q) = 1

2
+ +

(a) (b) (c) (d)

a, α b, β a, α b, βa, α b, β
δabPαβ(q)+ 2

Fig. 9. Diagrammatic representation of the one-loop PT gluon self-energŷΠαβ as the sum of the conven-
tional gluon self-energy terms and the pinch contributionscoming from the vertex.

qαΓ̂aα(p1, p2) =−igta
{
g2Cf

∫

k

γµS(0)(p2 + k)γµ
k2

− g2Cf

∫

k

γµS(0)(p1 + k)γµ
k2

}

= igta
{
Σ̂(p1) − Σ̂(p2)

}
. (2.68)

Clearly, Eq. (2.68) is the naive generalization of (2.59) atone-loop,i.e., the WI satisfied byΓaα
at tree-level; this makes the analogy with Eq. (2.58) fully explicit. An immediate consequence
of Eq. (2.68) is that the renormalization constants ofΓ̂aα and Σ̂, to be denoted bŷZ1 andẐ2,
respectively, are related by the relationẐ1 = Ẑ2, which is none other than the textbook relation
Z1 = Z2 of QED, but now realized in a non-Abelian context.

A direct comparison of the STI of Eq. (2.60), obeyed by the conventional vertexΓaα, with
the WI of Eq. (2.68), satisfied by the PT vertexΓ̂aα, suggests a connection between the terms
removed fromΓaα during the process of pinching and the ghost-related quantitiesDab andHa

ij .
As we will see in detail in the next chapter, such a connectionindeed exists, and is, in fact, of
central importance for the generalization of the PT to all orders.

2.4.2 The pinch technique gluon self-energy at one loop

Next, we construct the PT gluon self-energy, to be denoted byΠ̂αβ(q). It is given by the sum
of the conventional self-energy graphs and the self-energy-like parts extracted from the two
vertices, as shown schematically in Fig. 9,i.e.,

Π̂αβ(q) = Παβ(q) + 2ΠP
αβ(q). (2.69)

Specifically, in a closed form [8],

Π̂αβ(q) =
1

2
g2CA

{∫

k

ΓαµνΓ
µν
β

k2(k + q)2
−
∫

k

kα(k + q)β + kβ(k + q)α
k2(k + q)2

}
+ 2g2CA

∫

k

q2Pαβ(q)

k2(k + q)2
,

(2.70)
where we have symmetrized the ghost contribution [graph(b) in Fig. 8] for later convenience,
and neglected the fermion contribution [graph(c) of the same figure].

It would be elementary to computêΠαβ directly from the rhs of (2.70). It is very instructive,
however, to identify exactly the parts of the conventionalΠαβ that combine with (and eventually
cancel against) the termΠP

αβ. To make this cancellation manifest, one carries out the following
rearrangement of the two elementary three-gluon vertices appearing in graph(a) of Fig. 8
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ΓαµνΓ
µν
β =

[
ΓF
αµν + ΓP

αµν

] [
ΓFµν
β + ΓPµν

β

]

=ΓF
αµνΓ

Fµν
β + ΓP

αµνΓ
µν
β + ΓαµνΓ

Pµν
β − ΓP

αµνΓ
Pµν
β . (2.71)

Then, using the elementary WIs of Eqs (2.37) we have

ΓP
αµνΓ

µν
β + ΓαµνΓ

Pµν
β =−4q2Pαβ(q) − 2kαkβ − 2(k + q)α(k + q)β,

ΓP
αµνΓ

Pµν
β =2kαkβ + (kαqβ + qαkβ), (2.72)

where several terms have been set to zero by virtue of Eq. (2.17). Thus we obtain [8]

Π̂αβ(q) =
1

2
g2CA





∫

k

ΓF
αµνΓ

Fµν
β

k2(k + q)2
−
∫

k

2(2k + q)α(2k + q)β
k2(k + q)2



 , (2.73)

which may be further evaluated, using

ΓF
αµνΓ

Fµν
β = d(2k + q)α(2k + q)β + 8q2Pαβ(q), (2.74)

and ∫

k

(2k + q)α(2k + q)β
k2(k + q)2

= −
(

1

d− 1

)
q2Pαβ(q)

∫

k

1

k2(k + q)2
, (2.75)

to finally castΠ̂αβ(q) in the simple form

Π̂αβ(q) =

(
7d− 6

d− 1

)
g2CA

2
q2Pαβ(q)

∫

k

1

k2(k + q)2
. (2.76)

Writing
Π̂αβ(q) = Pαβ(q)Π̂(q2), (2.77)

and following the standard integration rules for the Feynman integral, we obtain for the un-
renormalized̂Π

Π̂(q2) = ibg2q2

[
2

ǫ
+ ln 4π − γE − ln

q2

µ2
+

67

33

]
, (2.78)

whereγE is the Euler-Mascheroni constant (γE ≈ 0.57721) and

b =
11CA
48π2

, (2.79)

is the one-loop coefficient of theβ function of QCD (β = −bg3) in the absence of quark loops.
The appearance ofb in front of the logarithm is not accidental, and is exactly what hap-

pens with the vacuum polarization of QED. In the latter case the corresponding coefficient is
−α/3π; of course, the difference in the sign is related to the fact that QCD is asymptotically
free, whereas QED is not. The fact that the PT gluon propagator captures the leading RG loga-
rithms is a direct consequence of the WI of Eq. (2.68) and the corresponding relation̂Z1 = Ẑ2.
Indeed, ifẐ1 = Ẑ2, then the charge renormalization constant,Zg, and the wave-function renor-
malization of the PT gluon self-energy,ẐA, are related byZg = Ẑ

−1/2
A , exactly as in QED.
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Fig. 10. S-matrix embedding necessary for constructing a gfp-independent, fully off-shell gluonic
n-point function.

2.4.3 Process-independence of the pinch technique

It is important to stress, at this point, that the only completely off-shell Green’s function involved
in the previous construction was the gluon self-energy; instead, the quark-gluon vertex has the
incoming gluon off-shell and the two quarks on shell, while the box has all four incoming quarks
on shell. These latter quantities were also made gfp-independent in the process of constructing
the fully off-shell gfp-independent gluonic two-point function. Similarly, as already mentioned
after Eq. (2.53), the construction of a fully off-shell PT quark self-energy requires its embed-
ding in a process such as quark-gluon elastic scattering. The generalization of the methodology
is now clear; for example, for constructing a gfp-independent, fully off-shell gluonicn-point
function (i.e., with n off-shell gluons) one must consider the entire gfp-independent process
consisting ofn-pairs of quarks,q(p1)q(k1), q(p2)q(k2), · · · , q(pn)q(kn) and hook each gluon
Ai to one pair of test quarks; the off-shell momentum transferqi of the ith gluonic leg will be
qi = pi − ki (see Fig. 10). Note, however, that one may equally well use gluons as external
test particles, or even (not observed) fundamental scalarscarrying color. Provided that the em-
bedding process is gfp-independent, the answer that the PT furnishes for a given fully off-shell
n-point function is unique,i.e., it is independent of the embedding process. This property is
usually referred to as the process-independence of the PT, and the PT Green’s functions are said
to be process-independent or universal. The universality of the one-loop gluon self-energy has
been demonstrated through explicit computations, using a variety of external test particles [63].
For example, when gluons are used as external test particles, the pinching isolates propagator-
like pieces that are attached to the external gluons througha tree-level three-gluon vertex (see
Fig. 11). In this case the analogue of the quark-gluon vertexΓ̂aα is a gfp one-loop vertex with
one off-shell and two on-shell gluons, which, as we will see in a later section, is the one-loop
generalization ofΓF. This latter vertex should not be confused with the PT three-gluon vertex
with all three gluons off-shell, that can be constructed by embedding it into a six quark process
(one pair for each leg), to be discussed in the next subsection. The distinction between these
two three-gluon vertices is crucial, and will be made more explicit later on; in addition, a more
precise field-theoretic notation will be adopted, that willallow us to distinguish them unam-
biguously.

We emphasize that the PT construction is not restricted to the use of on-shellS-matrix ampli-
tudes, and works equally well inside, for example, a gauge-invariant current correlation function
or a Wilson loop. This fact is particularly relevant for the correct interpretation of the correspon-
dence between PT and BFM, which will be discussed in the Section 3. Actually, in the first PT
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Fig. 11. The pinching procedure when the embedding particles are “on-shell” gluons. Despite appear-
ances, the vertex to which the pinching contribution is connected to the external gluons is a three-gluon
vertex.

calculation ever [7], Cornwall studied the set of one-loop Feynman diagrams contributing to
the gauge-invariantGreen’s functionG(x, y) =

〈
0
∣∣∣T
{
Tr
[
Φ(x)Φ†(x)

]
Tr
[
Φ(y)Φ†(y)

]}∣∣∣ 0
〉
,

whereΦ(x) is a matrix describing a set of scalar test particles in an appropriate representation
of the gauge group. In this case, the special momentum, with respect to which the vertex de-
composition of Eq. (2.38) should be carried out (i.e., the equivalent ofq in that same equation),
is the momentum transfer between the two sides of the scalar loop (i.e., one should count loops
as if theΦ loop had been opened atx andy). The advantage of using anS-matrix amplitude is
purely operational: the PT construction becomes more expeditious, because several terms can
be set to zero directly due to the equation of motion of the on-shell test particles. Instead, in
the case of a Wilson loop, one would have to carry out the additional step of demonstrating
explicitly their cancellation against other similar terms.

2.4.4 Intrinsic pinch technique and the gauge-independentthree-gluon vertex at one loop

The central achievement of the previous subsections has been the construction of the gfp-
independent off-shell gluon self-energy,Π̂µν , through its embedding into a physicalS-matrix
element, corresponding to quark-quark elastic scattering. This was accomplished by identifying
propagator-like pieces from the vertices and the boxes contributing to the embedding process,
and reassigning them to the conventional gluon self-energy, Πµν . This procedure has been car-
ried out for a general value of the gfp, leading to a unique answer, which is most economically
reached by choosing the Feynman gauge from the beginning. Thus,Π̂µν is obtained by adding
to Πµν the propagator-like pieces2ΠP

µν extracted from the vertices, as shown in Eq. (2.70).
In the analysis following Eq. (2.70) it became clear that these latter terms cancel very precise
terms of the conventional self-energyΠµν , furnishing finallyΠ̂µν . Specifically, after the ver-
tex decomposition of Eq. (2.71), the termsΓP acted on the correspondingΓ, triggering the
WIs of Eqs (2.37): the term2ΠP

µν cancels against the terms of the WIs that are proportional
to q2Pµν . This observation motivates the following more expeditious course of action: instead
of identifying the propagator-like pieces from the variousgraphs, focus onΠµν , carry out the
decomposition of Eq. (2.71), and discard the terms coming from the WIs that are proportional
to q2Pµν ; what is left is then the PT answer.

This alternative, and completely equivalent, approach to pinching was first introduced in [8]
and is known as “intrinsic” PT. Its main virtue is that it avoids as much as possible the embed-
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Fig. 12.Rξ diagrams contributing to the one-loop three-gluon vertex.Diagrams(c) carry a1
2 symmetry

factor. Fermion diagrams are not shown.

ding of the Green’s function under construction into a physical amplitude. As we will see later
on, the intrinsic approach is particularly suited for extending the PT construction at the level of
the SDE of the theory.

As an application of the intrinsic PT algorithm, we will construct the one-loop PT three gluon
vertex [8]. The conventionalRξ diagrams are shown in Fig. 12 and read

Γamnαµν (q1, q2, q3) = −1

2
g3CAf

amn

{∫

k1

1

k2
1k

2
2k

2
3

Nαµν +Bαµν

}
, (2.80)

with

Nαµν =Γαλρ(q1, k3,−k1)Γµσλ(q2, k2,−k3)Γνρσ(q3, k1,−k2) − k1αk2νk3µ − k1αk2νk3µ,

Bαµν =
9

2
(gαµq1ν − gανq1µ)

∫

k

1

k2(k + q1)2
+

9

2
(gαµq2ν − gµνq2α)

∫

k

1

k2(k + q2)2

+
9

2
(gµνq3α − gανq3µ)

∫

k

1

k2(k + q3)2
. (2.81)

Let us then introduce the short-hand notationΓ1Γ2Γ3 for the product of (bare) three gluon
vertices appearing in Eq. (2.81). In this notation all the Lorentz indices are suppressed and the
number appearing in each vertex is the one corresponding to its external momentumqi. Then,
decomposing each of theΓi into ΓF

i + ΓP
i , we obtain the analogue of (2.71), namely

Γ1Γ2Γ3 =ΓF
1 ΓF

2 ΓF
3 + ΓP

1 Γ2Γ3 + Γ1Γ
P
2 Γ3 + Γ1Γ2Γ

P
3 − ΓP

1 ΓP
2 Γ3 − ΓP

1 Γ2Γ
P
3 − Γ1Γ

P
2 ΓP

3

+ΓP
1 ΓP

2 ΓP
3 . (2.82)

Now, the first term contains no pinching momenta, and therefore will be kept in the PT answer,
giving rise to the term

(â) = − i

2
g3CAf

amn
∫

k1

1

k2
1k

2
2k

2
3

ΓF
αλρ(q1, k3,−k1)Γ

F
µσλ(q2, k2,−k3)Γ

F
νρσ(q3, k1,−k2). (2.83)

Each of the next six terms gives rise to pinching contributions, generated whenΓP
i acts on the

full Γ’s, thus triggering the WIs of (2.37). Some of the terms so generated will be proportional to
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d−1(q2
i ), i.e. inverseexternalgluon propagators; according to the rules of the intrinsic pinch, we

simply discard them. However, all other terms generated from the WIs of (2.37) must be kept;
as we will see, they are crucial for furnishing the correct final answer. For example, collectively
denoting the terms discarded with ellipses, one has

ΓP
1 Γ2Γ3 = d−1(k2

3) [Γναµ(k1,−k2) + Γµνα(k2,−k3)] + k2µ

[
d−1(k2

1)gαν − k1αk1ν

]

+ k2ν

[
d−1(k2

3)gαµ − k3αk3µ

]
+ · · · ,

ΓP
1 ΓP

2 Γ3 = d−1(k2
3)Γναµ(k1,−k2) − k3α

[
d−1(k2

2)gµν − k2µk2ν

]

− k3µ

[
d−1(k2

1)gνα − k1νk1α

]
+ · · · , (2.84)

with similar expressions for the other such terms on on the rhs of Eq. (2.82). The last term on
the rhs of Eq. (2.82) does not have terms proportional tod−1(q2

i ), so there is nothing to discard;
it must be kept in its entirety. Specifically,

ΓP
1 ΓP

2 ΓP
3 =−d−1(k2

1) (gµνk3α + gαµk1α) − d−1(k2
2) (gαµk1ν + gανk3µ)

− d−1(k2
3) (gανk2µ + gµνk1α) − k1αk2µk3ν − k1νk2µk3α. (2.85)

Isolating all terms that are not proportional to ad−1(k2
i ), and adding them to the conventional

ghost graph(b) of Fig. 12, we get the result

(b̂) =
i

2
g3CAf

amn
∫

k1

1

k2
1k

2
2k

2
3

2(k1 + k3)α(k2 + k3)µ(k1 + k2)ν . (2.86)

Evidently, all terms proportional tod−1(k2
i ) will cancel against one internal gluon propagator,

giving rise to integrands with only two such propagators, i.e.

(c̃) =− i

2
g3CAf

amn
∫

k2

1

k2
2k

2
3

[gαµ(k1 − q3)ν + 2gαν(q3 − q1)µ + gµν(k1 + q1)α]

− i

2
g3CAf

amn
∫

k1

1

k2
1k

2
3

[gαµ(k2 + q3)ν + gαν(k2 − q2)µ + 2gµν(q2 − q3)α]

− i

2
g3CAf

amn
∫

k1

1

k2
1k

2
2

[2gαµ(q1 − q2)ν + gαν(k3 + q2)µ + gµν(k3 − q1)α] . (2.87)

This is, however, not the end of the story. As we have seen, in the presence of longitudinal
momenta the topology of a Feynman diagram is not a well-defined property, since longitudinal
momenta will pinch out internal propagators, turningt-channel diagrams intos-channel ones.
This same caveat applies also to the notion of one particle reducibility. Remember that a diagram
is called one-particle irreducible (1PI) if it cannot be split into two disjoined pieces by cutting a
single internal line; otherwise it is called one-particle reducible (1PR). Now, it turns out that by
pinching out internal propagators, one can effectively convert 1PR diagrams into 1PI ones (see
Fig. 13); of course the opposite cannot happen. Evidently the notion of a 1PR diagram is gauge-
dependent! Thus, when constructing the purely (1PI) gauge-invariant three-gluon vertex at one-
loop, one has to take into account possible 1PI pinching contribution coming from seemingly
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(d1) (d1)
P (d′

1)
P

pinch

Fig. 13. 1PR diagram giving to effectively 1PI pinching contributions [diagram(d1)
P]. Two more dia-

grams (corresponding to having the gluon self-energy correction on the remaining legs) that give rise to
similar terms are not shown.

1PR diagrams, such as those shown in Fig. 13. How do we actually obtain these terms ? Simply
by carrying out the intrinsic PT construction inside the self-energy graph(d1): in doing so,
the terms that will remove the “internal” gluon propagator will furnish the (effectively 1PI)
diagram(d1)

P, while those proportional to an inverse “external” gluon propagator [diagram
(d′1)

P] ought to be discarded, in full accordance with the rules of the intrinsic PT. Indeed, as
the reader should be able to verify, in theS-matrix PT implementation these latter terms will
cancel anyway against analogous contribution coming from non-Abelian vertices attached to
the external test-quark.

Let us see in detail what happens in the case shown in Fig. 13. One has

(d1) =− i

2
g2CAΓαµ′ν(q1, q2, q3)d(q

2
2)g

µ′ν′ ×

×
∫

k

1

k2(k + q2)2
Γν′ρσ(−q2, k + q2,−k)Γρσµ (−q2, k + q2,−k). (2.88)

As explained above, of all the possible pinching contributions appearing after the splitting of the
two three gluon vertices inside this gluon self-energy according to (2.71) and (2.72), one needs
to retain only half of the first term appearing in the rhs of Eq.(2.72), the other half removing
instead the external propagator, thus generating diagram(d′1)

P of Fig. 13. Therefore one has

(d1)
P = ig3CAf

amnΓαµν(q1, q2, q3)
∫

k

1

k2(k + q2)2
, (2.89)

where we kept only thegµσ part of theP µσ appearing in the pinching term, since theqµ2 q
σ
2 term

will remove the external propagator and thus ought to be discarded. Adding this to the first term
on the rhs of Eq. (2.87), to be denoted by(c̃1), we find

(c̃1) + (d1)
P = −i7

4
g3CAf

amn(gαµq2ν − gµνq2α)
∫

k

1

k2(k + q2)2
. (2.90)

The same procedure can be repeated for the diagrams(d2) and(d3); after adding them to the
corresponding contributions,(c̃2) and(c̃3), we obtain
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(c̃2) + (d2)
P =−i7

4
g3CAf

amn(gµνq3α − gανq3µ)
∫

k

1

k2(k + q3)2
,

(c̃3) + (d3)
P =−i7

4
g3CAf

amn(gαµq1ν − gανq1µ)
∫

k

1

k2(k + q1)2
. (2.91)

Notice that these terms have exactly the same structure as the conventional(c) diagrams, to
which they can be added.

Thus, the PT one-loop three-gluon vertex is finally given by

iΓ̂amnαµν (q1, q2, q3) = − i

2
g3CAf

amn

{∫

k1

1

k2
1k

2
2k

2
3

N̂αµν + B̂αµν

}
, (2.92)

where

N̂αµν = ΓF
αλρ(q1, k3,−k1)Γ

F
µσλ(q2, k2,−k3)Γ

F
νρσ(q3, k1,−k2)

− 2(k1 + k3)α(k2 + k3)µ(k1 + k2)ν ,

B̂αµν = 8 (gαµq1ν − gανq1µ)
∫

k

1

k2(k + q1)2
+ 8 (gαµq2ν − gµνq2α)

∫

k

1

k2(k + q2)2

+ 8 (gµνq3α − gανq3µ)
∫

k

1

k2(k + q3)2
. (2.93)

Note thatΓ̂amnαµν (q1, q2, q3) is manifestly Bose-symmetric with respect to all three of its legs.
It is now of central importance to recognize that, unlike theconventional three gluon vertex

that satisfies an STI, thêΓamnαµν (q1, q2, q3) constructed above satisfies a simple Abelian-like WI.
Specifically, the conventional three-gluon vertex (in theRξ gauges) satisfies at all orders the
STI [45]

qα1 Γamnαµν (q1, q2, q3)=
[
q2
1D

aa′(q1)
] {

∆−1(q2
2)P

γ
µ (q2)H

a′nm
νγ (q3, q2)

+ ∆−1(q2
3)P

γ
ν (q3)H

a′mn
µγ (q2, q3)

}
, (2.94)

where the auxiliary functionHαβ is the 1PI part of the composite operator

i∆nn′

νν′ (k)iD
aa′iHadn

νγ (k, q) =−igf eds
∫
d4x

∫
d4y eiq·x eik·y×

×
〈
0
∣∣∣T
{
c̄a

′

(x)An
′

ν′ (y)[c
e(0)Asγ(0)]

}∣∣∣ 0
〉1PI

. (2.95)

and it is defined in Fig. 14. Notice that the kernel appearing in this auxiliary function is the
conventional connected ghost-ghost-gluon-gluon kernel appearing in the usual QCD skeleton
expansion [27,64]. Also,Hαβ(k, q) is related to the conventional gluon-ghost vertexΓβ(k, q)
(with k the gluon andq the anti-ghost momentum) by [62,45,27,64].

qαHαβ(k, q) = Γβ(k, q). (2.96)
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k

Fig. 14. The auxiliary functionH appearing in the three-gluon vertex STI. The gray blob represents the
(connected) ghost-gluon kernelK appearing in the usual QCD skeleton expansion.

Of course, the STI of (2.94) reduces at tree-level to that of (2.37).
On the other hand, contracting Eq. (2.92) withqα1 , one obtains easily the result [8]

qα1 Γ̂amnαµν (q1, q2, q3) = gfamn
{
∆̂−1(q2)Pµν(q2) − ∆̂−1(q3)Pµν(q3)

}
, (2.97)

with ∆̂−1(q) = q2+iΠ̂(q2); of course, contracting with respectqµ2 andqν3 furnishes the expected
Bose-symmetric analogues of (2.97). Thus, rather remarkably, we find the naive one-loop gen-
eralization of the tree-level identity of Eq. (2.40). Note,in particular, that any reference to
auxiliary ghost Green’s functions has disappeared: Eq. (2.97) is completely gauge-invariant.

Let us now focus on a very interesting property of the one-loop PT three-gluon vertex, dis-
covered recently by Binger and Brodsky [65]. These authors have first added quark and scalar
loops toΓ̂amnαµν (q1, q2, q3); this is straightforward, from the point of view of gauge-independence
and gauge-invariance, since these loops are automaticallygfp-independent and satisfy (2.97).
Then, all resulting one-loop integrals, including those of(2.93) and (2.93), were evaluated for
the first time, thus determining the precise tensorial decomposition of Γ̂amnαµν (q1, q2, q3). Then,
after choosing a convenient tensor basis,Γ̂amnαµν (q1, q2, q3) was expressed as a linear combination
of fourteen independent tensors, each one multiplied by itsown scalar form-factor. Every form-
factor receives, in general, contributions from gluons(G), quarks(Q), and scalars(S). It turns out
that these three types of contributions satisfy very characteristic relations, that are closely linked
to supersymmetry and conformal symmetry, and in particulartheN = 4 non-renormalization
theorems. Specifically, for all form-factorsF (in d-dimensions) it was shown that

FG + 4FQ + (10 − d)FS = 0, (2.98)

which encodes the vanishing contribution of theN = 4 supermultiplet in four dimensions. Sim-
ilar relations have been found in the context of supersymmetric scattering amplitudes [66,67].

It should be emphasized that relations such as Eq.(2.98) donotexist for the gauge-dependent
three-gluon vertex [68], since the gluon contributions depend on the gfp, while the quarks and
scalars do not. Indeed, it is uniquely the PT (or equivalently BFM in the BFGξQ = 1, see next
section) Green’s function that satisfies this homogeneous sum rule. Most importantly, calculat-
ing in the BFM withξQ 6= 1 leads to a nonzero rhs of Eq. (2.98).
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2.4.5 The pinch technique four-gluon vertex at one loop

The construction of the gauge-invariant four-gluon vertexhas been outlined in detail in [69], in
the context of theS-matrix PT. The actual derivation is technically rather cumbersome because
of (i) the large number of graphs and (ii ) certain subtle exchange of pinching contributions
between 1PI and 1PR diagrams (some of which have been seen in the construction carried out
in the previous subsection). The exact closed form of this vertex (see,e.g., [41]) is too lengthy
to be reported here. Far more interesting is the WI that this vertex satisfies: it is simply the naive
one-loop generalization of the tree-level result, as can beeasily confirmed using the explicit
expressions for the bare three- and four-gluon vertices. Specifically, we have [69]

qαΓamnrαµνρ (q, k1, k2, k3) = gfadmΓ̂dnrµνρ(q + k1, k2, k3) + gfadrΓ̂drmνρµ (q + k2, k3, k1)

+ gfadnΓ̂dmrνµρ (q + k3, k1, k2), (2.99)

where the three-gluon vertices appearing are the PT ones constructed in the previous subsection.
Again we find a fully gauge invariant, Abelian-like WI, that makes no reference to ghost Green’s
functions.

2.5 The absorptive pinch technique construction

In the previous subsection, we worked at the level of one-loop perturbation theory, and con-
structed non-Abelian Green’s functions that are gfp-independent and satisfy QED-like WIs.
The analogy between the PT Green’s functions and those of QEDis best exemplified by com-
paring the PT gluon self-energy with that of the photon (vacuum polarization): they are both
gfp-independent and capture the leading RG logarithms. It is therefore natural to want to ex-
plore until what point this analogy with QED may persist. Specifically, in QED knowledge of
the vacuum polarization spectral function determined fromthe tree levele+e− → µ+µ− cross
sections, together with a single low energy measurement of the fine structure constantα, enables
the construction of the one-loop vacuum polarization, and the corresponding effective charge,
αeff(q2), for all q2. What makes this possible in the case of QED is the unitarity of theS-matrix,
expressed in the form of the optical theorem, and the requirement of the analyticity of Green’s
functions, as captured by the so-called dispersion relations (see,e.g., [70]). In this subsection
we will study in detail how the above crucial properties are encoded into the Green’s functions
constructed by the PT. Specifically, we will see that, in a non-Abelian context, the PT construc-
tion enforcesat the level of individual Green’s functionsproperties of unitarity and analyticity
that are completely analogous to those of QED.

2.5.1 Optical theorem and analyticity

TheT -matrix element of a reactioni→ f is defined via the relation

〈f |S|i〉 = δfi + i(2π)4δ(4)(Pf − Pi)〈f |T |i〉, (2.100)
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wherePi (Pf ) is the sum of all initial (final) momenta of the|i〉 (|f〉) state. Furthermore, impos-
ing the unitarity relationS†S = 1 leads to the generalized optical theorem:

〈f |T |i〉 − 〈i|T |f〉∗ = i
∑

j

(2π)4δ(4)(Pj − Pi)〈j|T |f〉∗〈j|T |i〉. (2.101)

In Eq. (2.101), the sum
∑
j should be understood to be over the entire phase space and spins of

all possible on-shell intermediate particlesj.
An important corollary of this theorem is obtained iff = i, corresponding to the case

of the so-called “forward scattering”. For this particularkinematic choice, setting on the lhs
T ii ≡ 〈i|T |i〉 and on the rhsT ij ≡ 〈j|T |i〉 andMij ≡ |〈j|T |i〉|2 = |T ij|2 we have

ℑm{T ii} =
1

2

∑

j

(2π)4δ(4)(Pj − Pi)Mij. (2.102)

For the rest of this review we will be referring to the relation given in Eq. (2.102) as the optical
theorem (OT).

The rhs of the OT consists of the sum of the (squared) amplitudes,Mij, of all kinematically
allowed elementary processes connecting the initial and final states. Note, in particular, that only
physical particlesmay appear as intermediate|j〉 states. If the particles involved are fermions
and/or gauge bosons, when calculatingMij one averages over the initial state polarizations and
sums over the final state polarizations. In addition, the integration over all available phase-space,
implicit in the sum

∑
j , must be carried out. The lhs of the OT is given by the imaginary part of

theentireamplitude,i.e., including all Feynman diagrams contributing to it. For example, in the
case of non-Abelian gauge theories to obtain the lhs of the OTone must calculate the imaginary
part of all diagrams, regardless of whether they contain physical (gluons, quarks) or unphysical
(ghosts or would-be Goldstone bosons) fields inside their loops. The way how these imaginary
parts will be actually computed is a mathematics rather thana physics question. For instance,
in the simple case of one-loop graphs one may carry out the integration over virtual momenta,
and then determine where the resulting expressions developimaginary parts. Equivalently, one
can use a set of rules known as “Cutkosky rules” or “cutting rules”. One has to first cut through
all diagrams on the lhs of the OT in all possible ways such thatthe cut propagators can be put
simultaneously on-shell. Note that one cuts through physical and unphysical particles (given that
we are operating on the lhs of the OT), and that higher order diagrams have, in general, multiple
(two-particle, three-particle, etc.) cuts. Then, for eachcut propagator one must substitute

(k2 −m2 + iǫ)−1 → −2iπδ+(k2 −m2), (2.103)

where
δ+(k2 −m2) ≡ θ(k0)δ(k2 −m2), (2.104)

and carry out the resulting integral. Finally, one must sum up the contributions of all cuts. This
approach has the advantage of casting the lhs of the OT into a form that, for certain simple
theories such as scalar field theories or QED, makes the equality with the rhs manifest.

An issue of central importance for what follows is the way that the OT is realized at the level
of the conventional diagrammatic expansion, or equivalently, at the level of the propagator-,
vertex-, and box-like amplitudes,T1, T2, andT3, respectively, introduced in subsection 2.2.
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Fig. 15. The stronger version of the OT in the case of a scalar theory.

Specifically, in its general formulation of Eq. (2.102), theOT is a statement at the level of
entire amplitudes and not of individual Feynman graphs, nor of the corresponding subampli-
tudes. Thus, the imaginary part of a given diagram appearingon the rhs doesnot necessarily
correspond to an easily identifiable diagrammatic (or kinematic) piece on the rhs. For example,
in QCD theconventionalpropagator-like pieces of the two sides,i.e., those defined from the
standard(as opposed to the “pinched”) diagrammatic expansion, do not have to coincide in
general. Of course, there are theories where the OT holds also at the level of individual graphs
and kinematic subamplitudes. This stronger version of the OT is realized in scalar theories, but
fails in non-Abelian gauge theories, such as QCD and the electroweak model. A crucial advan-
tage of the PT is that it permits the realization of the OT at the level of kinematically distinct,
well-defined subamplitudes, even in the context of non-Abelian gauge-theories; these privileged
subamplitudes are, of course, none other than theT̂1, T̂2, andT̂3.

In order to see a concrete example where the OT holds at the level of individual subampli-
tudes, let us turn to a scalar,λφ3 theory, where pinching is impossible (no WIs), and therefore
the topological structures given by the Feynman graphs cannot be modified. We will consider
the processφ(p1)φ(p2) → φ(p1)φ(p2); thus,|i〉 = |φ(p1)φ(p2)〉, and, at lowest order, the only
intermediate state possible is|j〉 = |φ(k1)φ(k2)〉 (see Fig. 15). In such a case, the OT assumes
its stronger version

ℑm{T iiℓ } =
1

2

∑

j

(2π)4δ(4)(Pj − Pi)Mij
ℓ , (2.105)

whereℓ = 1, 2, 3 denotes, respectively, the propagator-, the vertex-, and box-like parts of either
side (to recover the full OT, one simply sums both sides overℓ).
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The way theMij
ℓ are determined is simply through the dependence on the Mandelstam

variabless, t, andu; the latter are defined in this case ass = (p1 + p2)
2 = (k1 + k2)

2,
t = (p1 − k1)

2 = (p2 − k2)
2, andu = (p1 − k2)

2 = (p2 − k1)
2. Specifically (suppressing

the superscriptij),

T = λ2
[

1

s−m2
+

1

t−m2
+

1

u−m2

]
, (2.106)

and so

M1 =λ4
(

1

s−m2

)2

,

M2 =2λ4
[

1

t−m2
+

1

u−m2

]
1

s−m2
,

M3 =λ4
[

1

t−m2
+

1

u−m2

]2
. (2.107)

As we will see later on, this simple identification fails in the case of non-Abelian theories.
Let us now verify Eq. (2.105) for the propagator-like parts of the amplitude (ℓ = 1) and at the

lowest non-trivial order inλ. We have that

T ii1 =−λ2i∆(q2, m2)

=−λ2 i

q2 −m2 − iΠ(q2, m2)

=−λ2iD(0)(q2, m2) + λ2D(0)(q2, m2)Π(q2, m2)D(0)(q2, m2),

Mij
1 =λ4[D(0)(q2, m2)]2 (2.108)

with D(0)(q2, m2) = (q2 − m2)−1 the tree-level scalar propagator andΠ(q2, m2) its one-loop
self-energy, given by

iΠ(q2, m2) =
λ2

2

∫

k

1

(k2 −m2)[(k + q)2 −m2]
. (2.109)

Then, denoting the two sides of the OT by(lhs)1 and(rhs)1, we have

(lhs)1 =λ2ℑm{T ii1 },
(rhs)1 =

1

2
× 1

2
λ4[D(0)(q2)]2

∫

PS
, (2.110)

where the additional combinatorial1
2

factor accounts for having two identical particles in the
final state. The integral

∫
PS is the two-body phase-space integral, given by

∫

PS
=

1

(2π)2

∫
d4k1

∫
d4k2 δ+(k2

1 −m2
1)δ+(k2

2 −m2
2)δ

(4)(q − k1 − k2), (2.111)
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Fig. 16. The stronger version of the OT in QCD: it holds for thequark loop but fails for the gluon loop.

wherem1 andm2 are the masses of the intermediate particles produced (in the case at hand
m1 = m2 = m). To demonstrate the equality(lhs)1 = (rhs)1, use for(rhs)1 the standard result

∫

PS
= θ(q0)θ[q2 − (m1 +m2)

2]
1

8πq2
λ1/2(q2, m2

1, m
2
2), (2.112)

whereλ(x, y, z) = (x− y − z)2 − 4yz, and for(lhs)1 that

ℑm{Π(q2)}=− λ2

32π2
ℑm

{∫ 1

0
dx ln[m2 − q2x(1 − x)]

}

=
λ2

32π

θ(q2 − 4m2)

q2
λ1/2(q2, m2, m2)

=
λ2

4

∫

PS
, (2.113)

obtained from Eq. (2.109) after the Feynman parametrization and standard integration overk. It
is relatively straightforward to show, to lowest order, thevalidity of (2.105) forℓ = 2, 3, espe-
cially if the Cutkosky rules are employed to determine the rhs. Notice that, in QCD, the stronger
version of the OT holds for the quark loop but fails when the virtual particles circulating in the
loop are gluons (see Fig. 16).

An additional important ingredient that accompanies the OTis that of analyticity; together
they provide a powerful framework that restricts severely the allowed structure of Green’s func-
tions. Specifically, Green’s functions are considered to beanalytic functions of their kinematic
variables; this property, in turn, relates their real and imaginary parts by the so-called dispersion
relations.

In particular, let us recall that if a complex functionf(z) is analytic in the interior of and
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Fig. 17. Contours of complex integration for the dispersionrelations

upon a closed curve, sayC↑ in Fig. 17, andx + iε (with x, ε ∈ R andε > 0) is a point within
the closed curveC↑, we then have the Cauchy’s integral form,

f(x+ iε) =
1

2πi

∮

C↑

dz
f(z)

z − x− iε
, (2.114)

where
∮

denotes that the pathC↑ is singly wound. Using Schwartz’s reflection principle, one
also obtains

f(x− iε) = − 1

2πi

∮

C↓

dz
f(z)

z − x+ iε
. (2.115)

Note thatC∗
↑ = C↓. Sometimes, an analytic function is called holomorphic; both terms are

equivalent for complex functions.
Then, let us assume that the analytic functionf(z) has the asymptotic behavior,|f(z)| ≤

C/Rk, for large radiiR with C a real non-negative constant andk > 0. Taking the limitε→ 0,
it is easy to evaluateℜef(x) through

2ℜef(x) = ‘ lim
ε→0

’
[
f(x+ iε) + f ∗(x− iε)

]
= ‘ lim

ε→0
’

1

π

+∞∫

−∞
dx′ ℑm

(
f(x′)

x′ − x− iε

)
+ Γ∞.

(2.116)
Here,‘ limε→0 ’ means that the limit should be takenafter the integration has been performed,
and

Γ∞ =
1

π
lim
R→∞

ℜe
∫ π

0
dθ f(Reiθ) . (2.117)

Because of the assumed asymptotic behavior off(z) at infinity, the integral over the upper
infinite semicircle in Fig. 17 can be easily shown to vanish:Γ∞ = 0. Then, employing the
well-known identity for distributions,

‘ lim
ε→0

’
1

x′ − x− iε
= P

1

x′ − x
+ iπδ(x′ − x), (2.118)
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we arrive at the unsubtracted dispersion relation,

ℜef(x) =
1

π
P

+∞∫

−∞
dx′

ℑmf(x′)

x′ − x
. (2.119)

where the “P” denotes the principle value of the integral. Following similar arguments, one can
express the imaginary part off(x) as an integral overℜef(x).

In the previous derivation, the assumption that|f(z)| approaches zero sufficiently fast at
infinity has been crucial, since it guarantees thatΓ∞ → 0. However, if this assumption does
not hold, additional subtractions need be included in orderto arrive at a finite expression. For
instance, for|f(z)| ≤ CRk with k < 1, it is sufficient to carry out a single subtraction at a point
x = a. In this way, one has

ℜef(x) = ℜef(a) +
(x− a)

π
P

+∞∫

−∞
dx′

ℑmf(x′)

(x′ − a)(x′ − x)
. (2.120)

From Eq. (2.120), it is obvious thatℜef(x) can be obtained fromℑmf(x), up to an unknown,
real constantℜef(a). Usually, the pointa is chosen in a way such thatℜef(a) takes a specific
value on account of some physical requirement or normalization condition.

To see how analyticity works in a simple case, let us return tothe scalar self-energyΠ(s) of
Eq. (2.109). Settingq2 = s, and defining the “velocity”

β(s,m2) ≡ (1 − 4m2/s)1/2 = s−1λ1/2(s,m2, m2), (2.121)

a standard integration yields

Π(s,m2) =
λ2

32π2

[
2

ǫ
− γE + ln

4πµ2

m2
+ 2 − β(s) ln

β(s,m2) + 1

β(s,m2) − 1

]
, (2.122)

wheres should be analytically continued tos+iε. In fact, fors > 4m2, the logarithmic function
in Eq. (2.122) assumes the form

ln
1 + β(s,m2)

1 − β(s,m2)
− iπθ(s− 4m2). (2.123)

Evidently, the absorptive part ofΠ(s) obtained from Eq. (2.122) is equal to theℑmΠ(s) ap-
pearing in Eq. (2.113). Furthermore, one can verify the validity of the dispersion relation of
Eq. (2.120), singly subtracted ats = 0. Since

Π(0, m2) =
λ2

32π2

[
2

ǫ
− γE + ln

4πµ2

m2

]
, (2.124)

the renormalizedΠ(s) is obtained simply asΠR(s,m2) = Π(s,m2) − Π(0, m2). Noting that
ℑmΠ(s,m2) = ℑmΠR(s,m2) (the divergent parts have to be real in order for the hermiticity
of the Lagrangian to be preserved), it is elementary to demonstrate that indeed (principle value
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implied),

ℜeΠR(s,m2) =
s

π

∞∫

4m2

ds′
ℑmΠ(s′, m2)

s′(s′ − s)
. (2.125)

The synergy between unitarity (OT) and analyticity (dispersion relations) constitutes the basis
of the dynamical framework known from the sixties as “S-matrix theory” (see,e.g., [71]). In the
context relevant to our purposes, one may resort to this framework in order to (re)construct dy-
namically (at least in principle) a given Green’s function.A possible procedure one may adopt
to accomplish this is the following. The lhs of the OT is an experimentally measurable quantity:
up to simple kinematic ingredients (flux-factors, etc) it can be identified with a physical cross-
section. In fact, in the case of scalar theories or QED, the contributions of theindividual sub-
amplitudesMij

ℓ to this cross-section may be projected out; for example, in the center-of-mass
frame theMij

ℓ display a different dependence on the scattering angleθ, which, in turn, allows
their extraction from the entire cross-section. Then, through the lhs of the OT, the measured
Mij

ℓ is identified with the imaginary part of the Green’s functionunder construction, namely
(up to trivial factors) theT iiℓ (for example, the propagator, forℓ = 1). Having determined the
ℑmT iiℓ from the OT, the dispersion relation can finally furnish (up to subtractions) the real part
of T iiℓ .

2.5.2 The fundamentals-t cancellation

As already alluded to in the previous subsection, the strongversion of the OT, expressed in
Eq. (2.105), does not hold in general in the case of non-Abelian theories. This is so because, with
the exception of certain gauges, the naive (diagrammatic) propagator-, vertex-, and box-like
subamplitudes of each side are totally different. For example, in the case of the forward QCD
processq(p1)q̄(p2)→ q(p1)q̄(p2) the propagator-like part of the lhs, computed in the renormal-
izable gauges, is determined by cutting through one-loop graphs containingξ-dependent gluon
propagators and unphysical ghosts (omit quark-loops), while the propagator-like part of the rhs
contains the polarization tensors corresponding to physical massless particles of spin 1 (two
physical polarizations). This profound difference complicates the diagrammatic verification of
the OT, and invalidates, at the same time, its stronger version.

As we will demonstrate in this subsection, the application of the PT on the rhs (the physical
side) of the OT is tantamount to the explicit use of an underlying fundamental cancellation be-
tweens-channel andt-channel graphs [72,73]. This cancellation is exposed after the judicious
combination of two fundamental WIs, one operating on thes-channel and one on thet-channel
amplitude. This cancellation results in a non-trivial reshuffling of terms, which, in turn, allows
for the definition of kinematically distinct contributions, to be denoted bŷMij

ℓ ; interestingly
enough, they correspond to the imaginary parts of the one-loop PT subamplitudes constructed
in the previous section. Specifically, the PT subamplitudessatisfy the strongest version of the
OT, i.e.,

ℑmT̂ iiℓ =
1

2

∑

j

(2π)4δ(4)(Pj − Pi)M̂ij
ℓ , (2.126)

In other words, the strong version of the OT holds iff the identification of the subamplitudes on
each side occursafter the application of the PT.
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Fig. 18. Diagrams defining the amplitudesTt [graphs(a) and(b)] andTs [graph(c)]. Diagram(d) will
contribute to the amplitudeS defined in Eq. (2.138).

To see all this in detail, we consider the forward scatteringprocessq(p1)q̄(p2)→ q(p1)q̄(p2),
and concentrate on the OT to lowest order. Obviously, the intermediate states appearing on the
rhs may involve quarks or gluons. The quarks can be treated essentially as in QED, and are, in
that sense, completely straightforward. We will thereforefocus on the part of the OT where the
intermediate states are two gluons; we have that

ℑm〈qq̄|T |qq̄〉 =
1

2
× 1

2

∫

PSgg

〈qq̄|T |gg〉〈gg|T |qq̄〉∗. (2.127)

The extra1
2

factor is statistical and arises from the fact that the final on-shell gluons should be
considered as identical particles in the total rate.

In Eq. (2.127) we set for the lhsT ≡ 〈qq̄|T |qq̄〉 and for the rhsT ≡ 〈qq̄|T |gg〉 andM ≡
T T ∗. Let us now focus on the rhs of Eq. (2.127). Diagrammatically, the tree-level amplitudeT
consists of two distinct parts:t andu-channel graphs that contain an internal quark propagator,
Ttmnµν , as shown in diagrams(a) and(b) of Fig. 18, and ans-channel amplitude,Tsmnµν , given
in diagram(c) of that same figure. The subscripts andt refers as usual to the corresponding
Mandelstam variables,i.e., s = q2 = (p1 + p2)

2 = (k1 + k2)
2, andt = (p1 − k1)

2 = (p2 − k2)
2.

Defining the analogue of Eq. (2.32) for these kinematics, namely

iVaρ (p2, p1) = v̄(p2)igt
aγρu(p1), (2.128)

we have that
T mn
µν = Tsmnµν + Ttmnµν , (2.129)

with

Tsmnµν =−gfamnVaρ∆(0)
ρα (q, ξ)Γαµν(q,−k1,−k2),

Ttmnµν =−ig2v̄(p2)
[
tnγνS

(0)(p1 − k1)t
mγµ + tmγµS

(0)(p1 − k2)γνt
n
]
u(p1). (2.130)

We then have

M= T mn
µν Lµµ

′

(k1)L
νν′(k2) T mn∗

µ′ν′

= [Ts + Tt]mnµν Lµµ
′

(k1)L
νν′(k2) [Ts∗ + Tt∗]mnµ′ν′ , (2.131)
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where the polarization tensorLµν(k) corresponding to a massless spin one particle is given by

Lµν(k) = −gµν +
nµkν + nνkµ

n · k + η2 kµkν

(n · k)2 . (2.132)

Notice that in accordance with Eq. (2.127), the rhs of Eq. (2.131) is inside the phase space
integral 1

4

∫
PSgg

, which we will suppress for simplicity. Also, the auxiliaryfour-vectorsnµ are
unphysical, and any dependence on them must cancel in a physical process. The same holds for
the parameterη2, which acts as a gauge-fixing term.

It is clear now that if we were to apply at this point the same criterion for determining theMℓ

as in the scalar case [see Eqs (2.107)] we would get (we suppress Lorentz and color indices)

M1 =TsL(k1)L(k2)T ∗
s ,

M2 =TsL(k1)L(k2)T ∗
t + TtL(k1)L(k2)T ∗

s ,

M3 =TtL(k1)L(k2) T ∗
t . (2.133)

However, theMℓ appearing in the equations above cannot play the role of the subamplitudes
appearing on the rhs of the strong version of OT, for at least one obvious reason: they depend
explicitly on the unphysicalnµ andη2. This is the crux of the matter: the cancellation ofnµ and
η2 at the level of the entireM becomes possible only by combining contributions between the
s- and thet-channel graphs. It is onlyafter this cancellation has taken place that the criterion of
Eqs (2.107) may be used to define thêMij

ℓ that will appear on the rhs of Eq. (2.126).
We now study the above points concretely. Before turning to thenµ andη2 cancellations, let us

demonstrate the cancellation of gfp inside the off-shell tree-level gluon propagator,∆(0)
µν (q, ξ),

appearing in thes-channel graph. To that end note that the external quark current is conserved,
namelyqρVaρ = 0. In addition, we have that for “on-shell” gluons,i.e., for k2 = 0, kµLµν(k) =
0. By virtue of this last property, we see immediately that if we carry out the PT decomposition
of Eq. (2.38) to the three-gluon vertexΓ, the termΓP vanishes after being contracted with the
polarization vectors, and only theΓF piece of the vertex survives. Then, it is immediate to verify
that the longitudinal (gfp-dependent) parts of∆(0) either vanish because of current conservation,
or because they trigger the WI

qαΓF
αµν(q,−k1,−k2) = gµν(k

2
1 − k2

2), (2.134)

which vanishes on-shell. This last WI is crucial because, ingeneral, current conservation alone
is not sufficient to guarantee the gfp-independence of the final answer. Clearly, in the covariant
gauges the gauge fixing term is proportional toqµqν and therefore current conservation ensures
that such a term vanishes. However, had we chosen an axial gauge instead, the gluon propagator
would be of the form

∆(0)
µν (q, η̃) =

Lµν(q, ñ, η̃)

q2
, (2.135)

whereñ 6= n in general; then only the term̃ηνqµ vanishes because of current conservation,
whereas the term̃nνqµ can only disappear if Eq. (2.134) holds. Thus, either way, Eq. (2.131)
finally becomes

M =
1

4
(T F
s + Tt)mnµν Lµµ

′

(k1)L
νν′(k2)(T F

s + Tt)mn∗µ′ν′ , (2.136)
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where the gfp-independent quantityT F
s is given by

TsF,mnµν = gfamngραd(q2)ΓF
αµν(q,−k1,−k2)Vaρ . (2.137)

We now want to show that the dependence on the unphysical quantities nµ andη2, coming
from the polarization vectors, disappears. The exact way this happens is very instructive, and can
be traced to a very particular cancellation operating between thes- andt- channel components.
This cancellation, in turn, is crucial for the PT construction (and its all-order generalization,
see Section 6), because it captures precisely the mechanismthat enforces the corresponding
cancellations inside Feynman diagrams (where the gluons are off-shell).

To see thiss-t cancellation in detail, let us first define the quantitiesSmn andRmn
µ as follows:

Smn =
1

2
gfamnd(q2)(k1 − k2)

µVaµ,
Rmn
µ = gfamnVaµ, (2.138)

which are related by
kµ1Rmn

µ = −kµ2Rmn
µ = q2Smn. (2.139)

Second, using the conditionsk2
1 = k2

2 = 0, together with current conservation,qρVaρ = 0, we
obtain the elementary WIs

kµ1 ΓF
αµν(q,−k1,−k2) =−q2gαν + (k1 − k2)αk2ν ,

kν2ΓF
αµν(q,−k1,−k2) = q2gαµ + (k1 − k2)αk1µ. (2.140)

Now the crucial point is that theq2 term on the rhs of the above WIs will cancel against the
d(q2) insideTsF, allowing the communication of this part with the (contracted)t-channel graph.
Specifically, we will have

kµ1TsF,mnµν = 2k2νSmn −Rmn
ν ,

kν2TsF,mnµν = 2k1µSmn + Rmn
µ ,

kµ1Ttmnµν =Rmn
ν ,

kν2Ttmnµν =−Rmn
µ , (2.141)

so that, evidently,

kµ1 [TsF + Tt]mnµν = 2k2νSmn,
kν2 [TsF + Tt]mnµν = 2k1µSmn. (2.142)

This is thes-t cancellation [72,73]: the termR comes with opposite sign, and drops out in the
sum. In addition, notice also that
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kµ1k
ν
2TsF,mnµν = q2Smn,

kµ1k
ν
2Ttmnµν =−q2Smn. (2.143)

Using the above results, it is now easy to check that indeed, all dependence on bothnµ and
η2 cancels in Eq. (2.136), as it should, and we are finally left with (omitting the fully contracted
color and Lorentz indices)

M =
(
T F
s T F

s

∗ − 8SS∗
)

+
(
T F
s T ∗

t + T F
s

∗Tt
)

+ TtT ∗
t (2.144)

At this point we can naturally define the genuine propagator-like, vertex-like, and box-like sub-
amplitudes, as in the scalar case,i.e.,

M̂1 =T F
s T F

s

∗ − 8SS∗,

M̂2 =T F
s T ∗

t + T F
s

∗Tt,
M̂3 =TtT ∗

t . (2.145)

Let us now focus on̂M1; employing the relation

ΓF
ρµνΓ

F,µν
α = 8q2Pαρ(q) + 4(k1 − k2)α(k1 − k2)ρ, (2.146)

and

SS∗ =
1

4
g2CAVaαd(q2) [(k1 − k2)

α(k1 − k2)
ρ] d(q2)Vaρ , (2.147)

we obtain forM̂1

M̂1 = g2CAVaµd(q2)
[
8q2P µν(q) + 2(k1 − k2)

µ(k1 − k2)
ν
]
d(q2)Vaν , (2.148)

and the propagator-like part of the rhs of the OT reads

(rhs)1 =
1

2
× 1

2

∫

PSgg

M̂1. (2.149)

Using the result of Eq. (2.112), together with the additional general formula

∫

PS
(k1 − k2)µ(k1 − k2)ν =−λ(q2, m2

1, m
2
2)

3q2
Pµν(q)

∫

PS

+

[
λ(q2, m2

1, m
2
2)

q2
− q2 + 2(m2

1 +m2
2)

]
qµqν
q2

∫

PS
, (2.150)

we obtain for the case of two massless gluons in the final state

∫

PSgg

=
1

8π
,

∫

PSgg

(k1 − k2)µ(k1 − k2)ν = − 1

8π

1

3
q2Pµν(q), (2.151)
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and thus (2.149) becomes

(rhs)1 = Vµa d(q2)πbg2q2Pµν(q)d(q
2)Vνa . (2.152)

On the other hand, for the propagator-like part of the lhs of the OT we have

(lhs)1 = ℑmT̂1 = Vaµd(q2)ℑmΠ̂µν(q)d(q2)Vaν , (2.153)

Equating (2.152) and (2.153) we finally obtain

ℑmΠ̂µν(q) = πbg2q2Pµν(q). (2.154)

Let us now write the (dimensionful)̂Π(q2) introduced in Eq. (2.77) aŝΠ(q2) = q2Π̂(q2).
From (2.154) we have thatℑmΠ̂(q2) = πbg2, with the renormalized̂ΠR(q2) given by

Π̂R(q2) = Π̂(q2) − Π̂(µ2), (2.155)

and from the corresponding single subtraction dispersion relation

ℜeΠ̂R(q2) =
∫ ∞

0
ds

[
1

s− q2
− 1

s− µ2

]
ℑmΠ̂(s)

π

=−bg2 ln
q2

µ2
. (2.156)

We emphasize that the above procedure furnishes an alternative way for constructing the gfp-
independent PT Green’s functions at one-loop, foreverygauge-fixing scheme. Indeed, in our
derivation we have solely relied on the rhs of the OT, which wehave rearranged in a well-
defined way,after having explicitly demonstrated its gfp-independence. Theproof of the gfp-
independence of the rhs presented here is, of course, expected on physical grounds, and it only
relies on the use of WIs, triggered by the longitudinal partsof the tree-level gluon propagators.
Since the gfp-dependence at the level of the Feynman rules iscarried entirely by the longitudinal
parts of the gluon tree-level propagator, its cancellationat the level ofM proceeds exactly
as described before Eq. (2.137). Obviously, the final step ofreconstructing the real part from
the imaginary by means of a (once subtracted) dispersion relation does not introduce any new
gauge-dependences.

In addition, in the context of theories with tree-level (spontaneous) symmetry breaking (such
as the electroweak theory) the lhs of the OT contains, in general, would-be Goldstone bosons or
ghost fields, with gfp-dependent masses. Such contributions manifest themselves as unphysical
cuts,e.g., at q2 = ξM2

W for aW propagator in the renormalizableRξ gauges, and, eventually,
as unphysical thresholds, ate.g., s = 4ξM2

W . However, unitarity requires that these unphysical
contributions should vanish, as can be read off from the rhs of Eq. (2.102). As we will see in
detail in Section 5, this observation is of central importance when devising a gauge-invariant
resummation formalism for resonant transition amplitudes[23,74–76].
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3 The background field method and its correspondence with thePT

As we have seen in the previous section, in the conventional formulation of gauge theories the
LagrangianL– consisting of the classical term plus the gauge-fixing and Faddeev-Popov ghost
terms– is no longer gauge invariant, but rather BRST invariant. As a consequence, off-shell
Green’s functions satisfy complicated STIs reflecting BRSTinvariance. In this context we have
seen how the PT implements a rearrangement of the perturbative series, that allows the construc-
tion of effectiveone-loop Green’s functions which, among several other important properties,
satisfy naive, QED-like WIs.

It turns out that there exists a formal framework, known as the background field method
(BFM), which gives rise to Green’s functions that satisfy automatically this last property (but
not all others).

The BFM was initially introduced at the one-loop level [28,29,31,32,77–83], and was gen-
eralized soon afterwards to higher orders [33,34,84–86]. In the BFM one arranges things such
that the explicit gauge invariance present at the level of the classical Lagrangian is retained even
after the gauge-fixing and ghost terms have been added. Thus,the (formally defined) off-shell
Green’s functions of the BFM obey the naive WIs dictated by gauge invariance, exactly as the
(diagrammatically defined) PT Green’s functions. Notice however two important points: The
BFM Green’s functions (i) depend explicitly on the (quantum) gfp, denoted byξQ, and (ii ) obey
the aforementioned WIs for every value ofξQ. Thus one encounters a situation very similar to
that of QED: the photon-electron vertex and the electron self-energy depend explicitly on the
gfp, and for every value of the gfp they satisfy the text-bookWI of Eq. (2.58). The reason why
the BFM has become so relevant in the study of the PT was the observation [40,41,60] that for
a very simple choice ofξQ the BFM Green’s functions become identical to those of the PT. This
particular value is the BFG,ξQ = 1.

The purpose of this section is twofold. First, we introduce the BFM quantization, discussing
its advantages over the conventional quantization formalism. Second, we will establish (at the
one-loop level) the important correspondence between the PT and BFM Green’s functions men-
tioned above. Since this correspondence will accompany us for the rest of this report, we will
pay particular attention in explaining the conceptual differences that distinguish the PT from the
BFM (for a related general discussion see also Section 1, as well as subsection 5.4 for further
physical arguments sharpening this distinction).

3.1 The background field method

Let us start by considering a theory describing a (scalar) field φ with an associated classical
action

S[φ] =
∫
d4xL[φ]. (3.1)

TheS-matrix of this theory can be derived from the knowledge of its corresponding Green’s
functions through the LSZ reduction formula (see below). The Green’s functions of the theory
can, in turn, be obtained by taking functional derivatives with respect to a suitable sourceJ of
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the generating functional

Z[J ] =
∫

[dφ] ei{S[φ]+J ·φ}, J · φ =
∫
d4xJ(x)φ(x). (3.2)

The functional integral appearing in the equation above is performed over all the possible con-
figurations of the fieldφ. The disconnected Green’s functions of the theory are then defined
through the relation

〈0|T (φ · · ·φ)|0〉 =
∫

[dφ](φ · · ·φ) eiS[φ] =

(
1

i

δ

δJ

)n
Z[j]

∣∣∣∣∣
J=0

. (3.3)

Since the disjoined pieces appearing in the Green’s function do not contribute to theS-matrix, it
is more convenient to work with the connected Green’s functions which are generated by taking
functional derivatives with respect to the sourceJ of the generating functionalW [J ] defined as

eiW [J ] = Z[J ]. (3.4)

Finally, yet another simplification can be achieved by expressing connected Green’s functions
in terms of 1PI pieces, which are generated by the effective action defined through the Legendre
transform

Γ[φ] = W [J ] − J · φ, (3.5)

where

φ =
δW

δJ
. (3.6)

Notice the difference betweenφ andφ; since

φ = −i 1

Z[J ]

δ

δJ
Z[J ] =

〈0|φ|0〉J
〈0|0〉J

, (3.7)

we see thatφ corresponds to the vacuum expectation value of the fieldφ in the presence of a
sourceJ . In particular notice that the equation

δΓ

δφ
= −J, (3.8)

corresponds to the quantum mechanical field equation forφ, which replaces the classical field
equation

δS

δφ
= −J, (3.9)

in the quantized theory.
Thus, the key quantity to calculate in field theories is the effective action (3.5), because, once

it is known, theS-matrix can be constructed through the LSZ reduction formula, i.e., by string-
ing together trees of 1PI Green’s functions (thus generating the connected ones), amputating
external propagators, putting external momenta on-shell,and adding appropriate external wave-
functions renormalization factors.

At this stage the BFM can be seen as a convenient way of computing the effective action. Let
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us begin by defining a new generating functionalZ̃ by shifting the argument of the classical
actionS[φ] appearing in Eq. (3.1) by an arbitrary background fieldϕ independent ofJ :

Z̃[J, ϕ] =
∫

[dφ] ei{S[φ+ϕ]+J ·φ} . (3.10)

By analogy we can now go on and definẽW as

eiW̃ [J,ϕ] = Z̃[J, ϕ], (3.11)

and, finally, the corresponding effective action

Γ̃[J, ϕ] = W̃ [J, ϕ] − J · φ̃, (3.12)

with

φ̃ =
δW̃

δJ
. (3.13)

Therefore the background effective action constructed in Eq. (3.12) is a conventional effective
action computed in the presence of a background fieldϕ, and, as such, will give rise to 1PI
Green’s functions in the presence of this background fieldϕ.

Let us now look for a connection between the generating functionalsZ̃ andZ. Shifting the
variable of the functional integration in Eq. (3.10) through φ → φ − ϕ, we arrive immediately
at the relation

Z̃[J, ϕ] = Z[J ] e−iJ ·ϕ, (3.14)

and thus we are led to
W̃ [J, ϕ] = W [J ] − J · ϕ. (3.15)

Differentiating this last equation with respect toJ and taking into account the definitions of
Eqs (3.6) and (3.13) we find

φ̃ = φ− ϕ. (3.16)

Finally, making use of Eqs (3.5) and (3.12) we find

Γ̃[φ̃, ϕ] = W [J ] − J · (φ̃+ ϕ) = Γ[φ] = Γ[φ̃+ ϕ]. (3.17)

As a special case of the above equation we can chooseφ̃ = 0 to get

Γ̃[0, ϕ] = Γ[ϕ]. (3.18)

Notice that the background effective actionΓ̃[0, ϕ] has no dependence oñφ, so that it can
only generate 1PI vacuum graphs in the presence of the background fieldϕ; on the other hand
Eq. (3.18) tells us that the effective action of the theory can be obtained precisely by summing
up all these vacuum diagrams. However, unlessϕ is a very simple background field (e.g., a con-
stant), the calculation of̃Γ[0, ϕ], treatingϕ exactly, is not possible. Thus, one needs to resort to a
perturbative treatment of the background fieldϕ, in which case the background field appearing
in external lines is arbitrary, and does not need to be specified at all.

To pursue this latter approach, one starts generating Feynman rules fromL[φ + ϕ]. From
this process there will be two type of interaction vertex emerging: (i) those involving onlyφ
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fields, which must be used inside diagrams only, and (ii ) those involvingφ andϕ fields, which
ought to be used in order to generate external lines. This, inturn, means that in the BFM one
will calculate the same diagrams needed in the conventionalformulation, with the only pro-
viso that vertices appearing inside loops might have different Feynman rules compared to those
connecting external legs.

3.2 Background field gauges

All the results discussed above for the simplified setting ofa scalar field theory have analogs
in non-Abelian gauge theories, with the obvious complications coming from the fact that, in
the latter cases, one must choose a gauge fixing term; this, inturn, implies the appearance
of the corresponding Faddeev-Popov ghost determinant. Thegenerating functional for pure
gluodynamics (since fermions play no role in the BFM construction they will be neglected in
what follows) can be written as

Z[J ] =
∫

[dA]Det

[
δFa

δθb

]
ei{SI[A]+SGF[A;ξ]+J ·A}, J · A =

∫
d4xJaµA

µ
a . (3.19)

The gauge invariant and gauge-fixing Lagrangian have been introduced in Section 2 and read

SI[A] =
∫
d4xLAI = −1

4

∫
d4xF a

µνF
µν
a , SGF[A; ξ] =

1

2ξ

∫
d4xFaFa, (3.20)

with Fa the gauge fixing function; finally,δFa/δθb represents the derivative of the gauge fixing
function with respect to the infinitesimal gauge transformation of the gluon field, see Eq. (2.6),
with the determinant of this term expressing the result of the integral over the ghost and anti-
ghost field variables of the Faddeev-Popov Lagrangian term,introduced in Eq. (2.7).

The background field generating functional can be defined in an way completely analogous
to the scalar case [see Eq. (3.10)], namely2

Z̃[J, Â] =
∫

[dA]Det

[
δF̂a

δθb

]
ei{SI[A+Â]+SGF[A;ξQ]+J ·A}, (3.21)

where nowF̂ = F̂(A, Â), with δF̂a/δθb represents the derivative of the gauge fixing function
with respect to an infinitesimal gauge transformation

δAaµ = −1

g
∂µθ

a + fabcθb
(
Âcµ + Acµ

)
. (3.22)

At this point, all quantities defined in the scalar case can bealso defined here. Moreover, since
the relation between normal and background quantities can be found, as before, by shifting

2 From now on we will indicate background fields with a caret. Notice however that we will indicate
Green’s functions containing background fields with a tilde, to distinguish them from the PT ones.
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the integration variable in the path integral throughA→ A− Â, one finds in analogy with
Eq. (3.18),

Γ̃[0, Â] = Γ[A]
∣∣∣
A=Â

. (3.23)

Notice that for arriving at this equation one has to writeZ̃[J, Â] in terms ofZ[J ]; this, as already
said, can be easily done by shifting the integration variable. Thus, for Eq.(3.23) to be valid, if
on the lhs the effective action is calculated using the gaugefixing function F̂(A, Â), then on
the rhs we must use the gauge fixing functionF = F̂(A− Â, Â) (and the gauge fixing param-
eterξ = ξQ). Then, while it is clear that the BFM will give rise to different Green’s functions
with respect to those appearing in the conventional formalism, the gauge independence of the
physical observables, together with Eq. (3.23), guaranteethat one will finally obtain the same
S-matrix.

The crucial feature that makes the BFM such an advantageous way of quantizing gauge the-
ories is the following. There exist special choices of the gauge fixing functionF̂ for which the
form of the BFM effective actioñΓ[0, Â] is severely restricted, being a gauge invariant func-
tional of Â, i.e., invariant under the gauge transformations

δÂaµ =−1

g
∂µθ̂

a + fabcθ̂bÂcµ,

δJaµ =−fabcθ̂bJcµ. (3.24)

Notice that the (infinitesimal) parameter of the gauge transformations above has been denoted
by θ̂, because it is different from the one appearing in the gauge transformations of the quan-
tum fieldA, showne.g., in Eq. (3.22). The (covariant) gauge fixing function that enforces the
background gauge invariance is

F̂a =(D̂µAµ)
a

= ∂µAaµ + gfabcÂbµA
µ
c , (3.25)

whereD̂µ is the covariant background field derivative.
In order to prove the invariance of the effective action under the transformations (3.24)

and (3.24), we carry out the following change of variables inthe functional integral appear-
ing in Eq. (3.21)

Aaµ → A
′a
µ = Aaµ − fabcθ̂bAcµ = Oab(θ̂)Abµ, (3.26)

where
Oab(θ̂) = δab − fabcθ̂c (3.27)

is an orthogonal matrix representing a rotation by an infinitesimal amount̂θ in the vector space
spanned by the generators of theSU(N) gauge group. Thus it is clear that this change of
variables leaves the integral measure invariant. Also, on the one hand, since both Eqs (3.24)
and (3.26) represent adjoint group rotations, the termJ · A is clearly invariant. On the other
hand, one has that ∫

[dA] eiS[A+Â] →
∫

[dA′] eiS[A′+Â+δ(A+Â)], (3.28)

55



with

δ(Aaµ + Âaµ) = −1

g
∂µθ̂

a + fabcθ̂b
(
Âcµ + Acµ

)
. (3.29)

The latter represents a gauge transformation (with parameter θ̂) of theA + Â field, so that also
this part of the generating functional is invariant.
As far as the gauge fixing term is concerned, one has that it transforms as follows

F̂(Â+ δÂ, A)= F̂a(Â, A) − fabc∂µ
(
θ̂bAcµ

)
+ gfabcθ̂b∂µAcµ + gfabcf bdeθ̂dÂeµA

µ
c

= F̂a(Â, A′) + fabcθ̂bF̂ c(Â, A′), (3.30)

where in the last step the Jacobi identity has been used, andθ̂2 terms have been discarded. Thus
we can write

F̂a(Â+ δÂ, A) = OT
acF̂ c(Â, A′), (3.31)

and therefore since(Fa)2 is manifestly invariant under orthogonal rotations, the background
gauge invariance of the gauge fixing term is evident. Finallyfor the derivative termδF̂a/δθb

one has the relation [42]

δ

δθb
Fa(Â+ δÂ, Aθ(Â+ δÂ)) = OT,ac(θ̂)

δ

δθ̃b
F c(Â, A′θ̃(Â))Odb(θ̂), (3.32)

whereθ̃a = Oab(θ̂)θb, and we have explicitly indicated the dependence of the variation of the
quantum fieldA on the background field̂A and the infinitesimal parameterθ. From the above
identity follows that the determinant is also invariant, since the determinant of an orthogonal
matrix is equal to 1. Thus, this concludes our proof of the gauge invariance of the background
effective action.

Summarizing, the general idea behind the BFM is to first make alinear decomposition of the
gauge field appearing in the classical action in terms of a background field,Â, and the quantum
field,A, which is the variable of integration in the path integral. Then, using the Faddeev-Popov
quantization method, one eliminates the unphysical degrees of freedom of the gauge field by
breaking the gauge invariance of the classical Lagrangian through a gauge fixing condition,
which is usually taken to be of covariant form, even if such a choice may not be unique (see the
next subsection). Most importantly, it is possible to choose a gauge fixing condition that is in-
variant under the gauge transformations of the background fieldÂ, so that the whole Lagrangian
retains (background) gauge invariance with respect to the latter field, which only appears in ex-
ternal lines. The gauge symmetry is, however, explicitly broken by the quantum fieldA, which
enters only in loops.

3.2.1 Generalized background gauges

An interesting question to ask is whether the gauge fixing function of Eq. (3.25) is unique. To
address this issue, we start by noticing that, in order to getfrom the conventionalRξ gauge
fixing function ∂µAaµ to the covariant background equivalent given in Eq. (3.25),it has been
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sufficient to make the replacement
δab∂µ → D̂ab

µ , (3.33)

whereD̂ab
µ = D̂ab

µ (Â) = δab∂µ + gfambÂmµ . On the other hand, Eq. (3.30) tells us that the
background covariant derivative transforms under the background gauge transformation (3.24)
as

D̂ab
µ (Â+ δÂ)Abν = OT

abD̂
bc
µ (Â)A′b

ν , (3.34)

which, in turn, ensures that the corresponding Faddeev-Popov determinant transforms as in
Eq. (3.32). In fact, we see that Eq. (3.34), together with thefact that the gauge fixing Lagrangian
is given by the group space scalar product of the corresponding function, ensures that̂Fa leaves
Z[J, Â] invariant under background field gauge transformations. Thus, using Eq. (3.33), all the
non-covariant gauge fixing functions introduced in subsection 2.1 can be converted into back-
ground gauge fixing functions that preserve the background gauge invariance of the effective
action.

3.3 Advantages over the conventional formalism

3.3.1 Preliminaries: Green’s function andS-matrix calculation in the BFM

The background gauge invariance of the effective actionΓ̃[0, Â], imposes a drastic restriction
on the form of the 1PI Green’s functions generated by taking functional derivative of the back-
ground effective action with respect to the background fields Â. In fact, exactly as happens in
the Abelian (QED) case, these functions are forced to satisfy naive WIs rather than the usual
STIs associated with the non-Abelian character of the theory.

BFM Green’s functions are calculated starting from the shifted LagrangianLI[A, Â], the
gauge fixing termLBFM

GF = 1
2ξQ

F̂aF̂a, and the Faddeev-Popov determinant, which can be written
in terms of an anti-commuting scalar fieldc, giving rise to the Faddeev-Popov ghost Lagrangian

LBFM
FPG = ∂µc̄a∂µc

a + gfabc(∂µc̄a)Abµc
c + gfabc(∂µc̄a)Âbµc

c − gfabcc̄aÂbµ(∂
µcc)

− g2fabef cdec̄aÂbµ(A
µ
c + Âcµ)c

d. (3.35)

Notice the appearance of a modified ghost sector: the interactions between ghosts and back-
ground gluons are very characteristic, consisting of a symmetric Âcc̄ ghost vertex and a com-
pletely new, four particle vertex,̂AAcc̄.

As discussed in the scalar case, vertices appearing inside loops contain only quantum fields
A, while vertices involving the background field̂A connect external lines. Notice that all the
propagators ought to be those of the quantum fields, since gauge invariance is unbroken in the
background sector, and therefore theÂ propagator is not defined. The complete set of Feynman
rules for QCD in the BFM gauge are reported in Appendix B. As a rule of thumb to remem-
ber what vertices we expect to have different Feynman rules,notice that the BFM covariant
gauge fixing term is linear in the quantum fieldsA; therefore, apart from vertices involving
ghost fields, only vertices containing exactly two quantum fields can differ from the conven-
tional ones. Thus, for example, the vertexÂAAA will have to lowest order the same Feynman
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a, α b, β

(â)

a, α b, β

(b̂)

Fig. 19. Feynman diagrams contributing to the one-loop background gluon self-energy. Gray circles on
external lines represent background fields. Seagull contribution are not shown since, perturbatively, they
do not contribute to the self-energy.

rule as the conventional vertexAAAA. Despite the distinction between background and quan-
tum fields, calculations in the BFM are, in general, simpler.This is particularly so in the BFG,
where many vertices simplify considerably (see again Appendix B).

When calculatingS-matrix elements from the BFM Feynman rules remember that fields in-
side loops (i.e., fields irrigated by virtual momenta) are always quantum, while those irrigated
by physical momentum transfers are background. As a result,box diagrams are exactly the
same as in the conventional case,i.e., all fields are quantum. On the other hand, self-energy and
vertex diagrams are attached to the on-shell particles by background gluons, having quantum
gluons and quarks inside their loops. Note also that, eventually, one must choose a gauge for the
background fieldŝA as well, which is completely unrelated to the gauge used for the quantum
fields. For example, the propagators inside the loops may be in the BFG, while the background
propagators in the axial gauge. After the background gauge is fixed, the background field propa-
gator is well-defined, and one can use it to build up strings of1PI functions, thus generating the
connected Green’s functions. Finally, theS-matrix will be determined from the LSZ reduction
formula.

3.3.2 Special transversality properties of the BFM

To show what are the simplifications that the explicit preservation of gauge invariance implies at
the practical level, let us consider the calculation of the gluon two-point function. The diagrams
contributing to the one-loop background gluon self-energyare shown in Fig. 19 (seagull terms
do not contribute due to the dimensional regularization result

∫
k k

−2 = 0). Choosing the back-
ground Feynman gauge (theβ function being, of course, aξ-independent quantity) and using
the BFM Feynman rules reported in Appendix B one has

(â)αβ = g2CA
2

∫

k

1

k2(k + q)2
Γ̂αµν(q,−k − q, k)Γ̂µνβ (q,−k − q, k),

(b̂)αβ =−g2CA

∫

k

1

k2(k + q)2
(2k + q)α(2k + q)β, (3.36)

Introducing, then, the function

f(q2, ǫ) = i
CA
3

g2

(4π)2
Γ
(
ǫ

2

)(
q2

µ2

)− ǫ
2

, (3.37)
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(Γ being the Euler gamma function) we get3





(â)αβ = 10f(q2, ǫ)q2Pαβ(q),

(b̂)αβ = f(q2, ǫ)q2Pαβ(q),
⇒ Π̃

(1)
αβ(q) = 11f(q2, ǫ)q2Pαβ(q). (3.38)

Notice that each of the contributions above is individuallytransverse, as a result of background
gauge invariance. This is to be contrasted withe.g., theRξ result, where

(a)αβ = g2CA
2

∫

k

1

k2(k + q)2
Γαµν(q,−k − q, k)Γµνβ (q,−k − q, k),

(b)αβ =−g2CA

∫

k

1

k2(k + q)2
kα(k + q)β, (3.39)

and(a) and (b) are the diagrams corresponding to those shown in Fig. 19, when the external
gluons are quantum gluons. Carrying out the integrals, we obtain





(a)αβ = 1
4
f(q2, ǫ) (19q2gαβ − 22qαqβ)

(b)αβ = 1
4
f(q2, ǫ) (q2gαβ + 2qαqβ)

⇒ Π
(1)
αβ(q) = 5f(q2, ǫ)q2Pαβ(q).

Thus, while the sum of the two diagrams results in a transverse one-loop gluon self-energy (as
it should), the individual diagrams are not transverse.

At two loops the diagrams to be calculated are shown in Fig. 20. Let us start by noticing
that out of these diagrams one can form combinations that corresponds to the one-loop dressed
gluonic and ghost contributions, and two-loop (dressed) gluonic and ghost contributions. Using
the notation of Fig. 77, one has respectively

[(d1) + (d2)]
(2) = (a) +

1

2
[(b) + (c)] + (d) + (g) + (h) +

1

2
[(q) + (r)],

[(d3) + (d4)]
(2) = (e) + (f) + (i) + (j) + (k) +

1

2
[(m) + (n) + (o) + (p)],

[(d5) + (d6)]
(2) =

1

2
[(b) + (c)] + (ℓ),

[(d7) + (d8) + (d9) + (d10)]
(2) =

1

2
[(q) + (r)] + (s) +

1

2
[(m) + (n) + (o) + (p)], (3.40)

and focussing on the divergent parts of the diagrams, we obtain [34]

3 Notice that from this result, and the fact that in the BFMZg = Z
− 1

2

Â
one immediately obtains that

β(1) = −11
3 CA

g3R
(4π)2

. This has to be contrasted with the conventional formalism (e.g.,Rξ gauges), where
in order to getZg one must calculate the divergent parts of the gauge and ghostself-energies, as well as
the ghost-gauge vertex [87–89].
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a,α b, β

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (ℓ)

(m) (n) (o) (p)

(q) (r) (s)

Fig. 20. The Feynman diagrams contributing to the BFM two-loop gluon self-energỹΠ(2)
αβ .

[(d1) + (d2)]
(2)
αβ = i

g4C2
A

(4π)4

7

2ǫ2

(
1 +

43

12
ǫ− ρǫ

)
q2Pαβ(q),

[(d3) + (d4)]
(2)
αβ = −i g

4C2
A

(4π)4

1

2ǫ2

(
1 +

3

4
ǫ− ρǫ

)
q2Pαβ(q),

[(d5) + (d6)]
(2)
αβ = −i g

4C2
A

(4π)4

9

4ǫ2

(
1 +

31

12
ǫ− ρǫ

)
q2Pαβ(q),

[(d7) + (d8) + (d9) + (d10)]
(2)
αβ = −i g

4C2
A

(4π)4

3

4ǫ2

(
1 +

9

4
ǫ− ρǫ

)
q2Pαβ(q), (3.41)

with ρ = γE − ln 4π + ln(q2/µ2). Then, adding up all the contributions, we get

Π̃
(2)
αβ(q) =

10∑

i=1

(di)
(2)
αβ = i

g4C2
A

(4π)4

14

3ǫ
q2Pαβ(q). (3.42)
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Notice that, as happened in the one-loop case, the contribution of each of the four subgroups is
individually transverse. This property is certainly not accidental; in fact, as we will see in Sec-
tion 8, it is valid to all orders. Its validity has been established for the first time in [90], and is a
direct consequence of the linear WIs satisfied by the (fully-dressed) vertices entering in the SD
expansion of the background gluon self-energy. As we will explain there in detail, this group-
ing of diagrams into individually transverse subsets has profound implications, constituting the
cornerstone of the gauge-invariant truncation scheme implemented by the PT.

3.4 The pinch technique/background Feynman gauge correspondence

The key observation [40,41] that immediately suggests a connection between the PT and BFM
Green’s functions is related to the form of theξQ-dependent tree-level BFM vertex
Âα(q)Aµ(k1)Aν(k2), denoted bỹΓξQαµν(q, k1, k2) (see the BFM Feynman rules of Appendix B).
Specifically, using the PT decomposition of Eq. (2.38) for the standard tree-level three-gluon
vertexΓαµν(q, k1, k2), we find that

Γ̃(ξQ)
αµν (q, k1, k2)= ΓF

αµν(q, k1, k2) +

(
ξQ − 1

ξQ

)
ΓP
αµν(q, k1, k2),

= Γαµν(q, k1, k2) −
1

ξQ
ΓP
αµν(q, k1, k2). (3.43)

Evidently, atξQ = 1 we have that

Γ̃(ξQ=1)
αµν (q, k1, k2) ≡ ΓF

αµν(q, k1, k2). (3.44)

Given that, in addition, atξQ = 1 the longitudinal parts of the gluon propagator vanish also,one
realizes that at this point there is nothing there that couldpinch. Thus, ultimately, the BFG is
singled out because of the total absence, in this particulargauge, of any pinching momenta.

In what follows we will only prove the PT/BFG correspondenceby means of explicit calcu-
lations at the one-loop level, following the aforementioned original articles. An all-order, more
profound proof of this correspondence will be postponed until Section 6; there we will show
that, as a result of the BRST symmetry, the PT/BFG correspondence persists to all orders in
perturbation theory. Finally, in Section 8, the proof will be generalized to the non-perturbative
case of the SDEs.

The case of the gluon self-energy is almost immediate: simply compare the two terms on
the rhs of Eq. (2.73) with the two terms given in Eqs (3.36). Evidently the PT and BFG gluon
self-energies are identical at one loop.

Then, let us consider the case of the three-gluon vertex [41]. The one-loop diagrams contribut-
ing to the BFM three-gluon vertex (i.e., with three incomingbackground gluons) are shown in
Fig. 21; there we also fix the conventions for momenta, Lorentz, and color indices, used in what
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+ 1 graph

(â) (b̂)

a, α

m, µn, ν

q1

q3 q2s, σ

r, ρ ℓ, λ
k1 k3

k2

+ 2 graphs

(ĉ)

+ 2 graphs

(d̂)

Fig. 21. One-loop diagrams contributing to the three-gluonvertex in the BFM. Diagrams(ĉ) carry a 1
2

symmetry factor.

follows. From diagram(â) one has

(â) = − i

2
g3CAf

amn
∫

k1

1

k2
1k

2
2k

2
3

Γ̃
(ξQ=1)
αλρ (q1, k3,−k1)Γ̃

(ξQ=1)
µσλ (q2, k2,−k3)Γ̃

(ξQ=1)
νρσ (q3, k1,−k2).

(3.45)
For diagram(b̂), and the one with the ghost charge running in the opposite direction, we have
instead

(b̂) = ig3CAf
amn

∫
1

k2
1k

2
2k

2
3

(k1 + k3)α(k2 + k3)µ(k1 + k2)ν . (3.46)

For diagrams(ĉ), and the two other possible diagrams of the same type, we get (using the BFG
for the four-gluon vertex with two background legs)

(ĉ)= 4g3CAf
amn (gανq1µ − gαµq1ν)

∫

k

1

k2(k + q1)2

+ 4g3CAf
amn (gµνq2α − gαµq2ν)

∫

k

1

k2(k + q2)2

+ 4g3CAf
amn (gανq3µ − gµνq3α)

∫

k

1

k2(k + q3)2
. (3.47)

Finally, diagram(d̂) (and the other two similar diagrams) turns out to be zero at this order, due
to group-theoretical identities for the structure constants such as

f ead(fdbxfxce + fdcxfxbe) = 0. (3.48)

Adding the contributions found, notice that the sum(â) + (b̂) coincides with the term̂Nαµν of
Eq. (2.93), while(ĉ) coincides exactly withB̂αµν of Eq. (2.93). Thus the BFM result matches
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the expression of Eq.(2.92), obtained by the (intrinsic) PT.
The calculation of the one-loop four-gluon vertex in the BFMFeynman gauge has been car-

ried out in [41]; again it was found to coincide with the one constructed through the PT algo-
rithm.

3.5 The pinch technique/background Feynman gauge correspondence: conceptual issues

While it is a remarkable and extremely useful fact that the one-loop PT Green’s functions can
be calculated in the BFG, particular care is needed for the correct interpretation of this corre-
spondence.

First of all, the PT is a way of enforcing gauge independence (and several other physical
properties, such as unitarity and analyticity) on off-shell Green’s functions, whereas the BFM,
in a general gauge, is not. This is reflected in the fact that the BFMn-point functions are gauge-
invariant, in the sense that they satisfy (by construction)QED-like WIs, but arenot gauge-
independent,i.e., they depend explicitly onξQ. For example, the BFM gluon self-energy at one
loop is given by

Π̃
(ξQ)
αβ (q) = Π̃

(ξQ=1)
αβ (q) +

i

4(4π)2
g2CA(1 − ξQ)(7 + ξQ)q2P αβ(q). (3.49)

Had the BFMn-point functions beenξQ-independent, in addition to being gauge-invariant, there
would be no need for introducing, independently, the PT.

We emphasize that the objective of the PT construction is notto derive diagrammatically the
BFG, but rather to exploit the underlying BRST symmetry in order to expose a large number
of cancellations, and eventually define gauge-independentGreen’s functions satisfying Abelian
WIs. Thus, that the PT Green’s functions can also be calculated in the BFG always needs a very
extensive demonstration. Therefore, the correspondence must be verified at the end of the PT
construction and should not be assumed beforehand.

Moreover, theξQ-dependent BFM Green’s functions arenot physically equivalent. This is
best seen in theories with spontaneous symmetry breaking: the dependence of the BFM Green’s
functions onξQ gives rise tounphysicalthresholds inside these Green’s functions forξQ 6= 1, a
fact which limits their usefulness for resummation purposes (this point will be studied in detail
in subsection 5.4). Only the case of the BFG is free from unphysical poles; that is because then
(and only then) the BFM results collapse to the physical PT Green’s functions.

It is also important to realize that the PT construction goesthrough unaltered under circum-
stances where the BFM Feynman rules cannot even be applied. Specifically, if instead of an
S-matrix element one were to consider a different observable, such as a current correlation
function or a Wilson loop (as was in fact done by Cornwall in the original formulation [7], and
more recently in [61]), one could not start out using the background Feynman rules, becauseall
fields appearing inside the first non-trivial loop are quantum ones. Instead, by following the PT
rearrangement inside these physical amplitudes the uniquePT answer emerges again.

Perhaps the most compelling fact that demonstrates that thePT and the BFM are intrinsically
two completely disparate methods is that one can apply the PTwithin the BFM. Operationally,
this is easy to understand: away fromξQ = 1 even in the BFM there are longitudinal (pinch-
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1
ξQ

ΓP

= −

(b̂)ξQ (b)ξQ (b)P

ξQ

ξQ

Fig. 22. Relation between the one loop non-Abelian BFM vertex, and the standard non-Abelian graph in
theRξ gauge (with the substitutionξ → ξQ), for a general value of the gfp parameterξQ. The difference
is a pinching contribution.

ing momenta) that will initiate the pinching procedure. Thus, one starts out with theS-matrix
written with the BFM Feynman rules using a generalξQ, and applies the PT algorithm as in
any other gauge-fixing scheme; one will recover again the unique PT answer for all Green’s
functions involved (i.e., will get projected dynamically toξQ = 1).

3.5.1 Pinching within the background field method

Let us study in some detail how pinching works within the BFM.It is expeditious to organize
this calculation using as reference point the corresponding one-loop construction presented in
the the previous section, in the context of theRξ gauges. The reason is that a great deal of the
results needed here can be recovered directly from the analysis of the one-loop pinching in sub-
section 2.3, simply by settingξ → ξQ.

To begin with, the box diagrams in the BFM are identical to those of theRξ, shown in Fig. 3,
with the trivial replacementξ → ξQ. Therefore, their pinching proceeds exactly as described
in 2.3, and the results are precisely those found in subsection 2.3.1, Eqs (2.44) and (2.45), with
ξ → ξQ.

We then turn to the vertex graphs. The topologies are the sameas in theRξ gauges. The
Abelian graph, together with the external leg corrections are again identical, with the replace-
mentξ → ξQ. The non-Abelian graph of Fig. 4, however, needs particulartreatment, because
theξQ dependent BFM three-gluon vertex does not coincide with theconventional three-gluon
vertex (of theRξ gauge). In fact, as we can see from Eq. (3.43), the two vertices differ by an
amount proportional toΓP. So, we will use Eq. (3.43) inside the non-Abelian graph: thefirst
term converts the graph into its conventional counterpart (with ξ → ξQ for the gluon propa-
gators in the loop); the second term is purely pinching in nature, and we will track down its
effect [Note that one could equally well employ (3.43) directly, as was done in [60], but then
one could not use the results of theRξ so straightforwardly].

The termΓP
αµν(q, k1, k2), when multiplied by the two gluons inside the non-Abelian graph,

leads to the expression

1

ξQ
ΓPµν
α (q, k1, k2)∆

(ξQ)
µρ (k1)∆

(ξQ)
νσ (k2) =

k1ρ

k2
1

∆(ξQ)
ασ (k2) −

k2σ

k2
2

∆(ξQ)
αρ (k1), (3.50)

which, after pinching, generates propagator-like terms. In particular, the original non-Abelian
vertex graph,(b̂)ξQ, can be written as (Fig. 22)
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(b̂)ξQ = (b)ξQ + (b)P

= (b)ξQ + g2CAδ
ab
∫

k

[
− gαβ
k2(k + q)2

+ λQ
kαkβ

k4(k + q)2

]
[gγβtb], (3.51)

where(b)ξQ denotes the standard non-Abelian graph in theRξ gauge whenξ → ξQ. Then,
we can convert(b)ξQ directly to (b̂)ξQ=1, i.e., the PT answer, following exactly the procedure
described in subsections 2.3.2 and 2.4.1; in this way the total pinching contribution coming
from the BFM non-Abelian vertex is

(b̂)ξQ → Παβ
nav(q, λQ) + λQg

2CAq
2P βµ(q)

∫

k

kαkµ
k4(k + q)2

. (3.52)

After these observations, it is easy to determine the total propagator-like pinching contribution,
Π̃αβ

P (q, λQ), that should be added to the BFM self-energyΠ̃
ξQ
αβ(q) (following the universal PT

rules): one has

Π̃αβ
P (q, λQ)= Παβ

box(q, λQ) + 2
[
Παβ

nav(q, λQ) + Παβ
nav(q, λQ)

]
+ 4Παβ

qse(q, λQ)

+ 2λQg
2CAq

2P βµ(q)
∫

k

kαkµ
k4(k + q)2

=−Παβ
gse(q, λQ) + 2λQg

2CAq
2P βµ(q)

∫

k

kαkµ
k4(k + q)2

, (3.53)

where the last step is by virtue of Eq. (2.57). Thus,

Π̃αβ
P (q, λQ)=λQg

2CAq
2

{
−λQ

2
q2P αµ(q)P βν(q)

∫

k

kµkν
k4(k + q)4

+

[
q2P αβ(q)

∫

k

1

k2(k + q)4
+ 4P βµ(q)

∫

k

kαkµ
k4(k + q)2

− P αβ(q)
∫

k

1

k4

]}
.

(3.54)

Using the exact relation

P βµ(q)
∫

k

4kαkµ
k4(k + q)2

= P αβ(q)
∫

k

1

k2(k + q)2
, (3.55)

we finally find that

Π̃αβ
P (q, λQ) = −λQg2CAq

2

[
λQ
2
q2P αµ(q)P βν(q)

∫

k

kµkν
k4(k + q)4

+ P αβ(q)
∫

k

2q · k
k4(k + q)2

]
.

(3.56)
Note that the result is ultraviolet (UV) finite, as expected.After carrying out the integration, we
obtain

Π̃αβ
P (q, λQ) = − i

4(4π)2
g2CA(1 − ξQ)(7 + ξQ)q2P αβ(q), (3.57)

which, when added tõΠ(ξQ)
αβ (q) given in Eq. (3.49) will givẽΠ(ξQ=1)

αβ (q), as announced.
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3.6 Generalized pinch technique

As we have seen in detail, the PT is an algorithm that gives rise to the same unique Green’s
functions, regardless of the gauge-fixing scheme one startsout from. Thus, irrespective of the
starting point, the PT projects one dynamically to the BFG. Aquestion one may naturally ask
at this point is the following: could we devise a PT-like procedure that would project us to some
other value of the background gfpξQ? Or, going one step further, could one rearrange the Feyn-
man graphs is such a way as to be projected to the generalized background gauges introduced
in subsection 3.2.1? As was shown by Pilaftsis [42], such a construction is indeed possible;
the systematic algorithm that accomplishes this is known asthe generalizedpinch technique
(GPT). The GPT essentially modifies the starting point of thePT algorithm, namely Eq. (2.38),
distributing differently the longitudinal momenta between (the now modified)ΓF

αµν andΓP
αµν

type of terms.
As explained by the author of [42], the GPT represents a fundamental departure from the

primary aim of the PT, which is to construct gfp-independentoff-shell Green’s functions. The
GPT, instead, deals exclusively with gfp-dependent Green’s functions, with all the pathologies
that this dependence entails. Nonetheless, it is certainlyuseful to have a method that allows us to
move systematically from one gauge-fixing scheme to another, at the level of individual Green’s
functions. In addition to the possible applications mentioned in [42], we would like to empha-
size the usefulness of the GPT in truncating gauge-invariantly (i.e., maintaining transversality)
sets of SDEs written in gauges other than the Feynman gauge (see Section 8). This possibil-
ity becomes particularly relevant, for example, when one attempts to compare SDE predictions
with lattice simulations, carried out usually in the Landaugauge.

So, let us suppose, for starters, that we want to devise an algorithm that will take us from the
Rξ gluon self-energy, calculated atξ = ξ0, to the corresponding BFM self-energy, calculated at
the sameξQ = ξ0 (for example, say we want to go from the normal Yennie gauge,ξ = 3, to the
BFM Yennie gauge, now atξQ = 3).

It is clear that in this case the box diagrams in both schemes are automatically identical. So,
what one should focus on is the one-loop vertex. What we want to do is get from the conven-
tional vertex graph (with a normal (ξ-independent!) three-gluon vertex, and gluon propagators
written atξ = ξ0) to the corresponding BFM graph (with theξQ-dependent three-gluon vertex,
and gluon propagators written atξQ = ξ0), and hope that the remainder is a purely propagator-
like piece. Then, the solution is almost obvious: one must simply use Eq. (3.43), with the term
proportional toΓP moved to the lhs,i.e.,

Γαµν(q, k1, k2) = Γ̃(ξ0)
αµν(q, k1, k2) +

1

ξ0
ΓP
αµν(q, k1, k2). (3.58)

In fact, this particular decomposition predates the GPT by two decades; it appears for the first
time in Eq.(4.4) of [11], and has also been employed by Haeri in [91]. It was essentially mo-
tivated by the observation that the first term, corresponding to ΓF in the usual PT procedure,
satisfies precisely the correct generalization of the WI given in (2.40), namely

qαΓ(ξ0)
αµν(q, k1, k2) = i

{
∆

(0)−1
(ξ0) (k1) − ∆

(0)−1
(ξ0) (k2)

}
µν
, (3.59)
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with the inverse propagator given in Eq. (2.30). This property, in turn, guarantees that the result-
ing one-loop vertex satisfies the correct Abelian WI (see below). Evidently, Eq. (3.58) reduces
to the usual PT decomposition of Eq. (2.38) whenξ0 = 1.

Now, the first term on the rhs, when inserted into the originalnon-Abelian graph, gives ex-
actly the corresponding graph in the BFM (atξQ = ξ0); of course, the Abelian graphs and the
external leg corrections are identical. Thus, one eventually obtains the BFM one-loop gluon-
quark vertex,̃Γ(ξQ)

α (p1, p2), at ξQ = ξ0. As is known from the general discussion on the formal
properties of the BFM Green’s function, or as can be demonstrated explicitly (at one-loop) using
Eq. (3.59),̃Γ(ξ0)

α (p1, p2) satisfies a naive QED-like WI, namely

qαΓ̃(ξ0)
α (p1, p2) = g

{
Σ̂(ξ0)(p1) − Σ̂(ξ0)(p2)

}
, (3.60)

whereΣ̂(ξ0) is the GPT quark self-energy coinciding with the usual quarkself-energy when
evaluated in the gaugeξQ = ξ0.

The final step is to determine the (exclusively propagator-like) contributions of the remaining
term ΓP, coming from Eq. (3.58). In fact,ΓP will trigger first Eq. (3.50), and then pinch, as
usual. Once the propagator-like contributions have been alloted toΠ

(ξ0)
αβ , the conventionalRξ

one-loop self-energy atξ = ξ0, we will obtainΠ̃
(ξ0)
αβ , namely the BFM one-loop self-energy at

ξQ = ξ0, thus concluding the construction.
The method can be systematically generalized to more complicated situations [42]. For in-

stance, one may be projected from theRξ gauges to one of the generalized BFM gauges, such
as the BFM axial gauge; this would lead to a proliferation of pinching momenta. The resulting
construction is therefore more cumbersome, but remains conceptually rather straightforward.
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4 The Pinch Technique one-loop construction in the electroweak sector of the Standard
Model

In this section we give a general overview of how the PT construction is modified in a case of
a theory with spontaneous (tree-level) symmetry breaking (Higgs mechanism) [9,92,93], using
the electroweak sector of the SM as the reference theory.

4.1 The electroweak lagrangian

In order to define the relevant quantities and set up the notation used throughout this section,
we begin by writing the classical (gauge invariant) SM Lagrangian as

Lcl
SM = LYM + LH + LF. (4.1)

The gauge invariantSU(2)W ⊗ U(1)Y Yang-Mills partLYM consists of an isotripletW a
µ (with

a = 1, 2, 3) associated with the weak isospin generatorsT aw, and an isosingletW 4
µ with weak

hyperchargeYw associated to the group factorU(1)Y ; it reads

LYM =−1

4
F a
µνF

aµν

=−1

4

(
∂µW

a
µ − ∂νW

a
µ + gwf

abcW b
µW

c
ν

)2 − 1

4

(
∂µW

4
ν − ∂νW

4
µ

)2
. (4.2)

The Higgs-boson partLH involves a complexSU(2)W scalar doublet fieldΦ and its complex
(charge) conjugatẽΦ, given by

Φ =




φ+

1√
2
(H + iχ)


 , Φ̃ ≡ iσ2Φ∗ =




1√
2
(H − iχ)

−φ−


 . (4.3)

Hereσ denotes the Pauli matrices,H denotes the physical Higgs field, whileφ± andχ repre-
sents, respectively, the charged and neutral unphysical degrees of freedom (would-be Goldstone
bosons) . ThenLH takes the form

LH = (DµΦ)† (DµΦ) − V (Φ), (4.4)

with the covariant derivativeDµ defined as

Dµ = ∂µ − igwT
a
wW

a
µ + ig1

Yw
2
W 4
µ , (4.5)

and the Higgs potential as

V (Φ) =
λ

4

(
Φ†Φ

)2 − µ2
(
Φ†Φ

)
. (4.6)
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The SM leptons (we neglect the quark sector in what follows) are grouped into left-handed
doublets

ΨL
i = PLΨi =



νLi

ℓLi


 , (4.7)

which transform under the fundamental representation ofSU(2)W ⊗ U(1)Y , and right-handed
singlets (which comprise only the charged leptons)

ψRi = PRψi = ℓRi (4.8)

transforming with respect to the Abelian subgroupU(1)Y only. In the previous formulas,i is the
generation index, and the chirality projection operators are defined according to
PL,R = (1 ∓ γ5)/2. In this way the leptonic part ofLF reads

LF =
∑

i

(
iΨ

L
i γ

µDµΨ
L
i + iψ

R

i γ
µDµψ

R
i − Ψ

L
i G

ℓ
iψ

R
i Φ + h.c.

)
, (4.9)

with Gℓ
i the Yukawa coupling.

The Higgs fieldH will give mass to all the SM fields, by acquiring a vacuum expectation
value (vev)v; in particular, the masses of the gauge fields are generated after absorbing the
massless would-be Goldstone bosonsφ± andχ. The physical massive gauge-bosonsW±, Z
and the (massless) photonA are then obtained by diagonalizing the mass matrix; they aregiven
by

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
,



Zµ

Aµ


 =




cw sw

−sw cw






W 3
µ

W 4
µ


 , (4.10)

where
cw = cos θw =

gw√
g2
1 + g2

w

, sw = sin θw =
√

1 − c2w, (4.11)

with θw the weak mixing angle. The resulting gauge-boson masses are

MW =
1

2
gwv, MZ =

1

2

√
g2
1 + g2

wv, MA = 0, (4.12)

which for the weak mixing angle give the relation

cw =
MW

MZ

. (4.13)

Finally, identifying the photon-electron coupling constant with the usual electrical chargee, we
find

e =
g1gw√
g2
1 + g2

w

, g1 =
e

cw
, gw =

e

sw
. (4.14)

For quantizing the theory, a gauge fixing term must be added tothe classical LagrangianLcl
SM.

To avoid tree-level mixing between gauge and scalar fields, arenormalizableRξ gauge of the
’t Hooft type is most commonly chosen [17]. This latter gaugeis specified by introducing a
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different gauge parameter for each gauge-boson, and is defined through the linear gauge fixing
(no sum over the color indexa) functions

Fa = ∂µW a
µ − i

2
gwξa

[
v†iσ

a
ijφj − φ†

iσ
a
ijvj

]
,

F4 = ∂µW 4
µ +

i

2
g1ξ4

[
v†iφi − φ†

ivi
]
, (4.15)

with v1 = 0, v2 = v, and the gfp parameters given byξ1 = ξ2 = ξW , ξ3 = ξ4 = ξZ. In terms of
the mass eigenstates these translate into the gauge fixing functions

F± = ∂µW±
µ ∓ iξWMWφ

±,

FZ = ∂µZµ − ξZMZχ,

FA = ∂µAµ, (4.16)

finally yielding to theRξ gauge fixing Lagrangian

LGF = − 1

ξW
F+F− − 1

2ξZ

(
FZ

)2 − 1

2ξA

(
FA

)2
. (4.17)

The Faddeev-Popov ghost sector corresponding to the above gauge fixing Lagrangian reads

LFPG = −ū+sF+ − ū−sF− − ūZsFZ − ūAsFA, (4.18)

with s the BRST operator for the SM fields (for the full set of the BRSTtransformation seee.g.,
[94]). Notice that the ghost Lagrangian contains kinetic terms for the Faddeev-Popov fields,
allowing one to introduce them as dynamical fields of the theory.

In the case of the BFM gauge-fixing one replaces the Higgs vev by the background scalar
field

Φ̂ =




φ̂+

1√
2

(
v + Ĥ + iχ̂

)


 , (4.19)

and adds to the derivative term the backgroundSU(2)W triplet field Ŵ a
µ . Thus we get

Fa =
(
δac∂µ + gwf

abcŴ b
µ

)
W cµ − i

2
gwξ

W
Q

[
φ̂†
iσ

a
ijφj − φ†

iσ
a
ijφ̂j

]
,

F4 = ∂µW 4
µ +

i

2
g1ξ

4
Q

[
φ̂†
iφi − φ†

i φ̂j
]
. (4.20)

Notice that: (i) the background scalar doubletΦ̂ field has the usual non-vanishing vevv, while
that of the quantum fieldΦ is zero, and (ii ) the background field gauge invariance restricts
the number of quantum gauge parameters to two, one forSU(2)W and one forU(1)Y . Setting
ξWQ = ξ4

Q = ξQ, to avoid tree-level mixing between the photon and theZ boson, we get
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F± = ∂µW±
µ ± igw

(
swÂ

µ − cwẐ
µ
)
W±
µ ∓ igw (swA

µ − cwZ
µ) Ŵ±

µ

∓ i

2
gwξQ

[(
v + Ĥ ∓ iχ̂

)
φ± − (H ∓ iχ) φ̂±

]
,

FZ = ∂µZµ − igwcw
(
Ŵ+
µ W

−µ −W+
µ Ŵ

−µ
)
− i

2
gw
c2w − s2

w

2cw
ξQ
(
φ̂−φ+ − φ̂+φ−

)

+
1

2cw
gwξQ

(
χ̂H − Ĥχ− vχ

)
,

FA = ∂µAµ + igwsw
(
Ŵ+
µ W

−µ −W+
µ Ŵ

−µ
)

+ igwswξQ
(
φ̂−φ+ − φ̂+φ−

)
. (4.21)

After setting the gauge parameters all equal toξQ, the corresponding gauge-fixing and
Faddeev-Popov terms are still given by Eqs (4.17) and (4.18).

Summarizing, the complete electroweak sector of the SM Lagrangian in theRξ/BFM gauges
is given by

LSM = Lcl
SM + LF + LGF + LFPG. (4.22)

The full set of Feynman rules derived from this Lagrangian can be found in [95], and will be
used throughout this section.

4.2 Pinch technique with Higgs mechanism: general considerations

Before proceeding with the general discussion, we report some useful ingredients. In particular,
in theRξ gauges the tree-level gauge boson propagators– three massive gauge bosons (W± and
Z), and a massless photon (A)– are given by [notice thei factor difference with respect to our
definitions of Eq. (2.31) and (2.31) in the previous section]

∆µν
i (q)=

[
gµν − (1 − ξi)q

µqν

q2 − ξiM2
i

]
di(q

2)

di(q
2)=

−i
q2 −M2

i

(4.23)

wherei = W,Z,A, andM2
A = 0. In general, the gfpsξW , ξZ, andξA will be considered to be

different from one another. The inverse of the gauge boson propagators (4.23), to be denoted by
∆−1
i,µν , is given by

∆−1
i,µν(q) = i

[
(q2 −M2

i )gµν − qµqν +
1

ξi
qµqν

]
. (4.24)

There are three unphysical (would-be) Goldstone bosons associated with the three massive
gauge boson, to be denoted byφ± andχ. Their tree-level propagators areξ-dependent, and are
given by

Di(q) =
i

q2 − ξiM2
i

, (4.25)
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with i = W,Z (of course, there should be no Goldstone boson associated with the photon). In
addition, the ghost propagators are also given byDi(q), with i = W,Z,A (there is, however, a
massless ghost associated with the photon). Finally, the bare propagator of the Higgs-boson is
given by

∆H(q) =
i

q2 −M2
H

, (4.26)

For the massive gauge bosons (i = W,Z) the following identities, valid for any value ofξi,
will be used frequently:

∆µν
i (q) = Uµν

i (q) − qµqν

M2
i

Di(q), (4.27)

where

Uµν
i (q) =

(
gµν − qµqν

M2
i

)
di(q

2), (4.28)

is the corresponding propagator in the so-calledunitary gauge(ξi → ∞). In addition, in order to
rearrange various expressions appearing in the computations, we will often employ the algebraic
identity

1

k2 − ξiM2
i

=
1

k2 −M2
i

− (1 − ξi)M
2
i

(k2 −M2
i )(k

2 − ξiM2
i )
. (4.29)

Finally, when dealing with the case where the fermions are considered to be massive, we will
use extensively the identities [93]

igνα = i∆νµ
i (q)∆−1

i µα(q)

= qνqαDi(q) − ∆νµ
i (q)

[
(q2 −M2

i )gµα − qµqα
]
,

iqµ = q2Di(q)q
µ +M2

i qν∆
µν
i (q). (4.30)

Now, the application of the PT in the electroweak sector is significantly more involved than
in the QCD case; in addition to the general proliferation of graphs intrinsic to the electroweak
sector, there are three PT-specific reasons that complicatethe construction [9,93].

i. In addition to the longitudinal momenta coming from the propagators of the gauge bosons
(proportional toλi = 1 − ξi) and the PT decomposition of the vertices involving three gauge
bosons, a new source of pinching momenta appears, originating from graphs having an ex-
ternal (i.e., carrying the physical momentumq) would-be Goldstone boson. Specifically, in-
teraction vertices such asΓAαφ±φ∓, ΓZαφ±φ∓ , ΓW±

α φ∓χ, andΓW±
α φ∓H

also furnish pinching
momenta, when the gauge boson is inside the loop carrying (virtual) momentumk. Such a
vertex will then be decomposed as (see Fig. 23)

Γ(0)
α (q, k,−q − k) = ΓF

α(q, k,−q − k) + ΓP
α(q, k,−q − k), (4.31)

with

Γ(0)
α (q, k,−q − k) = (2q + k)α,

ΓF
α(q, k,−q − k) = 2qα,

ΓP
α(q, k,−q − k) = kα, (4.32)
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ΓP
µ

= +

Fig. 23. The PT decomposition of the generic elementary gauge-boson-scalar vertexΓBµϕϕ† .

which is the scalar case analogue of (2.38), (2.39) and (2.39).

ii . When the fermions involved (external or inside loops) are massive, the WI of Eq. (2.41)
receives additional contributions, which correspond precisely to the tree-level coupling of
the would-be Goldstone bosons to the fermions. To see this concretely, let us consider the
analogue of the fundamental pinching WI of Eq. (2.41)e.g., in the case where the incoming
boson is aW . Contracting withkµ theΓW+

µ ūd
vertex (the fermionsu andd are isodoublet

partners), we have (we omit a factorgw/
√

2)

/kPL = PRS
−1
d (k + p) − S−1

u (p)PL + [mdPR −muPL]. (4.33)

The first two terms will pinch and vanish on-shell, respectively, as they did in the case of
Eq. (2.41); the leftover term in the square bracket corresponds precisely to the couplingφ+ūd
(the case involving theΓW−

µ d̄u is identical). A completely analogous WI is obtained when the
incoming boson is aZ. Again, contraction with the vertexΓZf̄f furnishes a WI completely
analogous to (4.33), with the additional term proportionaltomfγ5, which corresponds to the
couplingΓχf̄f .

iii . After the various pinch contributions have been identified, particular care is needed when al-
lotting them among the PT quantities that one is constructing. So, unlike the QCD case where
all propagator-like pinch contributions were added to the only available self-energy,Παβ (in
order to construct̂Παβ), in the electroweak case such pinch contributions must, ingeneral,
be split among various propagators. Thus, in the case of the charged channel, they will be
shared, in general, between the self-energiesΠWαWβ

, ΠWαφ, ΠφWβ
, andΠφφ. This is equiva-

lent to saying that, when forming the inverse of theW self-energy, in general the longitudinal
parts may no longer be discarded from the four-fermion amplitude, since the external current
is not conserved, up to terms proportional to the fermion masses. As we will see in detail, the
correct way of treating the longitudinal pieces is providedby the identities (4.30). The neutral
channel is even more involved; one has to split the propagator-like pinch contributions among
the self-energiesΠZαZβ

, ΠAαAβ
, ΠZαAβ

, ΠAαZβ
, ΠZαχ, ΠχZβ

, Πχχ, andΠHH .

We emphasize that points (i), (ii ), and (iii ) above are tightly intertwined. The extra terms appear-
ing in the WI are precisely needed to cancel the gauge-dependence of the corresponding graph
where the gauge boson is replaced by its associated Goldstone boson. In addition, as we will
see later, when the external currents are not conserved, theappearance of the scalar–scalar or
scalar–gauge-boson self-energies is crucial for enforcing the gfp-independence of the physical
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amplitude.
We close this general discussion by briefly presenting an alternative approach to the PT,

known as the “current algebra formulation of the PT”, introduced in [92]. In this approach the
interaction of gauge bosons with external fermions is expressed in terms of current correlation
functions,i.e., matrix elements of Fourier transforms of time-ordered products of current op-
erators. This is particularly economical because these amplitudes automatically include several
closely related Feynman diagrams. When one of the current operators is contracted with the
appropriate four-momentum, a WI is triggered. The pinch part is then identified with the con-
tributions involving the equal-time commutators in the WIs, and therefore involve amplitudes
where the number of current operators has been reduced by oneor more. A basic ingredient in
this formulation are the following equal-time commutators

δ(x0 − y0)[J
0
W (x), JµZ(y)]= c2wJ

µ
W (x)δ4(x− y),

δ(x0 − y0)[J
0
W (x), Jµ†W (y)]=−Jµ3 (x)δ4(x− y),

δ(x0 − y0)[J
0
W (x), JµA(y)]=JµW (x)δ4(x− y),

δ(x0 − y0)[J
0
V (x), Jµ

V ′ (y)]= 0. (4.34)

whereJµ3 ≡ 2(JµZ + s2
wJ

µ
A) andV, V

′ ∈ {A,Z}. To demonstrate the method with an example,
consider the one-loop vertexΓµ, where the gauge particles in the loop areWs, and the incoming
(|ψi〉) and outgoing (|ψf 〉) fermions are massless. It can be written as follows (withξ = 1):

Γµ =
∫

k
Γµαβ(q, k,−k − q)

∫
d4x eik·x

〈
ψf
∣∣∣T [Jα†W (x)JβW (0)]

∣∣∣ψi
〉
. (4.35)

When an appropriate momentum, saykα, from the vertex is pushed into the integral over
dx, it gets transformed into a covariant derivatived/dxα acting on the time ordered product〈
ψf
∣∣∣T [Jα†W (x)JβW (0)]

∣∣∣ψi
〉
. Then, after using current conservation and differentiating theθ-

function terms, implicit in the definition of theT ∗ product, we end up with the lhs of Eq. (4.34).
So, the contribution of each such term is proportional to thematrix element of a single current
operator, namely〈ψf |Jµ3 |ψi〉; this is precisely the pinch part.

4.3 The case of massless fermions

We will now study the application of the PT in the case where all fermions involved are mass-
less. This simplification facilitates the PT procedure considerably, because no scalar particles
can be attached to the massless fermions. As a result (i) the scalars can appear onlyinsidethe
self-energy graphs, where they obviously cannot pinch; (ii ) Eq.(4.33) is practically reduced to
its QCD equivalent; (iii ) there are no self-energies with incoming scalars (i.e., noΠWαφ, ΠZαχ,
Πφφ, etc).

Let us now focus, for simplicity, on the the processf1(p1)f̄1(p2) → f2(r1)f̄2(r2), mediated
at tree-level by aZ-boson and a photon. At one-loop order, the box and vertex graphs furnish
propagator-like contributions, every time the WI of Eq.(4.33) is triggered by a pinching mo-
mentum. Specifically, the term in Eq. (4.33) proportional tothe inverse of the internal fermion
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Fig. 24. The basic pinching and one of the unphysical vertex produced in the processℓℓ̄ → νν with ℓ a
lepton.

propagator gives rise to a propagator-like term, whose coupling to the external fermionsf and
f̄ (with f = f1, f2) is proportional to an effective vertexCWαff̄ given by (see also Fig. 24)

CWαff̄ = −i
(
gw
2

)
γαPL. (4.36)

Note that this effective vertex is unphysical, in the sense that it does not correspond to any of
the elementary vertices appearing in the electroweak Lagrangian. However, it can be written as
a linear combination of the twophysicaltree-level verticesΓAαff̄ andΓZαff̄ given by

ΓAαff̄ =−igwswQfγα,

ΓZαff̄ =−i
(
gw
cw

)
γα[(s

2
wQf − T fz )PL + s2

wQfPR], (4.37)

as follows:

CWαff̄ =

(
sw

2T fz

)
ΓAαff̄ −

(
cw

2T fz

)
ΓZαff̄ . (4.38)

In the above formulas,Qf is the electric charge of the fermionf , andT fz its z-component
of the weak isospin. The identity established in Eq. (4.38) above, allows one to combine the
propagator-like parts with the conventional self-energy graphs by writing1 = di(q

2)d−1
i (q2).

4.3.1 Gauge fixing parameter cancellations

Next, we will describe how the cancellation of the gfp proceeds at one-loop level for the simple
case wheref1 is a lepton, to be denoted byℓ, andf2 is a neutrino, denoted byν. Of course,
based on general field-theoretic principles, one knows in advance that the entire amplitude will
be gfp-independent. What is important to recognize, however, is that this cancellation goes
through without having to carry out any of the integrations over virtual loop momenta, exactly
as happened in the case of QCD. From the practical point of view, the extensive gauge cancel-
lations that are implemented through the PT finally amount tothe statement that one may start
out in the Feynman gauge,i.e., set directlyξW = 1 andξZ = 1, with no loss of generality.

Demonstrating the cancellation ofξZ is rather easy. First of all, it is straightforward to ver-
ify that the box diagrams containing twoZ-bosons (direct and crossed, see Fig. 25) form a
ξZ-independent subset. The way this works is completely analogous to the QED case, where
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Fig. 25. The subset of diagrams of the process that depends onthe gfpξZ .

the two boxes contain photons: theξZ-dependence of the direct box cancels exactly against the
gfp-dependence of the crossed.

The only other graphs with aξZ dependence are the self-energy graphs shown in Fig. 25; it
is easy to show by employing Eq. (4.29) that their sum is independent ofξZ, separately forZZ
andAZ. In fact, from the PT point of view it is clear why this must be so: at one-loop there are
no vertex graphs containingZ, χ, orH, that could possibly furnish pinch contributions which
might mix with (and cancel against) the self-energy graphs.Therefore, theξZ dependent con-
tributions are isolated in the self-energy, and must cancelcompletely, since theS-matrix is gfp
independent.

Proving the cancellation ofξW is significantly more involved. In what follows we setλW ≡
1 − ξW , and suppress a factorg2

w

∫
k. We also define

I3 ≡
[
(k2 − ξWM

2
W )(k2 −M2

W )[(k + q)2 −M2
W ]
]−1

,

I4 ≡
[
(k2 − ξWM

2
W )[(k + q)2 − ξWM

2
W ](k2 −M2

W )[(k + q)2 −M2
W ]
]−1

, (4.39)

Note that terms proportional toqµ or qν may be dropped directly, because the external currents
are conserved (massless fermions).

To get a feel of how the PT organizes the various gauge-dependent terms, consider the box
graphs shown in Fig. 26. We have:

(a) = (a)ξW =1 + VWαℓℓ̄

(
λ2
W I4kαkβ − 2λW I3gαβ

)
VW βνν̄ , (4.40)

where the verticesV are defined according to
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Fig. 26. The box and vertex diagrams that depends on the gfpξW .

VWαff̄ = v̄fCWαff̄uf ,

VVαff̄ = v̄fΓVαff̄uf , V = A, Z. (4.41)

The first term on the rhs of (4.40) is the “pure” box,i.e., the part that does not contain any
propagator-like structures, whereas the second term is thepropagator-like contribution that must
be combined with the conventional propagator graphs of Fig.27. To accomplish this, we employ
Eq. (4.38), in order to write the unphysical verticesVWℓℓ̄ andVWνν̄ in terms of the physical ones,
VAℓℓ̄, VZℓℓ̄, andVZνν̄ . Specifically, using that in our caseT ℓz = −1

2
andT νz = 1

2
, we have

Cα
ℓℓ̄ =−swΓAαℓℓ̄ + cwΓZαℓℓ̄,

Cα
νν̄ =−cwΓZανν̄ . (4.42)

The equations above determine, unambiguously, the parts that must be appended toΠZαZβ
and

ΠAαZβ
self-energies. To make this separation manifest, one must take the extra step of writing

dZ(q2)d−1
Z (q2) = dA(q2)d−1

A (q2) = 1, in order to force the external tree-level propagators to
appear explicitly [see Fig. 28]. Thus, from the propagator-like part of the box we finally obtain
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Fig. 27. The self-energy diagrams that depends on the gfpξW .

(a)AαZβ
= swcwq

2(q2 −M2
Z)
(
λ2
W I4kαkβ − 2λW I3gαβ

)
,

(a)ZαZβ
=−c2w(q2 −M2

Z)2
(
λ2
W I4kαkβ − 2λW I3gαβ

)
. (4.43)

A similar procedure must be followed for the vertex graphs shown in Fig. 26. In doing so,
recall that there is a relative minus sign between theZW+W− andAW+W− vertices, namely
ΓAαWµWν

(q, k1, k2) = igwswΓαµν(q, k1, k2), whileΓZαWµWν
(q, k1, k2) = −igwcwΓαµν(q, k1, k2).

Then, all propagator-like terms identified from the boxes and the vertex-graphs must be added
to the conventional self-energy diagrams, given in Fig. 27.At this point, it would be a matter of
straightforward algebra to verify that allξW -dependent terms cancel. Of course, this cancellation
proceeds completely independently for theZZ andAZ contributions. To make the cancellation
explicit (i.e., identify exactly the parts of the conventional self-energy diagrams that will cancel
against those coming from the boxes and the vertex-graphs) we can repeat what we did in the
case of QCD. Thus, employing the WIs of Eqs (2.37) triggered by the action of the longitudinal
parts of the internalW propagators on the three-boson vertices we can rearrange diagram(j),
exposing a large part of the underlying gfp-cancellation. For the rest of the diagrams in Fig. 27
one must instead use the identity of Eq. (4.29). Note that theinclusion of the tadpole graphs,
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Fig. 28. The procedure needed for splitting the propagator-like pieces coming from theWW box among
the differentAZ andZZ self-energies.

namely(r), (s), and(t), is crucial for the final cancellation of the gfp-dependent contributions
that do not depend onq2.

4.3.2 Final rearrangement and connection with the background Feynman gauge

Exactly as happened in the QCD case, the gfp-cancellations described in the previous subsection
amount effectively to choosing the Feynman gauge,ξW = 1 (the self-energy diagrams of Fig. 25
are also inξZ = 1 and we will suppress them in what follows). The next step is toconsider the
action of the remaining pinching momenta stemming from the three-gauge-boson vertices inside
the non-Abelian diagrams(o), (p), and(q), exposed after employing the PT decomposition of
Eqs (2.38) and (2.39). The propagator-like contributions that will emerge from the action ofΓP

must be then reassigned to the conventional self-energy graphs, thus giving rise to the one-loop
PT self-energies, in this casêΠZαZβ

andΠ̂AαZβ
. The part of the vertex graph containing theΓF,

together with the Abelian graph which in the Feynman gauge remains unchanged, constitute the
one-loop PT verticesAνν̄, Zνν̄, andZℓℓ̄, to be denoted bŷΓAνν̄ , Γ̂Zνν̄ , andΓ̂Zℓℓ̄, respectively.

Let us see this in detail. Setting

IWW (q) =
∫

k

1

(k2 −M2
W )[(k + q)2 −M2

W ]
, (4.44)

we obtain from the non-Abelian vertex graphs (now in the Feynman gauge):

79



(b)ξW =1 = (b)F − 2VAαℓℓ̄ dA(q2)
[
swcw(q2 −M2

Z)IWW (q)gαβ
]
dZ(q2)VZβνν̄ ,

(c)ξW =1 = (c)F + 2VZαℓℓ̄ dZ(q2)
[
c2w(q2 −M2

Z)IWW (q)gαβ
]
dZ(q2)VZβνν̄ ,

(d)ξW =1 = (d)F − 2VAαℓℓ̄ dA(q2)
[
swcwq

2IWWgαβ
]
dZ(q2)VZβνν̄ ,

+ 2VZαℓℓ̄ dZ(q2)
[
c2w(q2 −M2

Z)IWW (q)gαβ
]
dZ(q2)VZβνν̄ . (4.45)

The one-loop PT verticeŝΓAνν̄ , Γ̂Zνν̄ , andΓ̂Zℓℓ̄, are given by

(e) + (b)F =VAαℓℓ̄ dA(q2) Γ̂Aανν̄ ,

(f) + (c)F =VZαℓℓ̄ dZ(q2) Γ̂Zανν̄ ,

(h) + (d)F = Γ̂Zαℓℓ̄ dZ(q2)VZανν̄ , (4.46)

whereas the PT self-energiesΠ̂ZαZβ
andΠ̂ZαZβ

are simply the sum of all propagator-like con-
tributions, namely

Π̂ZαZβ
(q)=Π

(ξW =1)
ZαZβ

(q) + 4g2
wc

2
w(q2 −M2

Z)gαβIWW (q),

Π̂AαZβ
(q)=Π

(ξW =1)
AαZβ

(q) − 2g2
wswcw(2q2 −M2

Z)gαβIWW (q). (4.47)

It is now relatively straightforward to prove that theξW -independent PT self-energies con-
structed in Eqs (4.47) coincide with their BFM counterpartscomputed atξQW = 1, i.e.,

Π̂ZαZβ
(q)= Π̃

(ξQ
W

=1)
ZαZβ

(q),

Π̂AαZβ
(q)= Π̃

(ξQ
W

=1)
AαZβ

(q). (4.48)

To see this explicitly, we will start from the rhs of (4.47) and reorganize, appropriately, the
individual Feynman diagrams contributing to theZZ andAZ self-energies. Specifically, we
will cast all diagrams in Fig. 27, computed atξW = 1, into the form of the corresponding
diagrams in the BFM atξQW = 1, plus the leftover contributions.

Let us then start with diagrams(j)ZαZβ
and(j)AαZβ

, and employ Eq. (2.71), together with
Eqs (2.72), to write them in the form

(j)ZαZβ
=(ĵ)ZαZβ

− 2g2
wc

2
w

[
2q2IWW (q)gαβ +

∫

k

3kαkβ − k2gαβ
(k2 −M2

W )[(k + q)2 −M2
W ]

]
,

(j)AαZβ
=(ĵ)AαZβ

+ 2g2
wswcw

[
2q2IWW (q)gαβ +

∫

k

3kαkβ − k2gαβ
(k2 −M2

W )[(k + q)2 −M2
W ]

]
.

(4.49)

Notice that the terms(ĵ)ZαZβ
and (ĵ)AαZβ

on the rhs come from theΓFΓF part, while the
remainders come from the expressions given in Eqs (2.72), when the terms proportional to
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qα andqβ are set equal to zero (due to current conservation).
For the remaining diagrams, simple algebra yields:

(k)ZαZβ
+ (l)ZαZβ

= (k̂)ZαZβ
+ (l̂)ZαZβ

+ 2g2
wc

2
w(2M2

Z −M2
W )IWW (q)gαβ,

(m)ZαZβ
+ (n)ZαZβ

= (m̂ZαZβ
+ (n̂)ZαZβ

+ 6g2
wc

2
w

∫

k

kαkβ
(k2 −M2

W )[(k + q)2 −M2
W ]
,

(p)ZαZβ
= (p̂)ZαZβ

+ (û)ZαZβ
− 2g2

wc
2
w

∫

k

gαβ
k2 −M2

W

, (4.50)

and

(k)AαZβ
+ (l)AαZβ

=−2g2
wswcw(M2

Z −M2
W )IWW (q)gαβ,

(m)AαZβ
+ (n)AαZβ

= (d̂)AαZβ
+ (ê)AαZβ

− 6g2
wswcw

∫

k

kαkβ
(k2 −M2

W )[(k + q)2 −M2
W ]
,

(p)AαZβ
= (p̂)AαZβ

+ (û)AαZβ
+ 2g2

wswcw

∫

k

gαβ
k2 −M2

W

. (4.51)

Then, adding by parts all the terms above, we obtain

Π
(ξW =1)
ZαZβ

=Π̃
(ξQ

W
=1)

ZαZβ
− 4g2

wc
2
w(q2 −M2

Z)gαβ IWW (q),

Π
(ξW =1)
AαZβ

=Π̃
(ξQ

W
=1)

AαZβ
+ 2g2

wswcw(2q2 −M2
Z)gαβ IWW (q). (4.52)

Substituting Eqs (4.52) into the rhs of Eqs (4.47) we obtain immediately Eqs (4.48), as an-
nounced. In particular, notice that: (i) in the BFM there is nôAW±φ∓ interaction, and therefore
graphs(k) and(l) are absent iñΠAαZβ

, and (ii ) diagram (̂u), corresponding to the characteristic
BFM four-field couplingV̂ V̂ uu, has been generated dynamically from the simple rearrange-
ment of terms.

With a small extra effort we can now obtain the closed expressions for theΠ̂ZαZβ
andΠ̂AαZβ

in terms of the Passarino-Veltman functions [96]. We will only focus on the parts of the self-
energies originating from Feynman graphs containingW propagators, together with the associ-
ated Goldstone boson and ghosts. The contributions coming form the rest of the diagrams (e.g.,
containing loops with fermions, orZ- andH-bosons) are common to the conventional and PT
self-energies,i.e., Π

(f̄ f)
AZ = Π̂

(f̄ f)
AZ andΠ

(f̄ f)
ZZ = Π̂

(f̄ f)
ZZ , and we do not report them here. Therefore

the only Passarino-Veltman function that will appear isB0(q
2,M2

W ,M
2
W ).

To that end, one may use the closed expressions forΠ
(ξW =1)
ZαZβ

andΠ
(ξW =1)
AαZβ

given in [97], and
add to them the pinch terms given in Eqs (4.47). Equivalently, one may employ the correspon-

dence established in Eqs (4.48), and calculate directly thegraphs contributing tõΠ
(ξQ

W
=1)

AαZβ
and

Π̃
(ξQ

W
=1)

AαZβ
using the Feynman rules of [95]. Opting for the former procedure, and concentrating

on the part proportional togαβ (which we factor out), from [97] we have that
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Π
(WW )
AZ (q2)

∣∣∣
ξW =1

=
α

4π

1

3swcw

{[(
9c2w +

1

2

)
q2 + (12c2w + 4)M2

W

]
B0(q

2,M2
W ,M

2
W )

− (12c2w − 2)M2
WB0(0,M

2
W ,M

2
W ) +

1

3
q2
}
,

Π
(WW )
ZZ (q2)

∣∣∣
ξW =1

=− α

4π

1

6s2
wc

2
w

{[(
18c4w + 2c2w − 1

2

)
q2 + (24c4w + 16c2w − 10)M2

W

]
×

×B0(q
2,M2

W ,M
2
W ) − (24c4w − 8c2w + 2)M2

WB0(0,M
2
W ,M

2
W )

+
1

3
(4c2w − 1)q2

}
. (4.53)

Adding to the above expressions the pinch terms given in Eqs (4.47), and using the identity
iB0(q

2,M2
W ,M

2
W ) = 16π2 IWW (q), we finally obtain

Π̂
(WW )
AZ (q2) =

α

4π

1

3swcw

{[(
21c2w +

1

2

)
q2 + (12c2w − 2)M2

W

]
B0(q

2,M2
W ,M

2
W )

− (12c2w − 2)M2
WB0(0,M

2
W ,M

2
W ) +

1

3
q2
}
,

Π̂
(WW )
ZZ (q2) =− α

4π

1

6s2
wc

2
w

{[(
42c4w + 2c2w − 1

2

)
q2 + (24c4w − 8c2w − 10)M2

W

]
×

×B0(q
2,M2

W ,M
2
W ) − (24c4w − 8c2w + 2)M2

WB0(0,M
2
W ,M

2
W )

+
1

3
(4c2w − 1) q2

}
. (4.54)

It is easy to establish from the closed expressions reportedin [97] that Π(ff̄)
AZ (0) = 0 and

Π̂
(ff̄)
AZ (0) = 0. On the other hand, from Eqs (4.53) we see thatΠ

(WW )
AZ (0) 6= 0, whileΠ̂

(WW )
AZ (0) =

0. Evidently, as a result of the PT rearrangement, bosonic andfermionic radiative corrections
are treated on the same footing. As we will see in the next section, this last property is of great
importance for phenomenological applications, such as theself-consistent generalization of the
universal part of theρ-parameter, the unambiguous definition of the physical charge radius of
the neutrinos, and the gauge-invariant formalism for treating resonant transition amplitudes.

4.3.3 A very special case: the unitary gauge

In the previous subsections we have applied the PT in the framework of the linear renormal-
izableRξ gauges, and we have obtainedξ-independent one-loop self-energies for the gauge
bosons. What would happen, however, if one were to workdirectly in the unitary gauge? The
unitary gauge is reached after gauging away the would-be Goldstone bosons, through an ap-
propriate field redefinition (which, at the same time, corresponds to a gauge transformation)
φ(x) → φ′(x) = φ(x) exp (−iζ(x)/v), whereζ(x) denotes, generically, the Goldstone fields.
Note that the unitary gauge is defined completely independently of theRξ gauges; of course,
operationally, it is identical to theξW , ξZ → ∞ limit of the latter. In particular, in the unitary
gauge theW andZ propagators are given by (4.28), wherei = W,Z.

Given that the contributions of unphysical scalars and ghosts cancel in this gauge, the unitar-
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ity of the theory becomesmanifest[and hence its name]. In the language employed in subsection
2.5, “manifest unitarity” means that, in the unitary gauge,the OT (a direct consequence of uni-
tarity) holds in its strong version. The most immediate way to realize this is by noticing that the
unitary gauge propagators, (4.28), and the expression for the sum over the polarization vectors
of a massive spin one vector boson [see (4.60) in the following subsection] are practically iden-
tical.

Since the early days of spontaneously broken non-Abelian gauge theories, the unitary gauge
has been known to give rise to non-renormalizable Green’s functions, in the sense that their di-
vergent parts cannot be removed by the usual mass and field-renormalization counter-terms. It
is easy to deduce from the tree-level expressions of the gauge-boson propagators why this hap-
pens: the longitudinal contribution in (4.28) is divided bya squared mass instead of a squared
momentum, i.e.qµqν/M2

i instead ofqµqν/q2, and therefore,U i
µν(q) ∼ 1 asq → ∞. As a con-

sequence, whenU i
µν(q) is inserted inside quantum loops (andq is the virtual momentum that is

being integrated over), it gives rise to highly divergent integrals. If dimensional regularization is
applied, this hard short-distance behavior manifests itself in the occurrence of divergences pro-
portional to high powers ofq2. Thus, at one loop, the divergent part of theW orZ self-energies
proportional togµν has the general form

Πdiv
WW (q2) =

1

ǫ
(c1q

6 + c2q
4 + c3q

2 + c4) , (4.55)

where the coefficientsci, of appropriate dimensionality, depend on the gauge coupling and com-
binations ofM2

W andM2
Z . The important point is that, whereas the last two terms on the rhs

of (4.55) can be absorbed into mass and wave-function renormalization as usual, the first two
cannotbe absorbed into a redefinition of the parameters in the original Lagrangian, because
they are proportional toq6 andq4.

As was shown in a series of papers [98–100], when one puts together the individual Green’s
functions to formS-matrix elements, an extensive cancellation of all non-renormalizable di-
vergent terms takes place, and the resultingS-matrix element can be rendered finite through
the usual mass and gauge coupling renormalization. Actually, in retrospect, this cancellation
is nothing but another manifestation of the PT (of course, the papers mentioned above predate
the PT). Even though this situation may be considered acceptable from the practical point of
view, in the sense thatS-matrix elements may be still computed consistently, the inability to de-
fine renormalizable Green’s functions has always been a theoretical shortcoming of the unitary
gauge.

The actual demonstration of how to construct renormalizable Green’s functions at one-loop
starting from the unitary gauge was given in [101]. The methodology is identical to that used in
the context of theRξ gauges: the propagator-like parts of vertices and boxes areidentified and
subsequently redistributed among the various gauge-bosonself-energies. Evidently, the pinch
contributions contain, themselves, divergent terms proportional toq6 andq4, which, when added
to the analogous contributions contained in the conventional propagators, cancel exactly. After
this cancellation, the remaining terms reorganize themselves in such a way as give riseexactly
to the unique PT gauge boson self-energies,viz.Eqs (4.53).
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4.3.4 Pinch technique absorptive construction in the electroweak sector

We will now study exactly how the PT subamplitudes of the electroweak theory satisfy the
OT [72,73]. The upshot of this section is that the conclusions drawn from the corresponding
QCD analysis, in particular thes-t cancellations and the validity of the strong OT version for
the PT Green’s functions, persist in the case of tree-level symmetry breaking. The richness of
the electroweak spectrum and the complexity of the corresponding Feynman rules make the
actual demonstrations slightly more cumbersome, but the underlying philosophy of the con-
struction is very similar to that of QCD.

We consider the forward processf(p1)f̄(p2) → f(p1)f̄(p2) and study both sides of the OT
to lowest order. The PT rearrangement of the one-loop amplitude of this process proceeds as
described in the previous section, giving rise to one-loop PT Green’s functions, such as the PT
self-energieŝΠZαZβ

(q), Π̂AαZβ
(q), Π̂AαAβ

(q), the PT verticeŝΓAανν̄ , Γ̂Zαff̄ , Γ̂Zανν̄ , and the PT
boxes. From them the corresponding subamplitudes may be straightforwardly constructed; their
imaginary parts will determine the propagator-, vertex-, and box-like parts of the rhs of the OT,
to be denoted by(rhs)i, i = 1, 2, 3 as usual.

Let us now focus on the lhs of the OT. Evidently, there are several intermediate states|j〉
that may appear; specifically, depending on the available center-of-mass energy, all fermionic
pairs (quarks and leptons)|fif̄i〉 (with i the flavor index), together with the bosonic channels
|W+W−〉 and|ZH〉, may enter in principle. Notice, however, that the energy thresholds for the
appearance of all these intermediate states are different,being given bysth = (m1 +m2)

2; for
instance, the intermediate state|W+W−〉 will appear on the rhs of the OT whens ≥ 4M2

W ,
while the|ZH〉 channel opens up whens ≥ (MZ +MH)2. This clear kinematic separation of
the various possible channels indicates that the pertinentPT cancellations (i.e., thes-t cancel-
lation) take placeindependentlywithin each intermediate state; indeed, there is no way thatthe
|W+W−〉 and|ZH〉 can talk to each other (unlessMH = 2MW −MZ , which is experimentally
excluded). Therefore, on the rhs of the OT we will keep only the contribution of theS-matrix
element〈f f̄ |T |W+W−〉, i.e.,

ℑm〈f f̄ |T |f f̄〉WW =
1

2

∫

PSWW

〈f f̄ |T |W+W−〉〈W+W−|T |f f̄〉∗. (4.56)

Notice that, unlike Eq. (2.127), now there is no additional statistical factor, since the two (pos-
itively and negatively charged)W ’s are distinguishable particles. The two-body phase space
integral is given by Eq. (2.111) withm1 = m2 = MW . As in the QCD case, in what follows we
setT = 〈f f̄ |T |f f̄〉WW , T = 〈f f̄ |T |W+W−〉, andM = |T |2.

Let us now focus on the rhs of (4.56), considering the processf(p1)f̄(p2)→W+(k1)W
−(k2),

with q = p1 + p2 = k1 + k2, ands = q2 = (p1 + p2)
2 = (k1 + k2)

2 > 4M2
W . In this case, we

have thatT µν is given by twos-channel graphs, one mediated by a photon and the other by a
Z-boson, to be denoted byT µν

A andT µν
Z , respectively, and onet-channel graph, to be denoted

by T µν
t , i.e., (see also Fig. 29)

T µν = T µν
s,A + T µν

s,Z + T µν
t , (4.57)

where
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Fig. 29. The two s-channel and onet-channel graphs contributing to the tree-level process
f(p1)f̄(p2) →W+(k1)W

−(k2).

T µν
s,A =−VAαff̄dA(q2)gwswΓµνα (q, k1, k2),

T µν
s,Z =VZαff̄dZ(q2)gwcwΓµνα (q, k1, k2),

T µν
t =−g

2
w

2
v̄f (p2)γ

µPL S
(0)
f ′ (p1 − k1)γ

νPLuf(p1). (4.58)

Note that we have already used current conservation to eliminate the (gfp-dependent) longitu-
dinal parts of the tree-level photon andZ-boson propagators. Then,

M = [Ts,A + Ts,Z + Tt]µν Lµµ′(k1)Lνν′(k2)
[
T ∗
s,A + T ∗

s,Z + T ∗
t

]µ′ν′
, (4.59)

where now the polarization tensorLµν(k) corresponds to a massive gauge boson (and thus with
threepolarization states),i.e.,

Lµν(k) =
3∑

λ=1

ελµ(k)ε
λ
ν(k) = −gµν +

kµkν
M2

W

. (4.60)

On shell (k2 = M2
W ) we have thatkµLµν(k) = 0. Therefore, as in the QCD case, when the

two non-Abelian vertices are decomposed as in Eq. (2.38), theΓP parts vanish, and only theΓF

parts contribute in thes-channel graphs; we denote them byT F,µν
s,A andT F,µν

s,Z , respectively.
Let us then study what happens whenTµν is contracted by a longitudinal momentum,kµ1

or kν2 , coming from the polarization tensors. The WIs of Eqs (2.37)will operate at the two
s-channel graphs, whereas that of Eq. (4.33) at thet-channel graph (Fig. 30), yielding

k1µT F,µν
s,A =−swVAνff̄ + SνA,

k1µT F,µν
s,Z = cwVZνff̄ + SνZ ,

k1µT µν
t =VW νff̄ , (4.61)

with

SνA =−VAαff̄dA(q2)gwsw(k1 − k2)αk
ν
2 ,

SνZ =VZαff̄dZ(q2)gwcw
[
(k1 − k2)αk

ν
2 −M2

Zgαν
]
. (4.62)
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Fig. 30. The fundamentals-t cancellation in the SM case.

Adding by parts both sides of Eqs (4.61) we see that a major cancellation takes place: the pieces
containing the verticesVAνff̄ andVZνff̄ cancel againstVW νff̄ by virtue of Eq. (4.42), and one
is left on the rhs with purelys-channel contribution, namely

k1µT µν = SνA + SνZ . (4.63)

An exactly analogous cancellation takes place when one contracts withkν2 . Of course, Eq. (4.63)
is nothing more than the manifestation of thes-t cancellation already encountered in QCD, in a
slightly more involved context.

It is important to recognize [20] that the cancellation described above goes through, even
when the initial fermions are right-handedly polarized, regardless of the fact that, in that par-
ticular case, there is not-channel graph, since the fermions do not couple to theW (Fig. 31).
What happens, then, is that the elementary vertices given inEqs (4.37), together with the corre-
spondingVAαff̄ andVZαff̄ are appropriately modified. Specifically,

ΓAαfRf̄R
=−igwswQfγα,

ΓZαfRf̄R
=−igw

cw
s2
wQfγα, (4.64)

and
VZαfRf̄R

=
sw
cw

VAαfRf̄R
. (4.65)

Clearly, in that case, from Eqs (4.42) it follows immediately that

VWαfRf̄R
= 0, (4.66)

so that Eq. (4.63) is still satisfied. Let us now simplify the algebra, by choosing the initial
fermions to be neutrinos,i.e., let us consider the processνν̄ →W+W−. This choice eliminates
all terms mediated by a photon, and one has

M =
[
T F
s,Z + Tt

]µν
Lµµ′(k1)Lνν′(k2)

[
T F∗
s,Z + T ∗

t

]µ′ν′
, (4.67)
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Fig. 31. The fundamental cancellation in the case of right-handed fermions; due to the absence of the
t-channel graph, it is implemented through the two remainings-channel graphs.

Then, Eqs (4.61) simplify to

k1µ[T F
s,Z + Tt]µν =SνZ ,

k2ν [T F
s,Z + Tt]µν = S̄µZ . (4.68)

with

SνZ =VZανν̄dZ(q2) gwcw
[
(k1 − k2)αk

ν
2 −M2

Zg
ν
α

]
,

S̄µZ =VZανν̄dZ(q2) gwcw
[
(k1 − k2)αk

µ
1 +M2

Zg
µ
α

]
, (4.69)

In addition,

k2νSνZ = k1µS̄µZ
=VZανν̄dZ(q2)gwcw

[
M2

W +
1

2
M2

Z

]
(k1 − k2)α. (4.70)

Now we will isolate from (4.67) the part that is purelys-channel (or, equivalently, purely
propagator-like), to be denoted bŷM1. It is composed by the sum of the following terms

M̂1 = T F
Z · T F∗

Z − SZ · S∗
Z

M2
W

− S̄Z · S̄∗
Z

M2
W

+
(k2 · SZ) · (k2 · S∗

Z)

M4
W

. (4.71)

Using (2.146), (4.69), (4.69) and (4.70), we find

M̂1 = VZανν̄dZ(q2)KαβdZ(q2)VZβνν̄ (4.72)
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with

Kαβ = −g
2
w

c2w

[(
8q2c4w − 2M2

W

)
gαβ +

(
3c4w − c2w +

1

4

)
(k1 − k2)α(k1 − k2)β

]
. (4.73)

Thus, the propagator-like part of the rhs of the OT becomes

(rhs)1 =
1

2

∫

PSWW

M̂1. (4.74)

Now, from Eq. (2.150), we have thatλ(q2,M2
W ,M

2
W ) = q2(q2 − 4M2

W ), and therefore

∫

PSWW

(k1 − k2)α(k1 − k2)β = −1

3
(q2 − 4M2

W )gαβ

∫

PSWW

+ · · · , (4.75)

where the ellipses stand for terms proportional toqαqβ. Then, using the elementary result

8π2
∫

PSWW

= ℑmB0(q
2,M2

W ,M
2
W ), (4.76)

Eq. (4.74) becomes
(rhs)1 = VZανν̄dZ(q2)KdZ(q2)VZανν̄ , (4.77)

with

K = − α

4π

1

6s2
wc

2
w

[(
42c4w + 2c2w − 1

2

)
q2 + (24c4w − 8c2w − 10)M2

W

]
ℑmB0(q

2,M2
W ,M

2
W ).

(4.78)
Let us now compare Eq. (4.74) with the propagator-like part of the lhs of the OT, given by

(lhs)1 = VZανν̄dZ(q2)
[
ℑmΠ̂

(WW )
ZZ (q)

]
dZ(q2)VZανν̄ . (4.79)

The equality between Eq. (4.79) and (4.77) requires that

ℑmΠ̂
(WW )
ZZ (q) =− α

4π

1

6s2
wc

2
w

[(
42c4w + 2c2w − 1

2

)
q2 + (24c4w − 8c2w − 10)M2

W

]
×

×ℑmB0(q
2,M2

W ,M
2
W ). (4.80)

Taking the imaginary part of̂Π(WW )
ZZ given in Eq. (4.54) we see that Eq. (4.80) is indeed fulfilled.

At this point one could go one step further, and employ a twicesubtracted dispersion relation,
in order to reconstruct from (4.80) the real part of theΠ̂

(WW )
ZZ (q). The end result of this procedure

will coincide with the corresponding expression obtained from Eq. (4.54) after renormalization.
(for a detailed derivation, see [73]).

Finally, let us return to the non-renormalizability of the unitary gauges, now seen from the
absorptive point of view. As mentioned in the previous subsection, in the unitary gauge the
strong version of the OT is satisfied; to make contact with this section, what this means is that the
OT is satisfied diagram-by-diagram,withouthaving to resort explicitly to thes-t cancellation.
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For example, the imaginary part of the conventional self-energyΠ
(WW )
ZZ (s) in the unitary gauge

is
ℑmΠ

(WW )
ZZ (s) ∼ (s−MZ)2

∫

PSWW

T µν
Z Lµµ′(k1)Lνν′(k2)T ∗µ′ν′

Z . (4.81)

What is the price one pays fornot implementing thes − t cancellation? Simply, the con-
ventional subamplitudes, such as the one given above, contain terms that grow ass2 or as
s3 [see, e.g., [102,73]]; indeed, thes-t cancellation eliminates precisely terms of this type.
Consequently, if one were to substitute theℑmΠ

(WW )
ZZ (s) obtained from the rhs of (4.81)

into a twice subtracted dispersion relation –the maximum number of subtractions allowed by
renormalizability– one would encounter UV divergent real parts proportional toq4 or asq6. Of
course, these are precisely the non-renormalizable terms encountered in (4.55), now obtained
not from a direct one-loop calculation but rather from the combined use of unitarity and analyt-
icity (and with a hard UV cutoff instead of1/ǫ).

4.3.5 Background field method away fromξQ = 1: physical versus unphysical thresholds

As we have seen in the previous section, from the fact that theBFM Green’s functions satisfy
the same QED-like WIs for every value of the quantum gfpξQ one shouldnotconclude that the
PT Green’s functions, reproduced from the BFM atξQ = 1, are simply one among an infinity of
physically equivalent choices, parametrized byξQ. This interpretation is not correct: the BFM
Green’s functions obtained away fromξQ = 1 arenot physically equivalent to the privileged
case ofξQ = 1.

In addition to the reasons outlined in Section 3, when dealing with the SM the following
crucial observation clarifies the above point beyond any doubt: for ξQ 6= 1 the imaginary parts
of the BFM electroweak self-energies include terms withunphysical thresholds[73,72]. For
example, for the one-loop contributions of theW and its associated would-be Goldstone boson
and ghost tõΠ(WW )

ZZ (ξQ, s) one obtains

ℑmΠ̃
(WW )
ZZ (s, ξQ) = ℑmΠ̂

(WW )
ZZ (s) +

α

24s2
wc

2
w

(
s−M2

Z

sM4
Z

)
[W1(s) +W2(s, ξQ) +W3(s, ξQ)] ,

(4.82)
with

W1(s)= f1(s)θ(s− 4M2
W ),

W2(s, ξQ) = f2(s, ξQ)λ1/2(s, ξQM
2
W , ξQM

2
W )θ(s− 4ξQM

2
W ),

W3(s, ξQ) = f3(s, ξQ)λ1/2(s,M2
W , ξQM

2
W )θ(s−M2

W (1 +
√
ξQ)2), (4.83)

and

f1(s)=
(
8M2

W + s
) (
M2

Z + s
)

+ 4M2
W

(
4M2

W + 3M2
Z + 2s

)
,

f2(s, ξQ) = f1(s) − 4 (ξQ − 1)M2
W

(
4M2

W +M2
Z + s

)
,

f3(s, ξQ) =−2
[
8M2

W + s− 2 (ξQ − 1)M2
W + (ξQ − 1)2M4

W s
−1
] (
M2

Z + s
)
. (4.84)
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Fig. 32. The processeνe → eνe at tree level in the SM.

These gauge-dependent unphysical thresholds (see the arguments of theθ functions) are arti-
facts of the BFM gauge fixing procedure, and exactly cancel inthe calculation of any physical
process against unphysical contributions from the imaginary parts of the one-loop vertices and
boxes. After these cancellations have been implemented oneis left just with the contribution
proportional to the tree level cross section for the on-shell physical processνν̄ → W+W−,
given in Eq. (4.80), with thresholds only atq2 = 4M2

W . In fact, by obtaining in the previ-
ous subsection the fullW -related contribution to the PT self-energy, namelyΠ̂ZZ

WW (s), directly
from the on-shell physical processνν̄ → W+W−, we have shown explicitly that, in the BFM
at ξQ = 1, the thresholds that occur atq2 = 4M2

W are duesolelyto thephysicalW+W− pair.
We therefore conclude that the particular valueξQ = 1 in the BFM is distinguished on phys-

ical grounds from all other values ofξQ. In the next section we will further elaborate on this
point, by exposing various pathologies resulting in from the Dyson summation of self-energies
with unphysical thresholds.

4.4 PT with massive fermions: an explicit example

In this section, we discuss the technical subtleties encountered in the application of the PT
when the fermions are massive. Consider the elastic processe−(r1)νe(p1) → e−(p2)νe(r2), and
concentrate on the charged channel which, at tree-level, isshown in Fig. 32. The momentum
transferq is defined asq = p1 − p2 = r2 − r1. We will consider the electrons to be massive,
with a massme, while the neutrinos will be treated for simplicity as if they were massless.
The tree-level propagators of theW and the corresponding Goldstone boson are those given in
Eq. (4.23) and Eq. (4.25) (fori = W ); the index “W ” will be suppressed in what follows. The
elementary vertices describing the coupling of the chargedbosons with the external fermions
areΓα ≡ ΓW+

α ν̄ee
= ΓW−

α ēνe
, Γ+ ≡ Γφ+ν̄ee, andΓ− ≡ Γφ−ēνe

, and are given by

Γα =
igw√

2
γαPL , Γ+(−) = −igw√

2

me

MW
PR(L) . (4.85)

We also define the corresponding vertices sandwiched between the external spinors,i.e.,

Γα1 = ūνe
(r2) Γαue(r1), Γα2 = ūe(p2) Γα uνe

(p1),

Γ1 = ūνe
(r2) Γ+ ue(r1), Γ2 = ūe(p2) Γ− uνe

(p1). (4.86)
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Note that bothΓα1 andΓα2 contain aPL, whereasΓ1 andΓ2 aPR and aPL, respectively. The sub-
scripts(1, 2) are related to the electric charge carried by theW± entering into the corresponding
tree-level vertices by setting+ → 1, − → 2. The following elementary identities

qαΓ
α
1,2 =MWΓ1,2,

iΓ1,2 =MW q
β∆βα(q)Γ

α
1,2 + q2D(q)Γ1,2, (4.87)

valid for everyξW (which will be indicated simply asξ in what follows), will be frequently used
[in deriving (4.87) we have used Eq. (4.30)].

We will start by considering theS-matrix at tree-level (Fig. 32), to be denoted byT0, given
by

T0 = Γα1 ∆αβ(q) Γβ2 + Γ1D(q) Γ2 . (4.88)

Of course,T0 must beξ-independent, and it is easy to demonstrate that this is indeed so.
There are three, algebraically equivalent but physically rather distinct, ways of writing theξ-
independent expression forT0.

i. Using Eqs (4.29) and (4.87) we can see immediately that all dependence onξ cancels, and
one can castT0 in terms of∆ξ=1

βα (q) andDξ=1(q) as follows

T0 = Γα1∆ξ=1
αβ (q)Γβ2 + Γ1D

ξ=1(q)Γ2. (4.89)

The physical amplitude is the sum a massive gauge boson and a massive (would-be) Gold-
stone boson. The fact that the Goldstone boson is massive is,of course, a consequence of the
gauge-fixing used, namely theRξ-gauges.

ii . Using Eqs (4.27) and (4.87), it is elementary to verify thatT0 can also be written as

T0 = Γα1Uαβ(q)Γ
β
2 . (4.90)

Thus, even though one works in theRξ gauge, making no assumption on the value ofξ (in
particular, not taking the limitξ → ∞) one is ledeffectivelyto the unitary gauge, with no
(unphysical) would-be Golstone bosons present.

iii . The third way of writingT0 is slightly more subtle, as far as its physical interpretation is
concerned. It is well-known (but often underemphasized) that the so-called “spontaneous
symmetry breaking” is not actually “breaking” the local gauge symmetry, but simply real-
izing it in a different way. Specifically, the WIs or STIs of the theory, which encompass the
gauge symmetry at the level of Green’s functions, maintain their form, at the expense of intro-
ducing massless longitudinal poles. The role of these massless poles is obscured by the fact
that, through the process of gauge fixing, they can be changedto poles of arbitrary mass (as
explained above). These massless poles do not appear in theS-matrix, to the extent that they
are absorbed by gauge bosons. However, simple algebra can recast the tree-level amplitude
into a form where the presence of the massless poles becomes manifest. Using the algebraic
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Fig. 33. The subset of box and vertex diagrams containing aW gauge boson and a Higgs fieldH.

identity
1

M2
=

1

q2
+
q2 −M2

q2M2
, (4.91)

we can writeUαβ(q) as

Uαβ(q) = Pαβ(q)dW (q2) +
qαqβ
M2

W

i

q2
, (4.92)

where we have used the transverse projectorPαβ(q) defined in Eq. (2.26). Then Eq. (4.90)
can be rewritten as

T0 = Γα1Pαβ(q)dW (q2)Γβ2 + Γ1
i

q2
Γ2. (4.93)

As we will see later on, thanks to the PT, the ways of writing theS-matrix given in Eqs (4.90)
and (4.93) go through at one-loop, and eventually at all orders.

4.4.1 Gauge fixing parameter cancellations

Let us now turn to the one-loop PT construction. The main motivation is to construct via the
PT the gfp-independent self-energiesΠWαWβ

, ΠWαφ, ΠφWβ
, andΠφφ, to be denoted bŷΠαβ ,

Θ̂α, Θ̂β, andΩ̂, respectively, as well as gfp-independentWf1f̄2 andφf1f̄2 vertices, which we
denote bŷΓα andΓ̂±, respectively.

We will show the PT construction for a characteristic subsetof diagrams contributing to the
amplitudee−(r1)νe(p1) → e−(p2)νe(r2). Specifically, we will consider the subset of all Feyn-
man graphs that contain, inside the loop, aW - and aH-propagator. The relevant vertex and box
diagrams are shown in Fig. 33 and the self-energy diagrams inFig. 34 . It is relatively easy to
understand why this subset must be gfp-independent by itself: The dependence on the Higgs
mass forces the gfp-cancellation to take place within this subset (as we will see, up to seagull-
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Fig. 34. The self-energy diagrams containing aWH orφH loop. The various SM self-energies are given
by the diagrams’ combinations(g)+ (h) = Π

(WH)
αβ , (i)+ (j) = Θ

(WH)
α , (k)+ (l) = Θ

(WH)
β and, finally,

(m) + (n) = Ω(WH).

like terms). From the absorptive point of view, the graphs weconsider display a threshold (i.e.,
they develop imaginary parts if cut) atq2 ≥ (MW + MH)2; therefore they should form a gfp-
independent subset, since they cannot communicate with therest (this absorptive argument does
not apply to seagulls and tadpoles, since they do not have imaginary parts, but the PT construc-
tion takes care of them as well). In what follows, we will use the sub- or super-script “WH” for
the aforementioned subset; for example,Π̂

(WH)
αβ denotes the subset of graphs contributing to the

WW self-energy that contain, in their loop, aW orφ propagator and a Higgs-boson propagator
(see Fig. 34).

We will introduce the following ingredients appearing in the intermediate steps of our demon-
stration:

i. The coupling of the Higgs boson to the electronsΓH ≡ ΓHēe is given by

ΓH = −igw
2

me

MW
, (4.94)

and we have that

ΓHPR(L) =
1√
2
Γ+(−) . (4.95)

ii. We set
AξWH(q, k) =

[
(k2 −M2

W )(k2 − ξM2
W )

(
(k + q)2 −M2

H

)]−1
, (4.96)
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and define the propagator-like structures

FWH(q)= (1 − ξ)g2
w

∫

k
AξWH(q, k),

JαWH(q)= (1 − ξ)g2
w

∫

k
kαAξWH(q, k),

Kαβ
WH(q)= (1 − ξ)g2

w

∫

k
kαkβAξWH(q, k), (4.97)

the vertex-like structures

LWH(q, p1) = (1 − ξ)gw

∫

k

[
ΓHS

(0)
e (p1 + k)Γ−

]
AξWH(q, k),

L̄WH(q, r2) = (1 − ξ)gw

∫

k

[
Γ+S

(0)
e (r2 + k)ΓH

]
AξWH(q, k),

Nα
WH(q, p1) = (1 − ξ)gw

∫

k

[
ΓHS

(0)
e (p1 + k)Γ−

]
kαAξWH(q, k), (4.98)

and, finally, the box-like structure

RWH(q, p1, r2) = (1 − ξ) gw

∫

k

[
ΓHS

(0)
e (p1 + k)Γ−

] [
Γ+S

(0)
e (r2 + k)ΓH

]
A

(ξ)
WH(q, k).

(4.99)

Then, we start with the vertex diagrams(a) and (c) in Fig. 33 and we let theξ-dependent
longitudinal parts appearing in the tree-levelW trigger the WI of Eq. (4.33). Now that the
electrons are considered to be massive, the term on the rhs inthe square brackets of Eq. (4.33)
is turned on; as a result, and for the first time until now, the outcome of the pinching action isnot
only propagator-like contributions: in addition, we obtain a vertex-like contribution, precisely
due to the additional term in Eq. (4.33) proportional to the electron mass. As we will see, this
vertex-like term will mix with the graphs(b) and(d), and will combine to form aξ-independent
vertex-like structure.

Specifically, we have (suppressing a common factorΓβ1∆βα(q) in front)

(a)α = (a)αξ=1 +
{

1

2
MWJ

α
WH(q)

}
(iΓ2) − iM2

WN
α
WH(q, p1),

(b)α = (b)αξ=1 +
i

2
qαM2

WLWH(q, p1) + iM2
WN

α
WH(q, p1), (4.100)

We next turn to graphs(c) and(d). As far as diagram(c) is concerned, one of the longitudinal
momenta coming from theW -propagator will pinch as before; however, in addition, we will use
the identity(2q + k) · k = [(k + q)2 −M2

H ] +M2
H − q2, triggered when the second longitudi-

nal momentum is contracted with theΓφWH vertex. The first term in this identity will cancel the
MH -dependent part appearing inAξWH(q, k), thus generating a term that is independent ofMH .
These terms cancel against other similar terms, coming fromtheMH-independent Feynman
graphs that are not considered, and will be discarded. Therefore, keeping onlyMH -dependent
terms, we have [suppressing a common factorΓ1D(q) in front]
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(c)= (c)ξ=1 +
{
−1

4
(q2 −M2

H)FWH(q)
}

(iΓ2) +
i

2
(q2 −M2

H)MWLWH(q, p1),

(d)= (d)ξ=1 +
i

2
M2

HMWLWH(q, p1). (4.101)

Finally, following a similar methodology for the boxes(e) and(f), we have

(e)= (e)ξ=1 + (iΓ1)
{

1

4
FWH(q)

}
(iΓ2) − RWH(q, p1, r2)

+
1

2

[
Γ1MWLWH(q, p1) + Γ2MW L̄WH(q, r2)

]
,

(f)= (f)ξ=1 +RWH(q, p1, r2). (4.102)

It is now straightforward to verify that:

i. the vertex-likeNα
WH in (a)α and(b)α, and the box-likeRWH in (e) and(f) cancel directly;

ii. the vertex-like terms proportional toLWH in (b)α, (c), (d) and(e) cancel (after restoring the
suppressed factors in front) by evoking the identity of Eq (4.87);

iii . the term proportional tōLWH will cancel, in exactly the same way described above, against
the contributions coming from the mirror vertex graphs, notshown.

Thus one is left only withξ-dependent propagator-like pieces, contained in the curlybrackets
in Eqs (4.100), (4.101) and (4.102), together with the contributions coming from the mirror
vertex graphs; the latter are identical to those already identified, up to trivial adjustments. All
aforementioned terms will cancel exactly against theξ-dependent parts of the conventional self-
energy graphs, shown in Fig. 34.

Let us now turn to this remaining cancellation. Separating out the contributions atξ = 1 from
the rest, we have for the self-energy graphs of Fig. 34

(g)αβ + (h)αβ = (g)αβξ=1 + (h)αβξ=1

− 1

4
qαqβM2

WFWH(q) − 1

2
M2

W

[
qαJβWH(q) + qβJαWH(q)

]
,

(i)α + (j)α = (i)αξ=1 + (j)αξ=1 −
1

2
q2MWJ

α
WH(q) − 1

4
qαMWM

2
HFWH(q),

(k)β + (l)β = (k)βξ=1 + (l)βξ=1 −
1

2
q2MWJ

β
WH(q) − 1

4
qβMWM

2
HFWH(q),

(m) + (n) = (m)ξ=1 + (n)ξ=1 +
1

4
q2(q2 − 2M2

H)FWH(q). (4.103)

Using again the identity of Eq. (4.87) one may separate, unambiguously, theξ-dependent prop-
agator like pieces from Eqs (4.100), (4.101) and (4.102) intoWW ,Wφ,φW , andφφ structures,
and add them to the corresponding contributions in the equation above. It is then straightforward
to verify that a complete cancellation of allξ-dependent terms takes place; in fact, the terms pro-
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portional toFWH andJαWH cancel separately. Even though we have restricted ourselves to the
subset of Feynman diagrams that depend explicitly onMH , the methodology presented goes
through, unchanged, also for the remaining graphs. We emphasize again that, as in all previous
examples, the conceptual and technical advantage of this demonstration lies precisely in the fact
that all cancellations take place systematically, by identifying the appropriate kinematic struc-
tures, with no need to carry out any integrations.

Notice, finally, the following important point: all aforementioned cancellations take placein-
sidethe loops,withouttouching theξ-dependence of the (external) bare propagators attached to
the external fermions; indeed, all we have used, in additionto pinching, is the algebraic identity
of Eq (4.87), which is valid for everyξ. As we will see shortly, after the completion of the PT
procedure at one-loop, the requirement that this residualξ-dependence also cancels imposes
Abelian-like WIs on the PT Green’s functions.

4.4.2 Final rearrangement and comparison with the background Feynman gauge

Let us now turn again to the subset of graphs considered above. As we have demonstrated, in-
side the loops all propagators have been dynamically reduced to the Feynman gauge,ξ = 1. At
this point the genuine box contributions have been isolated; thus, theWH-part of the one-loop
PT box is given simply by(e)ξ=1 + (f)ξ=1.

To get the corresponding part of the one-loop PT vertices andself-energies, an additional step
is required: we must extract from the vertex graphs in the Feynman gauge possible propagator-
like pieces generated by the momentum-dependent vertices.For the case at hand, the only graph
that can furnish such a contribution is (c); the propagator-like piece is generated when the longi-
tudinal momentumkµ, coming from the elementary vertexΓφWH ∝ (2q + k)µ in (c) is allowed
to pinch, according to our earlier general discussion [subsection 4.2 point (i)] (Of course, had
we considered the entire set of vertex diagrams then the three-boson verticesΓZWW andΓAWW

should also undergo the standard PT splitting).
Then, separate(c)ξ=1 into the purely vertex-like part, denoted by(c)v

ξ=1, and the propagator-
like part,(c)se

ξ=1,
(c)ξ=1 = (c)v

ξ=1 + (c)se
ξ=1 (4.104)

with

(c)v
ξ=1 =

gw
2

∫

k

[
ΓHS

(0)
e (p1 + k)Γµ(2q

µ)
]
dW (k2)∆H(k + q)

+
gw
2
MW

∫

k

[
ΓHS

(0)
e (p1 + k)Γ−

]
dW (k2)∆H(k + q)

(c)se
ξ=1 =

g2
w

4
IWH(q) (iΓ2) . (4.105)

and

IWH(q) =
∫

k
dW (k2)∆H(k + q) =

∫

k

1

(k2 −M2
W )[(k + q)2 −M2

H ]
. (4.106)

Then, theWH-parts of the one-loopΓW−
µ ēνe

andΓφ−ēνe
PT vertices, to be denoted bŷΓ(WH)

α

andΓ̂
(WH)
− , respectively, are given schematically by
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Γ̂(WH)
α = (a)ξ=1

α + (b)ξ=1
α ,

Γ̂
(WH)
− = (c)v

ξ=1 + (d)ξ=1. (4.107)

Finally, to obtain the corresponding parts of the one-loop PT self-energies, to be denoted by
Π̂

(WH)
αβ , Θ̂(WH)

α , Θ̂
(WH)
β , and Ω̂(WH), we must use Eq. (4.87) in order to distribute among the

different self-energies the contributions coming from(c)se
ξ=1 and its mirror graph. Evidently,

these terms will not contribute anything tôΠ(WH)
αβ , and thereforêΠ(WH)

αβ will be identical to the

conventional one-loopΠ(WH)
αβ (of course, the nonWH-parts will differ). Then, we will have

Π̂
(WH)
αβ (q)= (g)ξ=1

αβ + (h)ξ=1
αβ ,

Θ̂(WH)
α (q)= (i)ξ=1

α + (j)ξ=1
α +

g2
w

4
MW IWH(q)qα,

Θ̂
(WH)
β (q)= (k)ξ=1

β + (l)ξ=1
β +

g2
w

4
MW IWH(q)qβ,

Ω̂(WH)(q)= (m)ξ=1 + (n)ξ=1 +
g2
w

2
q2IWH(q). (4.108)

It is a relatively straightforward exercise to verify that the parts of the PT Green’s functions
constructed abovecoincidewith the corresponding quantities calculated in the BFG; ofcourse,
this coincidence holds for the entire Green’s functions, and it is not restricted to theWH-parts
analyzed here.

In the case of̂Γ(WH)
α given in (4.107), the coincidence with the BFG is obvious; the external

W ’s may be converted intôW ’s for free, since the corresponding (lowest-order) vertices are
identical in theRξ and the BFM gauges. The case ofΓ̂

(WH)
− is more interesting; the coincidence

with the BFG takes place because of the extraction of the propagator-like piece(c)se
ξ=1 from

(c)ξ=1, as described in Eq. (4.104) and (4.105). Specifically, the purely vertex-like piece(c)v
ξ=1

in Eq. (4.105) consists of two parts, the first one corresponds to graph(c) computed in the BFG
[indeed, the factor(2qµ) is proportional to the bare BFM vertexΓ

φ̂WH
], while the second part,

when added to(d)ξ=1, furnishes the graph(d) computed in the BFG, given that the BFM vertex
Γ
φ̂φH

and theRξ vertexΓφφH are related byΓ
φ̂φH

= ΓφφH + igwξQMW/2.

Turning to the self-energies of Eq. (4.108),Π̂
(WH)
αβ coincides with the corresponding BFM

quantity, for the same reason as in the case of theΓ̂(WH)
α vertex: the elementary vertices appear-

ing in (g) and(h) coincide in both gauge-fixing schemes,Rξ and BFM. As forΘ̂(WH)
α , the term

(g2
w/4)MW IWH(q)qβ accounts precisely for the difference betweenΓ

φ̂φH
andΓφφH . Finally, the

case of̂Ω(WH) is slightly more involved: to demonstrate the equality one must write the(2q+k)2

appearing in(m) in the form

(2q + k)2 = 2q2 + 2[(k + q)2 −M2
H ] − (k2 −M2

W ) + (2M2
H −M2

W ) . (4.109)

Then for the terms on the rhs we have that the first is added to(g2
w/2)q2IWH and furnishes graph

(m) in the BFG; the second combines with otherMH-independent parts (note that in the BFM
we have also the couplingΓ

φ̂+φ̂−u±ū∓
∝ −ξQ/2; the third cancels with the(g2

w/2)q2IWH ; the
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Fig. 35. The (one-loop)ξ-independent PT self-energies (gray blobs); the tree-level propagators are still
ξ-dependent. By requiring that any gfp-dependence coming from these tree-level propagators must can-
cel, imposes a set of non-trivial WIs on the one-loop PT self-energies (and vertices).

third converts the seagull graph containing a Higgs-boson propagator (not shown) to the same
graph in the BFM, given thatΓ

φ̂+φ̂−HH
= Γφ+φ−HH − ig2

wξQ/2; finally, the last term converts
(n) into its BFM counterpart.

4.4.3 Deriving Ward identities from the gfp-independence of theS-matrix.

In the previous subsections we showed explicitly how the application of the PT gives rise
to gfp-independent self energies, vertices, and boxes. As already emphasized there, the gfp-
cancellation proceeded without reference to the tree-level propagators connecting the one-loop
graphs to the external fermions. Any gfp-dependence comingfrom these tree-level propagators
[see Eqs (4.23) and (4.25)] must also cancel, in order to obtain fully gfp-independent subampli-
tudesT̂1 andT̂2 (T̂3 being box-like does not have external propagators and is already fully gfp-
independent). It turns out that, quite remarkably, the requirement of this final gfp-cancellation
imposes a set of non-trivial WIs on the one-loop PT self-energies and vertices [9,93]. These WIs
are identical to those obtained some years later within the BFM [95], but are derived through a
procedure that has no apparent connection with the BFM; all that one evokes really is the full
gfp-independence of theS-matrix. Actually, thisS-matrix derivation could be considered as an
all-order proof of the above WIs, assuming that the various Green’s functions [the gray blobs in
Fig. 35)] can be made gfp-independent to all orders.

Let us see how the WIs for the self-energies are derived from the gfp-independence of̂T1.
Neglecting tadpole contributions from the external fermions, we have that̂T1 is given by

T̂1 = Γµ1∆µα(q)Π̂
αβ(q)∆βν(q)Γ

ν
2 + Γ1D(q) Ω̂(q)D(q)Γ2

+ Γµ1∆µα(q)Θ̂
α(q)D(q)Γ2 + Γ1D(q)Θ̂β(q)∆βν(q)Γ

ν
2, (4.110)

or, after using Eq. (4.27),
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T̂1 = Γµ1

[
Uµα(q) −

qµqα
M2

W

D(q)

]
Π̂αβ(q)

[
Uβν(q) −

qβqν
M2

W

D(q)

]
Γν2

+ Γµ1

[
Uµα(q) −

qµqα
M2

W

D(q)

]
Θ̂α(q)D(q)Γ2

+ Γ1D(q) Θ̂
β
(q)

[
Uβν(q) −

qβqν
M2

W

D(q)

]
Γν2 + Γ1D(q)Ω̂(q)D(q)Γ2. (4.111)

This way of writingT̂1 has the advantage of isolating all residualξ-dependence inside the prop-
agatorsD(q). Demanding that̂T1 should beξ-independent, we obtain as a condition for the
cancellation of the terms quadratic inD(q)

qβqαΠ̂αβ(q) − 2MW q
αΘ̂α(q) +M2

W Ω̂(q) = 0, (4.112)

while for the cancellation of the linear terms we must have

qαΠ̂αβ(q) −MW Θ̂β(q) = 0. (4.113)

From Eqs (4.112) and (4.113) it follows that

qβqαΠ̂αβ(q) = M2
W Ω̂(q), (4.114)

and
qαΘ̂α(q) = MW Ω̂(q). (4.115)

Eqs (4.112) and (4.115) are the announced WIs. Applying an identical procedure for̂T2 one
obtains the corresponding WI relating the one-loop PT verticesΓ̂α andΓ̂±.

Finally, the gfp-independent̂T1 is given by

T̂1 = Γµ1Uµα(q) Π̂αβ(q)Uβν(q)Γ
ν
2. (4.116)

Notice that Eq. (4.116) is the one-loop generalization of Eq. (4.90).
We can now use the WIs derived above in order to reformulate theS-matrix in a very partic-

ular way; specifically, we will show that the higher-order physical amplitude given above may
be cast in the tree-level form of Eq. (4.93). Such a reformulation gives rise to a new transverse
gfp-independentW self-energyΠ̂t

αβ with a gfp-independent longitudinal part, exactly as in
Eq. (4.93). To be sure, the cost of such a reformulation is theappearance ofmasslessGoldstone
poles in our expressions. However, since both the old and thenew quantities originate from the
sameuniqueS-matrix, all poles introduced by this reformulation will cancel against each other,
because theS-matrix contains no massless poles to begin with.

To see how this works out, writêΘα in the form

Θ̂α(q) = qαΘ̂(q) ; (4.117)

from (4.115) follows that

Θ̂(q) =
MW

q2
Ω̂(q) (4.118)
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Then, we can definêΠt
αβ(q) in terms ofΠ̂αβ(q) andΘ̂(q) as follows:

Π̂t
αβ(q) = Π̂αβ(q) −

qαqβ
q2

MW Θ̂(q) (4.119)

EvidentlyΠ̂t
αβ(q) is transverse,e.g., qαΠ̂t

αβ(q) = qβΠ̂t
αβ(q) = 0. Moreover, using Eqs (4.113)

and (4.118),
Π̂t
αβ(q) = Pαµ(q)Π̂

µν(q)Pβν(q). (4.120)

We may now re-expresŝT1 of (4.116) in terms of̂Πt
αβ andΩ̂; using (4.92) and (4.87) we have

T̂1 = Γα1dW (q2)Π̂t
αβ(q)dW (q2)Γβ2 + Γ1

i

q2
Ω̂(q)

i

q2
Γ2. (4.121)

Eq. (4.121) is the generalization of Eq. (4.93):T̂1 is the sum of two self-energies, one cor-
responding to atransverse massive vector fieldand one to amassless Goldstone boson. It is
interesting to notice that the above rearrangements have removed the mixing termŝΘα andΘ̂β

betweenW andφ, thus leading to the generalization of the well known tree-level property of
theRξ gauges to higher orders. It is important to emphasize again that the massless poles in the
above expressions would not have appeared had we not insisted on the transversality of theW
self-energy (or the vertex); notice in particular that theyarenot related to any particular gauge
choice, such as the Landau gauge (ξ = 0). A completely analogous procedure may be followed
for the one-loop (and beyond) vertex [9], yielding the corresponding Abelian-like WI; as in
the case of te self-energy studied above, the WI of the vertexis realized by means of massless
Goldstone bosons.

The rearrangement of theS-matrix carried out above, in additional to the conceptual trans-
parency that it provides, brings about considerable calculational simplifications, since it orga-
nizes the transverse and longitudinal pieces in individually gauge-invariant blocks. As was first
recognized in [103], this is particularly economical if oneis only interested in gauge-invariant
longitudinal contributions,e.g., in the context of resonantly enhancedCP violation.

100



5 Applications - I

In this section we will present a variety of phenomenological applications of the PT. Specifically,
we will focus on the following representative topics:

i. The field-theoretic construction and the observable nature of the PT effective charges, as well
as the conceptual and practical advantages of the physical renormalization schemes, which
use these effective charges, over the unphysical schemes, such as the popularMS.

ii . The definition and measurement of gauge-invariant off-shell form-factors, with particular
emphasis on the neutrino charge radius.

iii . The gauge-invariant definition of basic electroweak parameters, such as the S,T, and U, and
the universal part of theρ parameter.

iv. The gauge-invariant resummation formalism for resonant transition amplitudes.

5.1 Non-Abelian effective charges

The possibility of extending the concept of an effective charge [104] from QED to non-Abelian
gauge theories is of fundamental interest for at least threereasons. First, in QCD, the exis-
tence of an effective charge analogous to that of QED is explicitly assumed in renormalon
studies [105–107]. However, in the absence of a concrete guiding principle (such as the PT),
the diagrammatic identification of the subset of (conformally-variant) corrections that should be
resummed is rather obscure. Second, in theories involving unstable particles (e.g., in the elec-
troweak SM) the Dyson summation of (appropriately defined) self-energies is needed, in order
to regulate the kinematic singularities of the corresponding tree-level propagators in the vicinity
of resonances [108–111]. Third, in theories involving disparate energy scales (e.g., grand uni-
fied theories) the extraction of accurate low-energy predictions requires an exact treatment of
threshold effects due to heavy particles [112–114]. The construction of effective charges, valid
for all momentaq2 and not just the asymptotic regime governed by theβ-functions, constitutes
the natural way to account for such threshold effects. In allcases, the fundamental problem
is the gfp-dependence of the conventionally defined gauge boson self-energies. The PT cures
this problem and leads to the definition of physical effective charges, both in QCD and the
electroweak sector of the SM.

5.1.1 QED effective charge: the prototype

The quantity that serves as the field-theoretic prototype for guiding our analysis is the effective
charge of QED. In the rest of this section, a ‘0’ super or subscript will indicate (bare) unrenor-
malized quantities.

In QED consider the unrenormalized photon self-energyΠµν
0 (q) = P µν(q)Π0(q

2), where
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Π0(q
2) has dimensions of mass squared, and is gfp-independent to all orders in perturbation

theory. One usually setsΠ(q2) = q2Π(q2), where the dimensionless quantityΠ(q2) is referred
to as the “vacuum polarization”. Carrying out the standard Dyson summation, we obtain the
dressed photon propagator between conserved external currents,

∆µν
0 (q2) =

gµν

q2[1 + Π0(q2)]
. (5.1)

∆µν
0 (q2) is renormalized multiplicatively according to∆µν

0 (q2) = ZA∆µν(q2), whereZA is the
wave-function renormalization of the photon (A0 = Z

1/2
A A). Imposing the on-shell renormal-

ization condition for the photon we obtain

1 + Π(q2) = ZA[1 + Π0(q
2)], (5.2)

whereZA = 1 − Π0(0), andΠ(q2) = Π0(q
2) − Π0(0); clearlyΠ(0) = 0.

The renormalization procedure introduces, in addition, the standard relations between renor-
malized and unrenormalized electric charge,

e = Z−1
e e0 = ZfZ

1/2
A Z−1

1 e0, (5.3)

whereZe is the charge renormalization constant,Zf the wave-function renormalization constant
of the fermion, andZ1 the vertex renormalization.

The Abelian symmetry of the theory gives rise to the well-known WI [given also in (2.58)]

qµΓ0
µ(p, p+ q) = S−1

0 (p+ q) − S−1
0 (p), (5.4)

whereΓ0
µ andS0(k) are the unrenormalized one-loop photon-electron vertex and electron prop-

agator, respectively. The requirement that the renormalized vertexΓµ = Z1Γ
0
µ and the renor-

malized self-energyS = Z−1
f S0 should satisfy the same WI imposes the equality

Z1 = Zf , (5.5)

from which it immediately follows that

Ze = Z
−1/2
A . (5.6)

Given these relations between the renormalization constants, we can now form the following
renormalization group (RG) invariant combination:

Rµν
0 (q2) =

(e0)2

4π
∆µν

0 (q2) =
e2

4π
∆µν(q2) = Rµν(q2). (5.7)

FromRµν(q
2), after pulling out a the trivial kinematic factor(1/q2), one may define the QED

effective chargeαeff(q2), namely

αeff(q2) =
α

[1 + Π(q2)]
, (5.8)
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whereα is the fine-structure constant.
The QED effective charge of (5.8) has the following crucial properties:

i. It is gfp-independent, to all orders in perturbation theory.

ii . It is RG-invariant by virtue of the WI of 5.4 and the resulting relation (5.6).

iii . Given thatΠ(0) = 0, at low energies the effective charge matches the fine structure constant:
αeff(0) = α = 1/137.036 · · · .

iv. For asymptotically large values ofq2, i.e., for q2 ≫ m2
f , wheremf denotes the masses of

the fermions contributing to the vacuum polarization loop (f = e, µ, τ ,...),α(q2) matches the
running couplingᾱ(q2) defined from the RG: at the one-loop level,

αeff(q2)
q2≫m2

f−→ ᾱ(q2) =
α

1 − (αβ1/2π) log(q2/m2
f )
, (5.9)

whereβ1 = 2
3
nf is the coefficient of the QEDβ function fornf fermion species.

v. The effective charge has a non-trivial dependence on the massesmf , which allows its re-
construction from physical amplitudes by resorting to the OT and analyticity,i.e., dispersion
relations. Specifically, given a particular contribution to the spectral functionℑmΠ(s), the
corresponding contribution toΠ(q2) can be reconstructed via aonce-subtracted dispersion
relation(see, e.g. [115]). For example, for the one-loop contribution of the fermionf , choos-
ing the on-shell renormalization scheme,

Πff̄(q
2) =

1

π
q2
∫ ∞

4m2
f

ds
ℑmΠff̄(s)

s(s− q2)
. (5.10)

Forf 6= e,ℑmΠff̄ (s) is measured directlyin the tree-level cross-section fore+e− → f+f−,
see Fig. 36. Forf = e, it is necessary to isolate the self-energy-like componentof the tree-
level Bhabha cross-section, see Fig. 37. This is indeed possible because the self-energy-,
vertex- and box-like components of the Bhabhadifferentialcross-section arelinearly inde-
pendent functionsof cos θ; they may therefore be projected out by convoluting thedifferential
cross-section with appropriately chosen polynomials incos θ.

Thus, in QED, knowledge of the spectral functionℑmΠff̄(s), determined from the tree-level
e+e− → f+f− cross sections, together with a single low energy measurement of the fine struc-
ture constantα (obtainede.g., from the Josephson effect and the quantized Hall effect, orfrom
the anomalous magnetic moment of the electron [116]), enables the construction of the one-loop
effective chargeαeff(q2) for all q2.
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Fig. 36. The OT relation between the imaginary part of the muon contribution toΠ(s) and the tree-level
cross sectionσ(e+e− → µ+µ−) in QED.

5.1.2 QCD effective charge

In non-Abelian gauge theories the crucial equalityZ1 = Zf does not hold in general. Fur-
thermore, in contrast to the photon case, the gluon vacuum polarization depends on the gfp,
already at one-loop order. These facts make the non-Abeliangeneralization of the QED concept
of the effective charge non-trivial. The possibility of defining an effective charge for QCD in
the framework of the PT was established first by Cornwall [7],and was further investigated in a
series of papers [12,23,74,72,117,118].

As we have shown in detail in Section 2 the PT rearrangement ofphysical amplitudes gives
rise to a gfp-independent effective gluon self-energy, restoring, at the same time, the equalities

Ẑ1 = Ẑf , Ẑgs
= Ẑ

−1/2
A , (5.11)

wheregs is the QCD coupling. Then, using the additional fact that thePT self-energy is process-
independent [63] and can be Dyson-resummed to all orders [23,74,72,12], the construction of
the universal RG-invariant combination and the corresponding QCD effective charge is imme-
diate. We have

R̂µν
0 (q2) =

(g0
s)

2

4π
∆̂0
µν(q) =

g2
s

4π
∆̂µν(q) = R̂µν(q2). (5.12)

and after pulling out a1/q2 factor we arrive at the QCD effective charge,

αs,eff(q2) =
αs

1 + Π̂(q2)
, (5.13)

whereαs = g2
s/4π.

Let us now turn to properties (iii )–(v) of the QED effective charge, and see how they are mod-
ified due to the fact that the low-energy sector of QCD is strongly coupled and must be treated
non-perturbatively.

Evidently point (iii ) must be replaced by a measurement where perturbation theory holds,
such as theα(MZ). Point (iv) remains true; actually, due to asymptotic freedom, the high en-
ergy limit is where the QCD charge is completely unambiguous. Finally, point (v) is trickier:
clearly, the absorptive analysis of Section 2 demonstratesthat, perturbatively, the imaginary
part ofΠ̂(s) may be identified with a well-defined part of theqq̄ → gg tree-level cross-section.
These parts may be, in principle, extracted out of the full differential cross-section through
the convolution with an appropriately constructed function of the scattering angle [see subsec-
tion 5.1.4 on the electroweak effective charges], and then be fed into the dispersion relation
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Fig. 37. The OT relation between the imaginary parts of the electron contribution to the one-loop
vacuum polarization, vertex and box diagrams and the components of the tree-level cross section
σ(e+e− → e+e−) in QED

(2.120) to furnisĥΠ(q2). The problem is that, in QCD, such a procedure is not feasible, even
at the level of a thought-experiment, because in the limit oflow s QCD is strongly coupled, and
non-perturbative effects become significant.

An additional important point related to the non-perturbative nature of QCD is the following.
As has been argued long ago by Cornwall [7], and has been corroborated by a large number of
lattice simulations and SDE studies, the gluons generate dynamically an effective mass, which
cures the Landau singularity and makes the gluon propagatorfinite in the infrared [we will re-
visit this issue in much more detail in Section 9]. In such a case, it would of course be wrong to
define the effective charge as in Eq. (5.13),i.e., by forcing out a factor of1/q2 from Eq. (5.12).
Such a procedure would furnish a completely unphysical strong QCD coupling, namely one
that would vanish in the deep infrared(!) where QCD is supposed to be strongly coupled. The
correct treatment (see again Section 9) yields, instead, aneffective coupling that in the deep
infrared “freezes” at afinite value, in complete agreement with a plethora of phenomenological
and theoretical works.
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5.1.3 Effective mixing (Weinberg) angle

We now turn to the electroweak sector of the SM, and consider the subset of neutral gauge
boson self-energies,̂ΠAA

µν (q), andΠ̂ZZ
µν (q), together with the mixed self-energieŝΠAZ

µν (q) and

Π̂ZA
µν (q). Let us now see how the above self-energies organize themselves into RG-invariant

combinations. We will assume that we are working between massless fermions (conserved cur-
rents) and we will therefore retain only the parts of the self-energies proportional togµν . The
general framework presented in this subsection has been established in [95] and [75]; here we
will adopt the notation and philosophy of the latter article.

We begin by listing the relations between the bare and renormalized parameters for the neutral
part of the electroweak sector. For the masses we have

(M0
W )2 = M2

W + δM2
W , (M0

Z)2 = M2
Z + δM2

Z . (5.14)

The wave-function renormalizations for the neutral sectorare defined as


Z0

A0


 =



Ẑ

1/2
ZZ Ẑ

1/2
ZA

Ẑ
1/2
AZ Ẑ

1/2
AA






Z

A


 =




1 + 1
2
δẐZZ

1
2
δẐZA

1
2
δẐAZ 1 + 1

2
δẐAA






Z

A


 . (5.15)

In addition, the coupling renormalization constants are defined by

e0 = Ẑee = (1 + δẐe)e, g0
w = Ẑgw

gw = (1 + δẐgw
)gw, c0w = Ẑcwcw, (5.16)

with

Ẑcw =

(
1 +

δM2
W

M2
W

)1/2 (
1 +

δM2
Z

M2
Z

)−1/2

. (5.17)

If we expandẐcw perturbatively, we have that̂Zcw = 1 + 1
2
(δc2w/c

2
w) + · · · , with

δc2w
c2w

=
δM2

W

M2
W

− δM2
Z

M2
Z

, (5.18)

which is the usual one-loop result.
Imposing the requirement that the PT Green’s functions should respect the same WI’s before

and after renormalization we arrive at the following relations:

ẐAA = Ẑ−2
e , ẐZZ = Ẑ−2

gw
Ẑ2
cw , (5.19)

or, equivalently, at the level of the counter-terms

δẐAA =−2δẐe,

δẐZZ =−2δẐe −
c2w − s2

w

s2
w

(
δc2w
c2w

)
,

δẐAZ = 2
cw
sw

(
δc2w
c2w

)
,

δẐZA = 0. (5.20)
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The corresponding propagators relevant for the neutral sector may be obtained by inverting
the matrixL̂, whose entries are the PT self-energies,i.e.,

L̂ =



q2 + Π̂AA(q2) Π̂AZ(q2)

Π̂AZ(q2) q2 −M2
Z + Π̂ZZ(q2)


 . (5.21)

Casting the inverse in the form

L̂−1 =




∆̂AA(q2) ∆̂AZ(q2)

∆̂AZ(q2) ∆̂ZZ(q2)


 (5.22)

one finds that

∆̂AA(q2) =
−[q2 −M2

Z + Π̂ZZ(q2)]

Π̂2
AZ(q2) − [q2 −M2

Z + Π̂ZZ(q2)][q2 + Π̂AA(q2)]
,

∆̂ZZ(q2) =
−[q2 + Π̂AA(q2)]

Π̂2
AZ(q2) − [q2 −M2

Z + Π̂ZZ(q2)][q2 + Π̂AA(q2)]
,

∆̂AZ(q2) =
−Π̂AZ(q2)

Π̂2
AZ(q2) − [q2 −M2

Z + Π̂ZZ(q2)][q2 + Π̂AA(q2)]
. (5.23)

The above expressions at one-loop reduce to

∆̂AA(q2) =
1

q2 + Π̂AA(q2)
,

∆̂ZZ(q2) =
1

q2 −M2
Z + Π̂ZZ(q2)

,

∆̂AZ(q2) =
Π̂AZ(q2)

q2(q2 −M2
Z)
. (5.24)

The standard re-diagonalization procedure of the neutral sector [119–121] may then be fol-
lowed, for the PT self-energies; it will finally amount to introducing the effective (running) weak
mixing angle. In particular, after the PT rearrangement, the propagator-like part̂Dff ′ of the neu-
tral current amplitude for the interaction between fermions with chargesQ,Q′ and isospinsT fz ,
T f

′

z , is given in terms of the inverse of the matrixL̂ by the expression

D̂ff ′ =
(
eQf ,

gw
cw

[
s2
wQf − T fz PL

] )
L̂−1




eQf ′

gw
cw

(s2
wQf ′ − T f

′

z PL)




=
(
eQf ,

gw
cw

[
s̄2
w(q2)Qf − T fz PL

] )
L̂−1
D




eQf ′

gw
cw

[
s̄2
w(q2)Qf ′ − T f

′

z PL
]


 , (5.25)
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where

L̂−1
D =




∆̂AA(q2) 0

0 ∆̂ZZ(q2)


 . (5.26)

The rhs of this equation, where the neutral current interaction between the fermions has been
written in diagonal (i.e., Born-like) form, defines the diagonal propagator functions ∆̂AA and
∆̂ZZ and the effective weak mixing anglēs2

w(q2)

s̄2
w(q2) = (s0

w)2

[
1 −

(
c0w
s0
w

)
Π̂0
AZ(q2)

q2 + Π̂0
AA(q2)

]
= s2

w

[
1 −

(
cw
sw

)
Π̂AZ(q2)

q2 + Π̂AA(q2)

]
. (5.27)

It is easy to show that, by virtue of the special relations of Eq. (5.19),s̄2
w(q2) is an RG-invariant

quantity.
Using the fact that̂ΠAZ(0) = 0, we may writeΠ̂AZ(q2) = q2Π̂AZ(q2); then, Eq. (5.19) yields

s̄2
w(q2)= s2

w

[
1 −

(
cw
sw

)
Π̂AZ(q2)

1 + Π̂AA(q2)

]

= s2
w

[
1 −

(
cw
α sw

)
αeff(q2)Π̂AZ(q2)

]
, (5.28)

where in the last step we used Eq. (5.8). At one-loop level,s̄2
w(q2) reduces to

s̄2
w(q2) = s2

w

[
1 −

(
cw
sw

)
Π̂AZ(q2)

]
. (5.29)

Notice that in the case where the fermionf ′ is a neutrino (f ′ = ν, withQν = 0 andT νz = 1/2),
Eq. (5.25) assumes the form

D̂fν =
(
eQf ,

gw
cw

[
s̄2
w(q2)Qf − T fz PL

] )
L̂−1
D




0

− gw
2cw

PL


 (5.30)

Evidently, s̄2
w(q2) constitutes a universal modification to the effective vertex of the charged

fermion.

5.1.4 Electroweak effective charges

The analogue of Eq. (5.8) may be defined for theZ- andW -boson propagators. In particular, the
bare and renormalized PT resummedZ-boson propagators,̂∆µν

ZZ,0(q) and∆̂µν
ZZ(q) respectively,

satisfy the following relation
∆̂0, µν
ZZ (q) = ẐZZ∆̂µν

ZZ(q). (5.31)

In what follows we only consider the cofactors ofgµν , i.e., ∆̂0, µν
ZZ (q) = ∆̂0

ZZ(q)gµν and
∆̂µν
ZZ(q) = ∆̂ZZ(q)gµν , since the longitudinal parts vanish when contracted with the conserved

external currents of massless fermions. The standard renormalization procedure is to define the
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wave function renormalization,̂ZZZ, by means of the transverse part of the resummedZ-boson
propagator:

ẐZZ [q2 − (M0
Z)2 + Π̂0

ZZ(q2)] = q2 −M2
Z + Π̂ZZ(q2). (5.32)

It is then straightforward to verify that the universal RG-invariant quantity for theZ boson,
which constitutes a common part of all neutral current processes, is given by (we omit a factor
gµν):

R̄0
Z(q2) =

1

4π

(
g0
w

c0w

)2

∆̂0
ZZ(q2) =

1

4π

(
gw
cw

)2

∆̂ZZ(q2) = R̄Z(q2). (5.33)

A completely analogous analysis holds also for the∆̂WW (q2) propagator; in this case the cor-
responding RG-invariant combination is

R̄W (q2) =

(
g2
w

4π

)
∆̂WW (q2). (5.34)

If one retains only the real parts in the above equation, one may define fromR̄i(q
2) (i = W,Z)

a dimensionless quantity, corresponding to an effective charge by castingℜeΠ̂(q2)ii in the form
ℜeΠ̂ii(q

2) = ℜeΠ̂ii(M
2
i ) + (q2 − M2

i )ℜeΠ̂ii(M
2
i ) and then pulling out a common factor

(q2 − M2
i ). In that case,

R̄i(q
2) =

αi,eff(q2)

q2 − M2
i

, i = W,Z (5.35)

with

αw,eff(q2) =
αw

1 + ℜeΠ̂WW (q2)
,

αz,eff(q2) =
αz

1 + ℜeΠ̂ZZ(q2)
, (5.36)

where

Π̂ii(q
2) =

Π̂ii(q
2) − Π̂ii(M

2
i )

q2 − M2
i

, i = W,Z . (5.37)

andαw = g2
w/4π andαz = αw/c

2
w. Notice, however, that, whereas Eqs (5.33) and (5.34) remain

valid in the presence of imaginary parts (i.e., whenΠ̂ii(q
2) develops physical thresholds) the

above separation into a dimensionful and a dimensionless part is ambiguous and should be
avoided [76] .

5.1.5 Electroweak effective charges and their relation to physical cross-sections

Let us now turn to the relation of the RG-invariant and universal quantityR̄Z(q2) to physical
cross-sections, and the procedure that would allow, at least in principle, its extraction from
experiment [73]. In general, the renormalization ofΠ̂ZZ requires two subtractions, for mass
and field renormalization. If we denote the subtraction point by s0, then the twice-subtracted
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Fig. 38. The OT relation between the imaginary parts of the subset of theW -related one-loop corrections
to e+e− → e+e− and the tree-level processe+e− →W+W−.

dispersion relation corresponding to theW+W− contributions reads

Π̂(WW )

ZZ (q2) =
1

π
(q2 − s0)

2
∫ ∞

4M2
W

ds
ℑmΠ̂(WW )

ZZ (s)

(s− q2)(s− s0)2
. (5.38)

The property that is instrumental for the observability ofR̄(WW )

Z (q2) is that, in contrast to the
conventional gauge-dependent self-energies, the absorptive parts of the PT self-energies ap-
pearing on the rhs of Eq. (5.38) are directly related to components of the physical cross-section
e+e− →W+W− which areexperimentally observable(see Fig. 38). Indeed, as we have already
seen in Section 4, the characteristics-t cancellation, triggered by the longitudinal momenta of
the on-shell polarization tensors, rearranges the tree-level cross-sectione+e− → W+W− into
subamplitudes, which, through the use of the OT, can be connected unambiguously with the
absorptive parts of the one-loop PT Green’s functions.

To simplify the algebra without compromising the principle, let us consider the limit of
e+e− → W+W− when the electroweak mixing angle vanishes,s2

w = 0. In this limit all photon
related contributions are switched off , and the two massivegauge bosons become degenerate
(MZ = MW ≡ M). Let us denote byθ the center-of-mass scattering angle, and setx = cos θ,
β =

√
1 − 4M2/s, andz = (1 + β2)/2β. Then, it is relatively straightforward to show that the

differential tree-level cross-section fore+e− → W+W− can be cast in the form [73]

(z − x)2

(
dσ

dx

)

sw=0

=
g4

64π

sβ

(s−M2)2
θ(s− 4M2)

5∑

i=1

Ai(s)Fi(s, x) (5.39)
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where

F1(s, x) = (z − x)2 A1(s) =
5

32

(
β2 − 12

)
,

F2(s, x) = (z − x)2 x2 A2(s) = − 9

32
β2,

F3(s, x) = (z − x)(1 − x2) A3(s) = −β
2

(
s−M2

s

)
,

F4(s, x) = (z − x)(1 − βx) A4(s) =
2

β

(
s−M2

s

)
,

F5(s, x) = 1 − x2 A5(s) =
1

2

(
s−M2

s

)2

. (5.40)

Let us emphasize an important point: fors → ∞, theAi(s) reported above go asymptotically
to constant values. This good high-energy behavior is to be contrasted with that of the con-
ventional subamplitudes, corresponding to theAi(s), obtained in [102] (nos-t cancellation
explicitly carried out): they grow rapidly as functions ofs, violating individually unitarity (see
also comments at the end of subsection 4.3.4). Notice also that the five polynomialsFi(s, x),
i = 1, 2 . . . 5 arelinearly independent, and also that the coefficientsA1(s) andA2(s) contribute
only to the self-energy-like component of the cross-section, being related toℑm Π̂(WW )

ZZ (s) by

ℑm Π̂(WW )

ZZ (s)
∣∣∣
sw=0

=
g2

4π
βs
(
A1(s) +

1

3
A2(s)

)
. (5.41)

To project out the functionsAi(s), we construct a further set of five polynomials̃Fi(s, x)
satisfying the orthogonality conditions

∫ 1

−1
dxFi(s, x)F̃j(s, x) = δij . (5.42)

The explicit expressions for thẽFi(s, x) can be found in [73]. The coefficient functionsAi(s)
may then be projected out from the observable formed by taking the product of the differential
cross section with the kinematic factor(z − x)2:

∫ 1

−1
dx F̃i(s, x) (z − x)2

(
dσ

dx

)

sw=0

=
g4

64π

sβ

(s−M2)2
Ai(s). (5.43)

Thus, it is is possible to extractℑm Π̂(WW )

ZZ (s)|sw=0 directly fromdσ(e+e−→W+W−)/dx|sw=0.
The general case withs2

w 6= 0 requires, in addition, the observation of spin density matri-
ces [122]; though technically more involved, the procedureis, in principle, the same.

Finally notice the following:

i. In order to use the dispersion relation of (5.38) to computeΠ̂
(WW )
ZZ (q2) , one needs to inte-

grate the spectral densityℑm Π̂
(WW )
ZZ (s) over a large number of values ofs. This, in turn,
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means that one needs experimental data for the processe+e− → W+W− for a variety of
center-of-mass energiess, and for each value ofs one must repeat the procedure described
above. Regardless of whatever practical difficulties this might entail, it does not constitute a
problem of principle.

ii . The experimental extraction of the contributionsΠ̂
(ZH)
ZZ (q2) is conceptually far more straight-

forward, given that it involves theentirecross-section of the processe+e− → ZH (known as
“Bjorken process” or “Higgsstrahlung”); specifically, we have that

e2
(a2 + b2)

s2
wc

2
w

ℑmΠ̂
(ZH)
ZZ (s)

(s−M2
Z)2

= σ(e+e− → ZH). (5.44)

5.1.6 The effective charge of the Higgs boson

As has been shown in [75], there is a universal RG-invariant quantity related to the Higgs boson
that leads to thenovel conceptof the “Higgs boson effective charge”. Specifically, after applying
the PT algorithm, the linearity of the WI satisfied by the PT Green’s functions provides us with
the following relations

ẐW = Ẑ−2
gw
, ẐH = Ẑχ = Ẑφ = ẐW (1 + δM2

W/M
2
W ), (5.45)

whereẐW andẐH are the wave-function renormalizations of theW andH fields, respectively,
Ẑgw

is the coupling renormalization. The renormalization of the bare resummed Higgs-boson
propagator̂∆0

H(s) proceeds, then, as follows:

∆̂0
H(s) = [s− (M0

H)2 + Π̂0
HH(s)]−1 = ẐH [ s−M2

H + Π̂HH(s)]−1 = ẐH∆̂H(s), (5.46)

with (M0
H)2 = M2

H+δM2
H . The renormalized Higgs-boson massM2

H may be defined as the real
part of the complex pole position of̂∆H(s). Employing the relations of Eq. (5.45), together with
the relation between(M0

W )2 andM2
W given in (5.14), we observe that the universal (process-

independent) quantity

R̄0
H(s) =

(g0
w)2

(M0
W )2

∆̂0
H(s) =

g2
w

M2
W

∆̂H(s) = R̄H(s) (5.47)

constitutes, in fact, a RG-invariant. Interestingly enough, R̄H(s) provides a natural extension
of the notion of the QED effective charge for the SM Higgs boson: H couples universally to
matter with an effective “charge” inversely proportional to its vev.

5.1.7 Physical renormalization schemes vsMS

It is well-known, but often overlooked, that the widely used(unphysical) renormalization
schemes, such asMS andDR, are plagued with persistent threshold and matching errors. The
origin of these errors can be understood by noting that the aforementioned unphysical schemes
implicitly integrate out all masses heavier than the physical energy scale until they are crossed,
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and then they turn them back on abruptly, by means of a step function. Integrating out heavy
fields, however, is only valid for energies well below their masses. This procedure is conceptu-
ally problematic, since it does not correctly incorporate the finite probability that the uncertainty
principle gives for a particle to be pair produced below threshold [16]. In addition, complicated
matching conditions must be applied when crossing thresholds to maintain consistency for such
desert scenarios. In principle, these schemes are only valid for theories where all particles have
zero or infinite mass, or if one knows the full field content of the underlying physical theory.

Instead, in the physical renormalization scheme defined with the PT, gauge couplings are
defined directly in terms ofphysical observables, namely the effective charges. The latter run
smoothly over space-like momenta and have non-analytic behavior only at the expected physical
thresholds for time-like momenta; as a result, the thresholds associated with heavy particles are
treated with their correct analytic dependence. In particular, particles will contribute to physical
predictions even at energies below their threshold [16].

Historically, the gauge-invariant parametrization of physics offered by the PT has been first
systematized by Hagiwara, Haidt, Kim, and Matsumoto [123],and has led to an alternative
framework for confronting the precision electroweak data with the theoretical predictions. This
approach resorts to the PT in order to separate the one-loop corrections into gfp-independent
universal (process-independent) and process-specific pieces; the former are parametrized using
the PT effective charges,αeff(q2), s̄2

w(q2), αw,eff(q2), andαz,eff(q2), defined earlier. There is a
total of nine electroweak parameters that must be determined in this approach: the eight uni-
versal parametersMW , MZ , αeff(0), s̄2

w(0), αw,eff(0), αz,eff(0), s̄2
w(M2

Z), αz,eff(M2
Z), and one

process-dependent parameterδb(M
2
Z), related to the form-factor of theZb̄LbL vertex.

The authors of [123] explain in detail the advantage of theirapproach over theMS scheme.
In particular they emphasize that the non-decoupling nature of theMS forces one to adopt an
effective field theory approach, where the heavy particles are integrated out of the action. The
couplings of the effective theories are then related to eachother by matching conditions ensur-
ing that all effective theories give identical results at zero momentum transfer, since the effects
of heavy particles in the effective light field theory must beproportional toq2/M2, whereM is
the heavy mass scale. This procedure, however, is not only impractical in the presence of many
quark and lepton mass scales, but it introduces errors due tothe mistreatment of the threshold
effects. In addition, the direct use of theMS couplings leads to expressions where the masses
used for the light quarks are affected by sizable non-perturbative QCD effects.

The relevance of the effective charges in the quantitative study of threshold corrections due to
heavy particles in Grand Unified Theories (GUTs) was alreadyrecognized in [123], but it was
not until a decade later when this was actually accomplishedby Binger and Brodsky [16]. As
was shown by these authors, the effective charges defined with the PT furnish a conceptually
superior and calculationally more accurate framework for studying the important issue of gauge
coupling unification. The main advantage of the effective charge formalism is that it provides
a template for calculating all mass threshold effects for any given grand unified theory; such
threshold corrections may be instrumental in making the measured values of the gauge cou-
plings consistent with unification.

The analysis presented in [16] in the context of a toy model makes a most compelling case in
favor of thephysical renormalization schemes; here we reproduce it practically unchanged (up
to minor notational modifications).

Consider QED with three fermionse, µ, andτ , and focus on the processe−µ−→e−µ−. The
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corresponding amplitude can be written as a dressed skeleton expansion,i.e., the dressed tree-
level graph plus the dressed box diagram plus the dressed double box, etc. It is easy to see
(e.g., , by carrying out the standard Dyson summation) that the tree-level diagram, dressed to
all orders in perturbation theory, is equal to the tree-level diagram with one modification: the
QED coupling (fine structure constant)α is replaced by the effective chargeαeff(q2) given in
Eq. (5.8).

Let us now consider two rather disparate scales, denoted byqh (for “high”) andqℓ (for “low”).
From measurements of the cross-section, one can actually extract the the value of the effective
charge at these two scales,αeff(q2

h) andαeff(q2
ℓ ). Let us suppose for a moment that the electron

charge is not known, and we are trying to test the predictionsof QED. The way to proceed is to
use one measurement, say at the low scaleqℓ, as an input to determinee. Oncee is known the
prediction at the high scaleqh is well defined, and represents a test of the theory. More directly,
we could just writeαeff(q2

h) in terms ofαeff(q2
ℓ ), which would lead us to the same prediction.

Since the cross-sectionσe−µ−→e−µ−(q2) is proportional toα2
eff(q2), we are clearly relating

one observable to another. Such a scheme is referred to as aneffective charge scheme, since a
given observable, here justσe−µ−→e−µ−(q2

h) (or αeff(q2
h)), is expressed in terms of an effective

charge,αeff(q2
ℓ ), defined from a measurement of the cross-section at the scaleqℓ. One could

equally well express any observable in terms of this effective charge. Note that this approach
to renormalization works for arbitrary scales, even if the low scale lies below some threshold,
sayqℓ < mτ , while qh > mτ . Thus, the decoupling and the smooth (not through aθ function!)
“turning on” of theτ is manifest, due to the intrinsic analyticity and unitarityproperties of the
vacuum polarization (see subsection 2.5.1).

Let us now consider the results obtained by using the conventional implementation ofMS. In
this case one begins by calculating the cross-section atqℓ using the rules ofMS, which stipulate
thatonly the electrons and muons are allowed to propagate in loops, sinceqℓ < mτ . Comparing
the observed cross section to this result will fix the value oftheMS coupling for two flavors,
α̂2(qℓ). To predict the result of the same experiment at scaleqh > mτ , we need to evolvêα2 to
theτ threshold using thetwo-flavorβ function, match with a three-flavor coupling,α̂3, through
the relationα̂2(mτ ) = α̂3(mτ ), and then evolvêα3(mτ ) to qh using thethree-flavorβ function.
We will now have a prediction forσe−µ−→e−µ−(q2

h) ∝ α2(q2
h).

Now, one might expect, from the general principle of RG-invariance of physical predictions,
that this result should be the same as the prediction derivedusing the physical effective charge
scheme above. However, there is a discrepancy arising from the incorrect treatment of the
threshold effects in theMS. One finds that the ratio of the cross section derived usingMS
with the cross section derived using effective charges, to first order in perturbation theory, is
given by [16]

σ̂(q2
h)

σ(q2
h)

= 1 +
2αeff(q2

ℓ )

3π

[
L
(
qℓ
mτ

)
− 5/3

]
, (5.48)

with

Lτ

(
q

m

)
=
∫ 1

0
dx 6x(1 − x) log

(
1 +

q2

m2
x(1 − x)

)
+

5

3

= [βtanh−1(β−1) − 1](3 − β2) + 2, (5.49)
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whereβ =
√

1 + 4m2/q2. SinceLτ (0) = 5/3, there is no discrepancy when the low reference
scaleqℓ is much lower than theτ mass threshold. This reflects the important fact that unphysical
schemes, such asMS, are formally consistent only indesert regionswhere particle masses can
be neglected. Notice that in this example there is an error only for ql < mτ . However, in the
more general case of multiple flavor thresholds, as well as inthe analysis of grand unification,
there are errors from both high and low scales.

An important difference between the physical effective charges and the unphysicalMS, inti-
mately related to the analyticity properties built into theformer, is the distinction between time-
like and space-like momenta. As emphasized in [16], in conventional approaches the thresholds
are treated using a step function approximation [θ functions], and hence, the running is always
logarithmic. The analytic continuation from space-like totime-like momenta is trivial, yielding
iπ imaginary terms on the time-like side; thus, the real parts of such couplings are the same
[modulo three loop(iπ)2 corrections]. In contrast, the PT charges on time-like and space-like
sides have considerable differences at one-loop. Specifically, the relevant quantities to consider
are functions such as theLτ (q/m) defined above. The analytic continuation to time-like mo-
menta below threshold,0 < q2 = −Q2 < 4m2, is obtained by replacing

β→iβ̄, where β̄ =

√
4m2

q2
− 1, and tanh−1(β−1)→− itan−1(β̄−1). (5.50)

Above threshold,q2 > 4m2, one should replace

tanh−1(β−1)→tanh−1(β) + i
π

2
, where β =

√
1 − 4m2

q2
. (5.51)

From these results, it is clear that significant differenceswill arise between the space-like and
time-like couplings evaluated at scaleM2

Z , mainly due to theW± boson threshold asymmetry.
In [16] the effective chargesαeff(q2),αs,eff(q2), and the effective mixing anglēs2

w(q2) [defined
in (5.8), (5.13), and (5.29), respectively], were used to define new effective charges,̃α1(q

2),
α̃2(q

2), andα̃3(q
2), which correspond to the standard combinations of gauge couplings used to

study gauge-coupling unification. Specifically,

α̃1(q
2) =

(
5

3

)
αeff(q2)

1 − s̄2
w(q2)

α̃2(q
2) =

αeff(q2)

s̄2
w(q2)

α̃3(q
2) = αs,eff(q2). (5.52)

The above couplings were used to obtain novel heavy and lightthreshold corrections, and the
resulting impact on the unification predictions for a general GUT model were studied. Notice
that even in the absence of new physics (i.e., using only the known SM spectrum) there are
appreciable numerical discrepancies between the values ofof the conventional and PT couplings
atMZ (see Table I in [16]). Given that these values are used as initial conditions for the evolution
of the couplings to the GUT scale, these differences alone may affect the unification properties
of the couplings (i.e., even if no additional threshold effects due to new particles are considered).
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5.2 Gauge-independent off-shell form-factors: general considerations

It is well-known that renormalizability and gauge-invariance severely restricts the type of inter-
action vertices that can appear at the level of the fundamental Lagrangian. Thus, the tensorial
possibilities allowed by Lorentz invariance are drastically reduced down to relatively simple
tree-level vertices. Beyond tree-level, the tensorial structures that have been so excluded appear
due to quantum corrections,i.e., they are generated from loops. This fact is not in contradiction
with renormalizability and gauge-invariance, provided that the tensorial structures generated,
not present at the level of the original Lagrangian, areUV finite, i.e., no counterterms need be
introduced to the fundamental Lagrangian proportional to the forbidden structures.

In order to fix the ideas, let us consider a concrete, text-book example. In standard QED
the tree-level photon-electron vertex is simply proportional toγµ, while kinematically one may
have, in addition, (for massive on-shell electrons, using the Gordon decomposition) a term pro-
portional toσµνqν , that would correspond to a non-renormalizable interaction. Of course, the
one-loop photon-electron vertex generates such a term; specifically, one has

Γµ(q) = γµF1(q
2) +

iσµνq
ν

2me
F2(q

2) , (5.53)

where the scalar cofactors multiplying the two tensorial structures are the corresponding form-
factors; they are, in general, non-trivial functions of thephoton momentum transfer (the photon
“off-shellness”).F1(q

2) is the electric form-factor, whereasF2(q
2) is the magnetic form-factor.

F1(q
2) is UV divergent, and becomes finite after carrying out the standard vertex renormaliza-

tion. On the other hand,F2(q
2) comes out UV finite, as it should, given that there is no term

proportional toσµνqν (in configuration space) in the original Lagrangian, where apotential UV
divergence could be absorbed. Of course, in the limit ofq2 → 0 the magnetic form-factorF2(q

2)
reduces to the famous Schwinger anomaly [124] (see, e.g., [47]).

At the level of an Abelian theory, such as QED, the above discussion exhausts more or less the
theoretical complications associated with the calculation of off-shell form-factors. However, in
non-Abelian theories, such as the electroweak sector of theSM, there is an additional important
complication: The off-shell form-factors obtained from the conventional one-loop vertex (and
beyond) depend explicitly on the gfp. This dependence disappears when going to the on-shell
limit of the incoming gauge boson (q2 → 0 for a photon,q2 → M2

Z for a Z boson, etc) but
is present for any other value ofq2. This fact becomes phenomenologically relevant, because
one often wants to study the various form-factors of particles that are produced in high-energy
collisions, where the gauge boson mediating the interaction is far off-shell. In the case ofe+e−

annihilation into heavy fermions, the value ofq2 must be above the heavy fermion threshold.
For example, top quarks may be pair-produced through the reactione+e− → tt̄, with center-of-
mass energys = q2 ≥ 4m2

t . Due to their large masses, the produced top quarks are expected to
decay weakly (tt̄ → bW+b̄W−, with subsequent leptonic decays of theW ), before hadroniza-
tion takes place; therefore electroweak properties of the top can be studied in detail, and QCD
corrections can be reliably evaluated in the context of perturbation theory, when the energy of
the collider is well above the threshold fortt̄ production. The problem is that, in such a case,
the intermediate photon andZ are far off-shell, and therefore, the form-factorsF V

i , appearing
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e− e+ν
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a, α

e− e+

a, α

e− e+
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Fig. 39. The conventional one-loop vertex (a) and the vertex-like piece extracted from the box forξ 6= 1

in the standard decompositions

ΓVµ (q2) = γµF
V
1 (q2, ξ) +

iσµνq
ν

2mt
F V

2 (q2, ξ) + γµγ5F
V
3 (q2, ξ) +

iσµνq
ν

2mt
γ5F

V
4 (q2, ξ) , (5.54)

depend explicitly onξ, which stands collectively forξW , ξZ , ξA, andV = A,Z.
The situation described above is rather general and affectsmost form-factors; very often

the residual gauge-dependences have serious physical consequences. For example, the form-
factors display unphysical thresholds, bad high-energy behavior, and sometimes they are UV
and infrared (IR) divergent. The way out is to use the PT construction, and extract the physi-
cal, gauge-independent form-factors from the corresponding off-shell one-loop PT vertex (and
beyond). Applying the PT to the case of the form-factors amounts to saying that one has to
identify vertex-like contributions (with the appropriatetensorial structure corresponding to the
form-factor considered) contained in box diagrams, as shown in Fig. 39. The latter, when added
to the usual vertex graphs, render all form-factorsξ-independent and well-behaved in all re-
spects.

In what follows, we will present certain characteristic examples, in order for the reader to
appreciate the nature of the pathologies encountered in theconventional formulation, and see
how the PT resolves all of them at once.

5.2.1 Anomalous gauge boson couplings

A significant amount of research activity has been devoted tothe study of the three-boson ver-
ticesAW+W− andZW+W−, with the neutral gauge bosonsoff-shelland theW pair on-shell,
or off-shell and subsequently decaying to on-shell particles. Historically, the main motivation
for exploring their properties was the fact that they were going to be tested at LEP2 by di-
rectW -pair production, proceeding through the processe+e− → W+W−; their experimental
scrutiny could provide invaluable information on non-Abelian nature of the electroweak sector
of the SM. Particularly appealing in this quest has been the possibility of measuring anomalous
gauge boson couplings,i.e., the appearance of contributions toAW+W− andZW+W− not
encoded in the fundamental Lagrangian of the SM. Such contributions may originate from two
sources: (i) from radiative corrections within the SM, and/or (ii ) from physics beyond the SM.
Therefore the first theoretical task one is faced with is to carry out the necessary calculations
for completing part (i).

The most general parametrization of the trilinear gauge boson vertex for on-shellWs and
off-shellV = A,Z is given by (see Fig. 40)
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Zµ, Aµ

p1 = −∆ − Q p2 = ∆ − Q

q = 2Q

W+
α W−

β

Fig. 40. The kinematics of the trilinear gauge boson vertexVW+W− (all momenta incoming)

ΓVµαβ =−igV
{
f [2gαβ∆µ + 4(gαµQβ − gβµQα)] + 2∆κV (gαµQβ − gβµQα)

+ 4
∆QV

M2
W

(
∆µQαQβ −

1

2
Q2gαβ∆µ

)}
+ · · · , (5.55)

with gA = gwsw, gZ = gwcw, and the ellipses denote omission ofC, P , or T violating terms.
The four-momentaQ and∆ are related to the incoming momentaq, p1 andp2 of the gauge
bosonsV, W−andW+ respectively, byq = 2Q, p1 = ∆ − Q andp2 = −∆ − Q [125]. The
off-shellform-factors∆κV and∆QV , also defined as∆κV = κV +λV −1, and∆QV = −2λV ,
are compatible withC, P , andT invariance, and are related to the magnetic dipole momentµW
and the electric quadrupole momentQW , by the following expressions:

µW =
e

2MW
(2 + ∆κA), QW = − e

M2
W

(1 + ∆κA + ∆QA). (5.56)

In the context of the SM their canonical, tree-level values are f = 1 and∆κV = ∆QV = 0.
To determine the radiative corrections to these quantitiesone must cast the resulting one-loop
expressions in the form

ΓVµαβ = −igV [aV1 gαβ∆µ + aV2 (gαµQβ − gβµQα) + aV3 ∆µQαQβ], (5.57)

whereaV1 , aV2 , andaV3 are complicated functions of the momentum transferQ2, and the masses
of the particles appearing in the loops. It then follows that∆κV and∆QV are given by

∆κV =
1

2
(aV2 − 2aV1 −Q2aV3 ), ∆QV =

M2
W

4
aV3 . (5.58)

Calculating the one-loop expressions for∆κV and∆QV is a non-trivial task, both from the
technical and the conceptual point of view. Let us focus, forconcreteness, on the caseV = A. If
one calculates just the Feynman diagrams contributing to theAW+W− vertex and then extracts
from them the contributions to∆κA and∆QA, one arrives at expressions that are plagued with
several pathologies, gfp-dependence being one of them. Indeed, even if the twoWs are consid-
ered to be on-shell (p2

1 = p2
2 = M2

W ) since the incoming photon is not, there is noa priori reason
why a gfp-independent answer should emerge. Indeed, in the context of the renormalizableRξ

gauges the final answer depends on the choice of the gfpξ, which enters into the one-loop
calculations through the gauge-boson propagators (W , Z,A, and unphysical “would-be” Gold-
stone bosons). In addition, as shown by an explicit calculation performed in the Feynman gauge
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Fig. 41. Two of the graphs contributing pinching parts to thegauge independentVW+W− vertex.

(ξ = 1), the answer for∆κA is infrared divergentand violates perturbative unitarity,e.g., it
grows monotonically forQ2 → ∞ [126].

All the above pathologies may be circumvented if one uses thePT definition of the relevant
(off-shell) gauge boson vertices [18]. The application of the PT identifies vertex-like contribu-
tions from the box graphs, as shown in Fig. 41, which are subsequently distributed, in a unique
way, among the various form-factors. The final outcome is that one arrives at new expressions,
to be denoted bŷ∆κA and∆̂QA, which are gauge fixing parameter (ξ) independent, ultraviolet
and infrared finite, and monotonically decreasing for large momentum transfersQ2.

Using “hats” to denote the gfp-independent one-loop contributions, we have

∆̂κA = ∆κ
(ξ=1)
A + ∆κPA,

∆̂QA = ∆Q
(ξ=1)
A + ∆QP

A, (5.59)

where∆Q
(ξ=1)
A and∆Q

(ξ=1)
A are the contributions of the usual vertex diagrams in the Feynman

gauge [126], whereas∆QP
A and∆QP

A are the analogous contributions from the pinch parts. A
straightforward calculation yields

∆κPA = − Q2

M2
W

∑

V

αV
π

∫ 1

0
da
∫ 1

0
dt
t(at− 1)

L2
V

, (5.60)

where

L2
V = t2 − t2a(1 − a)

(
4Q2

M2
W

)
+ (1 − t)

M2
V

M2
W

, (5.61)

and
∆QP

A = 0. (5.62)
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Notice an important point:∆κPA contains an infrared divergent term, stemming from the double
integral shown above, whenV = A. This term cancelsexactlyagainst a similar infrared diver-
gent piece contained in∆κ(ξ=1)

A , thus renderinĝ∆κA infrared finite. After the infrared pieces
have been canceled, one notices that the remaining contribution of ∆κPA decreases monotoni-
cally asQ2 → ±∞; due to the difference in relative signs, this contributioncancels asymptot-
ically against the monotonically increasing contributionfrom ∆κ

(ξ=1)
A . Thus, by including the

pinch parts the unitarity of̂∆κA is restored and̂∆κA → 0 for large values ofQ2.

5.2.2 Neutrino charge radius

The neutrino electromagnetic form-factor and the neutrinocharge radius (NCR) have consti-
tuted an important theoretical puzzle for over three decades. Since the dawn of the SM it was
pointed out that radiative corrections will induce an effective one-loopA∗(q2)νν vertex, to be
denoted byΓµAνν̄ , with A∗(q2) an off-shell photon. Such a vertex would, in turn, give rise to
a small but non-vanishing NCR. Traditionally (and, of course, non-relativistically and rather
heuristically) the NCR has been interpreted as a measure of the “size” of the neutrinoνi when
probed electromagnetically, owing to its classical definition (in the static limit) as the second
moment of the spatial neutrino charge densityρν(r), i.e.,

〈
r2
ν

〉
∼
∫
dr r2ρν(r). (5.63)

From the quantum field theory point of view, the NCR is defined as follows. If we writeΓµAνν̄
in the form

ΓµAνν̄(q
2) = γµ(1 − γ5)FD(q2), (5.64)

whereFD(q2) is the (dimensionless) Dirac electromagnetic form-factor, then the NCR is given
by

〈
r2
ν

〉
= 6

∂FD(q2)

∂q2

∣∣∣∣∣
q2=0

. (5.65)

Gauge invariance (if not compromised) requires that, in thelimit q2 → 0, FD(q2) must be pro-
portional toq2, i.e., that it can be cast in the formFD(q2) = q2F (q2), with the dimensionful
form-factorF (q2) being regular asq2 → 0. As a result, theq2 contained inFD(q2) cancels
against the(1/q2) coming from the propagator of the off-shell photon, and one effectively ob-
tains a contact interaction between the neutrino and the sources of the (background) photon, as
one would expect from classical considerations.

Even though in the SM the one-loop computation of theentireS-matrix element describing
the electron-neutrino scattering, shown in Fig. 42, is conceptually straightforward, the identifi-
cation of asubamplitude, which would serve as the effectiveΓµAνν̄ has been faced with serious
complications, associated with the simultaneous reconciliation of crucial requirements such as
gauge-invariance, finiteness, and target-independence. Specifically, various attempts to define
the value of the NCR within the SM from the one-loopΓµAνν̄ vertex calculated in the renormal-
izable (Rξ) gauges reveal that the corresponding electromagnetic form-factor depends explicitly
on the gauge-fixing parameterξ in a prohibiting way. In particular, even though in the static limit
of zero momentum transfer,q2 → 0, the Dirac form-factor becomes independent ofξ, its first
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Fig. 42. The electroweak diagrams contributing to the entire electron-neutrino scattering process at
one-loop. The last diagram (and all of its dressing) is absent when the neutrino species is muonic.

derivative with respect toq2, which corresponds to the definition of the NCR, continues tode-
pend on it. Similar (and sometimes worse) problems occur in the context of other gauges (e.g.,
unitary gauge). These complications have obscured the entire concept of an NCR, and have
casted serious doubts on whether it can be regarded as a genuine physical observable.

5.2.3 The physical NCR

Of course, if a quantity is gauge-dependent it is not physical. But the fact that the off-shell
vertex is gauge-dependent only means that it just does not serve as a physical definition of the
NCR. It does not mean that aneffectiveNCR cannot be encountered which satisfiesall neces-
sary physical properties, gauge-independence being one ofthem. Indeed, several authors have
attempted to find amodifiedvertex-like amplitude, that would lead to a consistent definition
of the electromagnetic NCR (see [20,21,127] for an extendedlist of references). The common
underlying idea in all these works is to rearrange, somehow,the Feynman graphs contributing to
the scattering amplitude of neutrinos with charged particles, in an attempt to find a vertex-like
combination that would satisfy all desirable properties. What makes this exercise so difficult
is that, in addition to gauge-independence, a multitude of other crucial physical requirements
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need to be satisfied as well. For example, one should not enforce gauge-independence at the
expense of introducing target-dependence. Therefore, a definite guiding-principle is needed, al-
lowing for the construction of physical subamplitudes withdefinite kinematic structure (i.e.,
self-energies, vertices, boxes).

The guiding-principle in question has been provided by the PT. As was shown for the first
time in [9], the rearrangement of the physical amplitudef±ν → f±ν, wheref± are the target
fermions, into PT self-energies, vertices, and boxes conclusively settles the issue: theproper
PT vertex with an off-shell photon and two on-shell neutrinos (see Fig. 43), denoted bŷΓµAνiν̄i

,
furnishes unambiguously and uniquely the physical NCR. As we know from the general dis-
cussion of the previous section,Γ̂µAνiν̄i

coincideswith the BFM vertex involving an off-shell
background photon and two on-shell neutrinos, calculated by putting the quantumW -bosons
inside the loops in the Feynman gauge (the BFG).

Several years after its original resolution within the PT [9], the NCR issue was revisited in
[20]. There, in addition to an exhaustive demonstration of the various gauge cancellations, two
important conceptual points have been conclusively settled:

i. As already explained in [9], the box diagrams furnish gauge-dependent (propagator-like)
contributions that are crucial for the gauge-cancellations, but once these contributions have
been identified and extracted, the remaining “pure” box cannot form part of the NCR, be-
cause it would introduce process-dependence (due to its non-trivial dependence on the target-
fermion masses, for one thing). The most convincing way to understand why the pure box
could not possibly enter into the NCR definition is to consider the case of right-handedly
polarized target fermions, which do not couple to theWs: in that case, the box diagram is
not even there! (the gauge-cancellations proceed now differently, since the coupling of theZ
boson to the target fermions is also modified) [20].

ii . The mixing self-energŷΠAZ(q2) shouldnot be included in the definition of the NCR ei-
ther. The reason is more subtle (and had not been recognized in [9]): Π̂AZ(q2) is not an
RG-invariant quantity; adding it to the finite contributioncoming from the proper vertex
would convert the resulting NCR to aµ-dependent, and therefore unphysical quantity. In-
stead,Π̂AZ(q2) must be combined with the appropriateZ-mediatedtree-levelcontributions
(which evidently do not enter into the definition of the NCR) in order to form, with them,
the RG-invariant combination̄s2

w(q2) of Eq.(5.29), whereas the ultraviolet-finite NCR will be
determined from thepropervertex only.

Writing Γ̂µAνiν̄i
= q2F̂i(q

2)γµ(1− γ5), the physical NCR is then defined as
〈
r2
νi

〉
= 6F̂i(0), and

the explicit calculation yields

〈
r2
νi

〉
=

GF

4
√

2π2

[
3 − 2 log

(
m2
i

M2
W

)]
, (5.66)

wherei = e, µ, τ , mi denotes the mass of the charged isodoublet partner of the neutrino un-
der consideration, andGF is the Fermi constant. Note that the logarithmic term on the rhs of
Eq. (5.66) originates from the Abelian graph, and is not affected by the PT procedure,i.e., it
is, from the beginning, gauge-independent. This term may beobtained directly if one considers
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Fig. 43. The PT vertex with an off-shell gauge-boson (A,Z) and two on-shell fermions (ν, e)

the problem from an effective field theory point of view, in the limit of a very heavyW -boson.
The observable nature of the NCR was established in [21], by demonstrating that, at least in

principle, the probe-independent NCR may be extracted froma judicious combination of scat-
tering experiments involving neutrinos and anti-neutrinos.

Consider, in fact, the elastic processesf(k1)ν(p1)→f(k2)ν(p2) andf(k1)ν̄(p1)→f(k2)ν̄(p2),
wheref denotes an electrically charged fermion belonging to a different isodoublet than the
neutrinoν, in order to eliminate the diagrams mediated by a chargedW -boson. The Mandel-
stam variables are defined ass = (k1 + p1)

2 = (k2 + p2)
2, t = q2 = (p1 − p2)

2 = (k1 − k2)
2,

u = (k1 − p2)
2 = (k2 − p1)

2, ands + t + u = 0. In what follows, we will restrict ourselves
to the limit t = q2 → 0 of the above amplitudes, assuming that all external (on-shell) fermions
are massless. As a result of this special kinematic situation we have the following relations:
p2

1 = p2
2 = k2

1 = k2
2 = p1 · p2 = k1 · k2 = 0 andp1 · k1 = p1 · k2 = p2 · k1 = p2 · k2 = s/2. In the

center-of-mass system, we have thatt = −2EνE
′
ν(1 − x) ≤ 0, whereEν andE ′

ν are the ener-
gies of the neutrino before and after the scattering, respectively, andx ≡ cos θcm, whereθcm is
the scattering angle. Clearly, the conditiont = 0 corresponds to the exactly forward amplitude,
with θcm = 0, x = 1.

At tree-level the amplitudefν → fν is mediated by an off-shellZ-boson. At one-loop,
the relevant contributions are determined through the PT rearrangement of the amplitude, giv-
ing rise to gauge-independent subamplitudes. In particular, Π̂µν

AZ(q2) obtained is transverse, for
boththe fermionic and the bosonic contributions,i.e., Σ̂µν

AZ(q2) = (q2gµν − qµqν)Π̂AZ(q2), and
we only keep thegµν part of Π̂µν

ZZ(q2). The one-loop vertex̂Γµ
ZF F̄

(q, p1, p2), with F = f or
F = ν, satisfies a QED-like WI, relating it to the one-loop inversefermion propagatorŝΣF , i.e.,
qµΓ̂

µ
ZfF̄

(q, p1, p2) = Σ̂F (p1) − Σ̂F (p2). In the limit of q2 → 0, Γ̂µ
ZF F̄

∼ q2γµ(c1 + c2γ5); since
it is multiplied by a massiveZ boson propagator(q2 −MZ)−1, its contribution to the amplitude
vanishes whenq2 → 0. This is to be contrasted with thêΓµAνiν̄i

, which is accompanied by a
(1/q2) photon-propagator, thus giving rise to a contact interaction between the target-fermion
and the neutrino, described by the NCR.

In order to experimentally isolate from the amplitude the contribution due to the NCR, we first
eliminate the box-contributions. The basic observation isthat the tree-level amplitudesM(0)

νf ,

as well as the part of the one-loop amplitudeM(B)
νf consisting of the propagator and vertex

corrections (namely the “Born-improved” amplitude), are proportional to

[ūf(k2)γµ(vf + afγ5)uf(k1)][v̄(p1)γµPLv(p2)], (5.67)
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and therefore transform differently than the boxes under the replacementν → ν̄, since [128]

ū(p2)γµPLu(p1) → −v̄(p1)γµPLv(p2) = −ū(p2)γµPRu(p1). (5.68)

Thus, under the above transformation,M(0)
νf +M(B)

νf reverse sign once, whereas the box contri-
butions reverse sign twice. These distinct transformationproperties allow for the isolation of the
box contributions when the forward differential cross-sections(dσνf/dx)x=1 and(dσν̄f/dx)x=1

are appropriately combined. In particular, the combination

σ±
νf ≡ dσνf

dx

∣∣∣∣∣
x=1

± dσν̄f
dx

∣∣∣∣∣
x=1

(5.69)

either does not contain boxes (when choosing the plus sign),or precisely isolates the contribu-
tion of the boxes (when choosing the minus sign).

Finally, a detailed analysis shows that in the kinematic limit considered, the Bremsstrahlung
contribution vanishes, due to a completely destructive interference between the two relevant di-
agrams corresponding to the processesfAν(ν̄) → fν(ν̄) andfν(ν̄) → fAν(ν̄). The absence
of such corrections is consistent with the fact that there are no infrared divergent contributions
from the (vanishing) vertex̂Γµ

ZF F̄
, to be canceled against.

σ+
νf receives contributions from the tree-level exchange of aZ-boson, the one-loop contri-

butions from the ultraviolet divergent quantitiesΣ̂ZZ(0) and Π̂AZ(0), and the (finite) NCR,
coming from the proper vertex̂ΓµAνiν̄i

. The first three contributions are universal (i.e., common
to all neutrino species) whereas that of the proper vertexΓ̂µAνiν̄i

is flavor-dependent. After orga-

nizing the one-loop corrections ofσ(+)
νf in terms of the RG-invariant quantities̄RZ ands̄2

w(q2),
one may fixν = νµ, and then consider three different choices forf : (i) right-handed electrons,
eR; (ii ) left-handed electrons,eL, and (iii ) neutrinos,νi other thanνµ, i.e., i = e, τ . Thus, we
arrive at the system

σ+
νµνi

= sπR̄2(0),

σ+
νµ eR

= sπR̄2(0)s̄4
w(0) − 2λs2

w

〈
r2
νµ

〉
,

σ+
νµeL

= sπR̄2(0)
(

1

2
− s̄2

w(0)
)2

+ λ(1 − 2s2
w)
〈
r2
νµ

〉
, (5.70)

whereλ ≡ (2
√

2/3)sαGF . Now R̄2(0), s̄2
w(0), and

〈
r2
νµ

〉
are treated as three unknown quan-

tities, to be determined from the above algebraic equations. SubstitutingsπR̄2(0) → σ+
νµνi

into

the equations above, we arrive at a system which is linear in the unknown quantity
〈
r2
νµ

〉
, and

quadratic in̄s2
w(0). The corresponding solutions are given by

s̄2
w(0)= s2

w ± Ω1/2

〈
r2
νµ

〉
=λ−1

[(
s2
w − 1

4
± Ω1/2

)
σ+
νµνi

+ σ+
νµeL

− σ+
νµeR

]
, (5.71)
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where the discriminantΩ is given by

Ω = (1 − 2s2
w)

(
σ+
νµeR

σ+
νµ νi

− 1

2
s2
w

)
+ 2s2

w

σ+
νµeL

σ+
νµνi

(5.72)

and must satisfyΩ > 0. The actual sign in front ofΩ may be chosen by requiring that it cor-
rectly accounts for the sign of the shift ofs̄2

w(0) with respect tos2
w predicted by the theory [123].

To extract the experimental values of the quantitiesR̄2(0), s̄2
w(0), and

〈
r2
νµ

〉
, one must sub-

stitute in the above equations the experimentally measuredvalues for the differential cross-
sectionsσ+

νµeR
, σ+

νµeL
, andσ+

νµνi
. Thus, one would have to carry out three different pairs of

experiments.

5.2.4 Neutrino-Nuclear coherent scattering and the NCR

The above analysis establishes the observable nature of theNCR in terms of Gedanken-type
of experiments. In practice, however, one needs to resort toa more feasible procedure, even at
the expense of using as an input the theoretical SM values forcertain parts of the process (e.g.,
boxes).

One such proposal aims to extract the value of the NCR from thecoherent scatteringof a
neutrino against a heavy nucleus [129]. The notion of coherent nuclear scattering is well-known
from electron scattering. In the neutrino case it was developed in connection with the discovery
of weak neutral currents, with a component proportional to the number operator [130].

When a projectile (e.g., a neutrino) scatters elastically from a composite system (e.g., a nu-
cleus), the amplitudeF (p′,p) for scattering from an incoming momentump to an outgoing
momentump′ is given as the sum of the contributions from each constituent,

F (p′,p) =
A∑

j=1

fj(p
′,p)eiq·xj , (5.73)

whereq = p′ − p is the momentum transfer and the individual amplitudesfj(p
′,p) are added

with a relative phase-factor, determined by the corresponding wave function. The differential
cross-section is then

dσ

dΩ
= |F (p′,p)|2 =

A∑

j=1

|fj(p′,p)|2 +
i6=j∑

j,i

fi(p
′,p)f †

j (p
′,p)eiq·(xj−xi). (5.74)

In principle, due to the presence of the phase factors, majorcancellations may take place among
theA(A − 1) terms in the second (non-diagonal) sum. This happens forqR ≫ 1, whereR is
the size of the composite system, and the scattering would beincoherent. On the contrary, under
the condition thatqR ≪ 1, then all phase factors may be approximated by unity, and theterms
in (5.74) add coherently. If there were only one type of constituent, i.e., fj(p′,p) = f(p′,p)
for all j, then (5.74) would reduce to

dσ

dΩ
= A2 |f(p′,p)|2 (5.75)
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Evidently, in that case, thecoherentscattering cross-section would be enhanced by a factor of
A2 compared to that of a single constituent. In the realistic case of a nucleus withZ protons
andN neutrons, and assuming zero nuclear spin, the corresponding differential cross-section
reads [130]

dσ

dΩ
=

G2
F

4(2π)2
E2(1 + cos θ)

[
(1 − 4s2

w)Z −N
]2
, (5.76)

wheresw is the sine of the weak mixing angle,dΩ = dφd(cos θ), andθ is the scattering angle.
In such an experiment the relevant quantity to measure is thekinetic energy distribution of

the recoiling nucleus, which, in turn, may be directly related to the shift in the value ofs2
w

produced by the NCR. Specifically, the UV-finite contribution from the NCR may be absorbed
into an additional (flavor-dependent!) shift ofs̄2

w(q2). In fact, a detailed analysis based on the
methodology developed in [123], reveals that, in the kinematic range of interest, the numerical
impact ofR̄Z(q2) ands̄2

w(q2) is negligible,i.e., these quantities do not run appreciably. Instead,
the contribution from the NCR amounts to a correction of few percent tos2

w, given by an ex-
pression of the forms2

w −→ s2
w

(
1 − 2

3
M2

W

〈
r2
νi

〉)
[129]. The contributions of the boxes are of

the orderg4
W/M

2
W , and they may have to be subtracted out “by hand”. This type ofexperiment

has been proposed in order to observe the coherent elastic neutrino-nuclear scattering for the
first time, and it could also furnish the firstterrestrialmeasurement of the NCR.

Finally, it is interesting to mention that if one were to consider the differences in the cross-
sections between twodifferentneutrino species scattering coherently off the same nucleus, as
proposed by Sehgal long ago [131], one would eliminate all unwanted contributions, such as
boxes, thus measuring thedifferencebetween the two corresponding charge radii. Such a differ-
ence would contribute to a difference for the neutrino indexof refraction in nuclear matter [132].

5.3 Gauge-independent definition of electroweak parameters

The PT offers the possibility to define a set of electroweak parameters that are completely
gauge-independent. This is useful because one usually tends to place bounds on new physics
by comparing with the most sensitive electroweak parameters. Clearly, gauge artifacts may give
misleading information on the viability and relevance of possible extensions of the SM.

5.3.1 TheS, T , andU parameters

One of the most frequently used parametrizations of the leading contributions of electroweak
radiative corrections is in terms of theS, T , andU parameters [47]. The expressions for these
parameters are suitable combinations of self-energies (usually referred to also as “oblique cor-
rections”); in terms of the conventional SM self-energies they are given by
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α̂S =
4ĉ2ŝ2

M2
Z

ℜe
{
ΠZZ(M2

Z) − ΠZZ(0)

− ĉ2 − ŝ2

ĉŝ

[
ΠAZ(M2

Z) − ΠAZ(0)
]
− ΠAA(M2

Z)
}
,

α̂T =
ΠWW (0)

M2
W

− ĉ2

M2
W

[
ΠZZ(0) +

2ŝ

ĉ
ΠAZ(0)

]
,

α̂U = 4ŝ2ℜe
{

ΠWW (M2
W ) − ΠWW (0)

M2
W

− ĉ2
ΠZZ(M2

Z) − ΠZZ(0)

M2
Z

−2ĉŝ
ΠAZ(M2

Z) − ΠAZ(0)

M2
Z

− ŝ2ΠAA(M2
Z)

M2
Z

}
, (5.77)

whereΠWW , ΠZZ, ΠAZ , andΠAA are the cofactors ofgµν in theWW , ZZ, AZ, andAA self-
energies, respectively. TheMS valuesê2 ≡ ê2(MZ), ŝ2 ≡ sin2 θ̂w(MZ) are usually employed,
since they are considered well suited to describe physics attheMZ scale.

The main practical function of these parameters is to furnish constraints for models of new
physics; this is done by computing the contributions of the new physics to these parameters,
and then comparing them against the SM values. However, a serious problem arises already
at the level of the SM,i.e., before any new physics has been put in: the above expressions for
theS, T , andU arenot gfp-independent. Specifically, as was shown by Degrassi, Kniehl, and
Sirlin [133], they become infested with gauge-dependencies as soon as the one-loop SM bosonic
contributions are taken into account. In addition, these quantities are, in general, ultraviolet
divergent, unless one happens to work within a very special class of gauges, namely those
satisfying the relation

ξW = ĉ2ξZ + ŝ2ξA. (5.78)

The above shortcomings may be circumvented automatically if one defines theS, T , andU pa-
rameters through the corresponding gfp-independent PT self-energies,i.e., simply by replacing,
in Eqs (5.77), allΠs by the correspondinĝΠs. If one restricts oneself only to the contributions
within the SM (no new physics) one obtains the following relation between the conventional
and gfp-independent (hatted) quantities (note that the SM tadpoles cancel exactly)

α̂ŜSM = α̂SSM + 8ê2ĉ2[IWW (M2
Z) − IWW (0)],

α̂T̂SM = α̂TSM + 4ĝ2[ĉ2IZW (0) + ŝ2IAW (0) − IWW (0)],

α̂ÛSM = α̂USM + 16ê2
{
ĉ2 [IWW (0) − IZW (0)] + ŝ2[IWW (M2

Z) − IAW (0)]
}
, (5.79)

where

Iij(q
2) = i

∫

k

1

(k2 −M2
i )[(k + q)2 −M2

j ]
. (5.80)

Note that, sincêΠAZ(0) = 0, we have that

α̂T̂SM =
Π̂WW (0)

M2
W

− Π̂ZZ(0)

M2
Z

; (5.81)
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thus,α̂T̂SM serves as the gfp-independent definition of the universal part of theρ parameter at
one loop (see next topic).

It goes without saying that the additional contributions tothe Ŝ, T̂ , andÛ parameters from
new physics must also be cast in a PT form (unless they involveonly fermion loops). Thus,
contributions to the self-energies from new gauge bosons (such as,e.g., the Kaluza-Klein modes
in models with universal extra dimensions [134–136]) must undergo the PT rearrangement, and
be written in the formΠ̂NP; for some recent applications of this methodology in various SM
extensions, see,e.g., [137–142].

5.3.2 The universal part of theρ parameter beyond one loop

Theρ parameter [143] is defined as the ratio of the relative strength between neutral and charged
current interactions, at low momentum transfer, namely

ρ =
GNC(0)

GCC(0)
=

1

1 − ∆ρ
(5.82)

whereGNC andGCC are the corresponding full amplitudes, with all Feynman diagrams in-
cluded. Theρ parameter displays a strong dependence onmt and affects most electroweak
parameters such as∆r, MW , andsin2 θeff(MZ). Theρ parameter defined above as the ratio of
two amplitudes is a gauge independent and finite quantity. Inaddition, it is manifestly process
dependent, since its value depends on the quantum numbers ofthe external particles chosen.
To fully determine the value ofρ for a given neutral and charged process, one must compute
the complete set of Feynman diagrams (self-energy, vertex,and box graphs) to a given order in
perturbation theory. However, traditionally one focuses instead on the quantity∆un , defined in
terms of the subset of Feynman diagrams containing only the gauge-boson self-energies,i.e.,

∆un =
ΠWW (0)

M2
W

− ΠZZ(0) + (2sw/cw)ΠAZ(0)

M2
Z

. (5.83)

The quantity∆un is meant to capture the ”universal” (i.e., process-independent) part ofρ,
since, by definition, it does not depend on the details of the process. According to the stan-
dard lore [144–147],∆un contains the dominant contributions toρ.

From Eq. (5.77) we see that, at one-loop,∆un = α̂TSM. Given the discussion of the previous
subsection, the problematic nature of this identification,as well as its one-loop remedy, should
be clear by now. Specifically, the leading one-loopmt contributions (of orderGµm

2
t ) to ∆un are

trivially gauge-independent (since the gfp does not appearin the fermion loop), and UV finite.
On the other hand, the one-loop bosonic contributions (subleading inm2

t , of orderg2m0
t ) to

∆un are gauge-dependent and, except when formulated within a restricted class of gauges given
in Eq. (5.78), UV divergent. The remedy is, of course, to use,instead, the definition appearing
on the rhs of Eq. (5.81).

As one may imagine, things do not get any better at two-loops.Thus, if one attempts to use
Eq. (5.83) at two loops (a dubious proposition, given that itdoes not even work at one loop)
one encounters more problems (compounded by the book-keeping complications typical of the
two loops) [148,149]. In particular, the leading two-loop contributions (of orderG2

µm
4
t ) to ∆un

128



are also gauge-independent and UV finite, exactly as their one-loop counterparts. On the other
hand, subleading two-loopmt contributions (of orderG2

µm
2
tM

2
Z) areξ-dependent in the context

of theRξ gauges. In addition, even when computed in the Feynman gauge(ξW = ξZ = 1),
which satisfies the (one-loop) relation of (5.78), the answer turns out to be UV divergent.

In order to understand the origin of the problems associatedwith the subleading contribu-
tions, one should first establish the mechanism that enforces the good behavior of the lead-
ing contributions– in particular their UV finiteness [150].If we denote the leading (fermionic)
contributions (both at one and two loops) to theWW andZZ self-energies byΠ(ℓ)µν

WW (q) and
Π

(ℓ)µν
ZZ (q), respectively (the labelℓ stands for “leading”), and use the important fact that

Π
(ℓ)
AZ(0) = 0, (5.84)

(valid for fermionic contributions only!) we can write for∆(ℓ)
un

∆(ℓ)
un =

Π
(ℓ)
WW (0)

M2
W

− Π
(ℓ)
ZZ(0)

M2
Z

. (5.85)

The finiteness of∆(ℓ)
un may be established as follows. TheWW andZZ self-energies appear-

ing in this problem, denoted byΠµν
ii (q) (i = W,Z) may be written in the form

Πµν
ii (q) = Πii(q

2)gµν + ΠL
ii(q

2)qµqν , (5.86)

and the dimensionality ofΠii(q
2) will be saturated either byq2 or by the masses appearing in

the theory, the latter being all proportional to the valuev of the vev. Thus, we have

Πii(q
2) = v2Π1 ii(q

2) + q2Π2 ii(q
2), (5.87)

and therefore
Πii(0) = v2Π1 ii(0). (5.88)

Then it is elementary to establish that

Πii(0) =
d

dq2

{
qµqνΠ

µν
ii (q2)

}∣∣∣∣∣
q2=0

. (5.89)

Next, combine this last result with the WIs (valid only for the fermionic loops, and, in particular,
the leading contributions containing top-quark loops)

qµqνΠ
WW
(ℓ)µν(q)=M2

WΠ
(ℓ)
φφ(q

2), (5.90)

qµqνΠ
(ℓ)µν
ZZ (q)=M2

ZΠ(ℓ)
χχ(q

2),

whereΠ
(ℓ)
φφ andΠ(ℓ)

χχ are the leading contributions of theφφ andχχ self-energies, respectively.
We may then write∆(ℓ)

un of Eq. (5.85) as

∆(ℓ)
un =

d

dq2

{
Π

(ℓ)
φφ(q

2) − Π(ℓ)
χχ(q

2)
}∣∣∣∣∣
q2=0

. (5.91)
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The final ingredient that enforces the finiteness of∆(ℓ)
un is the equality of the divergent parts

of Π
(ℓ)
φφ(q

2) andΠ(ℓ)
χχ(q

2), reflected in the corresponding equality

Z
(ℓ)
φφ = Z(ℓ)

χχ, (5.92)

between the wave-function renormalization constants.
Notice, however, that the crucial relations (5.84), (5.91), and (5.92) are not longer valid when

one includes the bosonic (subleading) parts ofΠµν
WW (q) andΠµν

ZZ(q) in the framework of theRξ

gauges. Consequently, since the mechanism enforcing the finiteness does not operate any more,
the resulting expressions do not have to be UV finite, and indeed, as an explicit calculation
showed, they are not.

The easy way out of these complications would be to abandon the notion of a ”universal”
part ofρ, and adopt the conservative point of view that the entire process must be considered
in order to restore the finiteness and gauge-independence ofthe final answer. In that case, one
would introduce vertex and box corrections, which would render the result gauge-independent
and finite, at the expense of making it process-dependent, and therefore non-universal.

Of course, as the reader must have realized by now, this unpleasant trade-off between gauge-
independence and process-independence is completely artificial, and can be easily avoided by
defining∆̂un beyond one loop in terms of the physical PT self-energies, namely [150]

∆̂un =
Π̂WW (0)

M2
W

− Π̂ZZ(0)

M2
Z

, (5.93)

i.e., use exactly the same definition [viz. (5.81)] as at one loop! Indeed, all PT self-energies are
gauge-independent, and due to the Abelian WIs they satisfy,for both fermionic and bosonic
contributions, all aforementioned conditions enforcing the finiteness of∆(ℓ)

un , and in particular
(5.84), (5.91), and (5.92) are validboth for leading and subleadingcontributions. Evidently, the
PT restores the mechanism for the cancellation of the UV divergences, and guarantees at the
same time the gauge- and process-independence of the final answer.

Thus the∆̂un defined in (5.93) in terms of the PT self-energies constitutes the natural exten-
sion of the universal part of theρ-parameter, that can accommodate consistently both leading
and subleading contributions, at one and two loops.∆̂un is endowed with three crucial prop-
erties; it is (i) independent of the gfp, (ii ) UV finite, and (iii ) process-independent (universal).
In addition to the above important conceptual advantages, the calculation of∆̂un is facilitated
enormously from the fact that no vertex or box diagrams need to be calculated, since the terms
that restore the good properties are all propagator-like. Therefore, the answer can be expressed
in a closed analytic form up to two loops. The actual calculation of the two-loop subleading
corrections of orderG2

µm
2
tM

2
Z was carried out in the typical limit ofs2

w = 0, whereMZ = MW

(custodial symmetry restored). It turned out that their relative size is about 25% with respect to
the leading ones [150]; this result is in complete agreementwith naive expectations, given that
the expansion parameter employed isM2

W/m
2
t ≈ 1/4.
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5.4 Self-consistent resummation formalism for resonant transition amplitudes

The physics of unstable particles and the computation of resonant transition amplitudes has
attracted significant attention in recent years, because itis both phenomenologically relevant
and theoretically challenging. The practical interest in the problem is related to the resonant
production of various particles in all sorts of accelerators, most notably LEPI and LEP2 in the
past, the TEVATRON at present, and, of course, the LHC in the very near future. From the
theoretical point of view, the issue comes up every time fundamental resonances,i.e., unstable
particles that appear as basic degrees of freedom in the original Lagrangian of the theory (as
opposed to composite bound-states), can be produced resonantly. The presence of such funda-
mental resonances makes it impossible to compute physical amplitudes for arbitrary values of
the kinematic parameters, unless a resummation has taken place first. Simply stated, perturba-
tion theory breaks down in the vicinity of resonances, and information about the dynamics to
“all orders” needs be encoded already at the level of Born amplitudes. The difficulty arises from
the fact that in the context of non-Abelian gauge theories the standard Breit-Wigner resumma-
tion used for regulating physical amplitudes near resonances is at odds with gauge invariance,
unitarity, and the equivalence theorem [151–153]. Consequently, the resulting Born-improved
amplitudes, in general, fail to capture faithfully the underlying dynamics.

Whereas the need for a resummed propagator is evident when dealing with unstable particles
within the framework of theS-matrix perturbation theory, its incorporation to the amplitude of a
resonant process is non-trivial. When this incorporation is done naively (e.g., by simply replac-
ing the bare propagators of a tree-level amplitude by resummed propagators) one is often unable
to satisfy basic field theoretical requirements, such as thegfp-independence of the resultingS-
matrix element, theU(1)em symmetry, high-energy unitarity, and the OT. This fact is perhaps
not so surprising, since the naive resummation of the self-energy graphs takes into account
higher order corrections, foronly certain parts of the tree-level amplitude. Indeed, resumming
the conventional two-point function of a gauge boson in order to construct a Breit-Wigner type
of propagator does not include properly crucial contributions originating from box and vertex
diagrams. Even though the amplitude possesses all the desired properties, this unequal treatment
of its parts distorts subtle cancellations, resulting in numerous pathologies, that are artifacts of
the resummations method used. It is therefore important to devise a self-consistent calculational
scheme, whichmanifestlypreserves the aforementioned field theoretical properties, intrinsic to
everyS-matrix element. In what follows we will briefly review how this is accomplished using
the PT; the presentation is almost exclusively based on a series of articles written on the subject
by A. Pilaftsis and one of the authors [23,72,74–76].

5.4.1 The Breit-Wigner Ansatz and the Dyson summation

The mathematical expressions for computing transition amplitudes are ill-defined in the vicinity
of resonances, because the tree-level propagator of the particle mediating the interaction (i.e.,
∆ = (s −M2)−1), becomes singular as the center-of-mass energy approaches the mass of the
resonance,i.e., as

√
s ∼ M . The standard way for regulating this physical kinematic singu-

larity is to use a Breit-Wigner type of propagator; thus, near the resonance, one carries out the
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substitution

1

s−M2
−→ 1

s−M2 + iMΓ
, (5.94)

whereΓ is the width of the unstable (resonating) particle. The presence of theiMΓ in the
denominator prevents the amplitude from being divergent, even at the physical resonance,i.e.,
whens = M2.

This physically motivated Breit-Wigner Ansatz may seem unjustified at first, considering
the fact that the width of the particle is a parameter that does not appear in the fundamental
Lagrangian density defining the theory; indeed, such a term would violate immediately the
hermiticity ofL, thus producing all sorts of complications. The actual field-theoretic mechanism
that justifies a replacement similar to that of (5.94) is the Dyson resummation of the self-energy
Π(s) of the unstable particle. This bubble resummation amounts to the rigorous substitution

1

s−M2
−→ 1

s−M2 + Π(s)
. (5.95)

The running width of the particle is then defined asMΓ(s) = ℑmΠ(s), whereas the usual (on-
shell) width is simply its value ats = M2; thus, (5.94) is a special case of (5.95).

It is relatively easy to realize now that the Breit-Wigner procedure, as described above, is
tantamount to a reorganization of the perturbative series.Indeed, resumming the self-energy
Π(s) amounts to removing a particular piece from each order of theperturbative expansion,
since, from all the Feynman graphs contributing to a given ordern we only pick the part that
contains the corresponding string of self-energy bubblesΠ(s), and then taken → ∞. Notice,
however, that the off-shell Green’s functions contributing to a physical quantity, at any finite
order of the conventional perturbative expansion, participate in a subtle cancellation, which
eliminates all unphysical terms. Therefore, the act of resummation, which treats unequally the
various Green’s functions, is in general liable to distort these cancellations. To put it differently,
if Π(s) contains unphysical contributions (which would eventually cancel against other terms
within a given order), resumming it naively would mean that these unphysical contributions
have also undergone infinite summation (they now appear in the denominator of the propagator
∆(s)). In order to remove them, one would have to add the remainingperturbative pieces to an
infinite order, clearly an impossible task, since the latter(boxes and vertices) do not constitute a
resumable set. Thus, if the resumedΠ(s) happened to contain such unphysical terms, one would
finally arrive at predictions for the physical amplitude close to the resonance which would be
plagued with unphysical artifacts. It turns out that, whilein scalar field theoriesΠ(s) does not
contain such unphysical contributions, this ceases to be true in the case of non-Abelian gauge
theories. The crucial novelty introduced by the PT is that the resummation of the (physical)
self-energy graphs must take place onlyafter the amplitude of interest has been cast via the
PT algorithm into manifestly physical subamplitudes, withdistinct kinematic properties, order
by order in perturbation theory. Put in the language employed earlier, the PT ensures that all
unphysical contributions contained insideΠ(s) have been identified and properly discarded,
beforeΠ(s) undergoes resummation.
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Fig. 44. The amplitude for the processf f̄ → ZZ. The s-channel graph (a) may become resonant, and
must be regulated by appropriate resummation of the Higgs propagator and dressing of theHZZ vertex

5.4.2 The non-Abelian setting

We now turn to the case of a non-Abelian gauge theory, such as the electroweak sector of the
SM. As has been discussed extensively in the relevant literature, the physical requirements that
must be encoded into a properly regulated resonant amplitude are the following [23,72,74–76]:

i. The resonant amplitude must be gfp-independent.

ii . Unitarity (OT) and analyticity (dispersion relations) must hold.

iii . The position of the pole must be unchanged.

iv. The external gauge-invariance must remain intact.

v. The equivalence theorem must be satisfied.

vi. The resonant amplitude must be invariant under the renormalization group.

vii. The amplitude must display good asymptotic (high-energy)behavior.

Note that if all incoming and outgoing particles are fermions then points (iv) and (v) do not
enter into the discussion.

In order to fully appreciate the subtle interplay between all these issues, let us consider a
concrete example that has sufficient structure for all the above points to make their appearance.
Specifically, we study the processf(p1)f̄(p2) → Z(k1)Z(k2), shown in Fig. 44, ands =
(p1 + p2)

2 = (k1 + k2)
2 is the c.m. energy squared. The tree-level amplitude of thisprocess is

the sum of ans- and at- channel contribution, denoted byTs andTt, respectively, given by

T µν
s =ΓµνHZZ∆H(s) v̄(p2)ΓHff̄u(p1),

T µν
t = v̄(p2)

[
ΓνZff̄S

(0)(/p1
+ /k1)Γ

µ
Zff̄

+ Γµ
Zff̄

S(0)(/p1
+ /k2)Γ

ν
Zff̄

]
u(p1), (5.96)
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where

ΓµνHZZ = igw
M2

Z

MW
gµν , ΓHff̄ = −igw

mf

2MW
, Γµ

Zff̄
= −igw

cw
γµ (T fz PL−Qfs

2
w), (5.97)

are the tree-levelHZZ,Hff̄ andZff̄ couplings, respectively.
Obviously thes-channel contribution is mediated by the Higgs boson of massMH and be-

comes resonant if the kinematics are such that
√
s lies in the vicinity ofMH ; in that case the

resonant amplitude must be properly regulated, as explained earlier. As we will see in detail
in what follows, the minimal way for accomplishing this is by: (i) Dyson-resumming the one-
loop PT self-energy of the (resonating) Higgs boson, and (ii) by appropriately “dressing” the
tree-level vertexΓµνHZZ, i.e., by replacing in the amplitude the vertexΓµνHZZ by the one-loop PT
vertexΓ̂µνHZZ.

i. gfp-independence

Let us first see what happens if one attempts to regulate the resonant amplitude by means
of the conventional one-loop Higgs self-energy in theRξ gauges. A straightforward calculation
yields (tadpole and seagull terms omitted) [75,76]:

Π
(WW )
HH (s, ξW )=

αw
4π

[(
s2

4M2
W

− s+ 3M2
W

)
B0(s,M

2
W ,M

2
W )

+
M4

H − s2

4M2
W

B0(s, ξWM
2
W , ξWM

2
W )

]
. (5.98)

We see that forξW 6= 1 the term growing ass2 survives and is proportional to the differ-
enceB0(s,M

2
W ,M

2
W ) − B0(s, ξWM

2
W , ξWM

2
W ). For any finite value ofξW this term vanishes

for sufficiently larges, i.e., s ≫ M2
W ands ≫ ξWM

2
W . Therefore, the quantity in Eq. (5.98)

displays good high energy behavior in compliance with high energy unitarity. Notice, however,
that the onset of this good behavior depends crucially on thechoice ofξW . SinceξW is a free
parameter, and may be chosen to be arbitrarily large, but finite, the restoration of unitarity may
be arbitrarily delayed as well. This fact poses no problem aslong as one is restricted to the com-
putation of physical amplitudes at a finite order in perturbation theory. However, if the above
self-energy were to be resummed in order to regulate resonant transition amplitudes, it would
lead to an artificial delay of unitarity restoration, which becomes numerically significant for
large values ofξW . In addition, a serious pathology occurs for any value ofξW 6= 1, namely
the appearance of unphysical thresholds [23,74,72]. Such thresholds may be particularly mis-
leading ifξW is chosen in the vicinity of unity, giving rise to distortions in the lineshape of the
unstable particle.

How does the situation change if instead we compute the corresponding part of the Higgs-
boson self-energy in the BFM, for anarbitrary value ofξQ? Denoting it byΠ̃HH

(WW )(s, ξQ), and
using the appropriate set of Feynman rules [95], we obtain
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Π̃
(WW )
HH (s, ξQ) =

αw
4π

[(
s2

4M2
W

− s+ 3M2
W

)
B0(s,M

2
W ,M

2
W )

+
M4

H − s2

4M2
W

B0(s, ξQM
2
W , ξQM

2
W )

]

− αw
4π
ξQ(s−M2

H)B0(s, ξQM
2
W , ξQM

2
W ), (5.99)

or simply

Π̃
(WW )
HH (s, ξQ) = ΠHH(s, ξW → ξQ) − αw

4π
ξQ(s−M2

H)B0(s, ξQM
2
W , ξQM

2
W ) (5.100)

Evidently, away fromξQ = 1, Π̃
(WW )
HH (s, ξQ) displays the same unphysical characteristics men-

tioned above forΠ(WW )
HH (s, ξW ) ! Therefore, when it comes to the study of resonant amplitudes,

calculating in the BFM for generalξQ is as pathological as calculating in the conventionalRξ

gauges.
To solve these problems one has to simply follow the PT procedure, within either gauge-

fixing scheme,Rξ or BFM, identify the corresponding Higgs-boson related pinch parts from
the vertex and box diagrams, and add them to (5.98) or (5.99).Then a unique answer emerges,
the PT one-loop Higgs boson self-energy, given byΠ̂HH(q2),

Π̂
(WW )
HH (s) =

αw
16π

M4
H

M2
W

[
1 + 4

M2
W

M2
H

− 4
M2

W

M4
H

(2s− 3M2
W )

]
B0(s,M

2
W ,M

2
W ). (5.101)

SettingξQ = 1 in the expression of Eq. (5.99), we recover the full PT answerof Eq. (5.101), as
expected. Clearly,̂ΠHH

(WW )(s) has none of the pathologies observed above.
At this point one may wonder why not use simply theRξ expression forΠHH(s, ξW ) at

ξW = 1, given that it too becomes free of the aforementioned problems. The answer is that if
the external particles are gauge bosons then the vertices connecting them with the resonating
Higgs boson will not satisfy an Abelian WI, but rather an STI,and this, in turn, will make it
impossible to satisfy the external gauge invariance [see also subsection (iv)].

Exactly the same arguments presented above hold for the partof the Higgs self-energy con-
taining theZ-bosons, together with the associated would-be Golstone bosons and ghosts. The
corresponding one-loop PT result reads

Π̂
(ZZ)
HH (s) =

αw
32π

M4
H

M2
W

[
1 + 4

M2
Z

M2
H

− 4
M2

Z

M4
H

(2s− 3M2
Z)

]
B0(s,M

2
Z ,M

2
Z). (5.102)

ii . Running width and the optical theorem.

When the kinematic singularity of the resonant amplitude isregulated through the resum-
mation of the self-energy of the resonating particle, then,in the Breit-Wigner language, one
obtains automatically a running (s-dependent) width. The main reason why as-dependent in-
stead of a constant width must be used comes from the OT. To appreciate this in a simpler
context, we consider a toy model [22], with interaction LagrangianLint = λ

2
φ2Φ, and assume
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thatMΦ > 2Mφ, so that the decay ofΦ into a pair ofφs is kinematically allowed. For concrete-
ness, let us consider the reactionφφ→ Φ∗(s) → φφ at c.m.s. energiess ≃M2

Φ. There are three
relevant graphs, one resonants-channel graph, and two non-resonantt andu graphs. We next
focus on the resonant channel,Tres(s), and carry out the Dyson summation of the (irreducible)
ΦΦ self-energy, to be denoted byΠ(s), obtaining for the transition amplitude

Tres(s) = − λ2

s−M2
Φ + ℜeΠ(s) + iℑmΠ(s)

. (5.103)

For the case at hand the OT states that

ℑmTres(s) =
1

2

∫
(dPS)φφ |Ts(s)|2 ; (5.104)

on the other hand, the lhs of Eq. (5.104) is given simply by theimaginary part of Eq. (5.103),
namely

ℑmTres(s) =
λ2ℑmΠ(s)

[s−M2
Φ + ℜeΠ(s)]

2
+ [ℑmΠ(s)]2

. (5.105)

Eq. (5.104) is consistent with Eq. (5.105) in a perturbativesense; if one is suffuciently away
from the resonance, such that the perturbative expansion makes sense, then Eq. (5.105) ex-
panded to first order reproduces Eq. (5.104). Notice, however, that this becomes possibleonly
when the resummation involves ans-dependent two-point function and width for the unstable
scalarΦ. If a constant width forΦ had been considered instead, unitarity would have been vio-
lated,i.e., Eq. (5.105) would not go over to Eq. (5.104), whens 6= M2

Φ.
It is therefore evident that the regulator of a resummed propagator in a scalar theory should

bes-dependent. Needless to say, a similar situation occurs if one attempts to use a constant pole
expansion in the context of a gauge field theory; indeed, it would be unrealistic to expect that
one could consistently describe gauge theories using a resummation procedure that is defective
even for scalar theories. The reorganization of the perturbative expansion implemented by the
PT and, in particular the resummation of the PT self-energies, strictly enforces the required uni-
tarity relations. The reason for this is that the PT self-energies satisfy the OTindividually, as
explained in Sections 2 and 4.

To verify that Π̂(ZZ)
HH (s) has indeed this property, in complete analogy to the methodology

developed in sections I and III, we must turn to the tree-level version of the process shown in
Fig. 44, [no dressing for graph(a)], and study the quantity

M = [T µν
s + T µν

t ]Lµρ(k1)Lνσ(k2)[T ρσ
s + T ρσ

t ]∗, (5.106)

where thes-channel contribution comes from graph (a) and thet-channel from graphs (b) and
(c). Lµν(k) is the usual polarization tensor introduced in Eq. (4.60). Then we must use the
longitudinal momenta coming fromLµρ(k1) andLνσ(k2) to extract fromT µν

t the effectively
s-dependent, Higgs-boson mediated, part, to be denoted byT P

s (see Fig. 45) Specifically,

k1µk2ν

M2
Z

T µν
t = T P

s + · · · = − igw
2MW

v̄(p2)ΓHff̄u(p1) + · · · , (5.107)

where the ellipses denote genuinet-channel (not Higgs-boson related) contributions. Then, one
must append the pieceT P

s T P∗
s to the “naive” Higgs-dependent partT µν

s Lµρ(k1)Lνσ(k2)T ρσ
s .
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Fig. 45. The Higgs-boson related contribution extracted from the boxes through pinching; to get it we
must contract with both momenta.

Integrating the expression obtained in Eq. (5.107) over thetwo-body phase space of twoZ
bosons we finally arrive at the imaginary part of Eq. (5.102),which is the announced result. A
completely analogous procedure must be applied to the processf(p1)f̄(p2) →W+(k1)W

−(k2),
in order to verify that thêΠ(WW )

HH (s) of Eq. (5.101) has the same property.

iii . Position of the pole

Since the position of the pole is the only gauge-invariant quantity that one can extract from
conventional self-energies, any acceptable resummation procedure should give rise to effective
self-energies that do not shift the position of the pole. This requirement is rather stringent and
constrains significantly any alternative resummation procedure. It is a non-trivial exercise to
demonstrate that, indeed, the PT self-energies do not shiftthe position of the pole. The easi-
est way to see that at one-loop is by noticing that the pinch terms are always proportional to
(q2 − M2), and therefore vanish at the pole. The all-order demonstration becomes far more
involved, and relies on a careful construction, where the contributions coming from the 1PR
diagrams must be properly taken into account.

Let us mention in passing that an early attempt towards a self-consistent resummation scheme
has been based on the observation that the position of the complex pole is a gauge independent
quantity [154–157,109,110]. Exploiting this fundamentalproperty of theS-matrix, a pertur-
bative approach in terms of three gauge invariant quantities has been proposed: the constant
complex pole position of the resonant amplitude, the residue of the pole, and as-dependent
non-resonant background term. Even though this approach, which finally boils down to a Lau-
rent series expansion of the resonant transition element [155–157], furnishes a gauge invariant
result, it clashes with point (ii ) above: the use of a constant instead of a running width leads
to the violation of the OT. The perturbative treatment of these three gfp-independent quanti-
ties [158] introduces unavoidably residual space-like threshold terms, which become more ap-
parent in CP-violating scenarios of new-physics [108]. In fact, the preciseq2-dependent shape
of a resonance [109,110] is reproduced, to a given loop order, by considering quantum correc-
tions to the three gfp-independent quantities mentioned above [155–158], while the space-like
threshold contributions, even though shifted to higher orders, do not disappear completely.

iv. External gauge-invariance

As is well-known already from the studies of QED, gauge-invariance imposes WIs on physi-
cal amplitudes. Let us consider a physical (on-shell) amplitude with n incoming photons
Aµi(ki), i = 1, . . . , n [n must be even, otherwise the amplitude vanishes by Furry’s theorem].
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Fig. 46. The processγe− → µ−ν̄µνe appropriately dressed.

Denoting the amplitude byTµ1µ2...µi...µn
(k1, k2, . . . , ki, . . . , kn, p), wherep stands collectively

for the momenta of the incoming fermions, gauge invariance imposes the relation

kµi

i Tµ1µ2···µi···µn
(k1, k2, . . . , ki, . . . , kn, p) = 0, (5.108)

for everyi. This result is valid to all orders in perturbation theory aswell as non-perturbatively.
In non-Abelian theories without tree-level symmetry breaking, such as QCD, the result men-
tioned above holds unchanged for the corresponding gauge bosons mediating the interaction
(gluons). In the case of QCD such an example is given in Eqs (2.142); note that the rhs of these
equations vanish when contracted with the corresponding (on-shell) polarization tensors. In the
case of non-Abelian theories with spontaneous symmetry breaking (electroweak sector), the
above result gets, in general, modified by symmetry breakingeffects. When the amplitude is
contracted by the momentum carried by a massive gauge boson (W or Z), the result does not
vanish up to terms related to the would-be Goldstone bosons and the corresponding gauge boson
masses. However, for the particular case of the photons,i.e., the gauge boson corresponding to
the unbrokenU(1)em, the vanishing of the contracted amplitude persists (no mass nor would-be
Goldstone boson associated with the photon).

The way the fundamental property of Eq. (5.108) is realized diagrammatically at tree-level
is through a number of delicate cancellations triggered by the elementary Abelian WIs satis-
fied by the bare photonic vertices. Beyond tree-level, to anyfinite order in perturbation theory,
Eq. (5.108) is still valid. However, its diagrammatic demonstration is more involved, due to
the proliferation of graphs and the fact that, in a non-Abelian context, the quantum corrections
(concretely, the bosonic loops) to the conventional photonic vertex introduce new terms that
convert the simple tree-level WI into a more complicated STI. Nonetheless, at the conceptual
level, the situation is straightforward; all one has to do iscontract with the relevant momentum
all Feynman diagrams contributing to the amplitude in that order, and sum up the terms: the
various contributions conspire in such a way as to enforce Eq. (5.108). The PT rearrangement
of the amplitude facilitates the demonstration, for one thing because it restores the simple tree-
level WIs to higher orders, but, strictly speaking, is not necessary.

The PT becomes indispensable, however, when one attempts tomaintain Eq. (5.108) near the
resonance. Let us imagine that the kinematic configuration is such that a part of the amplitude
becomes resonant and must be regulated through appropriateresummation of some of its parts.
Since the Dyson resummation is not a fixed order calculation,it leads, in general, to the dis-
tortion of the cancellations enforcing the validity of Eq. (5.108) at any finite order. Moreover,
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near resonance a great number of graphs become numerically subleading (box diagrams are not
resonant, etc), and the tendency is to omit them, even though, away from the resonance, when
fixed order perturbation theory works, their inclusion is necessary for Eq. (5.108) to be valid.
Evidently, the fixed-order wisdom does not carry over easilyto the resonant case. The question
that arises naturally, therefore, is under what conditionsthe resummed amplitude will be still
gauge-invariant,i.e., it will satisfy the crucial Eq. (5.108). To put it differently, what is themin-
imum number of graphsthat must be kept, and what is theminimum amount of “dressing”they
must undergo, in order to maintain Eq. (5.108) in the vicinity of a resonance?

Let us focus on the concrete example of the processγe− → µ−ν̄µνe, shown in Fig. 46 (recall
that Furry’s theorem does not apply in non-Abelian theories). We assume, for simplicity, that
the external fermions are all massless, and therefore we keep only thegµν parts of the propaga-
tors involved. At tree-level, and away from the resonance, it is elementary to demonstrate that
the amplitudeT (0)

α satisfies

qαT (0)
α = 0. (5.109)

To that end, one must employ the the WI satisfied byAe+e− andAµ+µ−, i.e., Eq. (2.41),
together with the elementary WI of the tree-levelAW+W− vertex, namely (q + p− + p+ = 0)

qαΓ
αµν
AWW = (p2

− −M2
W )gµν − (p2

+ −M2
W )gµν , (5.110)

where we have omitted longitudinal momenta, since they vanish when contracted with the con-
served currents.

It is clear that the negatively chargedW (carrying momentump−) in graphs (a) may become
resonant, in which case the tree-level expression for its propagator must be regulated. It is im-
portant to notice, however, that if one were to simply replace, by hand, the tree-level propagator
by a Dyson-resummed one, with no further modifications, one would violate (5.110) and, as a
consequence, also (5.109). In order to maintain (5.110) onemust:

i. Replace inall three graphsthe tree-levelW propagators by the (one-loop) Dyson-resummed
PT propagatorŝ∆µν

W (p±),

∆̂µν
W (p±) =

−igµν
p2
± −M2

W + Π̂WW (p2
±)

; (5.111)

ii . Add to the tree-level vertexΓαµνAWW of graph (a) the one-loop PT vertex̂ΓαµνAWW , satisfying
the WI

qαΓ̂
αµν
AWW = Π̂µν

WW (p−) − Π̂µν
WW (p+). (5.112)

Thus, one arrives at the following resonant transition amplitude,

T̂ αres =ΓWeνe
∆̂W (p+)

[
ΓαAWW + Γ̂αAWW

]
∆̂W (p−)ΓWµνµ

+ΓWeνeS(0)
e ΓαAee∆̂W (p−)ΓWµνµ

+ ΓWeνe
∆̂W (p+)ΓαAµµS

(0)
µ ΓWµνµ

, (5.113)
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where contraction over all Lorentz indices except of the photonic one is implied.
Then, since by virtue of (5.112) we have that

qα
[
ΓαµνAWW + Γ̂αµνAWW

]
= ∆̂−1

W (p−)gµν − ∆̂−1
W (p+)gµν , (5.114)

namely the generalization of Eq. (5.110), it is straightforward to verify that theU(1)em gauge
invariance of this resonant process is maintained,i.e., that

qαT̂
α
res = 0. (5.115)

v. Equivalence theorem

The equivalence theorem states that at very high energies (s ≫ M2
Z) the amplitude for emis-

sion or absorption of a longitudinally polarized gauge boson becomes equal to the amplitude
in which the gauge boson is replaced by the corresponding would-be Goldstone boson [151–
153,159]. The above statement is a consequence of the underlying local gauge invariance of the
SM, and has been known to hold to all orders in perturbation theory for multiple absorptions
and emissions of massive vector bosons. Compliance with this theorem is a necessary require-
ment for any resummation algorithm, since any Born-improved amplitude which fails to satisfy
it is bound to be missing important physical information. The reason why most resummation
methods are at odds with the equivalence theorem is that, in the usual diagrammatic analysis,
the underlying symmetry of the amplitudes is not manifest. Just as happens in the case of the
OT, the conventional subamplitudes, defined in terms of Feynman diagrams, donot satisfy the
equivalence theorem individually. The resummation of sucha subamplitude will, in turn, distort
several subtle cancellations, thus giving rise to artifacts and unphysical effects. Instead, the PT
subamplitudes satisfy the equivalence theoremindividually; as usual, the only non-trivial step
for establishing this is the proper exploitation of elementary WIs.

To see an explicit example, let us return to the processf(p1)f̄(p2) → Z(k1)Z(k2). The
equivalence theorem states that the full amplitudeT = Ts + Tt satisfies

T (ZLZL) = −T (χχ) − iT (χz) − iT (zχ) + T (χχ), (5.116)

whereZL is the longitudinal component of theZ boson,χ is its associated would-be Goldstone
boson, andzµ(k) = εLµ(k) − kµ/MZ is the energetically suppressed part of the longitudinal
polarization vectorεLµ . It is crucial to observe, however, that already at the tree-level, the con-
ventionals- and t- channel subamplitudesTs andTt fail to satisfy the equivalence theorem
individually [75,76].

To verify that, one has to calculateTs(ZLZL), using explicit expressions for the longitudinal
polarization vectors, and check if the answer obtained is equal to the Higgs-boson mediated
s-channel part of the lhs of Eq. (5.116). In particular, in thecenter of mass (c.m.) system, we
have

zµ(k1) = εLµ(k1) −
k1µ

MZ

= −2MZ
k2µ

s
+ O

(
M4

Z

s2

)
, (5.117)
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and an exactly analogous expressions forzµ(k2). The residual vectorzµ(k) has the properties
kµzµ = −MZ andz2 = 0. After a straightforward calculation, we obtain

Ts(ZLZL) = −Ts(χχ) − iTs(zχ) − iTs(χz) + Ts(zz) − T P
s , (5.118)

where

Ts(χχ)= ΓHχχ∆H(s)v̄(p2)Γ
(0)

Hff̄
u(p1),

Ts(zχ) + Ts(χz) = [zµ(k1)Γ
µ
HZχ + zν(k2)Γ

ν
HχZ ]∆H(s)v̄(p2)ΓHff̄u(p1),

Ts(zz) = zµ(k1)zν(k2)T µν
s (ZZ), (5.119)

with ΓHχχ = −igwM2
H/(2MW ) andΓµHZχ = −gw(k1+2k2)µ/(2cw). Evidently, the presence of

the termT P
s preventsT H

s (ZLZL) from satisfying the equivalence theorem. This is, of course,
not surprising, given that an important Higgs-boson mediateds-channel part has been omitted.
Specifically, the momentakµ1 andkν2 , stemming from the leading parts of the longitudinal po-
larization vectorsεµL(k1) andενL(k2), extract such a term fromTt(ZLZL) (see Fig. 45). Just as
happens in Eq. (5.107), this term is preciselyT P

s , and must be added toTs(ZLZL), in order to
form a well-behaved amplitude at high energies. In other words, the amplitude

T̂s(ZLZL) = Ts(ZLZL) + T P
s (5.120)

satisfies the equivalence theorem by itself [see Eq. (5.116)].
In fact, this crucial property persistsafter resummation, provided that one follows the same

methodology for maintaining the external gauge-invariance, presented in the previous subsec-
tion. Indeed, as shown in Fig. 44(a), the resummed amplitude, to be denoted byT s(ZLZL), may
be constructed fromTs(ZLZL) in Eq. (5.96), if∆H(s) is replaced by the resummed Higgs-boson
propagator∆̂H(s), andΓµνHZZ by the expressionΓµνHZZ + Γ̂µνHZZ , whereΓ̂µνHZZ is the one-loop
HZZ vertex calculated within the PT. It is then straightforwardto show that the Higgs-mediated
amplitudeT̃s(ZLZL) = T s(ZLZL) + T P

s respects the equivalence theoremindividually; to that
end we only need to employ the following tree-level-type PT WIs

k2νΓ̂
µν
HZZ(q, k1, k2) + iMZ Γ̂µHZχ(q, k1, k2) =− gw

2cw
Π̂µ
Zχ(k1),

k1µΓ̂
µ
HZχ(q, k1, k2) + iMZ Γ̂Hχχ(q, k1, k2) =− gw

2cw

[
Π̂HH(q2) + Π̂χχ(k

2
2)
]
,

k1µk2νΓ̂
µν
HZZ(q, k1, k2) +M2

Z Γ̂Hχχ(q, k1, k2) =
igwM

2
Z

2cw

[
Π̂HH(q2) + Π̂χχ(k

2
1) + Π̂χχ(k

2
2)
]
,

(5.121)

whereΓ̂HZχµ andΓ̂Hχχ are the one-loop PTHZχ andHχχ vertices, respectively. In addition,
one should also make use of the PT WI involving theZχ- andχχ- self-energies, namely

kµΠ̂
µ
Zχ(k) = −iMZΠ̂χχ(k

2), (5.122)

which is the exact analogue of Eq. (4.115).
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vi. Renormalization group invariance

Physical quantities, such as scattering amplitudes, must be invariant under the RG,i.e., they
should not depend on the renormalization pointµ chosen to carry out the subtractions, nor the
renormalization scheme (MS, on-shell scheme, momentum subtraction, etc).

Let us consider, for concreteness, a two-to-two amplitude,mediated (at tree-level) by a gauge
boson (photon, gluon,W or Z). In QED the RG-invariance of such an amplitude is realized in
a very particular way. Due to the characteristic relations (5.5) and (5.6), the amplitude may be
decomposed in a unique way into three parts that are individually RG-invariant: (i) a universal
(process-independent) part, corresponding to the effective charge defined in (5.8), [expanded to
the given order], which is RG-invariant due to (5.6); (ii ) a process-dependent part composed by
the vertex corrections and the wave-function renormalization of the external particles, which is
RG-invariant due to (5.5); (iii ) a process-dependent part, coming from UV finite boxes; thisis
trivially RG-invariant, since it is UV finite and does not getrenormalized.

In non-Abelian theories the RG-invariance of scattering amplitudes is enforced order-by-
order in perturbation theory, regardless of the PT rearrangement, by virtue of equations such as
(5.3), which hold also in a non-Abelian context [but not (5.5) and (5.6)]. There is an important
difference, however, with respect to the QED case: while theentire amplitude is RG-invariant,
the identification of a universal part corresponding to an effective charge is no longer possible.
Since the PT rearrangement restores relations of the type (5.5) and (5.6), the three individually
RG-invariant quantities introduced above for QED can also be identified in a non-Abelian con-
text; in particular, non-Abelian effective charges constitute the universal part of the amplitude.

It should be clear from the above discussion, together with the analysis of the previous sub-
sections, that when resonant amplitudes are regulated following the PT procedure they are au-
tomatically RG-invariant. In fact, in the cases where the resonating particles areW ,Z, or Higgs
bosons, one can isolate a universal part, which, in turn, maybe identified with thelineshapeof
the corresponding particle.

vii. Good high energy behavior.

On physical grounds one expects that far from the resonance the Born-improved amplitude
must behave exactly as its tree-level counterpart; in fact,a self-consistent resummation formal-
ism should have this property built in,i.e., far from resonance one should recover the correct
high energy behaviorwithouthaving to re-expand the Born-improved amplitude perturbatively.
Recovering the correct asymptotic behavior is particularly tricky, however, when the final parti-
cles are gauge bosons. In order to accomplish this, in addition to the correct one-loop (running)
width, the appropriate one-loop vertex corrections must besupplemented; these vertex correc-
tions and the width must be related by a crucial tree-level Ward identity. In practice this WI
ensures that the massive cancellations, which take place attree-level, will still go through after
the Born-amplitude has been “dressed”. The exact mechanismthat enforces the correct high
energy behavior of the Born-improved amplitude, when the PTwidth and vertex are used, has
been studied in detail in [160], for the specific reference processf(p1)f̄(p2) → Z(k1)Z(k2)
used above.
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6 Beyond one loop: from two loops to all orders

In this section we generalize the PT to two loops and beyond; this is a rather more difficult
problem than pinching at one loop, both conceptually and operationally. In the first part of this
section we will establish the rules of the game beyond one-loop; the final upshot of these con-
siderations is simple but cumbersome to implement: one mustrepeat exactly what one did at
one loop, only now with many more diagrams. There are essentially two important lessons that
can be learned from the two-loop construction: (i) the PT works perfectly well beyond one loop,
and (ii ) the PT must evolve into a non-diagrammatic procedure. The second lesson is taken seri-
ously in the second part of this section, where the all-orderPT construction is presented. There
we show that the entire pinching action is actually encoded into the STI satisfied by a very spe-
cial all-order kernel shared by propagator and vertex diagrams. This fundamental observation
allows us to rise beyond the diagram-by-diagram treatment,and eventually generalize the PT to
all orders.

6.1 The pinch technique at two loops

In this subsection we present the PT construction at two loops [43,161]. Specifically, we will
show that the PT can be generalized at two loops by resortingexactlyto the same physical and
field-theoretical principles as at one-loop. In addition, it will become clear that the correspon-
dence between the PT and BFG, established at one-loop, persists also at the two-loop level.

Historically, the basic conceptual difficulty associated with the generalization of the PT be-
yond one loop has been to determine the origin of the pinchingmomenta. Let us assume that,
without loss of generality, one chooses from the beginning the conventional Feynman gauge.
Then, the only sources of possible pinching momenta are the three-gluon vertices. The ques-
tion is whether all such vertices must be somehow forced to pinch, or, in other words, whether
the standard PT decomposition of Eq. (2.38) should be carried out to all available three-gluon
vertices. The problem with such an operation, however, is the following: for the case of a three-
gluon vertex nested inside a Feynman diagram, how does one choose what is the “special”
momentum? Or, in other words, which way is one supposed to break the Bose-symmetry of the
vertex? It turns out that the solution to these questions is very simple: one should only apply
Eq. (2.38) to the vertices that have the physical momentum incoming (or outgoing) in one of
their legs (not mixed with virtual momenta); the special legis precisely the one carryingq. We
will call such a vertex “external”. All other vertices are not to be touched, i.e. they should not
be decomposed in any way; such vertices have virtual momentain every one of their three legs,
and are called “internal” (see Fig. 47). A simple way to understand why the decomposition of
internal vertices would lead to inconsistencies is to consider the special unitarity properties that
the PT subamplitude must satisfy (see corresponding subsection).

We emphasize that throughout the entire two-loop analysis we will maintain a diagrammatic
interpretation of the various contributions. In particular, no sub-integrations should to be car-
ried out. This additional feature renders the method all themore powerful, because unitarity is
manifest, and can be easily verified by means of the Cutkosky cuts.
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(a) (b)

(c5) (c6) (c7) (c8)

q

(c1) (c2) (c3) (c4)

Fig. 47. Left panel:Some examples of external and internal vertices which appears in the two-loop graphs.
Diagram(a) has only internal three-gluon vertices, while diagram(b) has two internal vertices and an
external one (indicated by the arrow). Right panel: The two-and three-particle Cutkosky cuts (cutting
through gluons only).

In addition to the result of Eq. (2.17), throughout this section we will employ the following
formulas, valid in dimensional regularization:

∫

k

kαkβ
k4

=
(

1

4 − ǫ

) ∫

k

1

k2
= 0,

∫

k

(2k + q)α
k2(k + q)2

= 0,

∫

k

lnn(k2)

k2
= 0 n = 0, 1, 2, . . . (6.1)

Finally, in order to make contact with the notation of [43,161], we introduce the dimensionful
projection operator

tµν(q) ≡ q2Pµν(q) . (6.2)

6.1.1 The one-particle reducible graphs

We begin the two-loop construction by treating the 1PR graphs, collectively shown in Fig. 48.
All such graphs are the product of two one-loop subgraphs, which may be individually con-
verted into their PT counterparts, following precisely thestandard PT procedures established in
section II. Note, in fact, that, as has been explained in detail in [23,74,72], the resummability
of the one-loop PT self-energy requires precisely this: theconversion of one-particle reducible
(1PR) strings of conventional self-energiesΠ(1) into strings containing PT self-energiesΠ̂(1).

There is an important point, however, that one must realize.The conversion of the 1PR graphs
into the corresponding PT does not take place for free; instead, the process of the conversion
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gives rise to certain residual pieces, all of which have the crucial characteristic of being effec-
tively 1PI. The way these pieces are produced is (i) because there is a mismatch between the
propagator-like terms obtained from the available quark-gluon verticesΓ(1), and those needed
to convert the string of twoΠ(1)s into a string of twoΠ̂(1)s [this happens with graphs(a), (b),
(c) and(d) in Fig. 49], or (i) terms that in the one-loop construction were vanishing, due to the
on-shell conditions, now they do not vanish, because they donot communicate with the external
quarks (i.e., the Dirac equation cannot be triggered) [see graph(b) in Fig. 49] .

To see this in detail, let us return for a moment to the one-loop construction, and consider the
conventional quark-gluon vertex at one-loop, to be denotedby Γ(1)

α (p1, p2). We will repeat the
calculation of subsection 2.4.1, but now we will not assume that the external quarks are on-shell;
this is because, at two-loops, we can have the situation depicted in Fig. 49. In particular,

Γ(1)
α = Γ̂(1)

α +
1

2
V

(1)
Pασ(q)γ

σ +X
(1)
1α (p1, p2)( 6p2 −m) + (6p1 −m)X

(1)
2α (p1, p2) , (6.3)

where

X
(1)
1α (p1, p2)= g2CA

∫

k

1

k2(k + q)2
γαS

(0)(p2 + k),

X
(1)
2α (p1, p2)= g2CA

∫

k

1

k2(k + q)2
S(0)(p2 + k)γα. (6.4)

By 1
2
V

(1)
Pαβ(q) we denote the dimensionless propagator-like contributionto be alloted toΠ(1)(q),

i.e.

V
(1)
Pαβ(q) = 2g2CAPαβ(q)

∫

k

1

k2(k + q)2
(6.5)

Thus, Eq. (2.66) reads (completely equivalently)

Π
(1)
Pαβ(q) = q2V

(1)
Pαβ(q) (6.6)

or
Π

(1)
Pαβ(q) = V

(1)
Pασ(q)t

σ
β(q) . (6.7)

Of course, on-shell (/p1
= /p2

= m) theΓ(1)
α of (6.3) collapses to that of (2.67).

It is relatively straightforward to establish that

(2a) = (2â) − d(q)R
(2)
Pαβ(q) d(q) ,

(2b) + (2c) + (2d) + (2e) = (2b̂) + (2ĉ) + (2d̂) + (2ê) − F
(2)
Pα(p1, p2) , (6.8)

with

iR
(2)
Pαβ(q)= Π(1)

αρ (q)V
(1)ρ
Pβ (q) +

3

4
q2 V

(1)
Pαρ(q)V

(1)ρ
P β (q) ,

F
(2)
Pα(p1, p2)= Π

(1)β
Pα (q) d(q) Γ̂

(1)
β (p1, p2) + d(q) Y

(2)
Pα (p1, p2), (6.9)
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Π(1) Π(1)

(a)

P̂ i
(1)

Π̂(1)

(â)

(b)

G(1)

Π(1)

(c)

G(1)

G(1)

(d)

G(1)

Π(1)

Ĝ(1)

P̂ i(1)

(b̂)

Ĝ(1)

Π̂(1)

(ĉ)

Ĝ(1)

Ĝ(1)

(d̂)

Ĥ(2)

(ê)

H(2)

(e)

Fig. 48. The one-particle reducible graphs (a), (b), (c), (d), and (e) before the PT rearrangement.G(1)

denotes the sum of the conventional one-loop quark-gluon vertex and one-loop wave-function correc-
tions to the external quarks.H(2) is the product of the one-loop quark-gluon vertex times the one-loop
wave-function corrections to the external quarks (see alsoFig. 49). Note that (a), (b), (c), and (d) become
disconnected by cutting a gluon line, whereas (e) by cutting an external quark line. All these graphs are
converted into their PT equivalent graphs, i.e. (â), (̂b), (ĉ), (d̂), and (̂e) are produced, together with some
residual terms that, due to the pinching action, are effectively 1PI.

with
Y

(2)
Pα (p1, p2) ≡ X

(1)
1α (p1, p2)Σ

(1)(p1) +X
(1)
2α (p1, p2)Σ

(1)(p2). (6.10)

Notice that
R

(2)
Pαβ(q) = I2 [Lαβ(q, k) + 3tαβ(q)] , (6.11)

where
Lαβ(q, k) ≡ Γσρα (q, k,−k − q)Γβσρ(q, k,−k − q) − 2kα(k + q)β (6.12)

is simply the numerator of the conventionalΠ
(1)
αβ(q) [i.e., the terms in square brackets on the rhs

of Eq. (2.70)].

6.1.2 Quark-gluon vertex and gluon self-energy at two loops

In this subsection we will first demonstrate the construction of the two-loop PT quark-gluon
vertexΓ̂(2)

α (p1, p2), which turns out to have the exact same properties as its one-loop counter-
partΓ̂(1)

α (p1, p2). At the same time we will determine the two-loop propagator-like contributions
V

(2)
Pασγσ, which will be subsequently converted intoΠ

(2)
Pασ, i.e. the two-loop version ofΠ(1)

Pασ of
Eq. (6.7). In addition, out of this procedure the termsY

(2)
Pα (p1, p2) of Eq. (6.10) will emerge

again, but with opposite sign. Then, we will turn to the two-loop gluon self-energy, and we will
outline the basic steps that must be followed in its construction.

The construction of the two-loop quark-gluon vertex proceeds as follows: the Feynman graphs
contributing toΓ(2)

α (p1, p2) can be classified into two sets: (i) those containing an “external”
three-gluon vertex i.e. a three-gluon vertex where the momentum q is incoming, as shown in
Fig.s 50 and 51, and (ii ) those which do not have an “external” three-gluon vertex. This latter
set contains either graphs with no three gluon vertices (Abelian-like), or graphs with internal

146



ΓF

(â) (b) (c)

→ + +

(a)

Fig. 49. The PT rearrangement of the non-Abelian part ofH
(2) [graph(a)], giving rise to its PT counter-

part [grapĥa], and to additional contributions [graphs(b) and(c)]. Diagram(b) is effectively 1PI, and is

alloted toY (2)
P , whereas(c) contributes to the first term ofF (2)

P .

three-gluon vertices (all three legs are irrigated by virtual momenta, i.e.q never enters alone
into any of the legs). Of course, all three-gluon vertices appearing in the computation of the
one-loopS-matrix are external, and so are those appearing in the 1PR part of the two-loopS-
matrix (see previous subsection). Then one carries out the decomposition of Eq. (2.38) to the
external three-gluon vertex of all graphs belonging to set (i), leavingall their other vertices
unchanged, and identifies the propagator-like pieces generated at the end of this procedure.

Let us define the following quantities (the two loop integration symbol
∫
k

∫
ℓ will be suppressed

throughout)

iI1 = g4C2
A[ℓ2(ℓ− q)2k2(k + ℓ)2(k + ℓ− q)2]−1,

iI2 = g4C2
A[ℓ2(ℓ− q)2k2(k + q)2]−1,

iI3 = g4C2
A[ℓ2(ℓ− q)2k2(k + ℓ)2]−1,

iI4 = g4C2
A[ℓ2ℓ2(ℓ− q)2k2(k + ℓ)2]−1,

iI5 = g4C2
A[ℓ2k2(k + q)2]−1, (6.13)

which will be used extensively in what follows. The calculation is straightforward, but lengthy
[see also again Fig.s 50 and 51]; we find

Γ(2)
α (p1, p2) =

1

2
F

(2)
Pα(p1, p2) +

1

2
V

(2)
Pασγ

σ + Γ̂(2)
α (p1, p2), (6.14)

with

V
(2)
Pασ(q) = I4Lασ(ℓ, k) + (2I2 + I3)gασ − I1

[
kσgαρ + Γ(0)

ρσα(−k,−ℓ, k + ℓ)
]
(ℓ− q)ρ. (6.15)

The interpretation of the three terms appearing on the rhs ofEq. (6.14) is as follows:

i. The term1
2
F

(2)
Pα(p1, p2) is half of the vertex-like part necessary to cancel the corresponding

term appearing in Eq. (6.8), during the conversion of conventional 1PR graphs into their PT
counterparts. The other half will come from the mirror vertex (not shown).
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Fig. 50. The result of enforcing the PT decomposition on the external vertices of some of the two-loop
Feynman diagrams contributing the conventional two-loop quark-gluon vertexΓ(2)

α

ii . 1
2
V

(2)
Pασγ

σ is the total propagator-like term originating from the two-loop quark-gluon vertex;
together with the equal contribution from the mirror set of two-loop vertex graphs (not shown)
will give rise to the self-energy term

Π
(2)
Pαβ(q) = V

(2)
Pασ(q)t

σ
β(q), (6.16)

which will be part of the effective two-loop PT gluon self-energy, to be constructed below.

iii . Γ̂(2)
α (p1, p2) is the PT two-loop quark-gluon vertex; itcoincideswith the corresponding two-

loop quark-gluon vertex computed in the BFG,i.e.,

Γ̂(2)
α (p1, p2) = Γ̃(2)

α (p1, p2, ξQ = 1) (6.17)

as happens in the one-loop case. Either by virtue of the aboveequality and the formal prop-
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Fig. 51. The result of enforcing the PT decomposition on the external vertices of some of the remaining
two-loop vertex graphs.

erties of the BFM, or by means of an explicit diagrammatic calculation, where one acts with
qα on individual diagrams, one can establish thatΓ̂(2)

α (p1, p2) satisfies the WI

qαΓ̂(2)
α (p1, p2) = Σ̂(2)(p1) − Σ̂(2)(p2), (6.18)

which is the exact two-loop analogue of Eq. (2.68).Σ̂(2)(p) is the two-loop PT fermion self-
energy; it is given by

Σ̂(2)(p) = Σ̃(2)(p, ξQ = 1) = Σ(2)(p, ξ = 1). (6.19)

Again, this is the precise generalization of the one-loop result of Eq. (2.53). At this point this
result comes as no surprise, since all three gluon vertices appearing in the Feynman graphs
contributing toΣ(2)(p, ξ) are internal; therefore, atξ = 1 there will be no pinching.

Notice that, as happened in the one-loop case, in deriving the above results no integrations (or
sub-integrations) over virtual momenta have been carried out.
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(e) (f) (g) (h)

(i) (j) (k) (ℓ)

Fig. 52. The Feynman diagrams contributing to the conventional two-loop gluon self-energyΠ(2)
αβ , in the

Rξ gauges.

The construction of̂Π(2)
αβ(q) proceeds as follows: To the conventional two-loop gluon self-

energyΠ
(2)
αβ(q) (shown in Fig. 52) we add two additional terms; (i) the propagator-like term

Π
(2)
Pαβ(q) derived in the previous subsection, Eq. (6.16), and (ii ) the propagator-like part

−R(2)
Pαβ(q) given in Eq. (6.9), stemming from the conversion of the conventional string into

a PT string; this term must be removed from the 1PR reducible set and be alloted tôΠ(2)
αβ(q), as

described in [23,74,72]. Thus,̂Π
(2)
αβ(q) reads

Π̂
(2)
αβ(q) = Π

(2)
αβ(q) + Π

(2)
Pαβ(q) −R

(2)
Pαβ(q). (6.20)

It is a rather lengthy exercise to establish that the two-loop PT gluon self-energy coincides
with that of the BFG,i.e.,

Π̂
(2)
αβ(q) = Π̃

(2)
αβ(q, ξQ = 1). (6.21)

To verify this important result explicitly, we simply startout with the diagrams contributing
to Π

(2)
αβ(q), and convert them into the corresponding diagrams contributing to Π̃

(2)
αβ(q, ξQ = 1),

shown in Fig. 20, keeping track of the terms that are left over. In doing so we only need to
carry out algebraic manipulations in the numerators of individual Feynman diagrams, and use
judiciously the identity of Eq. (2.71). Again, no integrations over virtual momenta need be
carried out, except for identifying vanishing contributions by means of the formulas listed in
Eqs (6.1), (6.1) and (6.1). It turns out that all terms left over after this diagram-by-diagram
conversion cancel exactly against the terms[Π

(2)
Pαβ(q)−R

(2)
Pαβ(q)], finally furnishing the crucial

equality of Eq. (6.21).
Since we have used dimensional regularization throughout,and no integrations have been
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Â Â
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Fig. 53. The two-particle Cutkosky cuts of the PT (and BFG) two-loop gluon self-energy. We have used
the same labeling of individual diagrams as in Fig. 20. The two upper (lower) rows show graphs where
two gluon (ghost) lines have been cut.

performed, the results of this section do not depend on the valued of the space-time; in particular
they are valid ford = 3, which is of additional field-theoretical interest [162–164]. Clearly,
whend→ 4 the renormalization program should also be carried out (fordetails see [161]).

6.1.3 The two-loop absorptive construction

We now turn to the absorptive two-loop construction. Operationally the situation is significantly
more involved compared to the one-loop case; the full details have been presented in [161]. Here
we will give a brief qualitative description of how this construction proceeds.

The central result is that the strong version of the OT, givenin (2.126), holds also for the
two-loop case. Specifically, the imaginary parts of the two-loop PT Green’s functions (under
construction) are related by the OT to precisely identifiable and very special parts of two dif-
ferent squared amplitudes, namely the one-loop squared amplitude for the processqq̄ → gg
and the tree-level squared amplitude for the processqq̄ → ggg. For example, the two-particle
Cutkosky cuts of the two-loop PT self-energy, Fig. 53, are related to the propagator-like part of
the PT-rearranged one-loop squared amplitude forqq̄ → gg, Fig. 54, while, at the same time,

151



the three-particle Cutkosky cuts of the same quantity, Fig.55, are related to thes-channel part
of the PT-rearranged tree-level squared amplitude forqq̄ → ggg (Fig. 56). The same holds for
vertex- and box-like contributions. The aforementioned PT-rearranged squared amplitudes are
to be constructed in a way exactly analogous to the PT-rearranged tree-levelqq̄ → gg squared
amplitude.

In order to get a firmer understanding of the above statements, let us consider the OT for the
forward scattering processq(p1)q̄(p2) → q(p1)q̄(p2) at two loops. We have that

ℑm〈qq̄|T [6]|qq̄〉=
1

2

(
1

3!

) ∫

PS3g

〈ggg|T [2]|qq̄〉∗〈ggg|T [2]|qq̄〉

+
1

2

(
1

2!

) ∫

PS2g

2ℜe
(
〈gg|T [4]|qq̄〉∗〈gg|T [2]|qq̄〉

)
, (6.22)

where
∫
PS2g

and
∫
PS3g

stand for the two- and three-body phase-space for massless gluons, re-
spectively. The superscripts[n] denotes the order of the corresponding amplitude in the coupling
constantg; when counting powers ofg remember the couplings from hooking up the external
particles. The lhs of (6.22) can be obtained by carrying out all possible Cutkosky cuts on the
two-loop diagrams contributing to the processq(p1)q̄(p2) → q(p1)q̄(p2). Specifically, one must
sum the contributions of both two-particle and three-particle cuts; the cuts involve gluons and
ghosts. Equivalently, on the rhs one has intermediate physical process involving two and three
gluons [qq̄ → gg andqq̄ → ggg]; as usual one averages over the initial state polarizations and
sums over the final state polarizations.

Let us now assume that the amplitudeq(p1)q̄(p2) → q(p1)q̄(p2) has been cast in its PT form,
as described in the previous subsection. That means that thesubamplitudeŝT [6]

ℓ have been con-
structed, whereℓ = 1, 2, 3 denotes (as in the one-loop case) the propagator-like subamplitudes
(ℓ = 1), the vertex-like subamplitudes (ℓ = 2), and the box-like ones (ℓ = 3). ThusT̂ [6]

1 is com-
posed of the two-loop PT gluon self-energyΠ̂

(2)
αβ(q), T̂

[6]
2 of the two-loop PT vertex̂Γ(2)

α (p1, p2)

(and its mirror), andT̂ [6]
3 of the two-loop PT box (which coincides with the regular two-loop

box in the Feynman gauge).
Then, one can show that

ℑm〈qq̄|T̂ [6]
ℓ |qq̄〉=

1

2

(
1

3!

) ∫

PS3g

[〈ggg|T̂ [2]|qq̄〉∗〈ggg|T̂ [2]|qq̄〉]ℓ

+
1

2

(
1

2!

) ∫

PS2g

2ℜe
(
〈gg|T̂ [4]|qq̄〉∗〈gg|T̂ [2]|qq̄〉

)
ℓ
. (6.23)

Lets us now see how one constructs the “PT-rearranged” squared amplitudes appearing on
the rhs of (6.23); the construction is identical to what we did in the one-loop case, but is suffi-
ciently more complicated at the technical level to merit some additional clarifying remarks.

A PT-rearranged squared amplitude means the following. Consider a normal squared ampli-
tude, i.e. the product of two regular amplitudes [remember that “product” means that they are
also connected (multiplied) by the corresponding polarization tensors]. Then each amplitude
must be first cast into its PT form; this is done following simply the PT rules for converting
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Fig. 54. The product of the PT-rearranged amplitudes of the processqq̄ → qq̄ at one-loop (up) and
tree-level (down). The longitudinal momenta from the polarization tensors will produce additional
cancellations betweens-channel andt-channel graphs furnishing finally the first term on the rhs of
Eq. (6.22).

a on-shell amplitude into its PT form. However, this is not the end of the story as far as the
PT-rearrangement of the square is concerned. One must go through the additional exercise of
letting the longitudinal momenta coming from the polarization vectors trigger thes-t cancella-
tion at that order. That will identify the genuine propagator-like piece of the entire product.

The reader should recognize that this is exactly the procedure followed in the one-loop ab-
sorptive construction of Section 2 for arriving at thêMℓ. First, the tree-level amplitudeTs was
converted intoTsF ; this is the conversion ofTs into its PT form. This was done simply by car-
rying out the PT decomposition of (2.38) to the only available three-gluon vertex; note that this
vertex has a preferred momentum (q) (employing the terminology introduce in this chapter, it is
“external”), because the momenta of the other two legs are integrated over all available phase-
space. Then, the longitudinal momenta from the polarization tensors were used to trigger the
s-t cancellation, which, in turn, furnished the threêMℓ.

For the two-loop case at hand this procedure must be applied for both squared amplitudes
appearing on the rhs of (6.23). For〈ggg|T̂ [2]|qq̄〉∗〈ggg|T̂ [2]|qq̄〉 we cast the tree-level process
q(p1)q̄(p2) → g(k1)g(k2)g(k3) into its PT form. This means to carry out (2.38) only to the
three-gluon vertices shown in Fig. 56; all other vertices are internal, because they are irri-
gated by momenta (theki) that are being integrated over in

∫
PS3g

. It turns out that theΓP

parts cancel completely, as expected; this takes some algebra to demonstrate. Then, the lon-
gitudinal momenta (kµ1 , kµ

′

1 , kν2 , kν
′

2 , kρ3 , kρ
′

3 ) contained in the three polarization tensors will act,
giving rise to thes-t cancellations corresponding to this particular process; its realization is
operationally more complicated, but otherwise completelyanalogous to the one showed in Sec-
tion 2. For〈gg|T̂ [4]|qq̄〉∗〈gg|T̂ [2]|qq̄〉 things are more involved. Now the amplitudeq(p1)q̄(p2) →
g(k1)g(k2) must be cast into its PT form both at tree-level [for〈gg|T̂ [2]|qq̄〉], and at one-loop [for
〈gg|T̂ [4]|qq̄〉∗]. The tree-level PT amplitude is, of course, known from the absorptive construc-
tion of subsection 2.5. The construction of the one-loop PT amplitudeq(p1)q̄(p2) → g(k1)g(k2)
has been described in great detail in the literature [63,165]. In fact, as mentioned in subsec-
tion 2.4.3, this process was the first explicit example [63] where the universality (process-
independence) of the PT gluon self-energy was explicitly demonstrated; the end result is shown
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Fig. 55. The three-particle Cutkosky cuts of the PT two-loopgluon self-energy. The first five graphs have
three-gluon cuts, the next two have two-gluon–one-ghost cuts, while the remaining ones have one-glu-
on-two-ghost cuts.

in Fig. 54. As we see there, the procedure of the PT rearrangement leads to the appearance of
Π̂(q) and the conversion of the conventional one-loop three-gluon vertexΓ(1)

αµν(q, k1, k2) into

Γ
(1)
F αµν(q, k1, k2), which is the BFG three-gluon vertex at one-loop, with one background gluon

(q) and two quantum ones (k1, k2). It is straightforward to show thatΓ(1)
F αµν(q, k1, k2) satisfies

the following WI

qαΓ
(1)
F αµν(q, k1, k2) = Π(1)

µν (k1) − Π(1)
µν (k2), (6.24)

which is the exact one-loop analogue of the tree-level WI of Eq. (2.40); indeed the rhs is the
difference of two one-loop self-energies computed in the conventional Feynman gauge. Then,
one must let the longitudinal momenta in the polarization tensors trigger the correspondings-
t cancellation. When they hit on〈gg|T̂ [2]|qq̄〉 they will simply trigger the prototype tree-level
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Fig. 56. The tree-level graphs contributing to the processq(p1)q̄(p2) → g(k1)g(k2)g(k3), after the PT
rearrangement. The momentaki are to be integrated over in the three-body phase-space integral.

s-t cancellation of Section 2; but when they hit on〈gg|T̂ [4]|qq̄〉∗ they will trigger theone-loop
version of the sames-t cancellation [43,161]. To demonstrate this latter cancellation one needs
to know the result of the action of the longitudinal momentakµ1 andkν2 on Γ

(1)
F αµν(q, k1, k2),

exactly as happened in the tree-level construction, see Eq.(2.140). Given that these momenta
correspond to quantum fields (as opposed to theqα, which corresponds to a background field)
the result of their contraction withΓ(1)

F αµν(q, k1, k2) is not a WI, as in (6.24), but rather an STI,
which is given in Eq.(C.30).

The reader should appreciate at this point that any rearrangement of the (internal) vertices of
two-loop box-diagrams cannot be reconciled with the arguments of the simultaneous two- and
three-particle Cutkosky cuts presented here. To see this with an example, let us return to the
two representative two-loop diagrams of Fig. 47. After their PT rearrangement, the two-particle
Cutkosky cut on(a), denoted by(c2) in Fig. 47, must reproduce(c) ⊗ [(f) + (g)] in Fig. 54,
and cut(c4) on (b) must reproduce(b) ⊗ [(f) + (g)]. Obviously, if we were to modify the
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Fig. 57. The one-loop PT algorithm seen in terms of the fundamentals-t cancellation. The self-energy
like contribution coming from the vertex is exactly canceled by the one coming from the propagator.
Notice that none of the vertices appearing in the rhs of the above diagrammatic identities is an elementary
vertex of the theory, they are allunphysicalvertices.

internal three-gluon vertices of(a) or (b) in Fig. 47 in any way, this identification would not
work: one must modifyonly the vertex injected withq (turning it toΓF). This argument may
be generalized to include all remaining two-particle and three-particle cuts, making the above
conclusion completely airtight.

We emphasize that the arguments presented here do not postulate at any point the existence of
any relation between the PT and the BFM. On the other hand, in hindsight, all conclusions drawn
are in complete agreement with the known PT/BFM correspondence. Specifically, switching
now to the BFM language, the fact that internal vertices should not be touched is precisely what
the BFM Feynman rules dictate: since one cannot have background fields propagating inside
loops, all internal vertices have threequantumgluons merging.

Let us finally comment on an additional point. The philosophyof this subsection has been to
establish that the two-loop PT Green’s functions, constructed explicitly in the previous subsec-
tion, satisfy the strong version of the OT. Evidently, one could adopt an alternative approach,
and consider the absorptive formulation as the defining construction for the PT Green’s func-
tions. Thus, one can start from the rhs of the OT, carry out thesame analysis that we did here,
and postulate that the sum of the propagator-like parts of the rhs furnish the imaginary part of
the (now unknown) two-loop gluon self-energy on the lhs, andsimilarly for vertices and boxes.
Then, the real parts would have to be reconstructed from the corresponding dispersion rela-
tion, in the spirit of subsection 2.5. The advantage of this strategy is that all the PT-rearranged
(squared) amplitudes appearing on the rhs are at least one loop lower than the amplitude on
the lhs. Therefore, one can actually reconstruct the lhs, byworking directly on the rhs, because
one knows already how to pinch at lower orders. Of course, thedownside is that, in order to
obtain the final answer, one would have to carry out complicated phase-space and dispersion
integrations.
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Fig. 58. The fundamental amplitude receiving the action of the longitudinal momenta stemming from
ΓP. The gray blob represent the (connected) kernel corresponding to the processAA→ qq̄.

6.2 The PT to all orders in perturbation theory

The two-loop construction of the PT quark-gluon vertex and gluon propagator outlined in the
previous subsections follows to the letter the one-loop recipe: we have tracked down the rear-
rangements induced to individual Feynman diagrams when thelongitudinal pinching momenta
acting on their bare vertices trigger elementary WIs. Clearly such a method does not lend itself
to an all-order generalization; realistically speaking, the two-loop construction is as far as one
can push this diagrammatic procedure.

In order to generalize the PT to higher orders one must find an expeditious way of enforcing
the crucial cancellations without manipulating individual diagrams, but, instead, through the
collective treatment of entire sets of diagrams. It turns out that such a breakthrough is indeed
possible [44,166]: the PT algorithm can be successfully generalized toall ordersin perturbation
theory through the judicious use of the STI satisfied by a special Green’s function, which serves
as a common kernel to all higher order self-energy and vertexdiagrams.

In fact, as was first realized in [44,166], the one- and two-loop PT rearrangements are but
lower-order manifestations of a fundamental cancellation, taking place between graphs of dis-
tinct kinematic nature when computing the divergence of thefour-point functionAAqq̄ (with the
gluons off-shell, and the quarks on-shell). At tree-level,this is nothing else than the “s-t cancel-
lation” that we already encountered in the absorptive PT construction of Section 2 and 4. As for
the one-loop PT rearrangement, it is actually encoded in thetwo graphs of Fig. 57: both graphs
have theΓP terms in common, while their terms shown in dotted brackets are the tree-levelt-
ands-channel contributions, respectively, to the four-particle amplitudeAA→ qq̄. Dressing the
above amplitude with higher order corrections, and exploiting its STI, will eventually provide a
compact way of generalizing the PT to all orders.

6.2.1 The four-point kernelAAqq̄ and its Slavnov-Taylor identity

With this intention in mind, of all the diagrams contributing to the QCD amplitude under con-
sideration we will focus on the subset that will receive the action of the longitudinal momenta
stemming fromΓP, to be denoted byA. It is given by (see Fig. 58)
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Fig. 59. Diagrammatic representation of the Greens functions appearing in the Slavnov-Taylor identity
(6.27). The functionX̄mn

1ν (which coincides withXmn
1ν when the fermion arrows reversed) is not shown.

A(r1,−r2, p2,−p1)= ū(r2)gγαt
au(r1)

−i
q2

∫

k1
iΓam

′n′

αµ′ν′ (q,−k1,−k2)T µν
mn(k1, k2, p2,−p1),

T µν
mn(k1, k2, p2,−p1)= ū(p1)

[
i∆µµ′

mm′(k1)i∆
νν′

nn (k2)Cm
′n′

µ′ν′ (k1, k2, p2,−p1)
]
u(p2). (6.25)

From the definition above we clearly see thatT is the subamplitudeAA → qq̄ with the gluon
off-shell and the fermions on-shell. The next step is to carry out the usual PT vertex decompo-
sition on the three-gluon vertexΓam

′n′

αµ′ν′ appearing inside the integrand on the rhs of (6.25), and
concentrate on the action of itsΓP part on the amplitudeT . Therefore, we need to determine
the STI satisfied by the amplitudeT of Eq. (6.25).

In order to get this STI, one starts from the trivial identityin configuration space (valid due
to ghost charge conservation)

〈T [c̄m(x)Anν (y)q(z)q̄(w)]〉 = 0, (6.26)

whereT denotes the time-ordered product of fields. By rewriting thefields in terms of their
BRST transformed counterparts, using the equations of motions and the equal time commuta-
tion relations [62], and, finally, Fourier transforming theresult to momentum space, one arrives
at the following identity

kµ1C
mn
µν = k2νG

mn
1 − igfnrsQmrs

1ν + gXmn
1ν + gX̄mn

1ν . (6.27)

The various Green’s functions that appears in the rhs of the equation above are shown in Fig. 59.
The termsX1ν andX̄1ν correspond to contributions that vanish when the external quarks are
assumed to be on-shell, since they are missing one full quarkpropagator; at lowest order they
are simply the terms proportional to the inverse tree-levelpropagators(p/1 −m) and(p/2 −m)
appearing in the PT calculations. Indeed, if we multiply both sides of Eq. (6.27) by the prod-
uct S−1(p2)S

−1(−p1) of the two inverse propagators of the external quarks, and then sand-
wich the resulting amplitude between the on-shell spinorsū(p1) andu(p2), the vanishing of the
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Qm′rs
1ν =

m′

+

m′

ν

r

s

ν

r

s

︷ ︸︸ ︷
Km′r′s′
ρ′

Fig. 60. Definition of the momentum space auxiliary functionQm′rs
1ν . Gray blobs represent connected

kernels, while black (respectively white) blobs represent1PI (respectively connected)n-point Green’s
functions. Notice that the kernelKm′r′s′

ρ′ is 1PI with respect tos-channel cuts.

aforementioned terms follows by virtue of the (all-order) Dirac equation. Thus we arrive at the
on-shell STI

kµ1T mn
µν (k1, k2, p2,−p1) =Smn1ν (k1, k2, p2,−p1),

Smn1ν (k1, k2, p2,−p1) = ū(p2)
[
k2νiD

mm′

(k1)iD
nn′

(k2)Gm
′n′

1 (k1, k2, p2,−p1)

− igfnrsiDmm′

(k1)Qm′rs
1ν (k1, k2, p2,−p1)

]
u(p2), (6.28)

where the auxiliary functionQm′rs
1ν is shown in Fig. 60. A similar (Bose-symmetric) relation

will hold when hitting the kernel with thek2 momentum.

6.2.2 The fundamental all-orders-t cancellation

Having established the STIs of Eq. (6.28), we now turn to the main conceptual point related to
the all orders PT construction. The basic observation is thefollowing. In perturbation theory the
quantitiesT mn

µν , Smn1ν , andSmn2µ are given by Feynman diagrams, which can be separated into
distinct classes, depending on their kinematic dependence(s/t separation) and their geometrical
properties (1PI/1PR separation). We recall thats graphs are those which do not contain infor-
mation about the kinematic details of the incoming test-quarks (self-energy graphs), whereast
graphs are those that depend also on the mass of the test quarks (vertex graphs). Thus, the Feyn-
man graphs allow the following separation (see also Fig. 61,where we show the decomposition
below at an arbitrary perturbative ordern)

T mn
µν = [T mn

µν ]s,I + [T mn
µν ]s,R + [T mn

µν ]t,I + [T mn
µν ]t,R,

Smn1ν = [Smn1ν ]s,I + [Smn1ν ]s,R + [Smn1ν ]t,I + [Smn1ν ]t,R, (6.29)

On the other hand, we know by now that the action of the (longitudinal) momentakµ1 or kν2
onT mn

µν does not respect, in general, the above separation; their action mixes propagator- with
vertex-like terms, since the latter generate (through pinching) effectively propagator-like terms.
Similarly, the separation between 1PI and 1PR terms is no longer unambiguous, since 1PR
diagrams are converted (again through pinching) into effectively 1PI ones (the opposite cannot
happen). An early example of this effect appeared in the construction of the PT three-gluon
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[
T (n)
µν

]
t,I

= (n)

[
T (n)
µν

]
s,I

=
(n) [

T (n)
µν

]
s,R

=

[
T (n)
µν

]
t,R

=
(n3)

(n1)

(n2)

(n1)

(n2)

Fig. 61. Decomposition at an arbitrary perturbative leveln of the fundamental amplitudeT mn
µν in terms

of s andt channel, 1PI and 1PR components.

vertex in Section 2, and was encountered again in subsection6.1.1.
Therefore, even though Eq (6.28) holds for the entire amplitudeT mn

µν , it is not true for the
individual subamplitudes defined in Eqs (6.29),i.e., we have

kµ1 [T mn
µν ]x,Y 6= [Smn1ν ]x,Y, x = s, t; Y = I,R, (6.30)

whereI (respectivelyR) indicates the one-particleirreducible(respectivelyreducible) parts of
the amplitude involved. The reason for this inequality are precisely the propagator-like terms,
such as those found in the one- and two-loop calculations (see Fig. 62). One should notice that
the situation is exactly analogous to that encountered whenstudying the OT, which holds at the
level of the full amplitude but not at the level of individualsubamplitudes.

In particular, for individual subamplitudes we have that

kµ1 [T mn
µν ]s,R = [Smn1ν ]s,R + [Rmn

1ν ]int
s,I ,

kµ1 [T mn
µν ]s,I = [Smn1ν ]s,I − [Rmn

1ν ]int
s,I + [Rmn

1ν ]ext
s,I ,

kµ1 [T mn
µν ]t,R = [Smn1ν ]t,R + [Rmn

1ν ]int
t,I ,

kµ1 [T mn
µν ]t,I = [Smn1ν ]t,I − [Rmn

1ν ]int
t,I − [Rmn

1ν ]ext
s,I , (6.31)

with similar equations holding when acting with the momentum kν2 . In the above equations
the superscript “ext” and “int” stands for “external” and “internal” respectively, and refers
to whether or not the pinching part of the diagram at hand has touched the external on-shell
fermion legs. At ordern, some example of theR(n) terms introduced in the equations above are
shown in Fig. 63. The structure of the[Rmn

1ν ]s,Y terms is very characteristic: kinematically they
only depend ons; whereas this is obviously true for the first two equations of(6.31) (since these
terms originate from the action ofkµ1 on ans-dependent piece[T mn

µν ]s,Y), it is far less obvious
for those appearing in the last two equations of (6.31), since they stem from the action ofkµ1
on at-dependent term[T mn

µν ]t,Y. In addition, all theR terms share a common feature,i.e., they
cannotbe written in terms of conventional Feynman rules; instead they are built out of unphys-
ical vertices, which do not correspond to any term in the original Lagrangian. It should be clear
by now that theR terms are precisely the terms that cancel against each otherwhen we carry
out the PT procedurediagrammatically.
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[
T (1)

]
t,I

[
R(1)

]int

t,I

⊃ −

[
R(1)

]ext

s,I

−

[
R(1)

]ext

s,I

+⊃ −

[
R(1)

]int

s,I

[
T (1)

]
s,R

[
R(1)

]int

s,I

⊃

[
T (1)

]
t,R

[
R(1)

]int

t,I

⊃kµ
1 ×

[
T (1)

]
s,I

kµ
1 ×

kµ
1 × kµ

1 ×

Fig. 62. Some two-loop examples of theR terms, together with the Feynman diagrams from which they
originate.

Thus, after the PT cancellations have been enforced, we find that for the 1PIt-channel part
of the amplitude we have the equality

[kµ1T mn
µν ]PT

t,I = [Smn1ν ]t,I, (6.32)

What is crucial in the above result is that it automatically takes care of both thes-t as well as
the 1PR and 1PI cancellations of theR terms, which is characteristic of the PT, without having
to actually trace them down. Thus, on hindsight, the PT algorithm as appliede.g., in Section 2
and 4, and even in the two-loop generalization carried out inthe initial part of this section, has
amounted to enforcing diagram-by-diagram the vast, BRST-driven s-t channel cancellations,
without making explicit use of the all-order STIs. Evidently, tracing down the action of the
longitudinal momenta and the resulting exchanges between vertex and self-energy graphs, is
equivalent to deriving (loop-by-loop) Eq. (6.32). Therefore, the non-trivial step for generalizing
the PT to all orders is to recognize that the result obtained after the implementation of the PT
algorithm on the lhs of Eq. (6.32) is already encoded on the rhs! Indeed, the rhs involves only
conventional (ghost) Green’s functions, expressed in terms of normal Feynman rules, with no
reference to unphysical vertices.

This last point merits some additional comments. It should be clear that no pinching is pos-
sible when looking at thet-channel irreducible part of the rhs of Eq. (6.28). So, if we were to
enforce the PT cancellations on both sides of thet irreducible part of these equations, on the
rhs there would be nothing to pinch (all the vertices are internal), and therefore, there would be
no unphysical vertices generated. Therefore, on the lhs, where pinching is possible, all contri-
butions containing unphysical vertices must cancel. The only way to distort this equality is to
violate the PT rules, allowing, for example, the generationof additional longitudinal momenta
by carrying out sub-integrations, or by decomposing internal vertices. Violating these rules,
however, will result in undesirable consequences: in the first case the appearance of terms of
the formq · k in the denominators will interfere with the manifest analyticity of the PT Green’s
functions constructed, whereas, in the second, the specialunitarity properties of the PT Green’s
functions will be inevitably compromised.
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[
R(n)

1ν

]ext

s,I
⊃

[
R(n)

1ν

]int

t,I
⊃

[
R(n)

1ν

]int

s,I
⊃

Fig. 63. Examples of the generic structures included in theR terms. A black dot indicates that a propa-
gator has been removed through pinching.

6.2.3 The PT to all orders: the quark-gluon vertex and the gluon propagator

The considerations just presented can be used in order to accomplish in a rather compact form
the all-order generalization of the PT construction.

To begin with, it is immediate to recognize that, in theRξ Feynman gauge (RFG for short),
box diagrams of arbitrary ordern, to be denoted byB(n), coincide with the PT boxeŝB(n),
since all three-gluon vertices are “internal”,i.e., they do not provide longitudinal momenta.
Thus, they coincide with the BFG boxes,B̃(n), i.e.,

B̂(n) = B(n) = B̃(n) (6.33)

for everyn. The same is true for the PT quark self-energies; for exactlythe same reason, they
coincide with their RFG (and BFG) counterparts,i.e.,

Σ̂ij (n) = Σij (n) = Σ̃ij (n). (6.34)

The next step will be the construction of the all-order PT quark-gluon 1PI vertex̂Γaα. Now,
of all the diagrams that contribute to this vertex in the RFG (shown in Fig. 64), the only one
receiving the action of the longitudinal pinching momenta is diagram(a); in fact, we know
from the two-loop construction that (in the RFG) when the external gluon couples to a diagram
through any type of interaction vertex other than a three-gluon vertex, then that diagram is inert,
as far as pinching is concerned. Thus, we carry out the PT vertex decomposition of Eq. (2.38)
in diagram(a), and concentrate on theΓP part only; specifically

(a)P = gfamn
∫

k1
(gναk

µ
1 − gµαk

ν
2)
[
T mn
µν (k1, k2, p2,−p1)

]
t,I
. (6.35)

Following the discussion presented in the previous subsection, the pinching action amounts to
the replacements

kµ1
[
T mn
µν

]
t,I
→
[
kµ1T mn

µν

]PT

t,I
= [Smn1ν ]t,I ,

kν2
[
T mn
µν

]
t,I
→
[
kν2T mn

µν

]PT

t,I
=
[
Smn2µ

]
t,I
, (6.36)

or, equivalently,

(a)P → gfamn
∫

k1

{
[Smn1α (k1, k2)]t,I − [Smn2α (k1, k2)]t,I

}
. (6.37)

In the formula above, and in what follows, we indicate only the momenta of the gluonski,
omitting the momenta of the external fermionspi.
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q̄
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(a)

Aa
α

q̄

q

(d)(b)

Aa
α

q̄

q

(c)

Aa
α

q̄

q

Fig. 64. The Feynman diagrams contributing to the quark-gluon vertexΓaα in theRξ gauge. Kernels
appearing in these diagrams aret-channel and 1PI. Not shown are the contribution(b′) and(c′) corre-
sponding to diagrams(b) and(c) with the fermion and ghost arrows reversed.

At this point the construction of the effective PT quark-gluon vertex has been completed, and
we have

Γ̂aα(q, p2,−p1)= (a)F + (b) + (b′) + (c) + (c′) + (d)

+ gfamn
∫

k1

{
[Smn1α (k1, k2)]t,I − [Smn2α (k1, k2)]t,I

}
. (6.38)

We emphasize that in the construction presented thus far we have never resorted to the BFM
formalism, but have only used the BRST identities of Eq. (6.28), together with (6.32).

The next crucial question will be then to establish the connection between the effective PT
vertex and the quark-gluon vertexΓ̃aα written in the BFG. To that end, we start be observing that
all the inert terms contained in the original RFGΓaα vertex carry over to the same sub-groups
of BFG graphs. In order to facilitate this identification we recall (see also Appendix B) that to
lowest order one has the identitiesΓF = Γ

ÂAA
, while ΓAqq̄ = Γ

Âqq̄
andΓAAAA = Γ

ÂAAA
, so

that
(a)F = (â), (b) = (b̂) (b′) = (b̂′), (d) = (d̂), (6.39)

where a “hat” on the corresponding diagram means that the (external) gluonAaα has been effec-
tively converted into a background gluon̂Aaα.

As should be familiar by now, the only exception to this rule are the ghost diagrams(d) and
(d′), which need to be combined with the remaining terms from the PT construction in order to
arrive at (see Fig. 65) both thesymmetricghost gluon vertexΓ

Âcc̄
, characteristic of the BFG, as

well as at the four-particle ghost vertexΓ
ÂAcc̄

, totally absent in the conventionalRξ diagrams.
Indeed, using Eq. (6.28), we find (omitting the spinors)

gfamn
∫

k1
[Smn1α (k1, k2)]t,I =−gfamn

∫

k1
k2αD

mm′

(k1)D
nn′

(k2)
[
Gm′n′

1 (k1, k2)
]
t,I

+ g2famnfnrs
∫

k1
Dmm′

(k1)
[
Qm′rs

1α (k1, k2)
]
t,I
, (6.40)

with a similar relation holding for theS2 term. Then, we find

(c) − gfamn
∫

k1
k2αD

mm′

(k1)D
nn′

(k2)
[
Gm′n′

1 (k1, k2)
]
t,I

= gfamn
∫

k1
(k1 − k2)αD

mm′

(k1)D
nn′

(k2)
[
Gm′n′

1 (k1, k2)
]
t,I

= (ĉ), (6.41)
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Âa
α

q̄
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(ê)

Âa
α

q̄

q

(f̂)

Fig. 65. Additional topologies present in the BFM quark-gluon vertex. As before, not shown are two
similar contributions(e′) and(f ′) with the ghost arrows reversed.

and, using the decomposition for theQm′rs
1ν shown in Fig. 60,

g2famnfnrs
∫

k1
Dmm′

(k1)
[
Qm′rs

1α (k1, k2)
]
t,I

= ig2famnfnrsgαρ

∫

k1

∫

k3
Dmm′

(k1)D
ss′(k3)∆

ρρ′

rr′ (k4)
{[

Km′r′s′

ρ′ (k1, k3, k4)
]
t,I

+ iΓgr
′s′

ρ′ (−k2, k3, k4)D
gg′(k2)

[
Gm′g′

1 (k1, k2)
]
t,I

}

= (ê) + (f̂), (6.42)

with Km′r′s′

σ′ representing the 1PI five-particle kernel shown in Fig. 60, while Γgr
′s′

σ′ is the usual
ghost-gluon vertex.

In exactly the same way, the remainingS2, when added to theRξ ghost diagram(c′), will
give rise to graphs(ĉ′), (ê′), and(f̂ ′); so, we finally arrive at the relation

Γ̂aα(q, p2,−p1) = Γ̃aα(q, p2,−p1). (6.43)

The final step is to construct the all-order PT gluon self-energy Π̂ab
αβ(q). Notice that at this

point one would expect that it too coincides with the BFG gluon self-energỹΠab
αβ(q), since both

the boxesB̂ and the vertex̂Γaα do coincide with the corresponding BFG boxesB̃ and vertex
Γ̃aα, and theS-matrix is unique. We will conclude this Section by furnishing an indirect proof of
this statement by means of the “strong induction principle”, which states that a given predicate
P (n) on N is true∀ n ∈ N, if P (k) is true wheneverP (j) is true∀ j ∈ N with j < k. In order
to avoid notational clutter, we will use the schematic notation where all the group, Lorentz, and
momentum indices will be suppressed.

At one- and two-loop (i.e., n = 1, 2), we know that the result is true from our explicit calcu-
lations. Let us then assume that the PT construction has beensuccessfully carried out up to the
ordern − 1 (strong induction hypothesis): we will show then that the PTgluon self-energy is
equal to the BFG gluon self-energy at ordern, i.e., Π̂(n) ≡ Π̃(n); hence, by the strong induction
principle, this last result will be valid at any givenn, showing finally that the PT construction
holds true to all orders.

From the strong inductive hypothesis, we know that

Π̂(ℓ) ≡ Π̃(ℓ), Γ̂(ℓ) ≡ Γ̃(ℓ), B̂(ℓ) ≡ B̃(ℓ) ≡ B(ℓ), (6.44)
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whereℓ = 1, . . . , n− 1.
Now, theS-matrix element of ordern, to be denoted asS(n), assumes the form

S(n) = {Γ∆Γ}(n) + B(n). (6.45)

Moreover, since it is unique, regardless if it is written in the Feynman gauge, in the BFG, as
well as before and after the PT rearrangement, we have thatS(n) ≡ Ŝ(n) ≡ S̃(n). Using then
Eq. (6.33) (which holds to all orders, implying that Eq. (6.44) holds true also whenℓ = n), we
find that

{Γ∆Γ}(n) ≡ {Γ̂∆̂Γ̂}(n) ≡ {Γ̃∆̃Γ̃}(n). (6.46)

The above amplitudes can then be split into 1PR and 1PI parts;in particular, due to the strong
inductive hypothesis of Eq. (6.44), the 1PR part after the PTrearrangement coincides with the
1PR part written in the BFG, since

{Γ∆Γ}(n)
R

= Γ(n1)∆(n2)Γ(n3),




n1, n2, n3 < n,

n1 + n2 + n3 = n.
(6.47)

Then Eq. (6.46) state the equivalence of the 1PI parts,i.e.,

{Γ̂∆̂Γ̂}(n)
I

≡ {Γ̃∆̃Γ̃}(n)
I
, (6.48)

which implies
[
Γ̂(n) − Γ̃(n)

]
∆(0)Γ(0) + Γ(0)∆(0)

[
Γ̂(n) − Γ̃(n)

]
+ Γ(0)∆(0)

[
Π̂(n) − Π̃(n)

]
∆(0)Γ(0) = 0. (6.49)

At this point we do not have the equality we want yet, but only that

Γ̂(n) = Γ̃(n) + f (n)Γ(0),

Π̂(n) =Π̃(n) − 2iq2f (n), (6.50)

with f (n) an arbitrary function ofq2. However, by means of theexplicit construction of the PT
vertex just presented, we know thatΓ̂(n) ≡ Γ̃(n), and thereforef = 0. Then one immediately
concludes that

Π̂(n) ≡ Π̃(n). (6.51)

Hence, by strong induction, the above relation is true for any given ordern, i.e., inserting back
the Lorentz and gauge group structures, we arrive at the announced result

Π̂ab
αβ(q) ≡ Π̃ab

αβ(q). (6.52)

The same techniques described in this section have been usedin [94] to generalize the PT
algorithm to all orders in the electroweak sector of the SM.
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7 PT in the Batalin-Vilkovisky framework

In the previous section we demonstrated how the PT algorithmcan be generalized beyond the
one-loop level. In passing from the two-loop to the all-order construction we abandoned the di-
agrammatic treatment, and resorted instead to a more formalprocedure, where the longitudinal
pinching momenta trigger the STIs satisfied by specific subsets of fully dressed vertices appear-
ing in the ordinary perturbative expansion. Due to the non-linearity of the BRST transformation,
we have also seen that the Green’s functions generated by this process involve composite oper-
ators of the type〈0|T [sΦ(x) · · · ]|0〉, with s the BRST operator andΦ a generic QCD field.

While it is rather satisfactory that the PT could be generalized to all orders, the way this was
actually accomplished leaves some important issues still open, mainly for the following reasons.

∗ The PT quark-gluon vertex was constructed explicitly, but was only partially off-shell, since
the external fermions were assumed (as always up to now) to beon-shell; however, for the
upcoming SD analysis (next section) we should be able to construct fully off-shellvertices.
To be sure, a fully off-shell quark-gluon vertex can be constructed through appropriate em-
bedding (as was done for the completely off-shell three-gluon vertex in Section 2), but this
would take us further away from the non-diagrammatic formulation that we are striving for.

∗ The only fully off-shell Green’s function considered was the PT gluon propagator; however, it
was notexplicitlyconstructed, but rather indirectly shown to coincide with the corresponding
BFG gluon propagator. It is clearly preferable to devise anexplicit procedure for obtaining
the PT gluon propagator to all orders.

∗ During the all-order construction presented, no pinching contributions have actually been
ever identified; rather, all cancellations of such terms were concealed in the crucial steps cor-
responding to Eqs (6.36). However, the determination of closed expressions for the pinching
contributions is instrumental for understanding the process-independence of the algorithm,
as well as for determining crucial identities relating theRξ Green’s functions with those of
the BFG.

As it turns out [165], the most efficient framework for dealing with the type of quantities ap-
pearing in the PT procedure is the so-called Batalin-Vilkovisky (BV) formalism [46]. This for-
malism not only streamlines the derivation of the STIs satisfied by 1PI Green’s functions and
connected kernels, but has two additional important key features [165,167]: it allows for the
construction of the auxiliary (ghost) Green’s functions interms of a well-defined set of Feyn-
man rules, and furnishes a set of useful identities, the so-called Background-Quantum Identi-
ties (BQIs), which relate Green’s functions involving background fields to Green’s functions
involving quantum fields. As we will see, these latter identities will allow for the effortless
identification of the PT Green’s functions with those of the BFG, and constitute one of the main
advantages gained from employing the BV formalism [165].

In this section we present an introduction to the BV formalism, providing the minimum
amount of information needed to establish notation, and arrive at the relevant generating func-
tionals and master equations, together with the differentiation rules needed to generate from
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Φn−1

Φn

Φ2

Φ1

p2

pn−1
pn

Fig. 66. Our conventions for the (1PI) Green’s functionsΓΦ1···Φn(p1, . . . , pn). All momentap2, . . . , pn
are assumed to be incoming, and are assigned to the corresponding fields starting from the rightmost one.
The momentum of the leftmost fieldΦ1 is determined through momentum conservation (

∑
i pi = 0) and

will be suppressed.

the latter useful identities. We will then concentrate on putting to work all the machinery intro-
duced, by casting in the BV language the one- and two-loop results presented in earlier sections.

Thus, this introductory section sets up the stage for an alternative, and more efficient, way
of generalizing the PT to all orders. In fact, as will be shownin the next section, casting the
PT in the BV language permits to go on step further, allowing for the generalization of the PT
algorithm to the Schwinger-Dyson equations of QCD.

7.1 Green’s functions: conventions

The Green’s functions of the theory can be constructed in terms of time-ordered products of free
fieldsΦ0

1 · · ·Φ0
n and vertices of the interaction LagrangianLint (constructed from the pieces of

L which are not bilinear in the fields) through the standard Gell-Man-Low formula for the 1PI
truncated Green’s functions

ΓΦ1···Φn
(x1, . . . , xn)= 〈T [Φ1(x1) · · ·Φn(xn)]〉1PI

= 〈T [Φ0
1(x1) · · ·Φ0

n(xn)] exp(−i
∫
d4xLint)〉1PI. (7.1)

The complete set of Green’s functions can be handled most efficiently by introducing a gener-
ating functional (see also Section 3), which in Fourier space reads

Γ[Φ] =
∞∑

n=0

(−i)n
n!

∫ n∏

i=0

d4pi δ
4(

n∑

j=1

pj)Φ1(p1) · · ·Φn(pn)ΓΦ1···Φn
(p1, . . . , pn), (7.2)

with pi the (in-going) momentum of theΦi field. Since in perturbation theoryΓΦ1···Φn
is a formal

power series in~, we will denote itsm-loop contribution asΓ(m)
Φ1···Φn

. Then, the Green’s functions
of the theory may be obtained from the generating functionalΓ[Φ] by means of functional
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Φ Aµ ψ ψ̄ c c̄ A∗
µ ψ∗ ψ̄∗ c∗ c̄∗ Ωa

µ

gh(Φ) 0 0 0 1 -1 -1 -1 -1 -2 0 1

st(Φ) B F F F F F B B B B F
Table 2
Ghost charges and statistics (B for Bose, F for Fermi) of the QCD fields, anti-fields and BFM sources.

differentiation:

ΓΦ1···Φn
(p1, . . . , pn) = in

δnΓ

δΦ1(p1)δΦ2(p2) · · · δΦn(pn)

∣∣∣∣∣
Φi=0

, (7.3)

whereΦ(p) denotes the Fourier transform ofΦ(x), and our convention on the external momenta
is summarized in Fig. 66. From the definition given in Eq. (7.3) it follows that the Green’s
functionsi−nΓΦ1···Φn

are simply given by the corresponding Feynman diagrams in Minkowsky
space. Finally, notice that upon inversion of two (adjacent) fields we have

ΓΦ1···ΦiΦi+1···Φn
(p1, . . . , pi, pi+1, . . . , pn) = ±ΓΦ1···Φi+1Φi···Φn

(p1, . . . , pi+1, pi, . . . , pn), (7.4)

with the minus appearing only when both fieldsΦi andΦi+1 obey Fermi statistics.
The Green’s functions defined so far are sufficient for building all possible amplitudes in-

volved in theS-matrix computation; however, due to the non-linearity of the BRST transfor-
mations, they do not cover the complete set of Green’s functions appearing in the STIs of the
theory (and therefore needed for its renormalization, as well as the PT construction).

7.2 The Batalin-Vilkovisky formalism for pedestrians

Let us now introduce for each fieldΦ appearing in the theory4 a corresponding anti-field, to
be denoted byΦ∗. The anti-fieldΦ∗ has opposite statistics with respect toΦ; its ghost charge,
gh(Φ∗), is related to the ghost chargegh(Φ) of the fieldΦ by gh(Φ∗) = −1 − gh(Φ). For
convenience, we summarize the ghost charges and statisticsof the various QCD fields and anti-
fields in Table 2. Next, we add to the original gauge invariantLagrangianLI of Eq. (2.2) a term
coupling the anti-fields with the BRST variation of the corresponding fields, to get

LBV =LI + LBRST, (7.5a)

LBRST =
∑

Φ

Φ∗sΦ

=A∗a
µ (∂µca + gfabcAbµc

c) − 1

2
gfabcc∗acbcc + igψ̄∗cataψ − igcaψ̄taψ∗. (7.5b)

Notice that we have suppressed all spinor indices (both flavor and color), since they play no role
in the ensuing construction.

4 In the rest of this report, quark fields will be denoted by the generic letterψ
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Then, the actionΓ(0)[Φ,Φ∗] constructed fromLBV, will satisfy the master equation

∫
d4x

∑ δΓ(0)

δΦ∗
δΓ(0)

δΦ
= 0. (7.6)

To verify this, observe that, on one hand, the terms inδΓ(0)/δΦ that are independent of the
anti-fieldsΦ∗ are zero, due the BRST (actually the gauge) invariance of theaction

∫
d4x

∑
sΦ
δΓ

(0)
I

δΦ
=
∫
d4x(sΓ

(0)
I [Φ]) = 0 ; (7.7)

on the other hand, terms inδΓ(0)/δΦ that are linear in the anti-fields vanish, due to the nihilpo-
tency of the BRST operator

∫
d4x

∑
sΦ′ δ(sΦ)

δΦ′ =
∫
d4x

∑
s2Φ′ = 0. (7.8)

Now, since the anti-fields are external sources, we must constrain them to suitable values before
the actionΓ(0) can be used for calculating theS-matrix elements of the theory [39]. To that end,
we introduce an arbitrary fermionic functional,Ψ[Φ], with ghost charge -1, and set for all the
anti-fieldsΦ∗

Φ∗ =
δΨ[Φ]

δΦ
. (7.9)

Then the action becomes

Γ(0)[Φ, δΨ/δΦ] = Γ(0)[Φ] + (sΦ)
δΨ[Φ]

δΦ

= Γ(0)[Φ] + sΨ[Φ], (7.10)

and therefore, choosing the functionalΨ to satisfy the relation

sΨ =
∫
d4x (LGF + LFPG) , (7.11)

we see that the actionΓ(0) (obtained fromLBV) is equivalent to the gauge-fixed action obtained
from the original LagrangianL of Eq. (2.1). The functionalΨ is often referred to as the “gauge
fixing fermion”.

It is well-known that the BRST symmetry is crucial for endowing a (gauge) theory with a uni-
tary S-matrix and gauge-independent physical observables; therefore, it must be implemented
to all orders. For doing so we establish the quantum corrected version of the master equation
(7.6) in the form of the STI functional

S(Γ)[Φ] =
∫
d4x

∑ δΓ

δΦ∗
δΓ

δΦ

=
∫
d4x

{
δΓ

δA∗µ
m

δΓ

δAmµ
+

δΓ

δc∗m
δΓ

δcm
+

δΓ

δψ∗
δΓ

δψ̄
+
δΓ

δψ

δΓ

δψ̄∗ +Bm δΓ

δc̄m

}

=0, (7.12)
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whereΓ[Φ,Φ∗] is now the effective action.
In order to simplify the structure of the STI generating functional of Eq. (7.12), let us notice

that the anti-ghost̄ca and the multiplierBa havelinear BRST transformations; therefore they
do not present the usual complications (due to non-linearity) of the other QCD fields. Together
with their corresponding anti-field, they enter bi-linearly in the action, and one can write the
complete action (which we now explicitly indicate with a C subscript) as a sum of a minimal
and non-minimal sector

Γ
(0)
C [Φ,Φ∗] = Γ(0)[Aaµ, A

∗a
µ , ψ, ψ

∗, ψ̄, ψ̄∗, ca, c∗a] + c̄∗aBa. (7.13)

The last term has no effect on the master equation (7.6), which is satisfied byΓ(0) alone; the
fields{Aaµ, A∗a

µ , ψ, ψ
∗, ψ̄, ψ̄∗, ca, c∗a} are usually calledminimal variableswhile c̄a andBa are

referred to as non-minimal variables or “trivial pairs”. Equivalently, one can introduce the min-
imal (or reduced) action by subtracting from the complete one the local term corresponding to
the gauge-fixing Lagrangian,i.e.,

Γ = ΓC −
∫
d4xLGF. (7.14)

In either cases, the result is that the STI functional is now written as

S(Γ)[Φ] =
∫
d4x

{
δΓ

δA∗µ
m

δΓ

δAmµ
+

δΓ

δc∗m
δΓ

δcm
+

δΓ

δψ∗
δΓ

δψ̄
+
δΓ

δψ

δΓ

δψ̄∗

}
= 0. (7.15)

In practice, the STIs of Eq. (7.15), generated from the reduced functionalΓ, coincide with those
obtained fromΓC after the implementation of the Faddeev-Popov equation, described in the
next subsection [168]. One should also keep in mind that the Green’s functions involving un-
physical fields that are generated byΓ coincide with those generated byΓC only up to constant
terms proportional to the gauge fixing parameter,e.g., ΓAµAν

(q) = ΓC
AµAν

(q) − iξ−1qµqν . The
differences between employingΓ or ΓC is further explored in Appendix C; there, all relevant
identities needed for the generalization of the PT procedure to the SDEs of QCD (next section)
are derived and discussed.

Taking functional derivatives ofS(Γ)[Φ] and setting afterwards all fields and anti-fields to
zero will generate the complete set of the all-order STIs of the theory; this is in exact analogy
to what happens with the effective action, where taking functional derivatives ofΓ[Φ] and set-
ting afterwards all fields to zero generates the Green’s functions of the theory, see Eq. (7.3).
However, in order to reach meaningful expressions, one needs to keep in mind that:

∗ S(Γ) has ghost charge 1;

∗ functions with non-zero ghost charge vanish, since the ghost charge is a conserved quan-
tity.

Thus, in order to extract non-trivial identities from Eq. (7.15) one needs to differentiate the
latter with respect to a combination of fields, containing either one ghost field, or two ghost
fields and one anti-field. The only exception to this rule is when differentiating with respect to
a ghost anti-field, which needs to be compensated by three ghost fields. In particular, identities
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involving one or more gauge fields are obtained by differentiating Eq. (7.15) with respect to
the set of fields in which one gauge boson has been replaced by the corresponding ghost field.
This is due to the fact that the linear part of the BRST transformation of the gauge field is
proportional to the ghost field:sAaµ|linear = ∂µc

a. For completeness we also notice that, for
obtaining STIs involving Green’s functions that contain ghost fields, one ghost field must be
replaced by two ghost fields, due to the non linearity of the BRST ghost field transformation
[sca ∝ fabccbcc, see Eq. (2.9)]. The last technical point to be clarified is the dependence of
the STIs on the (external) momenta. One should notice that the integral overd4x present in
Eq. (7.15), together with the conservation of momentum flow of the Green’s functions, implies
that no momentum integration is left over; as a result, the STIs will be expressed as a sum of
products of (at most two) Green’s functions.

An advantage of working with the BV formalism is the fact thatthe STI functional (7.15)
is valid in any gauge,i.e., it will not be affected when switching from one gauge to another.
In particular, if we want to consider the BFM gauge, the only additional step we need to take
is to implement the equations of motion for the background fields at the quantum level. This
is achieved most efficiently by extending the BRST symmetry to the background gluon field,
through the relations

sÂmµ = Ωm
µ , sΩm

µ = 0, (7.16)

whereΩm
µ represents a (classical) vector field, with the same quantumnumbers as the gluon,

ghost charge+1, and Fermi statistics (see also Table 2). The dependence of the Green’s func-
tions on the background fields is then controlled by the modified STI functional

S ′(Γ′)[Φ] = S(Γ′)[Φ] +
∫
d4x Ωµ

m


 δΓ′

δÂmµ
− δΓ′

δAmµ


 = 0, (7.17)

whereΓ′ denotes the effective action that depends on the backgroundsourcesΩm
µ (with Γ ≡

Γ′|Ω=0), andS(Γ′)[Φ] is the STI functional of Eq. (7.15). Differentiation of the STI functional
(7.17) with respect to the background source and backgroundor quantum fields will then pro-
vide the BQIs, which relate 1PI Green’s functions involvingbackground fields with the ones
involving quantum fields. The BQIs are particularly useful in the PT context, since they allow
for a direct comparison between PT and BFM Green’s functions.

Finally, the background gauge invariance of the BFM effective action implies that Green’s
functions involving background fields satisfy linear WIs when contracted with the momentum
corresponding to a background leg. They are generated by taking functional differentiations of
the WI functional

Wϑ[Γ
′] =

∫
d4x

∑

Φ,Φ∗

(
δϑ(x)Φ

) δΓ′

δΦ
= 0, (7.18)

whereϑa(x) are the local infinitesimal parameters corresponding to theSU(3) generatorsta,
which now play the role of the ghost field. The transformations δϑΦ are thus given by

δϑA
a
µ = gfabcAbµϑ

c δϑÂ
a
µ = ∂µϑ

a + gfabcÂbµϑ
c,

δϑc
a = −gfabccbϑc δϑc̄

a = −gfabcc̄bϑc,
δϑψ

i
f = igϑa(ta)ijψ

j
f δϑψ̄

i
f = −igϑaψ̄jf (ta)ji, (7.19a)
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and the background transformations of the anti-fieldsδϑΦ
∗ coincide with the gauge transfor-

mations of the corresponding quantum gauge fields accordingto their specific representation.
Notice that, in order to obtain the WIs satisfied by the Green’s functions involving background
gluonsÂ, one has to differentiate the functional (7.18) with respect to the corresponding pa-
rameterϑ.

The STIs and BQIs needed for the PT construction have been derived in [169], together with
the method for constructing the auxiliary functions appearing in these identities; they are re-
ported for convenience in Appendix C.2 and C.3.

7.3 Faddeev-Popov equation(s)

The Faddev-Popov equation is a highly non-trivial identity, which is extremely useful in the PT
context, since it determines the result of the contraction of longitudinal momenta on auxiliary
Green’s functions. The FPE is also instrumental in proving the equivalence between the STIs
and BQIs derived usingΓ or ΓC (see Appendix). Since the FPE depends crucially on the form
of the ghost Lagrangian, which, in turn, depends on the gaugefixing function [see Eq. (2.7)],
we will first present the corresponding derivation in theRξ gauges, and then generalize it to the
BFM.

To derive the FPE in theRξ gauges, one observes that in the QCD action the only term
proportional to the anti-ghost fields comes from the Faddeev-Popov Lagrangian density, which
can be rewritten as

LRξ

FPG = −c̄m∂µ(sAmµ ) = −c̄m∂µ δΓ

δA∗m
µ

. (7.20)

Differentiation of the action with respect tōca yields the FPE in the form of the identity

δΓ

δc̄m
+ ∂µ

δΓ

δA∗m
µ

= 0, (7.21)

so that, taking the Fourier transform, we arrive at

δΓ

δc̄m
+ iqµ

δΓ

δA∗m
µ

= 0. (7.22)

Thus, in theRξ case, the FPE amounts to the simple statement that the contraction of a leg cor-
responding to a gluon anti-field (A∗m

µ ) by its own momentum (qµ) converts it to an anti-ghost leg
(c̄m). Functional differentiation of this identity with respect to QCD fields (but not background
sources and fields, see below) furnishes useful identities,that will be used extensively in our
construction.

For obtaining FPEs for Green’s functions involving background gluons and sources, one has
to modify Eq. (7.22), in order to account for the presence of extra terms in the BFM gauge
fixing function (and therefore in the BFM Faddeev-Popov ghost Lagrangian). Eq. (7.21) gets
then generalized to

δΓ′

δc̄m
+

(
D̂µ δΓ

′

δA∗
µ

)m
− (DµΩµ)

m = 0. (7.23)
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K(0)(1)

(a) (b)

K(0)

(d)

K(0)

(c)

k2

k1
q

Fig. 67. TheS-matrix PT setup for constructing the gluon propagator at one loop. The external particles
are left unspecified since, due to the process-independenceof the algorithm, they can equally well be
quarks or gluons. When the external particles are,e.g., gluons, the kernelK(0) appearing in diagram(b)
is the tree-level version of the one shown in Fig. 71. Mirror diagrams having the kernels on the opposite
side are not shown.

Once again, the specific FPEs needed for the PT construction have been derived in [169], and
are reported in Appendix C.1.

7.4 The (one-loop) PT algorithm in the BV language

After introducing all this formal machinery, it would be important to make contact with the PT
algorithm. This is clearly best done at the one-loop level, since in this case all calculations are
rather straightforward, and it is relatively easy to compare the standard diagrammatic results
with those coming from the BV formalism. This comparison will (i) help us identify the pieces
that will be generated when applying the PT algorithm, and (ii ) establish the rules for distribut-
ing the pieces obtained in (i) among the different Green’s functions appearing in the calculation.

The starting point is the usual embedding of the (one-loop) gluon propagator into anS-matrix
element (Fig. 67). Choosing the external legs to be,e.g., gluons, and carrying out the PT de-
compositionΓ = ΓP + ΓF on the tree-level three-gluon vertex of diagram(b) [see Eqs (2.39)],
we find

(b) = (b)F + (b)P,

(b)P =−1

2
gfam

′n′
∫

k1
(gαν′k1µ′ − gαµ′k2ν′)∆

(0)µ′µ
m′m (k1)∆

(0)ν′ν
n′n (k2)K(0)

Am
µ A

n
νA

r
ρA

s
σ
(k2, p2,−p1).

=−gfamngνα
∫

k1

1

k2
1

1

k2
2

kµ1K(0)
Am

µ A
n
νA

r
ρA

s
σ
(k2, p2,−p1). (7.24)

The1/2 symmetry factor carried by the kernelK is due to the explicit presence of the cross-
ing term. Then, expanding at tree-level the STI (C.35), dropping the terms proportional to the
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inverse gluon propagatorΓ(0)
AA(pi), since they vanish for “on-shell” gluons, and finally making

use of Eq. (C.44), we get

(b)P =−Γ
(1)

Ωa
αA

∗γ
d

(−q)Γ(0)
Ad

γA
r
ρA

s
σ
(p2,−p1) + (b′)

(b′)=−gfamngνα
∫

k1

1

k2
1

1

k2
2

K(0)

cmAr
ρA

s
σA

∗γ

d

(p2,−p1, k2)Γ
(0)

Ad
γA

n
ν
(k2). (7.25)

At this point the PT calculation is over, and one needs to reshuffle the pieces generated. Since
(b′) is a vertex-like contribution, the PT vertex̂ΓAAA, which is obtained by considering the
corresponding Green’s function embedded in theS-matrix element, will be given by

(b)F + (b′) + (c) + (d) = (b) + (c) + (d) + (b′) − (b)P, (7.26)

or

iΓ̂
(1)
Aa

αA
r
ρA

s
σ
(p2,−p1) = iΓ

(1)
Aa

αA
r
ρA

s
σ
(p2,−p1) + Γ

(1)

Ωa
αA

∗γ

d

(−q)Γ(0)
Ad

γA
r
ρA

s
σ
(p2,−p1). (7.27)

The PT self-energy will be given instead by the combination(a)+2(b)P [the factor of 2 coming
from the mirror diagram of(b)], i.e.,

Π̂
(1)
αβ(q) = Π

(1)
αβ(q) + Π

P(1)
αβ (q), (7.28)

where we have defined, with the aid of Eq. (C.16),

Π
P(1)
αβ (q) = 2iΓ

(1)
ΩαA∗γ(q)Γ

(0)
AγAβ

(q). (7.29)

We can now proceed to the comparison of the PT Green’s functions with those of the BFG, by
resorting to the BQIs. Clearly, Eq. (7.27) represents the one-loop expansion of the BQI (C.48),
and we immediately conclude that

Γ̂
(1)
Aa

αA
r
ρA

s
σ
(p2,−p1) = Γ

(1)

Âa
αA

r
ρA

s
σ

(p2,−p1). (7.30)

For the self-energy we have instead [recall that in our conventions−ΓAA(q) = Π(q)]

δabΠ̂
(1)
αβ(q) = −Γ

(1)

Aa
αA

b
β

(q) + 2iΓ
(1)

Ωa
αA

∗γ
d

(q)Γ
(0)

Ad
γA

b
β

(q) , (7.31)

which represents the one-loop version of the BQI of Eq. (C.39), i.e., we have

δabΠ̂
(1)
αβ(q) = −Γ

(1)

Âa
αÂ

b
β

(q). (7.32)

7.5 The two-loop case

As can be inferred on the basis of the analysis carried out in the previous section, at the two-
loop level all the diagrams appearing in the skeleton expansion of the propagator and vertex are
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participating in the PT construction. Thus, it would be useless to carry out the same comparison
between the diagrammatic and the BV formulation as we did at the one-loop level: while the
level of difficulty would be the same as that of the all-order analysis, no deeper understanding
would be gained in the process.

However, what we can still show is how the BV formalism enormously facilitates the com-
parison between the final PT result and the corresponding BFGGreen’s function, drastically
reducing the additional effort required in order to comparethe PT self-energy to the corre-
sponding BFG one. This is particularly relevant in the SM case, where the use of the BQIs has
been instrumental for generalizing the PT algorithm to two loops [170]. Let us start with the
two-loop gluon self-energy, which is given by [see Eq. (6.20)]

Π̂
(2)
αβ(q) = Π

(2)
αβ(q) + Π

P (2)
αβ (q) − R

P (2)
αβ (q), (7.33)

with

Π
P (2)
αβ (q) − R

P (2)
αβ (q) = q2P γ

β (q)

{
I4Lαγ(ℓ, k) + I3gαρ

− I1
[
kγgασ + Γ(0)

σγα(−k,−ℓ, k + ℓ)
]
(ℓ− q)σ

}

+ iV
P (1) γ
β (q)Π(1)

γα(q) − q2I2Pαβ(q). (7.34)

On the other hand, the two loop version of the BQI (C.39) satisfied by the gluon two-point
function gives

Π̂
(2)
αβ(q) =Π

(2)
αβ(q) + 2iΓ

(2)
ΩαA∗γ(q)Γ

(0)
AγAβ

(q) + 2iΓ
(1)
ΩαA∗γ (q)Γ

(1)
AγAβ

(q)

+Γ
(1)
ΩαA∗γ (q)Γ

(0)
AγAǫ

(q)Γ
(1)
ΩβA∗ǫ(q), (7.35)

where we have used the fact that−ΓAαAβ
= Παβ . From the one-loop results of the previous

subsections it is immediate to establish the identity

2iΓ
(1)
ΩαA∗γ (q)Γ

(1)
AγAβ

(q) + Γ
(1)
ΩαA∗γ (q)Γ

(0)
AγAǫ

(q) = iV
P (1) γ
β (q)Π(1)

γα(q) − q2I2Pαβ(q). (7.36)

Finally, the perturbative expansion at the two-loop level of the auxiliary functionΓΩA∗ is shown
in Fig. 68; one has the results

(a) =
1

2
I1Γ

(0)
σγα(−k,−ℓ, k + ℓ)(ℓ− q)σ, (b) =

1

2
I1(ℓ− q)αkγ ,

(c) = −1

2
I4Lαγ(ℓ, k), (d) = −1

2
I3gαγ , (7.37)

or
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(a) (b) (c) (d)

Fig. 68. The two-loop diagrams contributing to the auxiliary functionΓΩA∗.

2iΓ
(2)
ΩαA∗γ (q)Γ

(0)
AγAβ

(q) = q2P γ
β (q)

{
I4Lαγ(ℓ, k) + I3gαγ

− I1
[
kγgασ + Γ(0)

σγα(−k,−ℓ, k + ℓ)
]
(ℓ− q)σ

}
. (7.38)

Putting everything together, we see that

Π
P (2)
αβ (q) − R

P (2)
αβ (q)= 2iΓ

(2)
ΩαA∗γ (q)Γ

(0)
AγAβ

(q) + 2iΓ
(1)
ΩαA∗γ (q)Γ

(1)
AγAβ

(q)

+ Γ
(1)
ΩαA∗γ(q)Γ

(0)
AγAǫ

(q), (7.39)

which thus implies

Π̂
(2)
αβ(q) = Π̃

(2)
αβ(q), (7.40)

whereΠ̃
(2)
αβ(q) = −ΓAαAβ

is the BFG two-loop gluon self-energy. The proof in the case of
the PT two-loop quark-gluon vertex is even easier; after using the one-loop result, the two-loop
PT vertex can be cast in the form

Γ̂(2)
α (p1, p2) = Γ(2)

α (p1, p2) +
i

2
V P (1) ρ
α (q)Γ(1)

ρ (p1, p2) −
1

2

{
I4Lαρ(ℓ, k) + I3gαρ

− I1
[
kρgασ + Γ(0)

σρα(−k,−ℓ, k + ℓ)
]
(ℓ− q)σ

}
γρ. (7.41)

The two-loop BQI (C.57) for the gluon-quark vertex reads

iΓ
(2)

Âa
αψψ̄

(p2,−p1) = iΓ
(2)

Âa
αψψ̄

(p2,−p1) + Γ
(2)
ΩαA∗γ (q)Γ

(0)

Aa
γψψ̄

(p2,−p1)

+Γ
(1)
ΩαA∗γ(q)Γ

(1)

Aa
γψψ̄

(p2,−p1), (7.42)

where we have neglected pieces that vanish on-shell. Then one has

176



Γ
(1)
ΩαA∗ρ(q)Γ

(1)

Aa
ρψψ̄

(p2,−p1) =
i

2
V (1) P ρ
α (q)Γ

(1)

Aa
ρψψ̄

(p2,−p1), (7.43a)

Γ
(2)
ΩαA∗γ (q)Γ

(0)

Aγψψ̄
(p2,−p1) =−1

2

{
I4Lαρ(ℓ, k) + I3gαρ

− I1
[
kρgασ + Γ(0)

σρα(−k,−ℓ, k + ℓ)
]
(ℓ− q)σ

}
γρ, (7.43b)

where in (7.43b) we have suppressed a factorgta. Thus we get the equality between the two-
loop PT and BFG quark-gluon vertex [one needs to take into account that, due to the different
conventions used,Γα(p1, p2) = iΓAαψψ̄(p2,−p1)].
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8 The PT Schwinger-Dyson Equations for QCD Green’s functions

After recasting the PT algorithm in the BV language, and making contact with the original di-
agrammatic formulation, we are now ready to face the final challenge: apply the PT program
to the (non-perturbative) Schwinger-Dyson equations (SDEs) of QCD. In fact, historically, this
was the main motivation for introducing the method in the first place [5–8].

In this section, after briefly discussing the difficulties encountered when attempting to trun-
cate the SDEs within the conventional formalism, we will scrutinize, in detail how the PT algo-
rithm can be extended to the construction of new SDEs for the QCD Green’s functions. Next we
proceed to the actual construction of the new SDEs for the gluon two- and three-point functions.
We will finally discuss in depth the theoretical and practical advantages of the new SDE series.

8.1 SDEs for non-Abelian gauge theories: difficulties with the conventional formulation

The SDEs provide a formal framework for tackling physics problems requiring a non pertur-
bative treatment. In fact, even though these equations are derived from an expansion about the
free-field vacuum, they finally make no reference to it, or to perturbation theory, and can be used
to address problems related to chiral symmetry breaking, dynamical mass generation, formation
of bound states, and other non-perturbative effects [26,27].

In practice, however, their usefulness hinges crucially onone’s ability to devise a self-
consistent truncation scheme that would select a tractablesubset of these equations, without
compromising the physics one hopes to describe. Inventing such a scheme for the SDE of
gauge theories is a highly non-trivial proposition. The problem originates from the fact that
the SDEs are built out of unphysical Green’s functions; thus, the extraction of reliable physical
information depends critically on the delicate all-order cancellations we have been describing in
this review, which may be inadvertently distorted in the process of the truncation. For example,
several of the issues related to the truncation of the SDEs ofQED have been addressed in [171–
180]; it goes without saying that the situation becomes evenmore complicated for strongly
coupled non-Abelian gauge theories, such as QCD [181], mainly because of the following two
reasons.

i. As we have seen, the complications caused by the dependenceof the Green’s functions on
the gfp are more acute in non-Abelian gauge-theories. For example, recall that in QED the
photon self-energy (vacuum polarization) is independent of the gfp, both perturbatively (to
all orders) and non-perturbatively; when multiplied bye2 it forms a physical observable, the
QED effective charge. In contradistinction, the gluon self-energy is gfp-dependent already at
one loop; depending on the gauge-fixing scheme employed, this dependence may be more
or less virulent. This difference is clearly of little practical importance when computingS-
matrix elements at a fixed order in perturbation theory, but has far-reaching consequences
when attempting to truncate the corresponding SDEs, written in some gauge. Moreover, con-
trary to what happens in the perturbative calculation, evenif one were to put together the
non-perturbative expressions from these truncated SDEs toform a physical observable, the
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Fig. 69. The SDE satisfied by the gluon self-energy−ΓAA. The symmetry factors of the diagrams are
sa1 = sa2 = sa6 = 1/2, sa3 = sa4 = −1, sa5 = 1/6.

gauge-cancellations may not go through completely, because the process of the truncation
might have distorted them. Thus, there is a high probabilityof ending up with a residual
gauge-dependence infesting one’s non-perturbative prediction for a physical observable.

ii . In Abelian gauge theories the Green’s functions satisfy linear WIs, which in non-Abelian the-
ories are replaced by the non-linear STIs, involving, in addition to the basic Green’s functions
of the theory, various composite ghost operators. In order to appreciate how the fact that the
Green’s functions satisfy STIs may complicate the truncation procedure of the SDEs, let us
consider the simplest STI (and WI in this case) satisfied by the photon and gluon self-energies
alike, namely

qαΠαβ(q) = 0. (8.1)

Eq. (8.1) is without a doubt the most fundamental statement at the level of Green’s functions
that one can obtain from the BRST symmetry: it affirms the transversality of the gauge-boson
self-energy, be it a photon or a gluon, and is valid both perturbatively to all orders as well as
non-perturbatively. The problem stems from the fact that inthe SDE ofΠαβ enter higher order
Green’s functions, namely the fully-dressed fundamental vertices of the theory. It is these
latter Green’s functions that in the Abelian context satisfy WIs, whereas in the non-Abelian
context satisfy STIs. Thus, whereas in QED the validity of Eq. (8.1) can be easily seen at
the level of the SDE, simply becauseqαΓα(p, p + q) = e [S−1(p+ q) − S−1(p)], in QCD
proving Eq. (8.1) explicitly,i.e., by contracting withqα the SDE of the gluon self-energy,
requires a subtle conspiracy of all the (fully-dressed) vertices appearing in it. Truncating the
SDE naively usually amounts to leaving out some of these vertices, and, as a result, Eq. (8.1)
is compromised.

To be concrete, consider the SDE for the gluon propagator shown in Fig. 69; then, Eq. (8.1)
translates at the level of the SDE to the statement

qα
6∑

i=1

(ai)αβ = 0. (8.2)

The diagrammatic verification of (8.2),i.e., through contraction of the individual graphs by
qα, is practically very difficult, essentially due to the complicated STIs satisfied by the vertices
involved. The most typical example of such an STI is the one satisfied by the conventional three-
gluon vertex of Eq. (2.94). In addition, some of the pertinent STIs are either too complicated,
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such as that of the conventional four-gluon vertex, or they cannot be cast in a particularly con-
venient form. For instance, in the case of the conventional gluon-ghost vertex,Γµ(q, p), the STI
that one may obtain formally forqµΓµ(q, p) is the sum of two terms, one of which ispµΓµ(q, p);
this clearly limits its usefulness in applications.

The main practical consequence of these complicated STIs isthat one cannot truncate (8.2)
in any obvious way without violating the transversality of the resultingΠαβ(q). For example,
keeping only graphs(a1) and (a2) is not correct even perturbatively, since the ghost loop is
crucial for the transversality ofΠαβ already at one-loop; adding(a3) is still not sufficient for a
SD analysis, because (beyond one-loop)qα[(a1) + (a2) + (a3)]αβ 6= 0.

Last but not least, these complications are often compounded by additional problems related
to the loss of multiplicative renormalizability and the inability to form renormalization-group
invariant quantities.

It should be clear by now that the difficulties pointed out areexactly of the type that can
be circumvented using a PT approach (in fact, a gauge invariant truncation scheme for SDEs
has been the original motivation for introducing it). In particular, the waye.g., point (i) is re-
solved, for the prototype case of the gluon self-energy, is the following. The BFG is a privileged
gauge, in the sense that it is selecteddynamicallywhen the gluon self-energy is embedded into
a physical observable (such as an on-shell test amplitude).Specifically, the BFG captures the
net propagator-like subamplitude emerging after QED-likeconditions have been replicated in-
side the test-amplitude, by means of the PT procedure. Thus,once the PT rearrangements have
taken place, the propagator is removed from the amplitude and is studied in isolation: one con-
siders the SDE for the background gluon self-energy,Π̂αβ , at ξQ = 1. Solving the SDE in the
BFG eliminates any gauge-related exchanges between the solutions obtained for̂Παβ and other
Green’s functions, when put together to form observables; thus, the solutions are free of gauge
artifacts. Regarding point (ii ), all full vertices appearing in the new SDE satisfy now Abelian
WIs; as a result, gluonic and ghost contributions areseparatelytransverse, withineachorder in
the “dressed-loop” expansion (as was already noticed in ourdiscussion of the BFM two-loop
gluon self-energy, see subsection 3.3.2). Thus, as we will see explicitly in the next section, it is
much easier to devise truncation schemes that manifestly preserve the validity of Eq. (8.1). Let
us for now turn to the problem of how the PT algorithm can be generalized to a non-perturbative
setting.

8.2 The PT algorithm for Schwinger-Dyson equations

The BV (re)formulation of the PT algorithm reveals its true power when dealing with the prob-
lem of constructing (off-shell) PT Green’s functions without resorting to fixed order calcula-
tions, as it is the case when dealing with SDEs [182,183,169]. In particular, it is immediate
to realize that the (one-loop) procedure described at the end of the previous section for the
various QCD Green’s functions carries over practically unaltered to the construction of the
corresponding (non-perturbative) SDEs. This is basicallydue to the following three crucial ob-
servations [182,183,169]:

∗ the pinching momenta will be always determined from the tree-level decomposition given in
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Eq. (2.38);

∗ their action is completely fixed by the structure of the STIs they trigger;

∗ the kernels encountered in these STIs are those appearing inthe corresponding BQIs; thus, it
is always possible to write the result of the action of the pinching momenta in terms of the
auxiliary Green’s functions of the BQIs.

The only operational difference is that, in the case of the SDEs for vertices,all external legs
will be off-shell. This is of course unavoidable, because the (fully dressed)vertices are nested
inside, for example, the SDE of the off-shell gluon self-energy, (see Fig. 69); thus, all legs are
off-shell (the external leg because the physical four-momentum (q2) is off-shell, and the legs
inside the diagrams because they are irrigated by the virtual off-shell momenta). As a result,
the equations of motion employed in the previous section in order to drop some of the resulting
terms cannot be used in this case; therefore, the corresponding contributions, proportional to
inverse self-energies, do not vanish, and form part of the resulting BQI.

Thus the PT rules for the construction of SDEs may be summarized as follows:

∗ For the SDEs of vertices, withall threeexternal legsoff-shell, the pinching momenta, com-
ing from the only external three-gluon vertex undergoing the decomposition (2.38), generate
four types of terms: one of them, corresponding to the term(b′) in Eq. (7.25), is a genuine
vertex-like contribution that must be included in the final PT answer for the vertex under
construction, while the remaining three-terms will form part of the emerging BQI (and thus
would be discarded from the PT vertex). These latter terms have a very characteristic struc-
ture, which facilitates their identification in the calculation. Specifically, one of them is al-
ways proportional to the auxiliary functionΓΩA∗, while the other two are proportional to the
inverse propagators of the fields entering into the two legs that didnotundergo the decompo-
sition of Eq. (2.38).

∗ In the case of the SDE for the gluon propagator, the pinching momenta will only generate
pieces proportional toΓΩA∗; these terms should be discarded from the PT answer for the
gluon two-point function (since they are exactly those thatcancel against the contribution
coming from the corresponding vertices), and will contribute instead to the corresponding
BQI.

Thus, using these rules, and starting from the corresponding SDEs written in the Feynman gauge
of theRξ, we will first derive the new SDEs for thêΓAAA vertex (the quark-gluon vertex̂ΓAψψ̄)
has been also explicitly constructed in [169]), and will then address the more complicated case
of the SDE for the PT gluon propagatorΓ̂AA.

8.2.1 Three-gluon vertex

The SDE for the conventional three-gluon vertex is shown in Fig. 70. Before starting the calcu-
lation, let us emphasize that the purpose of this exercise isto generate dynamically the vertex
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generated during the PT procedure.

Γ
ÂAA

andnot the fully Bose-symmetric vertex [8,65]Γ
ÂÂÂ

studied in Section 2. The reason for
this is the fact that it is the former vertex that appears in the SDEs for the gluon propagator [see,
e.g., diagram(d1) in Fig. 77], making it the relevant vertex to be studied at this level.

We then begin by carrying out the decomposition of Eq. (2.38)to the tree-level vertex ap-
pearing in diagram(c), which will be the only one modified in our construction. Concentrating
on theΓP part, we find

(c)P = gfamn
′

gαν′
∫

k1

1

k2
1

∆ν′ν
n′n(k2)k

µ
1KAm

µ A
n
νA

r
ρA

s
σ
(k2, p2,−p1), (8.3)

where the kernelKAAAA is shown in Fig. 71.
Using the STI (C.35) satisfied by this kernel, we obtain from Eq. (8.3) four terms, namely

(c)P = (s1) + (s2) + (s3) + (s4). Then, using Eqs (C.44) and (C.45), it is fairly straightforward
to prove that
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(s1) =−ΓΩa
αA

∗γ
d

(−q)ΓAd
γA

r
ρA

s
σ
(p2,−p1),

(s2) =−ΓΩa
αA

s
σA

∗γ

d
(−p1, p2)ΓAd

γA
r
ρ
(p2),

(s3) =−ΓΩa
αA

r
ρA

∗γ
d

(p2,−p1)ΓAd
γA

s
σ
(p1). (8.4)

Evidently, the term(s1) gives rise to the propagator-like contribution,5 which, in theS-
matrix PT, would be allotted to the new two-point function,Γ̂AA. As for (s2) and (s3), they
correspond to terms that would vanish on-shell, but now, dueto the off-shell condition of the
external legs, must be retained in the final answer.

Finally, let us consider the term(s4), given by

(s4) = gfam
′n′

gαν′
∫

k1
Dm′m(k1)∆

ν′ν
n′n(k2)KcmA∗γ

d
Ar

ρA
s
σ
(k2, p2,−p1)ΓAd

γA
n
ν
(k2), (8.5)

and show how it combines with the remainingRξ diagrams to generate the BFG vertexΓ
ÂAA

.
To this end, using Eq. (C.17) and the FPE satisfied by the kernel KcA∗AA, we can write(s4) =
(s4a) + (s4b), with

(s4a)=−igfam′dgαγ

∫

k1
Dm′m(k1)KcmA∗γ

d
Ar

ρA
s
σ
(k2, p2,−p1),

(s4b)=−gfam′n′

gαν′
∫

k1
δdn

′ kν
′

2

k2
2

Dm′m(k1)Kcmc̄dAr
ρA

s
σ
(k2, p2,−p1). (8.6)

The kernelKcc̄AA is defined by replacing in Eq. (C.36) every anti-field legA∗ by the correspond-
ing anti-ghost field̄c. First of all, notice that the apparently missing topologies (l̂) and(m̂) of
Fig. 70 will be generated by the tree-level contribution appearing in the SDE of the auxiliary
functionΓcAA∗. To prove this, let us write

KcmA∗γ
d
Ar

ρA
s
σ
(k2, p2,−p1) =K′

cmA∗γ

d
Ar

ρA
s
σ
(k2, p2,−p1) − igfdre

′

gγρΓcmAs
σ c̄

e′ (−p1, ℓ)D
ee′(ℓ)

− igfdsegγσD
ee′(ℓ′)ΓcmAr

ρc̄
e′ (p2,−ℓ′), (8.7)

5 Note that this term is identical to the one found in the construction of the SDE for the quark-gluon
vertex case [169]. This is the (all-order) manifestation ofthe PT process-independence (see 2.4.3): the
propagator-like contributions do not depend on the detailsof the external (embedding) particles.
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BFM topologies. Here we show the case for(l̂); a symmetric term generates(m̂). The first term on the
rhs is part of the skeleton expansion of diagram(ĥ) of Fig. 70. Notice that the lhs is simply a pictorial
representation of the rhs: the anti-fields are static sources and do not propagate.

where the prime denotes that theΓcAA∗ appearing in the corresponding 1PR terms starts at
one-loop. We then find (see also Fig. 72)

(s4a)= (s′4a) + (l̂) + (m̂),

(s′4a)=−igfam′dgαγ

∫

k1
Dm′m(k1)K′

cmA∗γ

d
Ar

ρA
s
σ
(k2, p2,−p1). (8.8)

Consider then the terms(s′4a) and(s4b). Their general structure suggests that(s′4a) should give
rise to the ghost quadrilinear vertex, while(s4b), when added to diagram(e), should symmetrize
the trilinear ghost gluon coupling. It turns out that this expectation is essentially correct, but its
realization is not immediate, mainly due to the fact that the(s4b) contains a tree-level instead of
a full ghost propagator [(k2

2)
−1 instead ofD(k2)], while (s′4a) can reproduce, at most, diagram

(ĥ) of Fig. 70, but not(̂i). The solution to this apparent mismatch is rather subtle: one must
employ the SDE satisfied by theghost propagator. This SDE is common to both theRξ-gauge
and the BFM, given that there are no background ghosts.

To show how this works in detail, we add and subtract to the sum(s′4a) + (s4b) the missing
term (see Fig. 73), obtaining

(s′4a) =−igfam′dgαγ

∫

k1
Dm′m(k1)

[
K′
cmA∗γ

d
Ar

ρA
s
σ
(k2, p2,−p1)

− Γ′
cgA∗γ

d
(k2)iD

gg′(k2)Kcmc̄g′Ar
ρA

s
σ
(k2, p2,−p1)

]

=−igfam′dgαγ

∫

k1
Dm′m(k1)Kfull

cmA∗γ

d
ψψ̄(k2, p2,−p1)

(s4b) =−gfam′n′

gν
′

α

∫

k1

[
δdn

′ k2ν′

k2
2

− Γ′
ceA∗n′

ν′
(k2)D

ed(k2)

]
×

×Dm′m(k1)Kcmc̄dAr
ρA

s
σ
(k2, p2,−p1). (8.9)

Then, using Eq (C.40) (which can be safely done now, since tree-level contribution has been
already taken into account)

(s′4a) = (ĥ) + (̂i). (8.10)
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d
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replacing the gluon anti-fieldA∗γ

d with the corresponding composite operator (second line), this kernel

generates the BFM terms(ĥ) + (̂i).

We finally turn to(s4b) and consider the ghost SD equation of Fig. 74. One has

iDdn′

(k2) = i
δdn

′

k2
2

+ i
δdg

k2
2

[
−Γ′

cg c̄g′ (k2)
]
iDg′n′

(k2), (8.11)

whereΓ′
cg c̄g′

is given byΓcg c̄g′ minus its tree-level part. Multiplying the above equation by k2
2,

using the FPE (C.1), and factoring out ak2ν′ we get the relation

k2ν′D
dn′

(k2) = δdn
′ k2ν′

k2
2

− Γ′
cgA∗n′

ν′
(k2)D

gd(k2). (8.12)

Therefore, we obtain

(s4b) = −gfam′n′
∫

k1
k2αD

m′m(k1)D
n′n(k2)Kcmc̄nAr

ρA
s
σ
(k2, p2,−p1), (8.13)

so that
(s4b) + (e) = (ê). (8.14)

Using the tree-level Feynman rules (see Appendix B), it is straightforward to establish that the
graphs(b), (d), (f), and(g) can be converted to hatted ones automatically, and that(c)F = (ĉ).
Thus, collecting all the pieces we have, and using the standard PT decomposition (2.38) on the
tree-level contribution(a), we get

iΓAa
αA

r
ρA

s
σ
(p2,−p1) =−ΓΩa

αA
∗γ

d
(−q)ΓAd

γA
r
ρA

s
σ
(p2,−p1) − ΓΩa

αA
s
σA

∗γ

d
(−p1, p2)ΓAd

γA
r
ρ
(p2)

−ΓΩa
αA

r
ρA

∗γ

d
(p2,−p1)ΓAd

γA
s
σ
(p1) + [(â) + (b̂) + (ĉ) + (d̂) + (ê)

+ (f̂) + (ĝ) + (ĥ) + (̂i) + (l̂) + (m̂)]arsαρσ − igfarsΓP(p2,−p1). (8.15)
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Fig. 74. The SDE (8.11) satisfied by the ghost propagator.

As in the previous case, the sum of diagrams in the brackets isnothing but the kernel expansion
of the SDE governing the vertexΓ

ÂAA
, i.e.,

iΓ
Âa

αA
r
ρA

s
σ
(p2,−p1)= [(â) + (b̂) + (ĉ) + (d̂) + (ê))

+ (f̂) + (ĝ) + (ĥ) + (̂i) + (l̂) + (m̂)]arsαρσ. (8.16)

This, in turn, implies that Eq. (8.15) represents the BQI of Eq. (C.48) up to the last (tree-
level) term on the rhs. Of course, this tree-level discrepancy is to be expected, since the PT
algorithm cannot possibly work at tree-level if the external legs are amputated, as is the case in
the SDEs we are considering. To be sure, if we start from the tree-levelΓ(0)

AAA only, i.e., without
hooking (two of) the external legs to (conserved) external currents, we can still carry out the
decomposition of Eq. (2.38), but theΓP term will have nothing to act upon.

In summary, the application of the PT to the conventional SDEfor the trilinear gluon vertex
(i) has converted the initial kernel expansion [graphs (a) through (g) in Fig. 70] into the graphs
corresponding to the kernel expansion of the vertexΓ

ÂAA
; (ii ) all other pinching terms extracted

from the original diagram(c) are precisely the combinations of auxiliary Green’s functions
appearing in the BQI that relates the two vertices.

Notice at this point that the skeleton expansion of the multi-particle kernels appearing in the
SDE forΓ

ÂAA
is still written in terms of the conventional fully dressed vertices and propagators

(involving only quantum fields). Thus, Eq. (8.16) is not manifestly dynamical,i.e., it does not
involve the same unknown quantities on the right and left hand side. Specifically, in order to
convert (8.16) into a genuine SDE, one has two possibilities, both involving the use of the above
BQI: (i) substitute the lhs of Eq. (8.15) into the rhs of Eq. (8.16) and solve for the conventional
ΓAAA vertex, or (ii ) invert Eq. (8.15) and use it to convert everyΓAAA vertex appearing in the
rhs of Eq. (8.16) into aΓ

ÂAA
vertex. It would seem that the latter option is operationally more

cumbersome, especially taking into account that a similar procedure has to be followed for all
the Green’s functions that appear in the coupled system of SDEs that one considers.

8.2.2 The gluon propagator

In this section we turn to the SDE of the gluon self-energy. From a technical point of view, the
construction is somewhat more involved compared to that of the the vertices, simply because the
PT decomposition of Eq. (2.38) must be carried out on both sides of the self-energy diagram. Put
in a different way, now we must convert not one, but two external gluons to background gluons.
This is achieved through a procedure consisting of the following three basic steps [183,169]: (i)
Start with the conventional SDE forΓAA and convert (through pinching)A to Â ; this generates
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the SDE forΓ
ÂA

. (ii ) Use the symmetry ofΓ
ÂA

to interchange legs:Γ
ÂA

= Γ
AÂ

; this saves a
lot of algebra in the next step. (iii ) In the SDE forΓ

AÂ
, convert (through pinching)A to Â; this

generates the SDE forΓ
ÂÂ

. Let us now go over these steps in detail.

∗ First step

The starting point is diagram(a1) of Fig. 69. Following the PT procedure, we decompose the
tree-level three-gluon vertex according to (2.38), and concentrate on the pinching part,

(a1)
P = igfamn

′

gαν′
∫

k1

1

k2
1

∆ν′ν
n′n(k2)k

µ
1 ΓAm

µ A
n
νA

b
β
(k2,−q). (8.17)

The application of the STI of Eq. (C.10), together with Eq. (C.17) and the FPE (C.5), results in
the following terms

(a1)
P = igfam

′n′

gαν′
∫

k1
Dm′m(k1)∆

ν′ν
n′n(k2)ΓcmAn

νA
∗γ

d
(k2,−q)ΓAd

γA
b
β
(q)

+ gfam
′dgαγ

∫

k1
Dm′m(k1)ΓcmAb

β
A∗γ

d
(−q, k2)

− igfam
′n′

gαν′
∫

k1
δdn

′ kν
′

2

k2
2

Dm′m(k1)ΓcmAb
β
c̄d(−q, k2)

= (s1) + (s2) + (s3). (8.18)

Using the SDE of the auxiliary functionΓΩA∗, shown in Eq. (C.44), one has immediately that

(s1) = −iΓΩa
αA

∗γ

d
(q)ΓAd

γA
b
β
(q). (8.19)

This corresponds to half of the pinching contribution coming from the vertex in theS-matrix
PT.

As far as the(s2) and(s3) terms are concerned, let us start by adding and subtracting to them
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Fig. 76. The SDE satisfied by the gluon self-energy−Γ
AÂ

. The symmetry factors of the diagrams are
s(c1, c2, c6) = 1/2, s(c3, c4, c7) = −1, s(c5) = 1/6.

the expression needed to convert the tree-level ghost propagator of(s3) into a full one; making
use of the ghost SDE (8.12), we obtain

(s2) =−gfam′dgαγ

∫

k1
iDm′m(k1)

[
iΓcmAb

β
A∗γ

d
(−q, k2)

+ Γ′
cg′A∗γ

d

(k2)D
g′g(k2)ΓcmAb

β
c̄g(−q, k2)

]
,

(s3) =−igfam′n′
∫

k1
k2αD

m′m(k1)D
n′n(k2)ΓcmAb

β
c̄n(−q, k2). (8.20)

The second term symmetrizes the trilinear ghost-gluon coupling, and one has

(s3) + (a3) = (b3), (8.21)

where(b3) is shown in Fig. 75. The term(s2) will finally generate all the remaining terms.
To see how this happens, we denote by(s2a) and(s2b) the two terms appearing in the square
brackets of(s2), and concentrate on the first one. Making use of the SDE (C.43)satisfied by the
auxiliary functionΓcAA∗, and the decomposition (C.46) of the kernel appearing in thelatter, we
get

(s2a)= g2fam
′dfmdbgαβ

∫

k1
Dm′m(k1)

+ g2fam
′dfdn

′s′gασ′
∫

k1

∫

k3
Dm′m(k1)∆

σ′σ
s′s (k3)D

n′n(k4)KcmAb
β
As

σ c̄
n(−q, k3, k4)

= (b4) + (b7) + (b8) + (b10). (8.22)

For the second term, using the SDE satisfied byΓcA∗, shown in Eq. (C.42), we obtain

(s2b) = ig2fam
′dfdsegσα

∫

k1

∫

k3
Dm′m(k1)∆

σσ′

ss′ (k3)D
ee′(k4)Γcg′Aσ′

s′
c̄e′ (k3, k4)D

g′g(k2) ×
×ΓcmAb

β
c̄g(−q, k2)

= (b9). (8.23)
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Âa
α Âb
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Fig. 77. The SDE satisfied by the gluon self-energy−Γ
ÂÂ

. The symmetry factors are the same as the
one described in Fig. 75.

Finally, since the diagrams(a2), (a4) (a5), and(a6) carry over directly to the corresponding
BFM ones(b2), (b5), (b6), and(b11), and given that(a1)

F = (b1), we have the final identity

(s2) + (s3) +

[
(a1)

F +
6∑

i=2

(ai)

]
=

11∑

i=1

(bi), (8.24)

and therefore
−ΓAa

αA
b
β
(q) = −iΓΩa

αA
∗γ

d
(q)ΓAd

γA
b
β
(q) − Γ

Âa
αA

b
β

(q), (8.25)

which is the BQI of Eq. (C.38).

∗ Second step

The second step in the propagator construction is to employ the obvious relation

Γ
Âa

αA
b
β

(q) = Γ
Aa

αÂ
b
β

(q), (8.26)

that is to interchange the background and quantum legs (the SDE for the self-energy−Γ
AÂ

is shown in Fig. 76). This apparently trivial operation introduces a considerable simplification.
First of all, it allows for the identification of the pinchingmomenta from the usual PT decompo-
sition of the (tree-level)Γ appearing in diagram(c1) of Fig. 76 [something not directly possible
from diagram(b1)]; thus, from the operational point of view, we remain on familiar ground.
In addition, it avoids the need to employ the (formidably complicated) BQI for the four-gluon
vertex; indeed, the equality between diagrams(c5), (c6), (c7) of Fig. 76, and(d5), (d6), (d11) of
Fig. 77, respectively, is now immediate [as it was before, between the diagrams(a4), (a5), (a6)
and(b5), (b6), (b11), respectively].

∗ Third step

We now turn to diagram(c1) and concentrate on its pinching part, given by

(c1)
P = igfamn

′

gαν′
∫

k1

1

k2
1

∆ν′ν
n′n(k2)k

µ
1 Γ

Am
µ A

n
ν Â

b
β

(k2,−q). (8.27)
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⇒

Γ
ÂA

≡ Γ
AÂ

⇐PT

⇒PT

Fig. 78. Summary of the PT procedure employed for the construction of the new SDE describing the
gluon propagator.

Notice the appearance of the full BFM vertexΓ
AAÂ

instead of the standardΓAAA (in theRξ).
The STI satisfied by the former vertex has been derived in Eq. (C.30). Now, the first three terms,
(s1), (s2) and(s3), appearing in this STI, will give rise to PT contributions exactly equal to those
encountered in first step described above, the only difference being that theAbβ field appearing

there is now a background field̂Abβ. Thus, following exactly the reasoning described before, we
find [see again Fig. 77 for the diagrams corresponding to each(di)]

(s1)→−iΓΩa
αA

∗e
ǫ

(q)Γ
Ae

ǫÂ
b
β

(q),

(s2) + (s3) + (c3) = (d3) + (d4) + (d7) + (d8) + (d9) + (d10). (8.28)

For the term(s4) we have instead

(s4) → g2fam
′ef ebmgαµ′gβµ

∫

k1
∆µ′µ
m′m(k1). (8.29)

Clearly this has a seagull-like structure; in particular, it is immediate to prove that when added
to (c2) it will convert it into (d2)

(s4) + (c2) = (d2). (8.30)

Thus, since as always(c1)F = (d1) we get

(s2) + (s3) + (s4) +

[
(c1)

F +
7∑

i=2

(ci)

]
=

11∑

i=1

(di), (8.31)

and therefore
−Γ

Aa
αÂ

b
β

(q) = −iΓΩa
αA

∗e
ǫ

(q)Γ
Ae

ǫÂ
b
β

(q) − Γ
Âa

αÂ
b
β

(q), (8.32)

which is the BQI of Eq. (C.38). This concludes our proof.
In Fig. 78 we summarize the steps that allowed the successfulconstruction of the SDE for

the PT propagator.

8.3 The new Schwinger-Dyson series

We will now have a closer look at the structure and physical consequences of the new SDEs
obtained in the previous subsections. We focus, for concreteness, on the SDE for the gluon
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propagator; notice, however, that the following analysis applies with minimal modification to
the three-point functions SDEs.

The PT rearrangement gives rise dynamically to the new SD series (shown in Fig. 79) which
has the following characteristics:

∗ On the rhs, it is as if the external gluons had been converted dynamically into background
gluons, since we have graphs that are made out of new vertices, which coincide precisely
with the BFG ones. Notice, however, an important point: the graphs contain inside them the
same gluon propagator as before, namely∆.

∗ On the lhs, we have the sum of three terms: in addition to the term ∆−1(q2)Pαβ(q), present
there from the beginning, we have two additional contributions,2G(q2)∆−1(q2)Pαβ(q) and
G2(q2)∆−1(q2)Pαβ(q), which appear during the PT rearrangement of the rhs (and aresubse-
quently carried to the lhs). Thus, the term appearing on the lhs of the new SDE is∆−1(q2)[1+
G(q2)]2Pαβ(q), with the functionG(q2) defined through

ΓΩαA∗
β
(q) = igαβG(q2) + . . . , (8.33)

where the omitted terms are proportional toqαqβ (and therefore irrelevant due to transversal-
ity).

Summarizing, one may write schematically

∆−1(q2)[1 +G(q2)]2Pαβ(q) = q2Pαβ(q) + i
11∑

1=1

(di)αβ, (8.34)

which is nothing but a rewriting of the BQI relating the background and the conventional gluon
two-point function [see Eq. (C.39)]. Equivalently, one cancast Eq. (8.34) into a more conven-
tional form by isolating on the lhs the inverse of the unknownquantity, thus writing

∆−1(q2)Pαβ(q) =
q2Pαβ(q) + i

∑11
1=1(di)αβ

[1 +G(q2)]2
. (8.35)

8.3.1 The PT as a gauge-invariant truncation scheme: advantages over the conventional SDEs

The new SD series of Eqs (8.34) and (8.35) has a very special structure. In order to gain a deeper
understanding of the situation at hand, let us first step backand consider the one-loop case
again, in which the application of the intrinsic PT algorithm to the (one-loop) gluon self-energy,
amounts to carry out the PT rearrangement of Eq. (2.71) of thetwo elementary three-gluon
vertices appearing in diagram(a) of Fig. 9, thus getting the result

Π̂
(1)
αβ(q) =

1

2
g2CA





∫

k

ΓF
αµνΓ

Fµν
β

k2(k + q)2
−
∫

k

2(2k + q)α(2k + q)β
k2(k + q)2



− 2g2CA

∫

k

q2Pαβ(q)

k2(k + q)2
. (8.36)
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Fig. 79. The new SD series projected out dynamically by the PTalgorithm.

It is elementary to verify that each of the two terms in braceson the rhs of the equation above are
transverse; thus, the PT rearrangement has created three manifestly transverse structures. That in
itself might not be so important, if it were not for the fact that, as we know, these structures admit
a special diagrammatic representation and a unique field-theoretic interpretation. Specifically,
the two terms in the square bracket correspond precisely to diagrams(â) and (b̂) of Fig. 80,
defining the one-loop gluon self-energy in the BFG, while thethird term on the rhs of Eq. (8.36)
is the one-loop expression of the special auxiliary Green’sfunctionΓΩA∗, identified in the BV
formulation of the PT (or, more precisely, thegαβ part of this latter function); it corresponds to
diagram(c) in Fig. 80. Since the one-loop PT self-energy is obtained by simply dropping this
last term from the rhs of Eq. (8.36), one has

Π
(1)
αβ(q) = Π̂

(1)
αβ(q) + (c)αβ, (8.37)

which, as we know from Section 7 [see Eq. (7.31)], is nothing but the one-loop version of the
BQI of Eq. (C.39) [and, therefore, also of the SDE (8.34)]. Let us now focus onΠ(1)

αβ(q), and
imagine for a moment that no ghost loops may be considered when computing it,i.e., the graphs
(b̂)αβ must be omitted; in a SDE context this “omission” would amount to a “truncation” of the
series. One may still obtain atransverseapproximation forΠ(1)

αβ(q) with no ghost-loop, given
by

Π
(1)
αβ(q) = (â)αβ + (c)αβ = 4q2f(q2)Pαβ(q), (8.38)

where the functionf(q2) has been defined in Eq. (3.37). Interestingly enough, the PT rear-
rangement offers already at one-loop the ability to truncate gauge-invariantly,i.e., preserving
the transversality of the truncated answer.

Turning now to the full SDE (8.35), one can prove that the special transversality property
found above holds true non-perturbatively, with gluonic and ghost contributions separately
transverse, and, in addition, no mixing between the one- andtwo-loop dressed diagrams. In
the BFM context this property has been already seen explicitly for the divergent parts of the
two-loop gluon self-energy diagrams (Section 3); here we will show that this is in fact a con-
sequence of the all-orders WIs satisfied by the full verticesappearing in the diagrams defining
the PT self-energy (Fig. 77). There are four fully dressed vertices appearing in̂Π, whose WIs
we need:Γ

ÂAA
, Γ

cÂc̄
, Γ

ÂAAA
and, finally,Γ

cÂc̄A
. One way to derive their WIs is to differentiate
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Fig. 80. The conventional one-loop gluon self-energy before (first line) and after (second line) the PT
rearrangement.

the WI functional of Eq. (7.18) with respect to the corresponding field combination where the
background field has been replaced by the corresponding gauge parameterϑ. On the other hand,
a much more expeditious way is to derive the corresponding tree-level WIs, and then use lin-
earity to generalize them to all orders, as we do in QED. Either way, one obtains the following
results

qαΓ
Âa

αA
m
µ A

n
ν
(k1, k2)= gfamn

[
∆−1
µν (k1) − ∆−1

µν (k2)
]
,

qαΓ
cnÂa

αc̄
m(q,−k1)= igfamn

[
D−1(k2) −D−1(k1)

]
,

qαΓ
Âa

αA
b
β
Am

µ A
n
ν
(k1, k2, k3)= gfadbΓAd

β
Am

µ A
n
ν
(k2, k3) + gfadmΓAd

µA
b
β
An

ν
(k1, k3)

+ gfadnΓAd
νA

b
β
Am

µ
(k1, k2),

qαΓ
cnÂa

αA
b
β
c̄m

(q, k3,−k1)= gfadbΓcnAd
β
c̄m(q + k3,−k1) + gfadmΓcnAb

β
c̄d(k3, q − k1)

+ gfadnΓcdAb
β
c̄m(k3,−k1). (8.39)

Armed with these WIs, we can now prove that the four groups identified (at two-loop level) in
Eq. (3.41) are in fact independently transverse even non-perturbatively.

Let’s start from the one-loop dressed gluonic contributions given by the combination of
(d1) + (d2) of Fig. 77. Using the first WI of Eq. (8.39) we get

qβ(d1)
ab
αβ = −g2CAδ

abqα

∫

k
∆µ
µ(k), (8.40)

while, by simply computing the divergence of the tree-levelvertexΓ
ÂÂAA

given in Appendix B,
we get

qβ(d2)
ab
αβ = g2CAδ

abqα

∫

k
∆µ
µ(k), (8.41)

so that clearly

qβ [(d1) + (d2)]
ab
αβ = 0. (8.42)

Exactly the same procedure yields for the one-loop dressed ghost contributions
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qβ(d3)
ab
αβ =−2g2CAδ

abqα

∫

k
D(k),

qβ(d4)
ab
αβ = 2g2CAδ

abqα

∫

k
D(k), (8.43)

and therefore
qβ [(d3) + (d4)]

ab
αβ = 0. (8.44)

For the two-loop dressed contributions the proof is only slightly more involved. We begin with
the gluonic contributions. Using the third WI of Eq. (8.39) in diagram(d5), after appropriate
manipulation of the the terms produced, and taking into account the symmetry factor of1/6,
we obtain

qβ(d5)
ab
αβ =

i

2
gf bmnΓ

(0)

Âa
αA

m
µ′A

g

γ′
Ae

ǫ′

∫

k

∫

ℓ
∆ǫ′ǫ(k)∆γ′γ(ℓ+ k)ΓAg

γAe
ǫA

n
µ
(k, ℓ)∆µ′µ(ℓ+ q). (8.45)

Similarly, after making use the full Bose symmetry of the three-gluon vertex, graph(d6) gives

qβ(d6)
ab
αβ =

i

2
gf bmnΓ

(0)

Âa
αA

m
µ′A

g

γ′
Ae

ǫ′

∫

k

∫

ℓ
∆ǫ′ǫ(k)∆γ′γ(ℓ+ k)ΓAg

γAe
ǫA

n′

ν′
(k, ℓ) ×

×
[
∆ν′ν(ℓ)gµ

′

ν − ∆µ′µ(ℓ+ q)gν
′

µ

]
. (8.46)

The first term in the square brackets vanishes (the integral is independent ofq, and therefore
the free Lorentz indexβ cannot be saturated). Furthermore, the second term is exactly equal but
opposite in sign to the one appearing in Eq. (8.45), so that weobtain

qβ [(d5) + (d6)]
ab
αβ = 0. (8.47)

Finally, we turn to the two-loop dressed ghost contributions. Using the last WI of Eq. (8.39),
we see that the divergence of diagram(d7) gives us three terms, namely

qβ(d7)
ab
αβ =−iΓ(0)

cm′ Âa
αA

r′

ρ′
c̄n′

∫

k

∫

ℓ
Dm′m(ℓ+ k)Dn′n(ℓ+ q)∆ρ′ρ

r′r(k) ×

×
[
gf berΓcnAe

ρc̄
e(k − q,−ℓ− k) + gf benΓceAr

ρc̄
m(k,−ℓ− k)

+ gf benΓcnAr
ρc̄

n(k,−q − ℓ− k)
]
. (8.48)

Each one of these three terms can be easily shown to cancel exactly against the individual
divergences of the remaining three graphs. To see this in detail, let us consider for example
diagram(d10) and use the WI (8.39) to obtain

qβ(d10)
ab
αβ =−igf bmnΓ(0)

cm′Âa
αA

r′

ρ′
c̄n′

∫

k

∫

ℓ
Dm′m(ℓ+ k)Dn′d(ℓ+ q)Dd′n(ℓ+ k + q)∆ρ′ρ

r′r(k)×

×ΓcdAr
ρc̄

d′ (k,−q − ℓ− k)
[
D−1(ℓ+ k + q) −D(−1)(ℓ+ k)

]
. (8.49)

Then, we see that the second inverse propagator in the squarebrackets will give rise to aq-
independent integral that will integrate to zero, while thefirst term will cancel exactly the third
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term appearing in the square brackets of Eq. (8.48). It is notdifficult to realize that the same
pattern will be encountered when calculating the divergence of diagrams(d8) and(d9), so that
one has the identity

qβ [(d7) + (d8) + (d9) + (d10)]
ab
αβ = 0. (8.50)

This concludes the proof of the special transversality property of Π̂ab
αβ(q), showing that gluon

and ghost loops are separately transverse, and that dressing loops of different orders do not mix.
This last property has far-reaching practical consequences for the treatment of the SD se-

ries [183,169]. Specifically, it furnishes a systematic gauge-invariant truncation scheme that
preserves the transversality of the answer. In fact, we can drastically reduce the number of cou-
pled SDEs that must be included in order to maintain the gauge(or BRST) symmetry of the
theory intact, as reflected, for example, in the validity of Eq.(8.1). For example, keeping only
the diagrams in the first group, we obtain the truncated SDE

∆−1(q2)Pαβ(q) =
q2Pαβ(q) + i[(d1) + (d2)]αβ

[1 +G(q2)]2
, (8.51)

and from Eq. (8.42) we know that[(d1) + (d2)]αβ is transverse,i.e.,

[(d1) + (d2)]αβ = (d− 1)−1[(d1) + (d2)]
µ
µPαβ(q). (8.52)

Thus, the transverse projectorPαβ(q) appearsexactlyon both sides of (8.51); one may subse-
quently isolate the scalar cofactors on both sides, obtaining a scalar equation of the form

∆−1(q2) =
q2 + i[(d1) + (d2)]

µ
µ

[1 +G(q2)]2
. (8.53)

A truncated equation similar to (8.51) may be written for anyother of the four groups previously
isolated, or for sums of these groups, without compromisingthe transversality of the answer.
The price one has to pay for this advantageous situation is that one must consider, in addition,
the equation determining the scalar functionG(q2). This price is, however, rather modest, since
one can approximate this function via a dressed-loop expansion [see,e.g., Fig. C.1 together with
Eq. (C.44)], without jeopardizing the transversality ofΠαβ(q), given that[1 + G(q2)]2 affects
only the size of the scalar prefactor.

Thus, in the case of pure Yang-Mills, within this new formulation, the minimum number of
equations that one must consider is only two: The SDE for the gluon self-energy, given by the
first gauge-invariant subsetonly (i.e., [(d1) + (d2)]αβ in Fig. 79), and the SDE for the full three-
gluon vertex, shown in Fig. 70 (which is instrumental in assuring the gauge invariance of the
subset chosen). This is to be contrasted to what happens within the conventional formulation:
there the SDEs forall vertices must be considered, or else Eq. (8.1) is violated (which is what
usually happens).

8.3.2 Some important theoretical and practical issues

We now turn to some additional points that, due to their theoretical and practical relevance,
deserve further elaboration.
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It is important to emphasize that the analysis presented here doesnot furnish a simple dia-
grammatic truncation, analogous to that of the gluon self-energy, for the SDE of the three gluon
vertexΓ

ÂAA
, shown in Fig. 70. Thus, if one were to truncate the SDE for thethree-gluon vertex

by keeping any subset of the graphs appearing in Fig.70, one would violate the validity of the
all-order WI of Γ

ÂAA
[Eq. (8.39) first line]; this, in turn, would lead immediately to the viola-

tion of Eq. (8.1), thus making the entire truncation scheme collapse.
The strategy one should adopt is instead the following (see also the discussion in the next

section). Given that the proposed truncation scheme hingescrucially on the validity of the WI
of Γ

ÂAA
, one should start out with an approximation that manifestlypreserves it. The way

to enforce this, familiar to the SDE practitioners already from the QED era, is to resort to the
“gauge-technique” [184], namely “solve” the WI. Specifically, one must express the three-gluon
vertex as a functional of the corresponding self-energies,in such a way that (by construction)
its WI is automatically satisfied. For example, an Ansatz with this property would be

Γ
ÂαAµAν

(k1, k2) = Γ
(0)

ÂαAµAν
(k1, k2) − i

(k2 − k1)α
k2

2 − k2
1

[Πµν(k2) − Πµν(k1)] . (8.54)

Contracting the rhs withqα = (k1 + k2)α yields automatically the first WI of Eq. (8.39). Thus,
the minimum amount of ingredients for initiating aself-consistentnon-perturbative treatment
is the SD for the gluon self-energy, consisting of[(d1) + (d2)]αβ , supplemented by an Ansatz
for the three-gluon vertex like the one given in (8.54). Notethat the “gauge-technique” leaves
the transverse (i.e., automatically conserved) part of the vertex undetermined. This is where the
SDE for the vertex enters; it is used precisely to determine the transverse parts. Specifically,
following standard techniques [45,65], one must expand thevertex into a suitable tensorial
basis, consisting of fourteen independent tensors, and then isolate the transverse subset. This
procedure will lead to a large number of coupled integral equations, one for each of the form-
factors multiplying the corresponding tensorial structures, which may or may not be tractable.
However, at this point, one may simplify the resulting equations (e.g., linearize, etc) without
jeopardizing the transversality ofΠαβ , which only depends on the “longitudinal” part of the
vertex,i.e., the one determined by (8.54). Thus, the transverse parts will be approximately de-
termined, but gauge invariance, as captured byqαΠαβ = 0, will remain exact.

Note by the way that the methodology described above constitutes, even to date, the stan-
dard procedure even in the context of QED, where the structure of the SDE is much simpler,
given that the SDE for the photon contains one single graph [diagram(a6) in Fig. 69], and the
photon-electron vertex satisfies automatically a naive all-order WI. Thus, while the PT approach
described here replicates QED-like properties at the levelof the SDEs of QCD, admittedly a
striking fact in itself, does not make QCD easier to solve than QED.

One should appreciate an additional point: any attempt to apply the approach described above
in the context of the conventional SDE is bound to lead to the violation of the transversality of
Παβ , because (i) the vertices satisfy complicated STI’s instead of the WIs of Eq. (8.39), a fact
that makes the application of the “gauge-technique” impractical, and (ii ) even if one came up
with the analogue of Eq. (8.54) for all vertices, one should still keep all self-energy diagrams
in Fig. 69 to guarantee thatqαΠαβ = 0. From this point of view, the improvement of the PT
approach over the standard formulation becomes evident.

Finally, one should be aware of the fact that there is no a-priori guarantee that the gauge-
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invariant subset kept (i.e., [(d1) + (d2)]αβ) capture necessarily most of the dynamics, or, in
other words, that they represent the numerically dominant contributions (however, for a va-
riety of cases it seems to be true, see next section). But, thepoint is that one cansystematically
improve the picture by including more terms, without worrying that the initial approximation
is plagued with artifacts, originating from the violation of the gauge invariance or of the BRST
symmetry.

Now, in going from Eq. (8.34) to Eq. (8.35) one essentially chooses to retain the original prop-
agator∆(q) as the unknown quantity, to be dynamically determined from the SDE. There is, of
course, an alternative strategy: one may define a new “variable” from the quantity appearing on
the lhs (8.34), namely

∆̂(q) ≡
[
1 +G(q2)

]−2
∆(q), (8.55)

which leads to a new form for (8.34),

∆̂−1(q2)Pαβ(q) = q2Pαβ(q) + i
11∑

i=1

(di)αβ . (8.56)

Obviously, the special transversality properties established above hold as well for Eq. (8.56);
for example, one may truncate it gauge-invariantly as

∆̂−1(q2)Pαβ(q) = q2Pαβ(q) + i[(d1) + (d2)]αβ . (8.57)

Should one opt for treatinĝ∆(q) as the new unknown quantity, then an additional step must
be carried out: one must use (8.55) to rewrite the entire rhs of (8.56) in terms of∆̂ instead of∆,
i.e., carry out the replacement∆ → [1 +G]2 ∆̂ insideevery diagram on the rhs of Eq. (8.56)
that contains∆’s.

Thus, while Eq. (8.51) furnishes a gauge-invariant approximation for the conventional gluon
self-energy∆(q), Eq. (8.56) is the gauge-invariant approximation for the effective PT self-
energy∆̂. The crucial point is that one may switch from one to the otherby means of Eq. (8.55).
For practical purposes this means, for example, that one mayreach a gauge-invariant approxi-
mation not just for the PT quantity (BFG) but also for theconventionalself-energy computed
in the Feynman gauge (RFG). Eq. (8.55), which is the all-order generalization of the one-loop
relation given in Eq. (8.37), plays an instrumental role in this entire construction, allowing one
to convert the SDE series into a dynamical equation for either ∆̂(q) or ∆(q).

Let us end this section by observing that the new SDEs constructed in the previous subsec-
tions have been dynamically projected out in the BFG, which captures, as usual, the net gauge-
independent and universal (i.e., process-independent) contribution contained in any physical
quantity. In practice, however, one would like to be able to truncate gauge-invariantly (i.e.,
maintaining transversality) sets of SDEs written in different gauges. This becomes particularly
relevant, for example, when one attempts to compare SDE predictions with lattice simulations,
carried out usually in the Landau gauge, as we do in the next section.

This can be achieved by using the GPT algorithm described in subection 3.6. As described
there, the GPT modifies the starting point of the PT algorithmdistributing differently the longi-
tudinal momenta betweenΓF

αµν andΓP
αµν . Specifically, the non-pinching part,i.e., the analogue

of ΓF
αµν , must satisfy, instead of (2.40), a WI whose rhs is the difference of two inverse tree-level
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propagators in the gauge one wishes to consider. In the context of SDEs, one starts out with the
conventional SDE in the chosen gauge, carrying out the generalized PT vertex decomposition.
Then, the action of the correspondingΓP

αµν projects one to the corresponding BFM gauge. This
new SD series contains full vertices that, even though they are in a different gauge, satisfy the
same QED-like WIs given in Eq. (8.39). Therefore, the truncation properties of this SDE are
the same as those just discussed for the case of the Feynman gauge. The analogy is completed
by realizing that the BQIs in the corresponding gauge allow one to switch back and forth from
the conventional to the BFM Green’s function. Thus, one may obtain, for example, transverse
approximations for the gluon propagator in the conventional Landau gauge by studying the SDE
written in the BFM Landau gauge, computing the[1 + G(q2)]2 in the same gauge,i.e., by em-
ploying Eq. (8.35) and using for the diagrams on its rhs the BFM Feynman rules in the Landau
gauge.
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9 Applications part II: Infrared properties of QCD Green’s f unctions and dynamically
generated gluon mass

The generation of mass gaps in QCD is one of the most fundamental problems in particle
physics. In part the difficulty lies in the fact that the symmetries governing the QCD Lagrangian
prohibit the appearance of mass terms at tree-level for all fundamental degrees of freedom
and, provided that these symmetries are not violated through the procedure of regularization,
this masslessness persists to all orders in perturbation theory. Thus, mass generation in QCD
becomes an inherently non-perturbative problem, whose tackling requires the use of rather so-
phisticated calculational tools and approximation schemes [27].

Whereas the generation of quark masses is intimately connected with the breaking of chiral
symmetry [185], Cornwall argued long ago [7] that an effective gluon mass can be generated
dynamically, while preserving the localSU(3)c invariance of QCD, in close analogy to what
happens in QED2 (Schwinger model) [186], where the photon acquires a mass without violat-
ing the Abelian gauge symmetry (see discussion below). The gluon mass furnishes, at least in
principle, a regulator for all infrared (IR) divergences ofQCD. It must be emphasized that the
gluon mass is not a directly measurable quantity, and that its value is determined by relating it
to other dimensionful non-perturbative parameters, such as the string tension, glueball masses,
gluon condensates, and the vacuum energy of QCD [187].

Since gluon mass generation is a purely non-perturbative effect, the most standard way for
studying it in the continuum is through the SDEs governing the relevant Green’s functions, and
most importantly the gluon self-energy. One of the cornerstones in the original analysis of [7]
was the insistence on preserving, at every level of approximation, crucial properties such as
gauge-invariance, gauge-independence, and invariance under the renormalization group. With
this motivation, a physical gluon propagator,∆̂µν , was derived through the systematic rear-
rangement of Feynman graphs, which led to the birth of the PT.As the reader knows very well
by now, the self-energŷΠµν of this propagator is gauge-independent, and captures the leading
logarithms of the theory, exactly as happens with the vacuumpolarization in QED. The cen-
tral result of [7] was that, when solving a simplified (one-loop inspired) SDE governing the
PT propagator, one finds (under special assumptions for the form of the three-gluon vertex)
solutions that are free of the Landau singularity, and reacha finite (non-vanishing) value in
the deep IR. These solutions may be successfully fitted by a “massive” propagator of the form
∆−1(q2) = q2 + m2(q2); the crucial characteristic, enforced by the SDE itself, isthatm2(q2)
is not “hard”, but depends non-trivially on the momentum transferq2. Specifically,m2(q2) is
a monotonically decreasing function, starting at a non-zero value in the IR (m2(0) > 0) and
dropping “sufficiently fast” in the deep UV.

Arguments based on the Operator Product Expansion (OPE) suggest thatm2(q2) should dis-
play power-law running, of the typem2(q2) ∼ 〈G2〉/q2, where〈G2〉 is the gauge-invariant
gluon condensate of dimension four:〈G2〉 = 〈0| :Ga

µνG
µν
a : |0〉. The unambiguous connection

between the gluon mass and the gluon condensate establishedby Lavelle [188] merits further
comments, because it constitutes another important success of the PT (for early calculations re-
lating the gluon condensate and the effective gluon mass, see [189]). Specifically, the OPE was
used to find the contribution of the〈G2〉 condensate to theconventionalgluon propagator, but
the results turned out to be of limited usefulness: in addition to〈G2〉, gauge-dependent conden-
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sates involving the ghost fieldsc andc̄ also appeared [188]. This calculation amply demonstrates
that no physical results can be obtained from the OPE for a gauge-dependent quantity, such as
the usual gluon propagator. Then, the same calculation was repeated for the PT propagator with
very different results [190]:only the gauge-invariant condensate〈G2〉 appeared, and in just such
a way that it could be interpreted as contributing to a running mass. This result is equivalent to
saying that, at large Euclidean momentum,∆̂ in SU(N) behaves as

∆̂−1(q) → q2 +
17N

18(N2 − 1)

〈G2〉
q2

. (9.1)

Note that the multiplicative constant is positive, so this OPE correction has the right sign to rep-
resent a running mass, since the condensate〈G2〉 is also positive (actually, powers of logarithms
of q2 can also occur, but we ignore them here). We emphasize also that this kind of power-law
running has also been obtained from independent SDE studies[7,191,192].

An effective low-energy field theory for describing the gluon mass is the gauged non-linear
sigma model known as “massive gauge-invariant Yang-Mills”[193], with Lagrangian density

LMYM =
1

2
G2
µν −m2Tr

[
Aµ − g−1U(θ)∂µU

−1(θ)
]2
, (9.2)

whereAµ = 1
2i

∑
a λaA

a
µ, theλa are the SU(3) generators (withTrλaλb = 2δab), and theN ×N

unitary matrixU(θ) = exp
[
i1
2
λaθ

a
]

describes the scalar fieldsθa. Note thatLMYM is locally
gauge-invariant under the combined gauge transformation

A′
µ = V AµV

−1 − g−1 [∂µV ]V −1 , U ′ = U(θ ′) = V U(θ) , (9.3)

for any group matrixV = exp
[
i1
2
λaω

a(x)
]
, whereωa(x) are the group parameters. One might

think that, by employing (9.3), the fieldsθa can always be transformed to zero, but this is not so
if the θa contain vortices. To use theLMYM in (9.2), one solves the equations of motion forU
in terms of the gauge potentials and substitutes the result in the equations for the gauge poten-
tial. One then finds Goldstone-like massless modes, that, aswe will see later in this section, are
instrumental for enforcing gauge-invariance. This model admits vortex solutions [193], with a
long-range pure gauge term in their potentials, which endows them with a topological quantum
number corresponding to the center of the gauge group [ZN for SU(N)], and is, in turn, re-
sponsible for quark confinement and gluon screening [193,194]. Specifically, center vortices of
thickness∼ m−1, wherem is the induced mass of the gluon, form a condensate because their
entropy (per unit size) is larger than their action. This condensation furnishes an area law to the
fundamental representation Wilson loop, thus confining quarks. On the other hand, the adjoint
potential shows a roughly linear regime followed by string breaking when the potential energy
is about2m, corresponding to gluon screening [7,193]. Of course,LMYM is not renormalizable,
and breaks down in the ultraviolet. This breakdown simply reflects the fact that the gluon mass
m in (9.2) is assumed to be constant, while, as commented above, both the OPE and the SDEs
furnish a momentum-dependent gluon mass, vanishing at large q2.

The main theoretical tool for quantitative calculations inthe infrared region of QCD, aside
from the SDEs, is the lattice. In this framework, QCD is approximated by a lattice gauge the-
ory with a non-zero lattice spacing and a finite space-time volume. In this way, one reduces
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Fig. 81. (Left panel) The gluon propagator calculated for different lattice sizes atβ = 5.7, from
Ref. [195]. The data points drawn atq2 = 0.001 represent the zero-momentum gluon propagator∆(0).
(Right panel) The ghost dressing functionZgh(q2) = q2D(q2) for the same value ofβ. Notice that no
power-law enhancement is observed for this quantity (see discussion in subsection 9.3).

the infinite functional integrals to a finite number of finite integrations, thus allowing the com-
putation of correlation functions by numerical evaluations of these integrals via Monte-Carlo
methods. The gluon and ghost propagators (in various gauges) have been studied extensively on
the lattice [196–198]. To be sure, lattice simulations of gauge-dependent quantities are known
to suffer from the problem of the Gribov copies, especially in the infrared regime, but it is
generally believed that the effects are quantitative rather than qualitative. The effects of the Gri-
bov ambiguity on the ghost propagator become more pronounced in the infrared, while their
impact on the gluon propagator usually stay within the statistical error of the simulation [199–
201]. It turns out that a large body of lattice data, producedover several years, confirm that the
gluon propagator reaches indeed a finite (non-vanishing) value in the deep IR, as predicted by
Cornwall. This rather characteristic behavior was alreadysuggested by early studies, and has
been firmly established recently using large-volume lattices, for pure Yang-Mills (no quarks
included), for bothSU(2) [202] andSU(3) [195] (see Fig. 81).

9.1 PT Schwinger-Dyson equations for the gluon and ghost propagators

As mentioned above, in the original analysis of gluon mass generation a simplified (and lin-
earized) SDE was considered, that involved only the gluon self-energy, with no ghost loops
included [7]. In this section we go one step further: we will exploit the powerful machinery of-
fered by the SDE truncation scheme introduced in the previous section, in order to study gauge-
invariantly the gluon-ghost system. In particular, we willshow how to obtain self-consistently
an infrared finite gluon propagator and a divergent (but non-enhanced) ghost propagator, in
qualitative agreement with recent lattice data [195]. It isworth emphasizing that this behavior
has also been confirmed within the Gribov-Zwanziger formalism [203].

In the previous sections we have employed the standard notation of the BV formalism, where
all Green’s functions are denoted by the letterΓ, and all incoming fields (together with their
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Fig. 82. The new SDE for the gluon-ghost system. Wavy lines with white blobs are full gluon propagators,
dashed lines with white blobs are full-ghost propagators, black blobs are full vertices, and the gray blob
denotes the scattering kernel. The circles attached to the external gluons denote that, from the point of
view of Feynman rules, they are treated as background fields.

color and Lorentz indices) are explicitly displayed as subscripts. This notation is completely
unambiguous, and is particularly suited for formal manipulations carried out so far, but is rather
cumbersome for actual applications. Therefore, in this section we will switch to a simplified
notation, that will result much more familiar to the SDE practitioners.

The SDEs for the gluon-ghost system are shown in Fig. 82. Evidently, we only consider the
“one-loop dressed” contributions, leaving out (gauge-invariantly!) two-loop dressed diagrams.
Indeed, as we know from the previous analysis this truncation preserves gauge-invariance, in
the sense that it doesnot compromise the transversality of the gluon self-energy. Inthe case of
pure (quark-less) QCD these SDEs read

∆−1(q2)Pµν(q) =
q2Pµν(q) + i

∑4
i=1(di)µν

[1 +G(q2)]2
,

iD−1(p2) = p2 + iλ
∫

k
Γµ∆µν(k)Γ

ν(p, k)D(p+ k),

iΛµν(q) = λ
∫

k
H(0)
µρD(k + q)∆ρσ(k)Hσν(k, q), (9.4)

whereλ = g2CA. Γµ is the standard (asymmetric) gluon-ghost vertex at tree-level, andΓν the
fully-dressed one.G(q2) is thegµν component of the auxiliary two-point functionΛµν(q), and
the functionHσν is defined diagrammatically in Fig. 82.Hσν , and is related to the full gluon-
ghost vertex byqσHσν(p, r, q) = −iΓν(p, r, q); at tree-level,H(0)

σν = igσν .
Using the BFM rules of Appendix B to evaluate the diagrams(di), we find
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(d1) =
λ

2

∫

k
Γ̃µαβ∆

αρ(k)Γ̃νρσ∆
βσ(k + q),

(d2) =−iλgµν
∫

k
∆ρ
ρ(k) − iλ

(
1

ξ
− 1

)∫

k
∆µν(k),

(d3) =−λ
∫

k
Γ̃µD(k)D(k + q)Γ̃ν ,

(d4) = 2iλgµν

∫

k
D(k). (9.5)

In the above formulas,̃Γµαβ(q, p1, p2)=Γµαβ(q, p1, p2)+ ξ−1ΓP
µαβ(q, p1, p2), whereΓµαβ is the

standard QCD three-gluon vertex, andΓ̃µαβ its the fully-dressed version. Similarly,Γ̃µ denotes
thesymmetricgluon-ghost vertex at tree-level andΓ̃µ its fully-dressed counterpart. Due to the
Abelian all-order WIs that these two full vertices satisfy (for all ξ), namely

qµΓ̃µαβ = i∆−1
αβ(k + q) − i∆−1

αβ(k) ,

qµΓ̃µ = iD−1(k + q) − iD−1(k) , (9.6)

one can easily demonstrate thatqµ[(d1) + (d2)]µν = 0 andqµ[(d3) + (d4)]µν = 0 [90].
In order to make contact with the lattice results of [195,202] shown in Fig. 81, we will have

to project the above system of coupled SDEs in the LG (ξ = 0). This is a subtle exercise,
because one cannot set directlyξ = 0 in the integrals on the rhs of Eqs (9.5), due to the terms
proportional toξ−1. Instead, one has to use the expressions for generalξ, carry out explicitly
the set of cancellations produced when the terms proportional to ξ generated by the identity

kµ∆µν(k) = −iξkν/k2, (9.7)

are used to cancelξ−1 terms, and setξ = 0 only at the very end (this exercise is very similar to
the BFM pinching we have carried at the one-loop level in subsection 3.5).

Let us focus on graph(d1). First of all, it is relatively straightforward to establish that only
the bare part of the full̃Γ may furnish contributions proportional toξ−1. To see why this is
so, consider the SDE of̃Γ shown in Fig. 70. Evidently, theξ−1 parts of the bare vertex are
longitudinal; therefore, by virtue of Eq. (9.7), they cancel when contracted with an internal
gluon propagator. Moreover, all kernels appearing in this SDE are regular in the LG, since all
the fields entering are quantum ones (it is like computing thekernels in the normal LG, where
no ξ−1 terms exist). Therefore, writing̃Γναβ = Γ̃ναβ + K̃ναβ, we have that̃Kναβ is regular
in the limit ξ → 0; we will denote byKναβ its value atξ = 0. Thus, the only divergent
contributions contained in(d1) reside in the product̃ΓµαβΓ̃νρσ. It is then a simple algebraic
exercise to demonstrate that they cancel exactly against the part of the seagull diagram(d2)
proportional toξ−1. Thus, taking the LG limit we obtain
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2∑

i=1

(di)µν =λ





1

2

∫

k
Γαβµ ∆t

αρ(k)∆
t
βσ(k + q)Lρσ

ν − 9

4
gµν

∫

k
∆(k)

+
∫

k
∆t
αµ(k)

(k + q)β
(k + q)2

[Γ + L]αβν +
∫

k

kµ(k + q)ν
k2(k + q)2



, (9.8)

where∆t
µν(q) = Pµν(q)∆(q2), andLµαβ ≡ Γµαβ + Kµαβ . Note thatLµαβ satisfies the WI

qµLµαβ = Pαβ(k + q)∆−1(k + q) − Pαβ(k)∆
−1(k) , (9.9)

as a direct consequence of (9.6). Therefore, one can verify that the lhs of (9.8) vanishes when
contracted byqµ, thus proving the announced transversality of this subset of graphs.

In order to proceed with our analysis, we need to furnish someinformation about the all-
order verticesLµαβ , Γ̃µ, Γµ, andHµν , entering in our system of SDEs. Of course, these vertices
satisfy their own SDEs; so, in principle, one should couple all these equations together, to form
an even more extended (and more intractable) system of coupled integral equations. As mention
at the end of the previous section, given the practical difficulties of such a task, one resorts to
the “gauge technique” [184,204,205], expressing the vertices as functionals of the various self-
energies involved, in such a way as to satisfy by construction the correct WIs6 . The Ansatz we
will use forLµαβ andΓ̃µ is

Lµαβ =Γµαβ + i
qµ
q2

[Παβ(k + q) − Παβ(k)] ,

Γ̃µ = Γ̃µ − i
qµ
q2

[L(k + q) − L(k)] . (9.10)

whereL denotes the ghost self-energy,D−1(p2) = p2 − iL(p2). As announced, the corre-
sponding WIs, (9.6) and (9.6), are identically satisfied. Onthe other hand, for the conventional
ghost-gluon vertexΓµ, appearing in the SDE of (9.4) we will use its tree-level expression,i.e.,
Γν → Γµ = −pµ. Note that, unlikẽΓµ, the conventionalΓµ satisfies a STI of rather limited
usefulness; the ability to employ such a different treatment for Γ̃µ andΓµ without compromis-
ing gauge-invariance is indicative of the versatility of the new SD formalism used here. Finally,
for Hµν we use its tree-level value,H(0)

µν = igµν .
The above Ansatz for the vertices needs further explaining,in view of the fact that it contains

a longitudinally coupled pole1/q2. We hasten to emphasize that the origin of this pole is not
kinematic but rather dynamical,i.e., it is a composite (bound-state) pole, whose presence is
instrumental for the realization of the Schwinger mechanism in d = 4, leading to∆−1(0) 6= 0.
Given the importance of this mechanism to our approach, and the subtlety of the various con-
cepts invoked, in the next subsection we present a brief overview of the Schwinger mechanism
and its connection with the Goldstone phenomenon and the Higgs mechanism [206,207].

6 As already mentioned, this method leaves the transverse (i.e., identically conserved) part of the vertex
undetermined. The transverse parts are known to be subleading in the IR, when a mass gap is formed,
but must be supplied in the UV, because they are instrumentalfor enforcing the cancellation of the
overlapping divergences and the correct renormalization group properties.
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Fig. 83. The new SDE for the three-gluon vertex. Note that, asalways, the kernels are one-particle
irreducible; thus, the1/q2 pole is not kinematic but dynamical, and is completely non-perturbative,i.e.,
it vanishes to all orders in perturbation theory. Physically it corresponds to a longitudinally coupled
massless composite excitation, acting as the (composite) Goldstone mode necessary for maintaining the
local gauge invariance [208].

9.2 Schwinger mechanism, dynamical gauge-boson mass generation, and bound-state poles

According to Goldstone’s theorem [209–211], the spontaneous breaking of a continuous global
symmetry is accompanied by massless excitations, known as “Goldstone” particles7 . Even
though Goldstone’s theorem is most frequently realized by ascalar field acquiring a vacuum
expectation value, Nambu and Jona-Lasinio [212,213] introduced the notion of a dynamical
Goldstone boson, demonstrating that the Goldstone mechanism can take place even when the
Lagrangian does not include scalar fields. Thus, when chiralsymmetry is broken, the associated
Goldstone boson (the pion) is not an elementary excitation of a fundamental scalar field, but it
is rather formed as a quark-antiquark bound state.

Goldstone’s theorem, however, does not apply when the symmetry that is spontaneously bro-
ken is not global but local, accompanied by the associated massless gauge boson mediating
the interaction (equivalently, one may say that the theoremdoes not apply in the presence of
gauge-invariant long range forces). In such a case the Goldstone phenomenon is replaced by
the Higgs phenomenon: no massless excitations appear in thespectrum, because the would-be
Goldstone bosons combine with the transverse gauge boson tofurnish the third helicity state of
a massive spin one particle [214–218]. In addition, a massive scalar particle, the Higgs boson,
also appears in the spectrum, and is instrumental for the renormalizability of the theory. Of
course, both mechanisms may co-exist; if a local and a globalsymmetry are broken, one may
have both phenomena. For example, the spontaneous breakingof a gauge symmetry through
the Higgs mechanism gives mass to the gauge bosons; if, in addition, a global symmetry (e.g.
chiral symmetry) is broken, then massless Goldstone bosonsare present in the spectrum. As we
will see in a moment, the opposite may also happen: the breaking of a global symmetry may
furnish the Goldstone bosons that (in the absence of elementary scalar fields) will be absorbed
by the gauge bosons, which will thus become massive.

Independently of the above consideration, and before the Higgs mechanism was even in-

7 In most cases these particles are scalars, and are hence referred to as bosons, even though spin1
2

Goldstone particles may exist, as for example when supersymmetry is spontaneously broken.
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vented, Schwinger argued that the gauge invariance of a vector field does not necessarily imply
zero mass for the associated particle, if the current vectorcoupling is sufficiently strong [186].
Schwinger’s fundamental observation was that if (for some reason) the vacuum polarization ten-
sorΠµν(q) acquires a pole at zero momentum transfer, then the vector meson becomes massive,
even if the gauge symmetry forbids a mass at the level of the fundamental Lagrangian [219].
Indeed, casting the self-energy in the familiar form

∆µν(q2) =

(
gµν − qµqν

q2

)
−i

q2[1 + Π(q2)]
, (9.11)

it is clear that ifΠ(q2) has a pole atq2 = 0 with positive residueµ2, then the vector meson is
massive, even though it is massless in the absence of interactions (g = 0, Π = 0).

Indeed, there isno physical principle which would precludeΠ(q2) from acquiring a pole.
Since bound states are expected to exist in most physical systems, and to produce poles inΠµν

at time-like momenta, one may suppose that for sufficiently strong binding, the mass of such
a bound state will be reduced to zero, thus generating a mass for the vector meson without in-
terfering with gauge invariance. Schwinger demonstrated his general ideas in two-dimensional
massless spinor QED (“Schwinger model”), which, by virtue of the special properties of the
Dirac algebra atd = 2, is explicitly solvable:Πµν doesindeed have a pole atq2 = 0, and the
photon acquires a mass,µ2 = e2/π (in d = 2, e has dimensions of mass)8 .

Perhaps the most appealing feature of the Schwinger mechanism is that the appearance of
the required pole may happen for purely dynamical reasons, and, in particular, without the need
to introduce fundamental scalar field in the Lagrangian. In fact, the Higgs mechanism can be
viewed as just avery special realizationof the Schwinger mechanism: the vacuum expectation
valuev of a canonical scalar field coupled to the vector meson gives rise to tadpole contributions
to Π(q2), which produce a pole. Thus, the Higgs mechanism corresponds to the special case
where the residue of the pole is saturated byv2, furnishing a gauge-boson massµ2 = 2g2v2;
the pole required is provided by the would-be Goldstone particles, which decouple from the
spectrum.

In order to employ the Schwinger mechanism in realistic fieldtheories, ultimately one must
be able to demonstrate that a pole is generated somehow. Of course, the Higgs mechanism guar-
antees that, at the classical or semi-classical level. In the absence of fundamental scalar fields
the realization of the mechanism is more subtle, but, at the same time, conceptually superior,
because one does not have to assume the existence of fundamental scalars (not observed in Na-
ture, to date). Therefore, in the seventies, an appealing alternative to the Higgs mechanism was
extensively considered. The idea was to combine thedynamicalGoldstone mechanism (i.e., the
Nambu–Jona-Lasino mechanism with composite Goldstone particles) with a gauge theory, in
order to givedynamical gauge-invariant massesto the vector mesons. In this two-step scenario,
mass generation is proceeded by the spontaneous breaking ofa global (chiral) symmetry; the
required pole inΠµν is provided by composite Goldstone bosons (fermion-antifermion bound
states). Gauge invariance (long range forces), on the otherhand, ensures that these massless ex-

8 The generation of the pole in the Schwinger model is related to the anomaly of the axial-vector cur-
rent, which is the reason why Godstone’s theorem is evaded inthis case. This is in fact consistent with
Coleman’s theorem [220], stating the absence of Goldstone bosons ind = 2.
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citations will decouple from the complete physical scattering amplitude. The actual realization
of the decoupling goes through a rather subtle mechanism, ashas been demonstrated explicitly
in the toy models considered [208,221].

Even though this activity was mainly directed towards an alternative descriptions (i.e., with-
out resorting to tree-level Higgs mechanism and elementaryscalars) of the electroweak sector,
Grand Unified Theories, and general model-building, these profound ideas invariably influenced
our approach to the strong interactions. The general philosophy adopted when applying some
of the dynamical concepts described above to pure Yang-Mills theories (without matter fields),
such as quarkless QCD, is the following [222]. One assumes that, in a strongly-coupled gauge
theory, longitudinally coupled, zero-mass bound-state excitations are dynamically produced. To
be sure, the demonstration of the existence of a bound state,and in particular a zero-mass bound
state, in realistic field theories is a difficult dynamical problem, usually studied by means of in-
tegral equations, known as Bethe-Salpeter equations (see,e.g., [223]). Thus, it is clear that a
vital ingredient for this scenario is strong coupling, which can only come from the infrared in-
stabilities of a non-Abelian gauge theories. The aforementioned excitations arelike dynamical
Nambu-Goldstone bosons, in the sense that they are massless, composite, and longitudinally
coupled; but, at the same time, they differ from Nambu-Goldstone bosons as far as their origin
is concerned: they donotoriginate from the spontaneous breaking of any global symmetry. The
main role of these excitations is to trigger the Schwinger mechanism, i.e. to provide the required
pole in the gluon self-energy [specifically, the gauge-independent̂Π(q2) obtained with the PT]
thus furnishing (gauge-invariantly) a dynamical mass for the gluons. The additional important
step is then to demonstrate that every such Goldstone-like scalar that is “eaten” by a gluon to
give it mass is actually canceled out of theS-matrix by other massless poles, or by current con-
servation.

Exactly how should the idea of a composite excitation be incorporated at the level of Green’s
functions and the corresponding SDEs? A composite excitation is represented as a pole in an
off-shell Green’s function representing a field that does not exist in the classical action, but that
occurs in the solution of the SDE for that Green’s function, as a sort of bound state. To make
contact with our starting point, i.e. the Ansatz of (9.10)-(9.10), we turn to the following sim-
plified situation. Consider the WI of Eq. (3.59), and ask the following question: supposing that
∆(0)
µν develops a mass, how must one modifyΓ̃αµν in order for the WI to continue been valid,

which is tantamount to saying that the gauge-invariance remains intact? Thus, replace in∆0
µν

of (2.31) thed−1(k) = k2 by d−1
m (k) = k2 +m2, and substitute the resulting∆(0)

mµν in the rhs of
Eq. (3.59). In order to maintain the validity of the WI one must simultaneously replacẽΓαµν on
the lhs byΓ̃mαµν given by

Γ̃mαµν(q, k1, k2) = Γ̃αµν(q, k1, k2) −
[
m2

2

qαk1µ(q − k1)ν
q2k2

1

+ c.p.

]
, (9.12)

where “c.p.” stands for cyclic permutations. The new vertexΓ̃mαµν(q, k1, k2) has, as we men-
tioned above, terms with longitudinally-coupled masslesspoles, whose residue ism2. If the
propagator is transverse and has mass, this is the only way that the original WI can be satisfied,
just as the only way a massive gauge-boson propagator can be transverse is if it has similar
poles in the transverse projectorPµν .
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9.3 Results and comparison with the lattice

Substituting into the system of SDEs the expressions for thevarious vertices, as discussed
above, and carrying out elementary but lengthy algebraic manipulations, we arrive at the fi-
nal form of the SDEs, presented in [224].

The crucial point is the behavior of (9.4) asq2 → 0, where the “freezing” of the gluon prop-
agator is observed. In this limit, Eq.(9.4) yields

∆−1(0) ∼ 15
∫

k
∆(k) − 6

∫

k
k2∆2(k). (9.13)

The rhs of Eq.(9.13) vanishes perturbatively, by virtue of the dimensional regularization result

∫

k

lnnk2

k2
= 0, n = 0, 1, 2, . . . (9.14)

which ensures the masslessness of the gluon to all orders. However,∆−1(0) doesnot have to
vanish non-perturbatively, provided that the quadratically divergent integrals defining it can be
properly regulated and made finite,without introducing counterterms of the formm2

0(Λ
2
UV

)A2
µ,

which are forbidden by the local gauge invariance of the fundamental QCD Lagrangian. It
turns out that this is indeed possible: the divergent integrals can be regulated by subtracting
appropriate combinations of “dimensional regularizationzeros”. Specifically, for large enough
k2 the∆(k2) goes over to its perturbative expression, to be denoted by∆pert(k

2); it has the form

∆pert(k
2) =

N∑

n=0

an
lnn k2

k2
, (9.15)

where the coefficientan are known from the perturbative expansion. Thus, we obtain for the
regularized∆−1

reg(0)

∆−1
reg(0) ∼ 15

∫ s

0
dy y [∆(y) − ∆pert(y)] − 6

∫ s

0
dy y2

[
∆2(y) − ∆2

pert(y)
]
. (9.16)

The obvious ambiguity of the regularization described above is the choice of the points, past
which the two curves,∆(y) and∆pert(y), are assumed to coincide. Due to this ambiguity one
cannot pin down∆reg(0) completely, which must be treated, at this level, as an arbitrary ini-
tial (boundary) condition. In [224]∆reg(0) was fixed by resorting to the lattice data of [195];
specifically, when solving the system of SDEs numerically,∆−1

reg(0) was chosen to have the
same value as the lattice data at the origin∆reg(0) = 7.3 GeV−2. Once this boundary condition
is imposed, the system of SDE is solved for the entire range of(Euclidean) momenta, from the
deep IR to the deep UV. The solutions obtained are shown in Fig. 84, where we show the nu-
merical results for∆(q2) and the ghost dressing function renormalized atµ = Mb = 4.5 GeV,
and the comparison with the corresponding lattice data of Ref.[195].

It is interesting to mention that the non-perturbative transverse gluon propagator, being finite
in the IR, is automatically less singular than a simple pole,thus satisfying the corresponding
Kugo-Ojima confinement criterion [226,227]. Note that forq2 ≤ 10 GeV2 both gluon propaga-
tors (lattice and SDE) shown in Fig. 84 may be fitted very accurately using a unique functional
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Fig. 84. (Left panel) The numerical solution for the gluon propagator from the SDE (black continuous
line) compared to the lattice data of Ref. [195]. (Right panel) The ghost dressing functionp2D(p2)
obtained from the SDE. In the insert we show the lattice data for the same quantity; notice that there is
no “infrared enhancement” [225]; instead, the dressing function saturates at a finite value

form, given by∆−1(q2) = a+ b (q2)c−1. Specifically, measuringq2 in GeV2, the lattice data are
fitted bya = 0.14, b = 0.31, andc = 2.51, while the SDE solution is described settinga = 0.14,
b = 0.86, andc = 2.02 .

Let us now take a closer look at the ghost propagator,D(p2). First of all, theD(p2) obtained
from the ghost SDE diverges at the origin, in qualitative agreement with the lattice data. From
the SDE point of view, this divergent behavior is due to the fact that the vertexΓµ employed
does not contain1/p2 poles, as suggested by previous lattice studies [228]; actually, Γµ was
fixed at its tree-level value. Notice, however, that away from the LG one may obtain an IR finite
(massive-like)D(p2), due to the contribution of the longitudinal form factor of the vertexΓµ

(i.e. proportional to the gluon momentumkµ); the latter gets annihilated in the LG when con-
tracted with the gluon propagator, but contributes away from it [229].

Of particular theoretical interest is the IR behavior of theghost dressing functionp2D(p2),
because it is intimately related to the Kugo-Ojima confinement criterion for the ghost propaga-
tor. This criterion would be satisfied if the non-perturbative ghost propagator (in the LG) were
more singular in the IR than a simple pole; this type of behaviour is usually referred to as IR
“enhancement”. Thus, if we were to fit the dressing functionp2D(p2) [obtained either from the
lattice data or the corresponding SDE] with a function of theform formp2D(p2) = c1(p

2)−γ , a
positiveγ would indicate that the aforementioned criterion is satisfied.

It is relatively obvious from both the lattice data and our SDE solutions that no such “en-
hancement” is observed;p2D(p2) reaches a finite (positive) value asp2 → 0; a detailed fitting
exercise confirms this point. Indeed, a IR-finite fit of the form p2D(p2) = κ1 − κ2 ln(p2 + κ3),
[with κ3 acting as an effective gluon mass;p2 in GeV2, k1 = 1.12, k2 = 0.04, andk3 = 0.08,
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valid for the rangep2 < 10 ] is far superior to any power-law fit that has been tried [224].
The absence of power-law enhancement has also been verified in alternative SDE studies [225].
The fact that the Kugo-Ojima criterion is not satisfied is by no means an inconsistency, since a
criterion is a sufficient but not a necessary condition. In that sense, the old confinement criterion
associated with a gluon propagator going like1/k4 in the IR is not valid either; this simply indi-
cates that the real relation between the gluon propagator and confinement is more sophisticated
than simply calculating a Fourier transform (see, for example, [230]).

Comparing the PT solution for the gluon propagator with the lattice data we notice that,
whereas their asymptotic behavior coincides (perturbative limits), there is a discrepancy of
about a factor of 1.5–2 in the intermediate region of momenta, especially around the funda-
mental QCD mass-scale [reflected also in the different values of the two sets of fitting param-
eters(a, b, c)]. In the case of the ghost dressing function, a relative difference of similar size
is observed. These discrepancies may be accounted for by extending the gluon SDE to include
the “two-loop dressed” graphs, omitted (gauge-invariantly) from the original analysis presented
in [224], and/or by supplying to the vertex given in (9.10) the missing transverse parts.

9.4 The non-perturbative effective charge of QCD

As we have seen in detail in subsection 5.1.2, the PT permits the generalization of the prototype
QED construction of an effective charge in the case of non-Abelian gauge theories, and in
particular QCD. To remind the reader of the basic steps, we recall that, due to the Abelian
WIs satisfied by the PT effective Green’s functions, the PT self-energy∆̂−1(q2) absorbs all the
RG-logs, exactly as happens in QED with the photon self-energy; specifically, in the deep UV,

∆̂−1(q2) = q2

[
1 + bg2 ln

(
q2

µ2

)]
, (9.17)

whereb = 11CA/48π2 is the first coefficient of the QCDβ-function. Equivalently, sinceZg and
ẐA, the renormalization constants of the gauge-coupling and the effective self-energy, respec-
tively, satisfy the QED relationZg = Ẑ

−1/2
A , the product̂d(q2) = g2∆̂(q2) forms a RG-invariant

(µ-independent) quantity [7]; for large momentaq2,

d̂(q2) =
g2(q2)

q2
, (9.18)

whereg2(q2) is the RG-invariant effective charge of QCD,

g2(q2) =
g2

1 + bg2 ln (q2/µ2)
=

1

b ln (q2/Λ2)
. (9.19)

Let us now address the following question: assuming that onehas non-perturbative informa-
tion about the IR behavior of theconventionalgluon propagator∆(q2), how should one extract
an effective charge, which, perturbatively, will go over toEq. (9.19)? To accomplish this, one
must use an additional field-theoretic ingredient, namely the BQI of Eq. (C.39), relating the
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conventional∆(q2) and the PT-BFM∆̂(q2) in anyRξ-like gauge,i.e.,

∆(q2) =
[
1 +G(q2)

]2
∆̂(q2). (9.20)

Note that theG(q2) already appears in Eq. (9.4) and Fig. 82. The dynamical equation forG(q2)
is obtained from thegµν part ofΛµν in (9.4); after using some of the aforementioned approxi-
mations for the vertices, we obtain

G(q2) = −λ
3

∫

k

[
2 +

(k · q)2

k2q2

]
∆(k)D(k + q). (9.21)

First of all, it is easy to verify that, at lowest order, theG(q2) obtained from Eq. (9.21) restores
theβ function coefficient in front of ultraviolet logarithm. In that limit

1 +G(q2) = 1 +
9

4

CAg
2

48π2
ln(

q2

µ2
),

∆−1(q2) = q2

[
1 +

13

2

CAg
2

48π2
ln(

q2

µ2
)

]
. (9.22)

Thus, using Eq. (9.20) we recover the∆̂−1(q2) of Eq. (9.17), as we should. Then, non-perturbati-
vely, one substitutes into Eq. (9.20) theG(q2) and∆(q2) obtained from solving the system
in Eq. (8.35), to obtain̂∆(q2). This latter quantity is the non-perturbative generalization of
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Eq. (9.17); for the same reasons explained above, when multiplied byg2 it should form an RG-
invariant quantity,e.g., the non-perturbative generalization ofd̂(q2). In Fig. 85 we present the
combined result of the above steps:d̂(q2) is obtained from two different sets of solutions of the
system of Eqs (9.4) one renormalized atµ = Mb = 4.5 GeV and one atµ = MZ = 91 GeV.
Ideally the two curves of̂d(q2) should be identical; even though this does not happen, due to
the approximations employed when solving the SDE system, the two curves are fairly close,
indicating thatd̂(q2) is to a very good approximation an RG-invariant quantity, asit should.

We are now in the position to define the non-perturbative QCD effective charge from the RG-
invariant quantityd̂(q2). Of course, as already mentioned in subsection 5.1.2, giventhat d̂(q2)
reaches a finite value in the deep infrared, it would be unwiseto define the effective charge by
factoring out ofd̂(q2) a factor of1/q2, because this would give rise to the unphysical situation
where the strong QCD coupling vanishes in the deep IR. This iswrong not only operationally,
i.e., forcing the coupling to vanish when it does not want to, but also conceptually, because it
suggests that QCD in the presence of a gluon mass in non-interactive9 . Of course, nothing could
be further from the physical reality. First of all, a multitude of phenomenological studies find,
with virtually no exception, that the QCD effective charge freezes at a non-zero value [231–
236]. Second, a finite QCD effective charge constitutes a central assumption of the QCD/CFT
correspondence [237,238]. Third, as we mentioned in detailat the beginning of this section [see
discussion following (9.2)], the dynamical gluon mass is responsible for a very rich dynamical
structure, being intimately connected, among other things, to both quark confinement and gluon

9 To see how unphysical this procedure is, imagine applying itto the electroweak sector. Specifically,
given that the propagators of theW andZ are finite in the IR, (due to the standard Higgs mechanism),
pulling a factor1/q2 out of them, instead of(q2E +M2) [viz. (5.36), withq2 → −q2E], would give rise
to an electroweak coupling that vanishes in the IR. Does thatmean that the electroweak theory is non-
interacting in the IR? Does Fermi’s constant vanish all of a sudden? Or isβ decay no longer observed?
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screening. The correct procedure corresponds to factor outa “massive” propagator,i.e., write

d̂(q2) =
g2(q2)

q2 +m2(q2)
. (9.23)

Of course, as we have emphasized,m2(q2) itself is running, which must also be taken into
account in a more sophisticated treatment. For the purposesof this report, however, we assume
thatm2(q2) is constant,m2(q2) = m2(0), and use form(0) the value of500 MeV favored by
phenomenology [239]. Theα(q2) obtained is shown in Fig. 86; as announced, at low energies
it freezes to a finite value, indicating the appearance of an infrared fixed point of QCD.
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10 Concluding remarks

In this report we have given a detailed account of the pinch technique and some of its most
characteristic applications. The present work may be separated in a natural way, into two large
parts. The first part, comprising of sections 2 to 5, containspractically the entire one-loop PT,
both in QCD and the electroweak sector, and the connection with the BFM formalism. The
second part contains the developments following the non-diagrammatic formulation of the PT,
the streamlining achieved by resorting to the Batalin-Vilkovisky formalism, and finally the non-
perturbative QCD applications, with particular highlights the gauge-invariant truncation of the
SDE series and the dynamical generation of an effective gluon mass.

We hope to have conveyed to the reader the underlying unity ofthe multitude of topics cov-
ered, and to have succeeded in demonstrating the versatility of the PT formalism and the wide
range of its applicability. The reader should be able to appreciate, for example, how a simple
one-loop calculation contains the seed of a non-trivial truncation of the SDEs, accomplished a
quarter of a century later; or how a seemingly innocuous (or even redundant, according to some)
rearrangement of graphs is able to give rise to a resummationformalism for resonant transition
amplitudes that satisfies such a plethora of tightly interwoven physical constraints.

Throughout this report we have attempted to maintain a balance between the technical presen-
tation (how to pinch) and the physical motivations and phenomenological applications (when
to pinch and why). Even so, there is a considerable number of additional important applications
that we could not possibly cover. Let us mention a few. There have been several application
in the area of finite temperature field theory, starting with the early work by Cornwall and
collaborators [162,191], the calculation of the plasmon decay constant by Nadkarni [240], the
gauge-independent thermalβ function computed by Sasaki [241,242], and the work on mag-
netic screening for the quark-gluon plasma by Alexanian andNair [243]. In addition, the explicit
one-loop PT calculations in the context of the Coulomb and temporal axial gauges have been
presented by Passera and Sasaki in [244]. Moreover, Pilaftsis applied the PT to the resonant CP
violation a decade ago [245,246], and recently to resonant leptogenesis [247,248]. The PT has
also been used in order to obtain scale and gauge-independent mixing angles for scalar parti-
cles [249,250] and [251]. In addition, Caporaso and Pasquetti applied to the non-commutative
QED [252], and non-commutative (softly broken) supersymmetric Chern-Simons theory [253].

To be sure, there are still many things one would like to know about the PT and its field-
theoretic origin. Most importantly, as mentioned in the Introduction, a formal definition of the
PT Green’s functions in terms of fundamental fields, encoding “ab initio” their special prop-
erties, still eludes us. Ideally, one would like to find that particular combination of fields or
operators, which, when appropriately combined, will furnish the PT answer without pinching,
i.e., regardless of whether or not one tracks down the various cancellations explicitly, and in any
gauge-fixing scheme considered. Such a situation would be, of course, far superior than what
happens now with the BFG, where there is no pinching only because of a kinematic accident,
namely the lack of pinching momenta in that particular gauge.

One basic and rather obvious question, that, perhaps surprisingly, has not been addressed to
date, is the following. It is well known that one can construct a gauge-invariant operator out of a
gauge-variant one by means of a path-order exponential containing the gauge fieldA [254]. For
example, in the case of the fermion propagatorS(x, y) = 〈0|ψ(x)ψ̄(y)|0〉 the corresponding
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gauge-invariant propagatorSPO reads (“PO” stands for “path-ordered”)

SPO(x, y) = 〈0|ψ(x)P exp
(
i
∫ y

x
dz ·A(z)

)
ψ̄(y)|0〉. (10.1)

Is this gauge-invariant propagator related in any way to thePT fermion propagator, constructed
in Section 2? Of course, completely related to this questionis the construction presented in
[255]; in fact, the distinction made there between the Wightman and the causal two-point func-
tion might be worth pursuing from the PT point of view.

Anyone remotely familiar with the PT gets the tantalizing feeling that, in addition to the
BRST symmetry, some other powerful (yet undiscovered) mechanism must be at work, en-
forcing the PT properties. The remarkable supersymmetric relations discovered by Binger and
Brodsky [65] (see Section 2) intensify this impression; their results indeed beg the question of
whether one has actually stumbled into something bigger. Could it be, for example, that the PT
rearrangements end up exposing some sort of hidden symmetry? Such a possibility is not un-
precedented; an interesting 3-d example of a (topological)field-theory, which, when formulated
in the background Landau gauge (ξQ = 0), displays an additional (non-BRST related) rigid su-
persymmetry, is given in [256].

Finally, it would be most interesting to explore possible connections with other field-theoretic
methods [257–259], [260], [261,262], [10], [263], or string-inspired approaches [66,67,264],
[265], [266], in order to either acquire a more formal understanding of the PT, or to encompass
various related approaches into a unique coherent framework.
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A SU(N) group theoretical identities

In this Appendix we collect some useful group theoretical identities for theSU(N) gauge
group.

For any representation ofSU(N) the generatorsta (a = 1, 2...N2−1) are hermitian, traceless
matrices, generating the closed algebra

[ta, tb] = ifabctc, (A.1)

wherefabc are the (totally antisymmetric) structure constants, which satisfy the Jacobi identity

fabxf cdx + facxfdbx + fadxf bcx = 0. (A.2)

The fundamental representationtaf isN-dimensional, with the normalization

Tr(taf t
b
f ) =

1

2
δab (A.3)

In the case of QCD, the fundamentaltaf = λa/2, whereλa are the Gell-Mann matrices.
The adjoint representation has dimensionN2 − 1, and its generatorstaA have matrix elements

given by the relation
(taA)bc = −ifabc. (A.4)

The Casimir eigenvalueCr of a representationr is defined as

tart
a
r = Cr 1 (A.5)

while the Dynkin indexdr is defined as

Tr(tart
b
r) = drδ

ab (A.6)

The Casimir eigenvalue and the Dynkin index of a representation of a groupG are related by
the general formula

Cr =
dim(G)

dim(r)
dr (A.7)

wheredim(G) is the dimension of the group anddim(r) the dimension of the representation.
Thus, for the adjoint representationr = A, dim(G) = dim(A), and thereforeCA = dA.
Specializing to theSU(N) case, one hasCA = N , and from Eq. (A.3) we have thatdf = 1

2
,

and thusCf = (N2 − 1)/2N ; for QCD,Cf = 4/3.
We conclude by quoting some identities involving the structure functions

faexf bex = CAδ
ab, (A.8a)

faxmf bmnf cnx =
1

2
CAf

abc, (A.8b)

falmf bmnf cnefdel − falmf bmnfdnef cel = −1

2
CAf

abxf cdx. (A.8c)
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ρA

s
σ
(k2, k3, k4)

Fig. B.1. Feynman rules for QCD in theRξ gauges. The first two columns show the lowest order Feynman
diagrams and rule respectively, while the last one shows thecorresponding all-order Green’s function
according to the conventions of Eq.(7.3).

B Feynman rules

B.1 Rξ and BFM gauges

The Feynman rules for QCD inRξ gauges are given in Fig. B.1. In the case of the BFM gauge,
since the gauge fixing term is quadratic in the quantum fields,apart from vertices involving
ghost fields only vertices containing exactly two quantum fields might differ from the conven-
tional ones. Thus, the verticesΓ

Âψψ̄
andΓ

ÂAAA
have to lowest order the same expression as

the correspondingRξ onesΓAψψ̄ andΓAAAA (to higher order their relation is described by the
corresponding BQIs).
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αc̄

m(q,−k1)

iΓÂa
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Fig. B.2. Feynman rules for QCD in the BFM gauge. We only include those rules which are different
from theRξ ones to lowest order. A gray circle on a gluon line indicates abackground field.

B.2 Anti-fields

The couplings of the anti-fieldsΦ∗ with fields is entirely encoded in the BRST Lagrangian of
Eq. (7.5b). When choosing the BFM gauge the additional coupling gfamnA∗m

µ Ânνc
a will arise

in the BRST LagrangianLBRST as a consequence of the BFM splittingA → Â + A. One then
gets the Feynman rules given in Fig. B.3.

B.3 BFM sources

The coupling of the BFM sourceΩm
µ with the ghost and gluon fields can be derived from the

Faddeev-Popov ghost Lagrangian, since making use of the BRST transformation of Eq. (7.16)
we get

LFPG = −c̄asFa
BFM ⊃ −c̄agfamn(sÂmµ )Aµn = −gfamnc̄aΩm

µ A
µ
n. (B.1)
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Fig. B.3. Feynman rules for QCD anti-fields.

−igf amngµν

n, ν

c̄aΩm
µ

k1

k2

q

iΓΩm
µ A

n
ν c̄

a(k2,−k1)

Fig. B.4. Feynman rule for the BFM gluon sourceΩm
µ .

The corresponding Feynman rule is given in Fig. B.4. In general Feynman rules involving the
BFM sourceΩ can be derived by the one involving the (gluon) anti-fieldA∗ through the re-
placementsA∗ → Ω andc→ c̄.
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C Faddev-Popov equations, Slavnov-Taylor Identities and Background Quantum Iden-
tities for QCD

C.1 Faddeev-Popov Equations

As a first example of the use of the FPE introduced in Section 7.3, let us differentiate the
functional equation (7.22) with respect to the ghost fieldcb; after setting the fields/anti-fields to
zero we get (relabeling the color and Lorentz indices)

Γcmc̄n(q) + iqνΓcmA∗n
ν

(q) = 0, (C.1)

which can be used to relate the auxiliary functionΓcmA∗n
ν

(q) with the full ghost propagator
Dab(q). Due to Lorentz invariance, we can in fact writeΓcmA∗n

ν
(q) = qνΓcmA∗n(q), and therefore

Γcmc̄n(q) = −iqνΓcmA∗n
ν

(q) = −iq2ΓcmA∗n(q). (C.2)

On the other hand, due to our definition of the Green’s functions [see Eq. (7.3)], one has that

iDmr(q)Γcr c̄n(q) = δmn, (C.3)

and therefore we get the announced relation:

ΓcmA∗n
ν

(q)= qνΓcmA∗n(q)

= qν [q
2Dmn(q)]−1. (C.4)

As a second example, let us differentiate Eq. (7.22) twice, once with respect toAnν and once
with respect tocr, and then set the fields/anti-fields to zero; in this way we getthe identity

ΓcrAn
ν c̄

m(k, q) + iqµΓcrAn
νA

∗m
µ

(k, q) = 0, (C.5)

which is particularly useful for the PT construction. All these identities can be easily checked
at tree-level; for example, using the Feynman rules of Appendix B, we have

iqµΓ
(0)
crAn

νA
∗m
µ

(k, q) = igfmnrqν = −Γ
(0)
crAn

ν c̄
m(k, q). (C.6)

Differentiation of the functional (7.23) with respect to a BFM sourceΩ and a quantum gluon
fieldA or a ghost fieldc and a background gluon̂A, provides instead the identities (k1 +k+q =
0)

ΓΩr
ρA

n
ν c̄

m(k, q) + iqµΓΩr
ρA

n
νA

∗m
µ

(k, q)= gfmnrgνρ, (C.7)

Γ
crρÂ

n
ν c̄

m(k, q) + iqµΓ
crÂn

νA
∗m
µ

(k, q)=−igfmneΓcrA∗e
ν

(−k1), (C.8)

that can be easily checked at tree-level.
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C.2 Slavnov-Taylor Identities

STIs are obtained by functional differentiation of the STI functional of Eq. (7.15) with respect
to suitable combinations of fields chosen following the rules discussed in Section 7.

C.2.1 STIs for gluon proper vertices

Let us start by deriving the well-known STI for the trilineargluon vertex which in the conven-
tional formalism has been introduced in Eq. (2.94). By considering the functional differentiation

δ3S(Γ)

δca(q)δAmµ (k1)δAnν(k2)

∣∣∣∣∣
Φ,Φ∗=0

= 0 q + k1 + k2 = 0, (C.9)

and using Eq. (C.4) one obtains

qαΓAa
αA

m
µ A

n
ν
(k1, k2) = [q2Daa′(q)]

{
Γca′An

νA
∗γ
d

(k2, k1)ΓAd
γA

m
µ
(k1)

+ Γca′Am
µ A

∗γ

d
(k1, k2)ΓAd

γA
n
ν
(k2)

}
. (C.10)

At this point one would need to find out the relation between the (full) gluon propagator and the
two point functionΓAa

αA
b
β
. First of all let us notice that since we are working in the Feynman

gauge [see also Eq. (2.25)]

i∆
ab (0)
αβ (q) = − i

k2

{
Pαβ(q) +

kαkβ
k2

}
δab Pαβ(q) = gαβ −

qαqβ
q2

, (C.11)

which translates to the all order formula

i∆ab
αβ(q) = −iδab

{
Pαβ(q)∆(q2) +

qαqβ
q4

}
, (C.12)

with

∆(q2) =
1

q2 + iΠ(q2)
, Παβ(q) = Pαβ(q)Π(q2). (C.13)

Notice that the way the gluon self-energyΠαβ(q) has been defined in the above equation,i.e.,
with the imaginaryi factor in front, implies that it is given simply by the corresponding Feyn-
man diagrams in Minkowski space. Imposing then the condition

i∆am
αµ (q)(∆−1)µβmb(q) = δabgαβ , (C.14)

we get
(∆−1)µβmb(q) = iδmb

{
P µβ(q)∆−1(q2) + qµqβ

}
. (C.15)

On the other hand, recall that we are working with minimal variables, and thus with the reduced
functionalΓ; in the case of linear gauge fixings (as theRξ and the BFM are) the latter is equiv-
alent to the complete one after subtracting the local term

∫
d4xLGF. This implies in turn that
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Green’s functions involving unphysical fields generated bythe reduced functional coincide with
the ones generated by the complete one only up to constant terms. In our case this affects only
the two point function of the gluon field, for which one has thetree level expression

Γ
(0)

Aa
αA

b
β

(q) = iq2δabPαβ(q), (C.16)

which furnishes the sought-for all-order formula

ΓAa
αA

b
β
(q)= (∆−1)abαβ(q) − iδabqαqβ

= iδabPαβ(q)∆
−1(q2). (C.17)

Using the above relation, we can now check the identity at tree-level; we get

qαΓ
(0)
Aa

αA
m
µ A

n
ν
(k1, k2) =

{
Γ

(0)

caAn
νA

∗γ

d

(k2, k1)Γ
(0)

Ad
γA

m
µ
(k1) + Γ

(0)

caAm
µ A

∗γ

d

(k1, k2)Γ
(0)

Ad
γA

n
ν
(k2)

}

= igfamn
[
(gµνk

2
1 − k1µk1ν) − (gµνk

2
2 − k2µk2ν)

]
. (C.18)

Notice also that Eq. (C.17) allows us to compare the STI of Eq.(C.10) with the one written
in the conventional formalism of Eq. (2.94). Factoring out the color structure, one arrive at the
following identification

Hµγ(k1, k2) = ΓcAµA∗
γ
(k1, k2), (C.19)

which also shows that the FPE (C.5) corresponds to the well-known relation existing between
the auxiliary functionHαβ and the conventional gluon-ghost vertexΓβ shown in Eq. (2.96).

We pause here to show what would have happened had we worked with the complete gen-
erating functional. In this case, due to the extra term appearing in the master equation (7.12)
satisfied by the complete action, the differentiation carried out in Eq. (C.9) would generate two
more terms with respect to the ones already appearing in Eq. (C.10), namely

δdnk2νΓcaAm
µ c̄

d(k1, k2) + δdmk2µΓcaAn
ν c̄

d(k2, k1). (C.20)

To get to the terms above we have used the equation of motion ofthe Nakanishi-Lautrup mul-
tiplier B eliminating the latter in favor of the corresponding gauge-fixing functionF . Then,
making use of the FPE (C.5), we get

−iδdnk2νk2γΓcaAm
µ A

∗γ
d

(k1, k2) − iδdmk1µk1γΓcaAn
νA

∗γ
d

(k2, k1), (C.21)

so that we finally would get the STI

qαΓAa
αA

m
µ A

n
ν
(k1, k2) = [q2Daa′(q)]

{
Γca′An

νA
∗γ

d
(k2, k1)

[
ΓC
Ad

γA
m
µ
(k1) − iδdmk1µk1γ

]

+ Γca′Am
µ A

∗γ

d
(k1, k2)

[
ΓC
Ad

γA
n
ν
(k2) − iδdnk2γk2ν

]}
, (C.22)
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where we have indicated explicitly that the two-point functions are to be evaluated from the
completed functional (for the three point functions appearing in the STI above there is no dif-
ference). We then see that the difference amounts to a tree-level piece appearing in the two-
point function, as has been anticipated in our general discussion of subsection 7.2 (recall that
we are using the Feynman gaugeξ = 1). In particular notice that we correctly find the relation
ΓC
Aa

αA
b
β

(q) = (∆−1)abαβ(q).

Another STI that will be needed in the PT construction is the one involving the quadrilinear
gluon vertex; carrying out the functional differentiation

δ4S(Γ)

δcm(k1)δAnν (k2)δArρ(p2)δAsσ(−p1)

∣∣∣∣∣
Φ,Φ∗=0

= 0 k1 + k2 + p2 = p1, (C.23)

and using Eq. (C.4), we arrive at the result

kµ1 ΓAm
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s
σ
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1D
mm′
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{
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d
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d
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(k2, p2,−p1)ΓAd
γA

s
σ
(p1)

}
. (C.24)

C.2.2 STIs for mixed quantum/background Green’s functions

Let us consider a Green’s function involving background as well as quantum fields. Clearly,
when contracting such a function with the momentum corresponding to a background leg it
will satisfy a linear WI [such as the ones presented in Eq.s (8.39), (8.39), (8.39), and (8.39)],
whereas when contracting it with the momentum corresponding to a quantum leg it will satisfy
a non-linear STI. Let us then study the particularly interesting case of the STI satisfied by the
vertexΓ

ÂAA
when contracted with the momentum of one of the quantum fields. Taking the

functional differentiation

δ3S ′(Γ′)

δcm(k1)δÂaα(q)δA
n
ν (k2)

∣∣∣∣∣
Φ,Φ∗,Ω=0

= 0 q + k1 + k2 = 0, (C.25)

we get

kµ1 Γ
Âa

αA
m
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n
ν
(k1, k2)= [k2

1D
mm′

(k1)]
{
Γcm′An

νA
∗ǫ
e

(k2, q)ΓÂa
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e
ǫ
(q)

+ Γ
cm′Âa

αA
∗ǫ
e

(q, k2)ΓAe
ǫA

n
ν
(k2)

}
. (C.26)

Notice that the same result can be achieved by contracting directly the BQI of Eq. (C.55) with
the momentum of one of the quantum fields and then using the STIof Eq. (C.10) together with
the BQIs of Eq.s(C.38) and (C.59) to bring the result in the above form.
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It is particularly important to correctly identify, in the above identity, the missing tree-level
contributions (due to the use of the reduced functional, seealso the discussion in Section C.3.2).
In order to do that, one can either work with the complete functional and use the FPE (C.8), or
add them by hand using Eq. (C.55), obtaining in either cases the STI

kµ1 Γ
Âa

αA
m
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n
ν
(k1, k2)= [k2

1D
mm′

(k1)]
{
Γcm′An
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+ Γ
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n
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}
− igfamn(k2

1gαν − k1αk2ν). (C.27)

This STI can be further manipulate by using Eq. (C.17) and theFPE (C.8) for rewriting the
term proportional toΓAA(k2) as

Γ
cm′ Âa

αA
∗ǫ
e

(q, k2)ΓAe
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n
ν
(k2) =Γ
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+ igfaenk2νΓcm′A∗e
α

(−k1). (C.28)

On the other hand, employing Eq. (C.4) we find

[k2
1D

mm′

(k1)](igf
naek2ν)Γcm′A∗e

α
(−k1) = −igfamnk1αk2ν ; (C.29)

so, inserting Eq. (C.28) back into Eq. (C.27) we see that the term above partially cancels the
tree level contribution, thus leaving us with the STI
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(C.30)

C.2.3 STIs for the gluon SD kernel

In the construction of the SDEs for the gluon self-energy andthree-gluon vertex, one needs the
knowledge of the STI satisfied by the kernel (see Fig. 71)
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Using the above relation, together with STI of Eq. (C.10), wefind the following result
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In this case this is, however, not the end of the story, since the first term in the equation above
still contains (virtual) longitudinal momenta, which willtrigger the STI of Eq. (C.10) together
with the FPE (C.5). After taking this into account, we obtain
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(C.33)

Similarly we find
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. (C.34)

As before, after combining these results with the four-gluon 1PI vertex STI of Eq. (C.24) we
arrive at the needed STI for the four-gluon SD kernel, namely
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}
, (C.35)

where the following auxiliary kernels have been defined
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C.3 Background-Quantum Identities

BQIs are obtained by functional differentiation of the STI functional of Eq. (7.17) with respect
to combinations of background fields, quantum fields and background sources.

C.3.1 BQIs for two-point functions

The first BQI we can construct is the one relating the conventional with the BFM gluon self-
energies. To this end, consider the following functional differentiation

δ2S ′ (Γ′)

δΩa
α(p)δA

b
β(q)

∣∣∣∣∣
Φ,Φ∗,Ω=0

= 0 q + p = 0,

δ2S ′ (Γ′)

δΩa
α(p)δÂ

b
β(q)

∣∣∣∣∣∣
Φ,Φ∗,Ω=0

= 0 q + p = 0, (C.37)

which will give the relations

iΓ
Âa

αA
b
β

(q)=
[
igγαδ

ad + ΓΩa
αA

∗γ
d
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αÂ
b
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(q)=
[
igγαδ

ad + ΓΩa
αA

∗γ
d

(q)
]
Γ
Ad

γÂ
b
β

(q). (C.38)

We can now combine Eq.s (C.38) and (C.38) such that the two-point function mixing back-
ground and quantum fields drops out, to get the BQI
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γ

d

Ωa
α

q

p

Fig. C.1. Expansions of the gluon anti-field and BFM source interms of the corresponding composite
operators. Notice that if the anti-field or the BFM sources are attached to a 1PI vertex, as shown in the
first line, such an expansion will, in general, convert the 1PI vertex into a (connected) SD kernel. The
equivalence shown is therefore not valid at tree-level (e.g., in the case of three-point functions such an
equivalence would imply that the kernels shown on the rhs of the corresponding expansions would be
disconnected); when present, the tree-level needs to be added by hand, as explicitly shown in the two
expansions of the second line and the last one of the third line. This type of expansion allows one to
express the terms appearing in the BQIs in a form that revealskernels appearing in the STIs [see,e.g.,
Eq.s (C.49) and (C.50)]
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, (C.39)

where the last identity is due to the transversality of theΓAA two-point function.
In order for our PT procedure to be self-contained, it is important to express the 1PI auxiliary

Green’s function involved in the various STIs and the BQIs interms of kernels that also appear
in the relevant STIs. The key observation that makes this possible is that one may always re-
place an anti-field or BFM source with its corresponding BRSTcomposite operator. Thus, for
example, one has (see Fig. C.1)

A∗γ
d (q)→ iΓ

(0)

ce′An′
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d

∫
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i∆ν′ν

n′n(k2)iD
e′e(k1), (C.40)

Ωa
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∫

k1
i∆ν′ν

n′n(k2)iD
e′e(k1), (C.41)

wherek1 andk2 are related throughk2 = q − k1. In this way we get the following SDEs (see
again Fig. C.1)
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The kernelKcAAc̄ appearing in the SDEs (C.43) and (C.45) is shown in Fig. C.2 and reads
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C.3.2 BQIs for three-point functions

The relation between the trilinear gluon vertex and the trilinear background gluon vertex, can
be obtained by considering the following functional differentiation
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We then get
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(C.48)
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In order to explore further the all-order structure of thesetwo auxiliary Green’s functions, re-
place the BFM source with the corresponding composite operator using Eq. (C.41), thus obtain-
ing
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(C.49)
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(C.50)

with the corresponding kernels defined in Eq.s (C.36) and (C.36). Notice the emergence of the
pattern exploited in the application of the PT to the SDEs of QCD: namely that the auxiliary
functions appearing in the BQI satisfied by a particular Green’s function can be written in terms
of kernels appearing in the STIs triggered when the PT procedure is applied to that same Green’s
function.

Now, the BQI of Eq. (C.48) gives at tree-level the result
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s
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s
σ
(p2,−p1). (C.51)

This is once again due to the use of the reduced functional: infact in such case the two (tree-
level) vertices need to coincide, since the difference between them is proportional to the inverse
of the gauge fixing parameter (see Appendix B) and therefore entirely due to the gauge fixing
Lagrangian. To restore the correct tree-level terms one would have to use the complete func-
tional; in that case the differentiation of Eq. (C.47) showsthe two additional terms
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which, with the help of Eq. (C.7) become
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(C.53)
Therefore we get the final identity
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, (C.54)

which gives the expected tree-level result. Once again we see that the difference between work-
ing with the reduced and complete functional lies in some constant (tree-level) terms that one
recovers after applying the FPE for writing the STI/BQI at hand in the same form usingΓ or ΓC.
Thus, opting for the fast way of deriving the STI/BQI with thereduced functional and adding
the correct tree-level term, we write the BQI in its final form
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We conclude by giving the relation between the trilinear quantum gluon-quark vertex and
the trilinear background gluon-quark vertex; this can be obtained by considering the following
functional differentiation
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We then get
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C.3.3 BQI for the ghost-gluon trilinear vertex

In this section we are going to derive the BQIs relating theRξ ghost sector with the BFM ones.
We start from the trilinear ghost-gluon coupling, for whichwe choose the following functional
differentiation
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thus getting the result
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