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This paper contains a discussion on the quantum cosmic models, starting with the interpretation
that all of the accelerating effects in the current universe are originated from the existence of a
nonzero entropy of entanglement. In such a realm, we obtain new cosmic solutions for any arbitrary
number of spatial dimensions, studying the stability of these solutions, so as the emergence of
gravitational waves in the realm of the most general models.
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I. INTRODUCTION

No doubt, one of the greatest problems that the
twenty-one century has inherited from the last decade of
the twenty century and remains up today still unsolved
is the so-called problem of the dark energy by which it
appears to be completely impossible to account for the
observed current accelerated expansion of the universe
(which has been confirmed by several kinds of observa-
tional checking) by only using classical general relativity
and its conventional cosmological solutions [1]. So far,
two streams have been mostly followed to try to solve
that problem by implementing the necessary cosmic re-
pulsive force either by including a scalar field, called
quintessence [2] or k-essence [3], or modifying the Hilbert-
Einstein gravity action by adding suitable extra terms to
it [4]. None of them appears to be consistent enough or
could fulfill all observational requirements [5].
A theory which is self-consistent and agrees with all

observational data has been recently proposed [6-9]. It
is based on the assumption that all the accelerating ef-
fects come from the very quantum-entangled nature of
the current universe [9,10]. In such a framework one can
get essentially two relevant quantum solutions both of
which can be seen as quantum perturbations to the de
Sitter space [8,9], which is recovered in the classical limit
where ~ → 0. It has been also shown that out from these
two possible solutions only one of them satisfies the sec-
ond law of thermodynamics [9], and hence is physically
meaningful. It corresponds to a phantom universe [11]
in that the parameter of the equation of state gets al-
ways on values which are less than -1, but does not show
any violent instability [12] nor the sort of inconsistency
coming from having a negative kinetic term for the scalar
field - in fact, these models do not actually contain any
scalar or other kinds of vacuum fields in their final equa-
tions. It is for these reasons that such a cosmic model
has been also denoted as [8,9] benigner phantom model.
On the other hand, given that de Sitter space is stable
to scalar perturbations and that vectorial perturbations
are in any case pure gauge [13], since the considered solu-
tions can be regarded as nothing but scalar perturbations
on de Sitter space, we ought to conclude that they are
stable under such scalar harmonically symmetric pertur-

bations and that those with vectorial character are also
pure gauge in the case of the quantum solutions.
However, one cannot still be sure that the solution

which has been chosen as the most physically relevant
is stable under semiclassical and tensorial perturbations
leading to gravitational waves. In this paper we shall
study these two kinds of perturbations, showing that they
in fact follows the same stability pattern as that of the
de Sitter space. Our developments are made on a gen-
eralization of the quantum closed models to any number
of dimensions and to the case in which a black hole is
inserted in the space-time. Throughout this paper we
will use natural unit so that c = ~ = 1, unless otherwise
stated.
The paper can be outlined as follows. In Sec. II we

very briefly review the quantum cosmic models, its ori-
gin and interpretation. The generalization of such models
both to higher dimensions and to new models which con-
tain a black hole are considered in Sec. III, together with
a study of the static counterparts of such generalizations.
Tensorial and semiclassical perturbations on the result-
ing closed cosmic models are studied in Sec. IV, briefly
concluding in Sec. V.

II. QUANTUM COSMIC MODELS

As it was already advanced in the Introduction, the
quantum cosmic models provide us with a dynamical
cosmological scenario for the current evolution of the
universe which uses just general relativity with or with-
out a cosmological constant and the sharpest aspects of
quantum mechanics, without inserting any kind of vac-
uum fields or introducing any extra terms in the Hilbert-
Einstein gravitational action [6-9]. Such aspects can al-
ternatively be viewed either as a sub-quantum potential
or as due to the existence of an entanglement entropy for
the currently accelerating universe. Because in Refs. [8]
the first of these two equivalent interpretations was re-
viewed, we here summarize the main points of the quan-
tum cosmic models by using also the second one. Actu-
ally, since the holographic version of the quantum cosmic
models comes quite naturally from such models in terms
of the physically consistent interpretation that the holo-
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graphic screen coincides with the Hubble horizon [8], and
at least one of the models (precisely that which satisfies
the second law of thermodynamics) is formally equiva-
lent with the Barrow’s hyper inflationary model [14], we
shall now briefly comment on this interpretation.
Let us interpret from the onset the quantity EEnt. =

a3VSQ as the total entanglement energy [10] of a universe
with scale factor a ≡ a(t) and whose matter-radiation
content can be characterized by a sub-quantum poten-
tial density VSQ [6-9]. In such a case, the latter poten-
tial can simply be taken to describe the entanglement
energy density of the universe, which we will denote as
ǫEnt. ≡ EEnt./a

3. In this way, because of the additive-
ness of the entanglement entropy, one can add up [15] the
contributions from all existing individual fields in the ob-
servable universe in such a way that the entropy of entan-
glement SEnt. = βR2

H , with β a constant that includes an
account for the spin degrees of freedom of the quantum
fields in the Hubble observable volume of radius RH and
a numerical constant of order unity [15]. On the other
hand, the presence of a boundary at the horizon leads
us to conclude that the entanglement energy ought to be
proportional to the radius of the associated spherical vol-
ume, that is Ent. = αRH , with α a given constant, and
hence again SEnt. = βR2

H .
It is worthy to notice that we can then take the

temperature derived from the thermodynamics of the
quantum cosmic model respecting the second law with
a = a+ as the entanglement temperature so that T (a+) =
EEnt./kB. Using now the general expression [10]

dEEnt. = TEnt.dSEnt.,

where TEnt. = (2πRH)−1 is the Hawking-Gibbons tem-
perature, we consistently recover once again the expres-
sion SEnt. = βR2

H for α = β/π. That result is also
consistent with the most natural holographic expression
[8] ρ = 3/(8πGR2

H), described in terms of the Hubble
horizon in the quantum cosmic models.
The models based on a sub-quantum potential and

those derived from the existence of an entangled energy
in the universe are all originated from the consideration
of a Langrangian density given by [6-8]

L = V (φ)

[

E(x, κ)−

√

1− φ̇2
]

,

where φ is an auxiliary scalar field, V (φ) = ˜V (φ)/a3 is its
associated potential energy density, E(x, κ) is the elliptic

integral of the second kind, with x = arcsin

√

1− φ̇2 and

κ =
√

1− V 2
SQ/v(φ) ≡

√

1− ǫ2Ent./V (φ), where VSQ =

ṼSQ/a
3 is the sub-quantum potential density.

The above Lagrangian density vanishes in the classi-
cal limit ~ → 0. Adding physically reasonable regularity
conditions for φ̈ [7,8] we get φ̇2 = 1. Thus, the use of the
above Lagrangian density and the Lagrange equations,
together with the final formulae derived in Ref. [8] then
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FIG. 1: Cosmic solutions that result from the introduction of
an energy density of entanglement ǫEnt. ≡ VSQ, where VSQ

is the sub-quantum potential. Solution (a) goes like in De
Sitter space with the same H0, but with higher acceleration.
Solution (b) corresponds to the case where H

2

0 > 4πǫEnt.

and represents a universe which is initially expanding in an
accelerated way (at a rate slower than in De Sitter space with
the same H0), then expands in a decelerated way for a while
to finally contract toward a zero radius as t → ∞. On the
figure we have used units such that ~ = c = G = 1

yield the following general expressions for the energy den-
sity and pressure

ρ =
p

w(t)
= 6πG

(

Ḣ−1HVSQ

)2

≡ 6πG
(

Ḣ−1HǫEnt.

)2

,

(2.1)
and for the time -dependent parameter of the equation
of state p = w(t)ρ

w(t) = −

(

1 +
2Ḣ

3H2

)

, (2.2)

with

Ḣ = ±4πGVSQ ≡ ±4πGǫEnt. (2.3)

H = ±4πGVSQt+H0 ≡ ±4πGǫEnt.t+H0, (2.4)

and the set of cosmic solutions

a± = a0 exp
(

Ht± 2πGVSQt
2
)

≡ a0 exp
(

Ht± 2πGǫEnt.t
2
)

.
(2.5)
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In Eqs. (2.2)-(2.5) H = ȧ/a, H0 is an integration con-
stant playing the role of a cosmological term, H0 = Λ1/2,
and a is the scale factor with a0 its minimum value at
time t = 0. Eqs. (2.3) - (2.5) are valid only for suf-
ficiently large t or large H0. From the set of solutions
implied by Eq. (2.5) we shall disregard from the onset

the one corresponding to H0 = 0 and t =
√

ln(a0/a)
2πGVSQ

as

it would predict the unphysical case of a universe which
necessarily is currently contracting. The chosen solutions
are depicted in Fig.1 as compared to the usual flat de Sit-
ter solution.

Actually, any account for the interpretation based on
the cosmic entangled energy density ǫEnt. can straight-
forwardly be obtained from the corresponding account
given in Refs. [6-9] given in terms of the sub-quantum
potential, by simply replacing the sub-quantum potential
energy density VSQ for ǫEnt. in all reasoning and formu-
lae. Two points should be stressed now nevertheless. On
the one hand, it is worth remarking that one would not
expect ṼSQ to remain constant along the universal ex-
pansion, but to steadily increase like the volume of the
universe V = a3 does [8]. In order for obtaining the
above relevant solutions one then must realize that it is
the sub-quantum potential energy density VSQ = ṼSQ/a

3

appearing in the above Lagrangian density what should
then be expected to remain constant at all cosmic times
and, since we have consistently taken [8] a3VSQ to be
the total entanglement energy of the universe, the right-
hand-side of solutions (2.5) appear to be correct, too.
On the other hand, the scenarios we are considering are
meant to evade or at least ameliorate he cosmic coinci-
dence problem in the following sense. Whereas the sub-
quantum potential density has to be chosen small enough
to produce a sufficient late time domination, at the same
time no problematic fine-tuning would be required for
ṼSQ which must take on varying nearly arbitrary large
values because of the very large values of the scale factor
during the cosmic acceleration. In addition, since in the
present scenarios all existing matter particles and fields
should be associated with a sub-quantum potential (or
entanglement entropy) and one can show [9] that that
potential (or entangled energy) would make the effective
mass of particles and field to vanish precisely at the coin-
cidence time, then a cosmic system can be most naturally
allowed where the matter dominance phase is followed by
the accelerating expansion without any conceptual prob-
lem.

Current data based on a variety of observations [5] ap-
pear to point out to a present value for the parameter of
the equation of state w = −1, with a bias toward slightly
smaller values, that is to say, currently w can possibly
be less than -1 by a very small amount. This is actually
the case that corresponds to the so called phantom en-
ergy [11], a form of dark energy which shows two main
fundamental problems, a negative kinetic term in the La-
grangian and a fatal singularity in the finite future [11]
which is associated with violent instabilities [12] and clas-

sical violation of the dominant energy condition. While
solution a+, (a) in Fig. 1, would approach the observa-
tional data as closely as we want, it does not show any
of the problems which have been ascribed to phantom
energy. Moreover, the given solution appears [8]: (i) to
be stable, (ii) having suitable thermodynamic properties
that consistently generalize those of the de Sitter space
and (iii) entails a admissible residual quantum violation
of the dominant energy condition (ρ + p = −ǫ) leading
to consistent quantum wormhole solutions; on the other
hand, (iv) that description admits a most natural holo-
graphic extension where the holographic screen is placed
at the Hubble horizon, and (v) it entails a perturbed met-
ric which is no longer static but consistently reduces to
static de Sitter metric in the limit where w → −1 [8].
It it worth noticing finally that what actually mat-

ters in the models dealt with in this section is that
some quantum-mechanical effects, which originally sub-
dominated in the matter-dominated phase, eventually
started driving cosmic acceleration.

III. GENERALIZED COSMIC SOLUTIONS

It has been already seen that the quantum cosmic so-
lutions can be seen as either some generalizations from
the flat version of de Sitter space or, if VSQ is sufficiently
small, such as it appears to actually be the case, as per-
turbations of that de Sitter space. Since most of such
models correspond to equations of state whose parame-
ter is less than -1, such as it was mentioned before, they
are also known as benigner phantom cosmic models [6-
9]. In this section we shall derive even more general ex-
pressions for these quantum cosmic solutions by (i) con-
sidering the similar generalizations or perturbations of
the hyperbolic version of the de Sitter space, and (ii)
using a d-dimensional manifold. Actually, some obser-
vational data have implied that our universe is not per-
fectly flat and recent works [17,18] contemplate the pos-
sibility of the universe having spatial curvature. Thus,
although WMAP alone abhors open models, requiring
Ωtotal ≡ Ωm + ΩΛ = 1 − Ωk ≥ 0.9 (95%), closed model
with Ωtotal as large as 1.4 are still marginally allowed
provided that the Hubble parameter h ∼ 0.3 and the
age of the Universe t0 ∼ 20Gyr. The combinations of
the WMAP plus the SNIa data or the Hubble constant
data also imply the possibility of the closed universe,
giving curvature parameters k = −0.011 ± 0.012 and
k = −0.014± 0.017, respectively [17], although the esti-
mated values are still consistent with the flat FRW world
model. Moreover, in Ref. [19] it is said that the best fit
closed universe model has Ωm = 0.415, ΩΛ = 0.630 and
H0 = 55kms−1Mpc−1 and is a better fit to the WMAP
data alone than the flat universe model (∆χ2

eff = 2.
However, the combination of WMAP data with either
SNe data, large-scale structure data or measurements of
H0 favors models with ΩK close to 0.
The d-dimensional de Sitter space has already been
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considered elsewhere [16]. Here we shall extend it to the
also maximally symmetric space whose spacetime curva-
ture is still negative (positive Ricci scalar) but no longer
constant. Our spacetime will be solution of the Einstein
equation

Rab = tab, a, b = 0, 1, ...(d− 1), (3.1)

with

tab = (H ± ~ξt)2 gab, (3.2)

where H2 = Λ/(d − 1) is a cosmological constant and
the constant ~ξ generalizes the sub-quantum potential
considered in the quantum cosmic models described in
Sec. II. We notice that in the classical limit ~ → 0 the
above definition becomes that of the usual d-dimensional
de Sitter space. We shall restrict ourselves in this paper
to the case in which our generalized d-dimensional de
Sitter space can still be visualized as a d+1 hyperboloid
defined as [20]

− x20 +

d
∑

j=1

x2j = H−2. (3.3)

This (d + 1)-dimensional hyperboloid is embedded in
Ed+1, so that the most general expression of the metric
for our extended quantum-corrected solutions is provided
by the metric induced in this embedding, that is

ds2 = −dx20 +
d
∑

j=1

dx2j , (3.4)

which has the same topology and invariance group as the
d-dimensional de Sitter space [16].
This metric can now be exhibited in coordinates Θ± =

t(1 ± ~ξt/H)ǫ(∓H0/(4~ξ),±∞) (notice that our solu-
tions then only covers a portion of the de Sitter time,
while tǫ(−∞,+∞)), ψd−1, ψd−2, ...ψ2ǫ(0, π), ψ1ǫ(0, 2π),
defined by

xd = H−1 cosh(HΘ) sinψd−1 sinψd−2... sinψ2 cosψ1

xd−1 = H−1 cosh(HΘ) sinψd−1 sinψd−2... sinψ2 sinψ1

xd−2 = H−1 cosh(HΘ) sinψd−1 sinψd−2... cosψ2

(3.5)

x1 = H−1 cosh(HΘ) cosψd−1

x0 = H−1 sinh(HΘ),

which should be referred to as either time Θ+ or time
Θ−. In terms of these coordinates metric (3.4) splits into

ds2± = −

(

1±
2~ξt

H

)2

dt2

+H−2 cosh2 [t (H ± ~ξt)] dΩ2
d−1, (3.6)

where dΩ2
d−1 is the metric on the (d − 1)-sphere. Met-

ric (3.6) is a closed (d − 1)-dimensional Friedmann-
Robertson-Walker metric whose spatial sections are (d−
1)-spheres of radius H−1 cosh(HΘ). The coordinates de-
fined by Eqs. (3.5) describe two closed quantum cos-
mic spaces, B±, which interconvert into each other at
t = 0. B+ first steadily contracts until t = 0 where
it converts into B− to first expand up to a finite local
maximum value at t = H/(2~ξ), then contract down to
a0 at t = H/(~ξ), expanding thereafter to infinite. B−

would first contract until t = −H/(~ξ), then expand up
to reach a local maximum at t = −H/(2~ξ), to contract
again until t = 0, where it converts into a+ which will
steadily expand thereafter to infinite.
In terms of the conformal times η± =

∫

dΘ±/a±,
which is given by

tan η± = sinh
(

t± ~ξt2/H
)

, (3.7)

with π/2 ≥ η+ ≥ 0 and 3π/2 ≥ η− ≥ π, the metrics can
be re-expressed in a unitary form as

ds2± =
a20

cos2 η±

(

−dη2± + γαβdx
αdxβ

)

, α, β = 1, 2, ...(d−1),

(3.8)
where γαβ is the metric for a unit (d− 1)-sphere.
We shall consider in what follows the equivalent in

our quantum cosmic scenarios of the static (d − 1)-
dimensional metric. Let us use the new coordinates

xd = H−1 sinψd−1 sinψd−2... sinψ2 cosψ1

xd−1 = H−1 sinψd−1 sinψd−2... sinψ2 sinψ1

xd−2 = H−1 sinψd−1 sinψd−2... cosψ2

(3.9)

x3 = H−1 sinψd−1 sinψd−2cosψd−3

x2 = H−1 sinψd−1 cosψd−2

x0 = H−1 cosψd−1 sinh(HΘ′)

which are defined by t′ǫ(−∞,+∞)), rǫ(0, H−1),
ψd−1, ψd−2, ...ψ2ǫ(0, π), ψ1ǫ(0, 2π). These coordinates
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will again be referred to either time Θ′
+ or time Θ′

−.
Setting r = H−1 sinψd−1, we then find the metrics

ds2± = −

(

1±
~ξt′

H

)2

dt′2
(

1−H2r2
)

+
dr2

1−H2r2
+ r2dΩ2

d−2, (3.10)

where dΩ2
d−2 is the metric on the (d − 2)-sphere. We

immediately note that this metric is no longer static. The
coordinates defined by that metric cover only the portion

of the spaces with x1 > 0 and
∑d

j=2 x
2
j < H−2 (?), i.e.

the region inside the particle and event horizons of an
observer moving along r = 0.
Respective instantons can now be obtained by ana-

lytically continuing Θ± → iT± (where we have taken
Θ′ ≡ Θ for the sake of simplicity in the expressions),
that is t′ → iτ and ξ → −iχ, which contain singu-
larities at r = H−1, which are only apparent singular-
ities if T± are identified with periods ±2πH−1, or in
other words, if τ is respectively identified with periods

H(
√

1 + 8π~χH−2 ± 1)/(2~χ). It follows then that the
two spaces under consideration would respectively be-
have as though if they would emit a bath of thermal
radiation at the intrinsic temperatures given by

T th
± =

2~χ

H
(

√

1 + 8π~χH−2 ± 1
) . (3.11)

It must be remarked that in the limit when χ → 0,
both temperatures T th

± consistently reduce to the unique

value H/(2π) =
√

Λ(d− 1)−1/(2π), that is the tempera-
ture of a d-dimensional de Sitter space [16], even though
T th
− does it more rapidly than T th

+ (in fact, for suffi-

ciently small χ, we can check that T th
− ≃ H/(2π) and

T th
+ ≃ ~χH/(H2 + 2π~χ)). Note that while we keep ~

in all definitions concerning the quantum cosmic spaces,
natural units so that ~ = G = c = kB = 1 are otherwise
used when such definitions are used. Now, one can es-
timate the entropy of these spaces by taking the inverse
to their temperature. Thus, it can be seen that the en-
tropy of the universe with scale factor a+ will always be
larger than that for a universe with scale factor a−. It
follows then that whereas the transition from a+ to a− at
t = 0 would violate the second law of thermodynamics,
the transition from a− to a+ at t = 0 would satisfy it,
so making the model with scale factor a+ evolving along
positive time more likely to happen.
The time variables t and t′ in Eqns. (3.2), (3.5) and

(3.9) do not admit any bounds other than (−∞, +∞),
so that the involved models can be related with the Bar-
row’s hyper inflationary model [14], albait the solution
a+ here always respect the second law of thermodynam-
ics because for such a solution the entropy is an ever
increasing function of time [8].
Before closing up this section we shall briefly con-

sider the static Schwarzschild-quantummechanically per-
turbed solutions. It can be shown that in that case the

line element is again not properly static as they depend
on time in their gtt component, that is

ds2± = −

(

1±
~ξt′

H

)2

dt′2
(

1−
2M

r
−H2r2

)

+
dr2

1− 2M
r −H2r2

+ r2dΩ2
d−2, (3.12)

Instantons for such solutions can also be similarly con-
structed. One readily may show that again such instan-
tons describe thermal baths at given temperatures given
now by

T th
± =

2~χ

H
(

√

1 + 8π~χH−2 ± 1
)

(

1∓ 2
3ǫ
)

+O (ǫ2)
.

(3.13)
where the second sign ambiguity in the denominator
refers to the cosmological (upper) and black hole (lower)
horizons and, according to Ginsparg and Perry [13],
9M2Λ = 1 − 3ǫ2, with 0 ≤ ǫ << 1, the degenerate case
corresponding just to ǫ→ 0.

IV. GRAVITATIONAL WAVES AND

SEMICLASSICAL INSTABILITY

In this section we shall restrict ourselves to the solu-
tions derived in the previous section for just the four-
dimensional case, considering the generation of gravita-
tional waves in the realm of such solutions and some semi-
classical instabilities that arise when one Euclideanizes
(t → iτ) the higher-dimensional solutions. Thus, let us
consider first the tensorial Liftshif-Khalatnikov pertur-
bations corresponding to the zeroth mode ℓ = 0. From
them we can derive [13,16] the differential equation

ν′′ + 2 tan ην′ = 0, (4.1)

where η and ′ = d/dη refer to the conformal time, either
η+ or η−, defined in Eq. (3.7). This differential equation
has as general solution

ν = C0 + C1

(

η +
1

2
sin(2η)

)

, (4.2)

where C0 and C1 are given integration constants. We
must now particularize solution (4.2) to be referred to
η±. In the case η+ we see that the conformal time runs
from 0 (t = 0) to π/2 (t = ∞). These waves do not
destabilize the space as, though their amplitude does not
vanish at the limit where η+ → π/2, neither it grows with
time t. For η− the conformal time runs from π (t = 0 or
t = H2/(~ξ)) to 3π/2 (t = ∞). It can be easily seen that
neither these waves can destabilize the space.
For the general case ℓ 6= 0, we have the general differ-

ential equation, likewise referred to either η+ or η−,

ν′′ + 2 tan ην′ + ℓ(ℓ+ 2)ν = 0. (4.3)
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The solution to this differential equation can be expressed
as

ν = cos3 ηC
(2)
ℓ−1(sin η), (4.4)

with C
(α)
n the ultraspherical (Gegenbauer) polynomials

of degree 2. Now, for η+ = 0 or η− = π, the amplitude
vanishes for even ℓ = 2, 4, 6, ..., and becomes

ν = (−1)(ℓ−1)/2Γ
(

2 + ℓ−1
2

)

Γ(2)
(

ℓ−1
2

)

!
,

for odd ℓ = 1, 3, 5, .... For η+ = π/2, ν = (ℓ+2)!/[6(l−1)!]
and for η− = 3π/2, ν = (−1)ℓ−1(ℓ+2)!/[6(l− 1)!]. Once
again the considered spaces are therefore stable to tenso-
rial perturbations for nonzero ℓ. It is worth mentioning
that for the solution corresponding to η− and even ℓ,
the absolute value of the amplitude of the gravitational
waves would first increase from zero (at t = 0) to reach a
maximum value at t = H/(2~ξ), to then decrease down
to zero at t = H/(~ξ), and finally steadily increase all
the time to reach its final finite value of unit order as
t → ∞. Clearly. a distinctive observational effect pre-
dicted by that cosmic model would be the generation
of gravitational waves whose amplitude adjusted to the
given pattern.
A general derivation of Eqns. (4.1) and (4.3) from a

general traceless rank-two tensor harmonics which is an
eigenfunction of the Laplace operator on S3 and satisfies

the eigenvalue equation ∇a∇
aH

(n)
cd = −(n2− 3)H

(n)
cd can

be found in Refs. [13,16].
We add finally some comments to the possibility that

our closed spaces develop a semiclassical instability. We
shall use the Euclidean approach. In order to see if
our Euclideanized solutions are stable or correspond to
semiclassical instabilities, it will suffice to determine the
eigenvalues of the differential operator [13,21]

GabcdΦ
ab ≃ −�Φcd − 2RacbdΦ

ab ≃ λΦcd, (4.5)

where Φab is a metric perturbation. Now, if all λ ≥ 0, the
Euclideanized spaces are stable, showing a semiclassical
instability otherwise. Stability can most readily be shown
if, by analytically continuing metrics (3.10), the metric
on the (d− 2)-sphere, dΩd−2, turns out to be expressible
as the Kahler metric associated to a 2-sphere. Thus, let
us introduce the complex transformation

Z = 2 tan (ψd−2/2) exp

(

i

∫

dΩd−3

)

, (4.6)

and hence in fact we can derive

dΩd−2 =
dZ̄dZ

(

1 + 1
4 Z̄Z

)2 (4.7)

and the Kahler potential

K = 2 log

(

1 +
1

4
Z̄Z

)

, (4.8)

so showing that, quite similarly to what it happens in
the d-dimensional de Sitter space, the instantons con-
structed from metrics (3.10) are stable. Whether or not
a space-time corresponding to Schwarzschild-generalized
de Sitter metric would show a semiclassical instability is
a question that required further developments and calcu-
lations.

V. CONCLUSIONS AND COMMENTS

This paper deals with new four-dimensional and d-
dimensional cosmological models describing an acceler-
ating universe in the spatially flat and closed cases. The
ingredients used for constructing these solutions are min-
imal as they only specify a cosmic relativistic field de-
scribed by just Hilbert-Einstein gravity and the notion
of the quantum entanglement of the universe, that is the
probabilistic quantum effects associated with the general
matter content existing in the universe or its generaliza-
tion for the closed cases. Two of such models correspond
to an equation of state p = wρ with parameter w < −1
for their entire evolution, and still other of them which
covers a period in its future also with w < −1; that is to
say, these three solutions are associated with the so-called
phantom sector, showing however a future evolution of
the universe which is free from most of the problems con-
fronted by usual phantom scenarios; namely, violent in-
stabilities, future singularities, incompatibility with the
previous existence of a matter-dominated phase, classi-
cal violations of energy conditions or inadequacy of the
holographic description. Therefore we also denote such
quantum cosmic models as benigner phantom models. All
these models can be regarded as generalizations or per-
turbations of the either exponential or hyperbolic form of
the de Sitter space. The hyperbolic solution are given in
a d-dimensional manifold which is particularized in the
four-dimensional case in the Euclideanized extension that
allowed us to derive quantum formulas for the tempera-
ture that reduce to that of Gibbons-Hawking when the
perturbation is made to vanish. Finally, the generation
of gravitational waves in some of the considered models
has been studied in the realm of the Lifshitz-Khalatnikov
perturbation formalism for the spatially closed case. It
is also shown that none of these waves destabilize the
space-time, as neither the vector and scalar cosmological
perturbations do in the spatially flat and closed cases.
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7

[1] T. Padmanabhan, Dark Energy: The Mystery of the Mil-
lennium, AIP Conf. Proc. 861: 179 - 196, 2006;1. P. de
Bernardis et al., Nature 404, 955 2000); A. Balbi et al.,
Astrophys.J., 545, L1 (2000); S. Hanany et al., Ap.J.,
545, L5 (2000); T.J. Pearson et al., Astrophys.J., 591,
556 (2003); C.L. Bennett et al, Astrophys. J. Suppl. ,148,
1 (2003); D. N. Spergel et al., Astrophys.J. Suppl. 148,
175 (2003); B. S. Mason et al., Astrophys. J. ,591, 540
(2003).

[2] R.R. Caldwell, R. Dave and P.J. Steinhardt, Phys, Rev.
Lett. 80, 1582 (1998); L. Wang and P.J. Steinhardt,
Astrophys. J. 508, 483 (1998); R.R. Caldwell and P.J.
Steinhardt, Phys. Rev. D57, 6057 (1998); P.F. González-
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