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CO2 Capture from Biomass Gasification Producer 

Gas Using a Novel Calcium and Iron-based Sorbent 

through Carbonation-Calcination Looping

Forogh Dashtestani1, Mohammad Nusheh2, Vilailuck Siriwongrungson3, Janjira 

Hongrapipat4, Vlatko Materic2, Shusheng Pang1,*

ABSTRACT: In this study, a novel sorbent material based on CaO and Fe2O3 was 

investigated for its performance in CO2 capture from simulated biomass gasification 

producer gas. Experiments were conducted in a fixed bed reactor and each run of the 

experiments included three major stages of sorbent material reduction, CO2 capture 

(carbonation) and CO2 release (calcination). The operation temperature in the CO2 

capture stage was controlled at 590°C, 620°C, 650°C and 680°C, respectively, while the 

temperature for the CO2 release was maintained at 850°C. The duration of the CO2 

capture stage was 3 h and the CO2 release stage was 2 h. Effect of cycles of carbonation-
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calcination looping of the sorbent material was also investigated at the carbonation 

temperature of 650°C. The experimental results show that effective CO2 capture by the 

sorbent material occurred in the initial 20 minutes during the carbonation. In the 

calcination stage, the rate of CO2 release reached the peak in 30 to 40 minutes from the 

start of the calcination. The carbonation temperature has a significant effect on CO2 

capture and the optimum carbonation temperature was found to be 620°C at which CO2 

capture efficiency was 94% for the first cycle and 90.4% as average for the first three 

cycles. It was also found that the CO2 capture efficiency was reduced with cycling. 

Mechanisms of the CO2 capture and effect of cycling were also examined.

KEYWORDS: Biomass gasification, Producer gas, CO2 capture, CaO-FeO sorbent, 

Carbonation-calcination looping 

1. INTRODUCTION

With concerns on climate change due to the increasing of greenhouse gas (GHG) 

emissions, CO2 capture and reuse have attracted extensive interests in the world. One 

Page 2 of 56

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

possible approach to mitigate this issue is to capture CO2 from CO2-containing gas 

streams, such as flue gas from a combustion unit and producer gas from biomass 

gasification, and to reuse it such as injecting CO2into the environment of greenhouse 

nurseries to enhance plant growth and yield. Commercial greenhouses currently use flue 

gas either directly or indirectly from combustion of fossil fuels.1, 2 However, recently 

alternative renewable energy resources such as biomass have been sought to replace 

fossil fuels for this purpose either through combustion or gasification.3 Biomass 

gasification is a promising technology due to advantages of high energy efficiency and 

flexibility for applications of the producer gas produced from the gasification.1 Gasification 

is a thermochemical process in which the solid fuels undergo a series of reactions in the 

presence of a gasification agent which can be air, pure oxygen, steam or a mixture of 

them. The producer gas consists primarily of hydrogen (H2), carbon monoxide (CO), 

carbon dioxide (CO2) and methane (CH4) when oxygen or steam is used as the 

gasification agent.2 

There are a range of CO2 capture processes and technologies.4 Calcium looping using 

CaO-based sorbent has been reported as an efficient technology for the CO2 capture 
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4

both from gasification producer gas and from combustion flue gas with capturing 

efficiencies of 90% or above.5-7 The calcium looping is based on carbonation and 

calcination which can be achieved by changing the operation temperatures and 

alternatively switching gas streams.8-11 Abanades et al. 12 suggested that it may be 

possible to capture CO2 inside the combustor (in situ) instead.13, 14  In this setup, a single 

vessel was used for combined combustion and CO2 capture.In the calcium looping 

process, the carbonation reaction is exothermic with preferred reaction temperature of 

600-650 °C while the calcination reaction is endothermic and favoured at high 

temperatures of 850 to 950°C. When the calcination is performed in air atmosphere, the 

operation temperature can be close to lower limit of this temperature range due to the 

very low CO2 concentration in the feeding air and considering to minimise the energy 

consumption. The carbonation and the calcination reactions are described as follows.  

 

         �������	
�� ����	
��
CaO + CO2�  CaCO3

C 298 = -178 kJ

 mol �1
(1)

         ����
��	
�� ����	
�� CaCO3�CaO + CO2 C 298 =  178 kJ 

mol �1
(2)
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5

Post combustion capture of CO2 with amine-based solvents is a mature technology,15, 

16 however, this is a very energy intensive process.3,17 In addition, the used solvents may 

induce  environmental concerns as pollutants, such as sulphur-based species present in 

the flue gas from coal combustion, would be absorbed by the solvents.18 Previous studies 

have been reported on comparison between different CO2 capture processes based on 

exergy analysis 18, 19 and the results show that the calcium-looping process has the lowest 

energy penalty 18 compared to solvent scrubbing 20 and oxyfuel combustion.21 In the 

oxyfuel combustion, pure O2 separated from air is used in combustion of coal or 

biomass.22 Research has also been conducted on integration schemes including biomass 

gasification with carbon capture and storage (CCS), 4, 23, 24 biomass integrated coal 

gasification combined cycle (BIGCC) with CCS, 25 or co-gasification with CCS 26. 

Abanades and Murillo 27 later illustrated the concept of cyclic Ca/Cu looping in a fixed bed 

reactor. The use of combined calcium looping with chemical looping cycle (CaL�CLC) 

reduced energy penalty from 11% in amine scrubbing to 4%.28  The cost of CaL�CLC was 

minimised by using natural limestone as the calcium looping agent. It is important to note 
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6

that the use of CaO based material in the reactor not only increases efficiency but also 

favours the production of H2 by removing the carbon dioxide. This enhanced water-gas 

shift (WGS) reaction and provided heat for the endothermic steam methane reforming 

(SMR) reaction.29-32 Han et al. 33 also reported that the endothermic SMR reaction could 

be thermally balanced with exothermic carbonation and WGS reactions. Johnsen et al. 34 

conducted experiments using dolomite as CO2 sorbent in a bubbling fluidized bed (BFB) 

reactor with cycling of SMR-carbonation (at 600°C) and calcination (at 850°C).  In this 

study, hydrogen concentration of 98 vol.% was achieved.

The CaO based material has advantages of low costs and high reactivity at the start of 

the application.35 Previous studies32, 36 have shown that the CaO based sorbents had high 

CO2 capture efficiency initially, however, the sorbents were deactivated after 20 or 30 

cycles due to the reduction of microporosity in the sorbents.37, 38 It was also found that at 

the end of carbonation process, a layer of CaCO3 of about 50 nm thick was formed on 

the pore surfaces that reduced accessibility of the reactant gases and this phenomenon 

became more significant with cycling.39 Most natural CaO-containing sorbents, such as 

limestone and dolomite, may be used for the CO2 capture, however, these materials 
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7

undergo declining of reactivity with an increase in the cycling of carbonation-calcination 

looping.8, 40  Barker41 conducted experiments to investigate the effect of the number of 

carbonation-calcination cycles on the sorbent material�s reactivity for CO2, and the results 

showed that the CO2 capture efficiency of the CaO based sorbent decreased rapidly with 

the cycles of the carbonation-calcination looping. 33, 42, 43 On the other hand, in the 

producer gas from biomass gasification, contaminant gaseous species such as nitrogen- 

and sulphur-based compounds as well as other impurities may adversely affect the CO2 

capture reactivity of solid sorbents such as CaO.44, 45 These studies also illustrate that the 

CaO based sorbent has problem of attrition in fluidised bed reactors with cycling of the 

carbonation-calcium looping. Sintering of the natural CaO based material is also 

potentially a problem at high temperatures. Therefore, the challenges of the CaO based 

sorbents for CO2 capture is to maintain the capture efficiency with cycling 46 and to 

improve mechanical strength.47 Synthetic sorbent material can be made using natural 

materials to reduce the costs.48  Research has been conducted to integrate a second 

metal oxide into the natural sorbent material to improve carbonation/calcination reactivity 

with cycling and to enhance the reaction rate.49 Addition of inert but thermally stable 
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8

materials is an efficient technique to mitigate CaO sintering.50-53 The inert material can also 

increase the porosity and pore surface area of the sorbent particles.54 The reported inert 

materials, termed as stabilisers, include Al2O3 55, 56, ZrO2 57-59, CeO2 60, MgO 60-63, Y2O3 

64, 65, MnO2 66, La2O3 61, TiO2 67, CuO 68 and Nd2O3 69 which have high thermal stability. 

Radfarnia et al. 70 also used different metal oxide with CaO sorbent to improve the sorbent 

stability during cyclic CO2 capture.  In the past studies, several CaO-based sorbents have 

been studied 71-76 and selected studies with promising results are briefly reviewed as 

follows.

Tian et al.77 investigated the effect of addition of Fe2O3 to CaO in the carbonation-

calcination looping which was applied in steel manufacturing process. They found that, 

with addition of Fe2O3, the sorbent structural stability was improved and, in the same time, 

the heat demand for the endothermic calcination process was reduced. These findings 

were further verified by separate studies78, 79 which showed that the use of metal oxide 

resulted in fast reaction kinetics, high CO2 capture efficiency, and sustained performance 

of the sorbent over a large number of cycles.78 Zamboni et al. 80 found that the reactivity 

reduction of CaO in Fe�Ca synthetic absorbent was slower than other combined materials 
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9

with cycling. Han et al.81 also developed iron-calcium based material with stable reactivity 

and performance with cycling. With screening of metal-based sorbents, Feng et al. 82 

found that Fe2O3 was the most promising one.83 

With the addition of metal oxide to CaO based sorbent, an exothermic reaction between 

the reduced metal and oxygen occurs (such as Fe + O2 M 2Fe2O3) which provides heat 

for the endothermic calcination reaction. In addition, when Fe2O3 is used as additional 

metal oxide to the sorbent, 84-87 sintering and attrition properties also need to be 

considered for practical applications,88-92 thus support material can be included if 

needed.93

Nevertheless, there are still unknowns in optimisation of the sorbent material 

formulation and fundamental understanding of the performance of the sorbent material. 

Therefore, further investigation is needed on the effect of formulation and performance of 

different sorbent materials on the CO2 capture through carbonation-calcination looping.94-

101 In some of the previous studies, carbonation temperature of 650°C was used, 79, 96, 98, 

102-106 considering the favoured equilibrium gas composition and the kinetics of 

carbonation reaction for CO2 capture. It is known that the operation conditions both for 
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10

carbonation and for calcination affect the sorbent material performance for CO2 capture.96, 

100  Other studies have shown that the carbonation may be favoured at temperatures lower 

than 650°C. Lab-scale studies by Charitos et al.107 have shown an optimum temperature 

in the range of 630-650 °C for CO2 capture using the CaO based sorbent. A separate 

study by Sánchez-Biezma et al. found that the carbonation temperature of 700 °C resulted 

in a reduced CO2 capture efficiency than that at 650°C.108  Interestingly, a study by Plötz 

et al. found that carbonation temperatures lower than 620°C were kinetically unfavourable 

for the CO2 capture process.109 

From the above discussion, important factors that affect the CaO based materials 

performance on CO2 capture include sorbent material formulation, carbonation and 

calcination temperatures, elapsed time of carbonation process, cycling of the 

carbonation-calcination looping and the composition of the CO2-containing gas stream. 

The modification of the CaO sorbent by addityionof metal oxides is a critical approach to 

enhance the sorbent performance and to maintain lasting high reactivity. 

The aim of this work is to investigate the performance of a newly developed sorbent 

material based on CaO and Fe2O3 in the simulated biomass gasification producer gas, 
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and to examine the effects of carbonation temperature as well as the carbonation-

calcination cycling. Mechanisms of the CO2 capture process by the synthetic sorbent is 

also investigated. 

2. MATERIAL AND EXPERIMENTS

2.1. Sorbent material

CaO based sorbent material with enhancement of Fe2O3 was developed and provided 

by Hot Lime Labs (HLLs) in New Zealand. The CaO and Fe2O3 are natural minerals, and 

were sourced locally in New Zealand. The composition of the sorbent material was 70 

wt% CaO, 20 wt% iron ore (Fe2O3) and 10 wt% inorganic binder. The raw materials at 

pre-set composition were physically mixed and pelletised to required pellet size of about 

5 mm. BET surface area, sorption cumulative pore volume and average pore diameter of the as 

arrived fresh sorbent material were measured which values are, respectively, 1.24 m2/g, 0.020 

cm3/g, and 60.1 nm. The sorbent material was first treated at 650� to remove adhesives and other 

volatiles before the experiments. After the treatment, the values of BET surface area, sorption 

cumulative pore volume and average pore diameter of the sorbent material were measured again 

which values are, respectively, 1.52 m2/g, 0.0054 cm3/g, and 15.5 nm. Bulk density of the fresh 

sorbent material was provided by HLLs as 1000 kg/m3. We have noted that the BET surface area 
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12

and the sorption cumulative pore volume were low for the sorbent material. However, these values 

were for large pores between individual components in the composite pellets but not for micro-

pores of each component. For characterisation of the sorbent materials, XRD and SEM analyses 

were also performed. 

2.2. Experimental system and procedures

A fixed bed quartz reactor system was used in the experiments which flow diagram is 

shown in Figure 1. This quartz reactor, with an inner diameter of 40�mm and length of 

815�mm, is housed inside a three-zone heating furnace, in which temperatures of each 

zone are controlled separately. The temperature profile within the reactor was examined 

before experiments, and stable temperature was found between 300 and 500 mm from 

the bottom of the reactor where the bed of sorbent material was located. The sorbent 

material section of the reactor is detachable, which enables easy removal and loading of 

the sorbent material. 

The reactor temperatures were monitored using Type-K thermocouples at three 

locations in the reactor: at the bed bottom (gas inlet) below the distributor, at mid-height 

of the bed, and at the reactor top (gas outlet) in the freeboard. The thermocouples were 
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13

also connected to a data logger for data recording. Each run of the experiment consisted 

of four essential stages including hydrogen reduction, carbonation (or charge), purge and 

calcination (or discharge) plus heat-up and cooling-down as given in Table 1. In the table, 

test gases in each stage are also included. 
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Figure 1. Flow diagram of the reactor system used in this study. 
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Table 1. Operation Conditions for an Experimental Run

Stage Temperature, 

°C

Test gas* Duration or criteria for 

finishing

Initial calcination of 

the as arrived sorbent 

material

850 Air
Until no CO2 was 

detectable at outlet 

Purge 
850 Argon (Ar)

Until no air was 

detectable at outlet

Hydrogen reduction
850

50 vol.% Ar and 

50 vol.% H2

40 - 65 minutes

Cooling down to 

target carbonation 

temperature

50 vol.% Ar and 

50 vol.% H2

~ 30 minutes

Carbonation (charge)

590, 620, 650 

or 680

25 vol.% CO2, 

30 vol.% H2 and 

45 vol.% Ar

180 minutes

Purge 
As above Argon (Ar)

Until no H2 was 

detected at outlet

Calcination 

(discharge)
850 Air 120 minutes

Note: * Overall gas flow rate in each stage was controlled at 1 standard litre per minute 

(SLPM).
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In each run, the 200 g pretreated sorbent material was placed into the quartz reactor 

bed. Wool was placed on the top of the bed to keep the material in place during the 

experiment. Once the initial calcination stage was completed with pure air, the sorbent 

particles were then exposed to 50% H2 and 50% Ar for hydrogen reduction. Then, gas 

mixture (25 vol. % CO2, 30 vol. % H2 and 45 vol. % Ar ) as simulated biomass gasification 

producer gas was introduced into the reactor for starting the stage of carbonation. Once 

this was finished, the reactor was switched to purge with Ar gas to avoid air and simulated 

gas mixed, and then to calcination (discharging) by switching the Ar gas to air as carrier 

gas. When the calcination stage was completed, the reactor was cooled down again to 

room temperature.

The gas flowrate in all of the stages was set at 1 standard litre per minute (SLPM) and 

controlled by flowmeters of the inlet gases based on preset gas composition. The 

concentrations of CO2, CO, H2 and O2 from the reactor were analysed using a micro-GC 

(Agilent 3000). The Ar gas was regarded as inert and its outlet concentration was 

determined from mass balance. The outlet gas composition was determined based on 

the gas analysis results and the inlet flowrate of the inert gas (Ar).
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This study has also examined the effects of cycling of carbonation-calcination looping 

on the material performance for its CO2 capture, by repeating the experiment over 8 

cycles at the carbonation temperature of 650°C. The characterizations of the sorbent 

materials were performed before and after the carbonation-calcination looping to provide 

information about the evolution of the iron species and Fe-Ca interactions during catalytic 

tests. BET and BJH methods were based on nitrogen adsorption-desorption 

measurements using a Gemini VI instrument. BET was used to determine the specific 

surface area of materials while BJH was used to determine the values of pore volume 

and pore size. To better understand the chemical changes of the materials upon CO2 

adsorption and desorption, X-ray diffraction analysis was performed using X-ray 

diffractometer (XRD, Bruker D8, and Co =R radiation). Furthermore, SEM (Scanning 

Electron Microscopy) images were taken for the sorbent materials by using a JEOL 7000F 

FE-SEM analyser (JEOL Ltd, Japan) with a probe current of 10 mA and under an 

acceleration voltage of 5kV.
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3. RESULTS AND DISCUSSION 

3.1. Performance of the materials on CO2 capture and release

One cycle of each experimental run can be classified into four stages including initial 

calcination, H2 reduction, carbonation and calcination. Figure 2 shows typical results of 

gas composition of the outlet gas from the reactor for a complete carbonation and 

calcination cycle at carbonation temperature of 650°C. In the figure, the concentrations 

of gaseous species of O2, CO, CO2 and H2 as well as operation temperatures are 

illustrated. O2 in the outlet gas was from air, and CO2 and H2 were from the feeding gas 

while CO was produced from reverse water-gas shift reaction, as described by Equation 

(3) below, as well as oxidation of Fe by CO2.

CO2 + H2�� + H2O 3�298 = 41 kJ mol �1 (3)

N2 in the air and Ar in the feeding gas are not shown in the figure as these are regarded 

as inert through the reactor. 
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Figure 2. Composition of outlet gas streams from the reactor in all stages of the experiment in 

the first cycle of carbonation-calcination looping and carbonation temperature of 650°C.

As mentioned above, in the experiments, the heat-pretreated material was initially 

heated at the rate of 10°C/min to 850°C which was then maintained for over 4 hours until 

no CO2 was detected in the outlet gas. In this process, the carbonate in the fresh material 

was completely calcined and all CO2 was released. 

           Initial Calcination        Reduction                        Carbonation            Calcination  
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Following this, the Fe2O3 in the sorbent material was reduced at 850 S( by introducing 

50% H2 and 50% Ar. This reduction process was through multiple steps (Fe2�3M ��3�4M 

��� M��  and the overall reaction is endothermic as described by Equation (4) below. 

Fe2O3 + 3H2��!" + 3H2O  3�298 = 31.71 #$%���1 (4)

. In the hydrogen reduction process, when all of the lattice oxygen on the surfaces of 

the sorbent particles and the pores was consumed to oxidise the H2, further reduction 

process became diffusion-controlled and the rate was slow with low H2 consumption. 

Therefore, the outlet H2 concentration was stable. This changing point was identified as 

the first H2 reduction breakthrough point which was used for termination of the reduction 

stage.It is noted that the observed H2 breakthrough also reflects the gradient of 

conversion along the bed height. After the reduction, the activity of the sorbent material 

was also enhanced for the CO2 capture in the carbonation stage through Equation (1). 

This has been reported by previous studies that the CO2 molecules acquired the clean 

metal surfaces for activation of the C=O bond to proceed the carbonation reaction. 110-112  

The next key stage of the experiment was the charging at carbonation temperature of 

650°C. In this stage, the feeding gas was composed of 25% CO2, 30% H2 and 45% Ar 
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which was used to simulate the producer gas from biomass gasification. CO2 was 

captured from the simulated producer gas and the sorbent material was �charged�. CO 

was not included in the simulated producer gas as our previous studies have shown that 

CO was generated through the CO2 capture process using similar sorbent materials.

In the carbonation process, a turning point was observed as CO2 breakthrough point 

which is defined as the completion of fast CO2 capture through the bed and characterised 

by the start of rapid increase in outlet CO2 concentration. This indicated a rapid reduction 

of CO2 capture efficiency by the sorbent material. The breakthrough time was dependent 

on the operation temperature, gas flowrate and bed height. The second breakthrough 

point may be observed when the CO2 capture rate was further reduced. In the present 

study, the results demonstrated that CO2 capture was most effective in the initial 20 

minutes of carbonation which covered the first breakthrough point.

The fast carbonation started once the feeding gas was injected. As observed in Figure 

2, the CO2 concentration in the outlet gas was very low at the start, showing that initially 

the sorbent material had high capacity to absorb CO2 almost completely from the 

simulated producer gas stream through carbonation reaction and CO2 reduction by Fe or 
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FeO. In the reduction reaction, CO2 reacted with iron metal to produce CO and iron oxide. 

Fe-containing material would also promote the reverse water-gas shift reaction.113-115 In 

the carbonation-calcination looping process, 116 CO2 is converted to CO in a two-step, 

cyclic redox scheme: A redox material (commonly referred as the oxygen carrier 

materials) is firstly reduced by reducing gas (H2) to release its lattice oxygen, and then 

the reduced metal oxide is reoxidised by being exposed to CO2 to regain its lost oxygen, 

117 thereby producing carbon monoxide. The results from the present study are similar to 

those reported by Hare et al. 116 who investigated the performance of dolomite and 

limestone for CO2 capture. When the CO2 capture rate became slow, the outlet CO2 

concentration increased gradually with elapsed time. In the meantime, CO was detected 

in the outlet gas stream, confirming that the reverse water-gas reaction occurred. 

However, if CO was included in the feed gas, reverse water-gas shift reaction would be 

slowed down or may be changed to forward direction depending on its initial concentration 

in the feed gas.

As the carbonation proceeded, the CO2 concentration in the outlet gas further 

increased, and this indicated reduced reactivity of the sorbent material due to the 
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decreasing availability of reactant components (CaO and Fe) in the sorbent material and 

the resistance for CO2 diffusion into the material for carbonation reaction.118, 119  The latter 

mechanism will be further analysed later in this paper.

The concept of using metal-oxide materials, which can spontaneously be reduced at 

high temperatures and then are reoxidised by interaction with CO2 to produce CO (or 

alternative with H2O to form H2), has been investigated in literature. 120-122 This process 

can be described as a general case by the following reaction: 

       MOred + CO2(H2O)�&Oox + CO( H2)
(5)

In the experiment, the final stage was calcination or discharging in which air was used 

as the carrier gas. Although not presenting in the feeding gas, significant CO2 was 

detected in the outlet gas stream, indicating that the CO2 was released from the sorbent 

material. The CO2 concentration represents the reactivity of the sorbent material through 

CaCO3 decomposition by calcination reaction and the iron oxidation reaction. As the 

calcination reaction is endothermic, heat is needed to maintain the target temperature of 

850°C, which was provided by the furnace and from the iron oxidation reaction as given 

in Equation (6). 123, 124 
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In the stage of calcination, reoxidation of the reduced metal also occurred in the reactor 

which supplied additional heat to the endothermic calcination reaction. 

       4Fe + 3O2��!e2O3  3�298 = -1651 kJ mol �1 (6)

From Figure 2, it is found that the CO2 concentration in the outlet gas stream during the 

calcination stage was at the peak once the temperature reached 850°C. Afterwards, the 

CO2 outlet concentration decreased with time and was eventually non-detectable, 

indicating that all CO2 was released from the material and calcination was completed. It 

was also found that the outlet O2 concentration was reduced during the calcination stage, 

indicating that O2 was consumed for the Fe reoxidation as shown in Equation (6). 

Similar trends of gas composition changes were also observed for other carbonation 

temperatures in the experiments, thus these results are not presented here. 

For analysis of the CO2 capture efficiency (�), the following equation was used based 

on the molar ratio in the carbonation stage in which the gas volumes over a given period 

of time were used at standard conditions:

� = 1 �
���2,�-	 + ���,�-	

���2,
�
= 1 �

.��2,  �-	 + .��,  �-	

.��2,
�
(7)
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Where  is the total CO2 volume entering the system in the feeding gas mixture .���,
�

over a given period of time (L), and   are the total volume of outlet CO2 .��2,  �-	 + .��,  �-	

and CO in the same period of time (L). The above equation is based on assumption that 

part of the inlet CO2 was adsorbed by the sorbent material, and part of the inlet CO2 was 

transformed to CO through reverse water-gas shift reaction and CO2 reduction (Equations 

3 and 5). The remaining CO2 injected into the reactor flew out of the reactor in the outlet 

gas stream. The total inlet CO2 volume was determined from the controlled gas flow rate 

and the CO2 concentration in the inlet gas stream while the outlet CO and CO2 volumes 

were calculated based on the measured gas composition and the total volumetric flowrate 

of the outlet gas. It is noted that the total volume of the outlet gas was reduced due to the 

CO2 adsorption and water vapour condensation. The total gas volume was determined 

by assuming the Ar gas to be inert thus the total moles of Ar remained unchanged through 

the reactor.  

3.2. Effect of carbonation temperature on CO2 capture and conversion of the sorbent 

material
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To investigate the effect of carbonation temperature on CO2 capture efficiency of the 

sorbent material, experiments at carbonation temperature of 590°C, 620°C, 650°C and 

680 °C were conducted through three cycles for each temperature run. Figure 3 shows 

the calculated CO2 capture efficiencies in each experimental run during the initial 20 min 

in the carbonation stage. It is worthwhile to note that the overall CO2 capture efficiencies 

for the whole carbonation stage were lower as the most effective CO2 capture occurred 

in the initial short period of the carbonation. 
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Figure 3. The effect of carbonation temperature and carbonation-calcination looping cycles on: 

(a) the CO2 capture efficiency and (b) the outlet CO concentrations from the reactor with the 

sorbent material. 

The experimental results in Figure 3(a) show that the CO2 capture efficiency was 

reduced with the cycling of carbonation-calcination looping. The carbonation temperature 

also has significant impact. The maximum CO2 capture was achieved at the carbonation 

temperature of 620°C with efficiencies of 94.2%, 93.0%, and 84.0%, which corresponded 

to 0.31, 0.28 and 0.29 CO2 uptake by the sorbent material (g CO2/g sorbent), during the 

three cycles in the initial 20 minutes of carbonation in each cycle. 
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Similar pattern of results was also obtained for other carbonation temperatures. At 

carbonation temperature of 590°C, the corresponding CO2 capture efficiencies were 

84.2%, 81.7% and 75.9% (0.28, 0.26, 0.17 g CO2/g sorbent), respectively, in the three 

cycles. The CO2 capture efficiencies for carbonation temperature of 650°C were slightly 

reduced to 83.7%, 71.3% and 71.7%, in the first, second and third cycle, corresponding 

to 0.23, 0.15, 0.15 g CO2 uptake/g sorbent. At carbonation temperature of 680°C, the CO2 

capture efficiencies in the three cycles were significantly reduced to 68.9%, 65.3% and 

64.9% and exhibited a CO2 uptake of 0.14, 0.10, 0.10 g CO2/g sorbent, respectively.

In order to investigate the effect of carbonation temperature and carbonation-calcination 

looping on CO2 conversion to CO, CO concentrations in the outlet gas stream from the 

reactor during the initial 20 minutes of carbonation stage were calculated and the results 

are shown in Figure 3 (b). From the results, we found that at 680°C the outlet CO 

concentration was the highest among all of the carbonation temperatures investigated, 

varying from 6 % in the first cycle to 10% in the third cycle. This trend is in the opposite 

direction with the CO2 capture efficiency, confirming that the CO conversion had adverse 

impact on the CO2 capture. As expected, the outlet CO concentration was the lowest at 
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the carbonation temperature of 620°C, varying from 1 % in the first cycle to 4% in the third 

cycle, at which the highest CO2 capture efficiency was achieved. 

The above results are in agreement with previous studies wherein the low temperature 

favours the exothermic carbonation reaction to produce CaCO3 from CaO and CO2 based 

on the equilibrium gas compositions.107 However, it is noted that the reaction kinetics also 

decreases with decreasing the temperature. 

The experimental results in Figure 3 also illustrate that the CO2 capture efficiency of the 

sorbent material decreased with cycling at all carbonation temperatures which have been 

reported in the literatures.125, 126 Abanades and Alvarez127 investigated the effect of the 

cycling of carbonation-calcination looping and found that with each cycle, there was a 

certain loss in small pores due to the filling of formed CaCO3 and in the same time there 

was a certain increase in large pores. This phenomenon decreased the pore surface area 

and thus the sorbent reactivity. 

From the results of this study, it is found that during the carbonation stage, majority of 

the inlet CO2 was captured by the sorbent material through carbonation. A fraction of CO2 

was converted to CO through reverse water-shift reaction. These findings are consistent 
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with the report by Han and Harrison33 who conducted experimental and theoretical 

investigation, and found that the optimum temperature for the shift and carbonation 

reactions represents a compromise between equilibrium gas composition and kinetics 

factors. 

Symonds et al. 128 confirmed that 620°C is the optimum carbonation temperature for 

the tested sorbent material for CO2 capture. Higher temperature has an adverse effect on 

both the water-gas shift and carbonation reactions but temperatures lower than 620 °C 

were kinetically unfavourable for the process. 107, 109 Further micro structure analysis was 

conducted on the tested sorbent material and the results will be presented in the 

subsequent section. It was found that the surface area of the sorbent material tested at 

high carbonation temperatures was significantly lower than that tested at lower 

temperatures. Therefore, the sorbent material was more stable at lower temperatures and 

thus could retain effective CO2 adsorption capacity. 

In these experiments, it was also observed that the CO2 capture efficiency of the sorbent 

material tended to decrease with the number of cycles, as shown in Figures 3. This can 

be attributed to a number of factors including the reduction of pore surface area as 
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mentioned above,127 the regeneration of a thin layer of calcium carbonate at the CaO 

surface forming a plug. 129 These mechanisms have also been investigated through BET, 

XRD and SEM analyses and these will be presented in the following section. Results from 

further investigation with larger number of cycles will be discussed in Section 3.4. 

3.3. Sorbent material analysis

After completion of each run of experiments with three cycles, the tested sorbent 

material was analysed for pore volume (porosity) and surface area, and the results for all 

of the four runs are shown in Table 2 for different temperatures. From the table, it is found 

that the surface area of the sorbent was the highest with the value of 1.75 m2/g at the 

carbonation temperature of 620°C and this was decreased with increase in the 

carbonation temperature, to 1.51 and 0.65 m2/g, respectively, at carbonation 

temperatures of 650°C and 680°C. Similar trend was also observed for the pore volume 

with values of 0.0072, 0.0052 and 0.0015 cm3/g for the carbonation temperatures of 620, 

650 and 680°C. These trends are in line with the CO2 capture efficiencies, confirming that 

the sorbent surface area and pore volume enhanced the carbonation reactions. However, 
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it is interesting to note that the sorbent surface area and pore volume at carbonation 

temperature of 590°C were significantly lower than those at 620°C. It is also observed 

that the surface area and pore volume for carbonation temperature of 620°C were higher 

than those of the pretreated sorbent material. Further research will be conducted to 

investigate the causes of these phenomena.

At carbonation temperature of 620°C, CaO was effectively converted to CaCO3 through 

carbonation reaction with average CO2 capture efficiency of 90.4% for the three cycles. 

However, at carbonation temperature of 680°C, the conversion reactions of the sorbent 

material were much less effective with the average CO2 capture efficiency being reduced 

to 66.4%. This suggests that the surface area and pore volume are positively correlated 

to the conversion activity and, consequently, to the CO2 capture efficiency.

The results of the BET analysis results show that CO2 adsorption by the sorbent 

material was affected by pore structures and gas diffusion because the surface layer of 

the pore structure controlled the rate of reaction. 130  Furthermore, Borgwardt131 proposed 

that CaO porosity was further reduced by the presence of CO2 and H2O in the pores. The 

results from the present study suggest that CO2 capture capacity decreased in the 
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subsequent cycles and this is likely to be due to the closure of some small pores of CaO-

based material during carbonation. Further research will also be conducted to investigate 

this phenomenon.

Table 2. Surface area (S.A.) and pore volume (P.V.) of the tested sorbent materials after 

completion of three cycles of carbonation-calcination looping at different temperatures.

Sample         surface area 

(m2/g)

Pore volume 

(cm³/g)

Sorbent material at 590°C 0.69 0.0035

Sorbent material at 620°C 1.75 0.0072

Sorbent material at 650°C 1.51 0.0052

Sorbent material at 680°C 0.65 0.0015

The results of XRD analysis for fresh and tested sorbent materials are shown in Figure 4.  

In the figure, CaO, Fe2O3 and CaCO3 were observed as main phases in all samples. 

Ca(OH)2 was formed by the reaction of CaO with moisture in atmosphere during XRD 

sample preparation. The intensity of CaCO3 in the fresh sample was higher than the 

tested sample while the intensity of CaO in the tested sample was higher than the fresh 
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of the conversion associated with the filling up of the micropores existing in the calcine 

and that associated with the formation of a product layer in the walls of the large pores 

present in the calcine. 133, 134 The limiting factor for further carbonation reaction was 

strongly related to the gas diffusion resistance through this product layer, as proposed by 

Mess et al. 135 

The above phenomenon has also been found in metal oxides at high temperatures which 

resulted in decrease of surface area and deactivation of particles. 136-138 It is reported that 

migration of metal cations and their subsequent enrichment on the particle surface 

resulted in the sintering,139 which was more significant after several redox cycles. 

3.4. Effect of cycling on carbonation conversions of modified sorbent material

Further tests were conducted with eight cycles of carbonation-calcination looping at 

carbonation temperature of 650°C and each carbonation stage lasted for 180 min. The 

results of CO2 capture efficiency over the initial 20 min of carbonation from this experiment 

are shown in Figure 6 in which the overall CO2 capture efficiencies through the whole 

carbonation stage are also included to illustrate the decrease in CO2 capture efficiency 
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with time. It is found that the CO2 capture efficiency over the initial 20 min was much 

higher than the overall efficiency for every cycle. This indicates that the effective CO2 

capture was achieved in the initial 20 min thus prolonged carbonation is unnecessary.

From Figure 6, the CO2 capture efficiency decreased with the cycling, however, the 

trend was different between the overall efficiency and the efficiency over the initial 20 

minutes in the carbonation. For the 20 min, the efficiency dropped significantly from 

83.7% in the first cycle to 71.3% in the second cycle, however, the efficiency maintained 

at around 70% through all of the subsequent cycles. This further illustrates that the 

sorbent material can be used for a large number of cycles when the carbonation stage 

lasts 20 minutes. However, for the whole stage of carbonation, the overall CO2 capture 

efficiency decreased in the second cycle from 56.2% to 49.8% and then continued 

decreasing from the fifth cycle at 48.9% to 16.4% in the final cycle. 
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Figure 6.  The effect of cycling on CO2 capture efficiency by the CO2 sorbent material at 

carbonation temperature of 650°C.

With a number of cycles of carbonation-calcination looping, part of the sorbent surface 

was covered by CaCO3 and this reduced the active sites and active surface area for the 

target carbonation and Fe oxidation reactions. In a separate study by Grasa and 

Abanades,94 degradation of limestones was also observed over multiple 

carbonation/calcination cycles. Grasa and Abanades94  proposed that this degradation 

was due to reduction of active surface area and material porosity which is considered to 

be the key factor for the decrease in material�s CO2 capture efficiency with cycling. 
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It should be pointed out that the high CO2 capture capability of the sorbent material 

investigated in this study can be attributed to composite structure of the material by 

including Fe2O3 in the material which enhanced the performance of CaO. 

4. CONCLUSION

The present study has investigated the performance of a CaO-Fe2O3 based sorbent 

material on CO2 capture from simulated gasification producer gas through carbonation-

calcination looping. Effects of carbonation temperature and the cycles of carbonation-

calcination looping were examined.

It is found that the optimum carbonation temperature for the sorbent material is 620°C 

with average CO2 capture efficiency of 90.4% over three looping cycles. This high CO2 

capture efficiency is attributed to a compromise between equilibrium gas composition and 

kinetics factors, and the contribution of CaO/Fe active sites.  The sorbent material tends 

to deactivate at higher temperatures in the carbonation. Increasing carbonation 

temperature tends to promote  conversion of CO2 to CO due to the reverse water-gas 
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shift reaction. High temperature for the carbonation also tends to reduce pore surface 

area and pore volume of the sorbent material. However, the reaction kinetics decreases 

at low temperatures. It is also found that the sorbent material can effectively capture CO2 

in the initial 20 minutes of the carbonation stage thus prolonged carbonation is 

unnecessary. 

The sorbent material CO2 capture capacity is reduced with the cycling of the 

carbonation and calcination looping. At the carbonation temperature of 650°C, the CO2 

capture efficiency over initial 20 minutes in the carbonation dropped from 83.7% in the 

first cycle to 71.3% in the second cycle, however, the efficiency maintained at around 

70% through the subsequent six cycles. 

Addition of Fe2O3 in the CaO based sorbent can enhance activation of the material pore 

surface, which facilities the CO2 capture, and improve the strength of the sorbent material. 

This novel sorbent has excellent regenerability in cyclic CO2 capture during calcination-

calcination looping.  Synthetic sorbent material is considered a promising aspect of cyclic 

stability over multiple �
�-��
����W�
����
���� cycles, while keeping the surface area 

available and active during carbonation.
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