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Université Libre de Bruxelles, 1050 Brussels, Belgium

c Instituto de F́ısica Corpuscular, IFIC, CSIC and Universidad de Valencia, Spain

d Dipartimento d Fisica “Galileo Galilei”, Universitá di Padova, via Marzolo 8, I-35131 Padova, Italia

Abstract

The two dark sectors of the universe - dark matter and dark energy - may
interact with each other. Background and linear density perturbation evolution
equations are developed for a generic coupling. We then establish the general
conditions necessary to obtain models free from early time non-adiabatic insta-
bilities. As an application, we consider a viable universe in which the interaction
strength is proportional to the dark energy density. The scenario does not ex-
hibit “phantom crossing” and is free from instabilities, including early ones. A
sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS
and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger
than in non-interacting models. Our analysis sheds light as well on unstable
scenarios previously proposed.
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1 Introduction

Current cosmological measurements point to a flat universe whose mass-energy com-
position includes 5% ordinary matter and 22% non-baryonic dark matter, while it
is dominated by the so-called “dark energy” component, identified as the engine for
accelerated expansion [1–5].

The most economical description of current cosmological measurements explains
the nature of dark energy as a Cosmological Constant (CC) in Einstein’s equations,
representing an invariable vacuum energy density. The equation of state w of the dark
energy component in the CC case is constant and w = Pde/ρde = −1, where Pde and ρde

denote dark energy pressure and density, respectively. However, when computing the
vacuum energy density from the quantum field theory approach, the naively expected
value exceeds the measured one by 123 orders of magnitude and it needs to be cancelled
by extreme fine-tuning. This unhappy situation has been dubbed the CC Problem.
Disregarding anthropic justifications, and in the absence of a fundamental symmetry
which sets the vacuum energy to vanishingly small values, it is appropriate to look
for alternative physical mechanisms. A related problem is the so called why now? or
coincidence problem, i.e. why the dark matter and dark energy contributions to the
energy budget of the universe are similar at this precise moment of the cosmic history.

An a priori appealing avenue is to look for a dynamical explanation of the accel-
erated expansion. Under the inspiration of the idea of inflation, it has become quite
popular to consider cosmic scalar fields, dubbed quintessence, which would drive the
expansion of the universe [6–11]. However, quintessence models are not better than
the CC scenario as regards fine-tuning: no symmetry explains the tiny value of the
potential at its minimum, which is imposed by hand. In spite of this, it seems worth to
study the role that scalar fields may play in the evolution of the universe and explore
the possibility of a dynamic understanding of the problem.

Cosmic scalar fields, if present, may couple to all other fields in nature. While the
strength of interactions between ordinary matter and the dark energy fields are severely
constrained by observation [12], significant interactions within the dark sectors itself,
i.e. between dark matter and dark energy, are still allowed and could affect significantly
the universe evolution. Interacting dark matter-dark energy models have been proposed
since the 90’s (see [13] for a complete set of references). They were first explored in
the context of coupled quintessence [9, 14, 15]. Some quintessence models gain extra
motivation for being particular cases of theories of modified gravity (i.e. Brans-Dicke
theories). Others have been proposed as a natural explanation to the coincidence
problem [16]. Finally, it was pointed out [17] that when dark matter and dark energy
interact, the system may mimic an effective w < −1 naturally: current data still allows
for such a possibility.

In this paper we explore the simple idea that the densities of dark matter and dark
energy do not evolve independently but coupled, although we will not refer to any
particular cosmic field. The interaction strength between the two dark sectors will be
generically dubbed as “dark coupling”. To fix the ideas, the possible interactions can
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be parametrized [18] by

∇µT
µ

(dm)ν = Q u(dm)
ν /a , (1)

∇µT
µ

(de)ν = −Q u(dm)
ν /a , (2)

with T µ

(dm)ν and T µ

(de)ν the energy momentum tensors for the dark matter and dark

energy components, respectively. The dark matter four velocity u
(dm)
ν is defined in the

synchronous gauge, in terms of the fluid proper velocity vi
(dm), as u

(dm)
ν = a(−1, vi

dm),
where µ = 0..3 and i = 1..3. The coefficient Q encodes the dark coupling, that is, it
stands generically for the interaction rate between the two dark sectors 6 7.

In uncoupled models, any w 6= −1 value is tantamount to dynamical dark energy
and in consequence dark energy density perturbations develop, contrary to the case
of pure vacuum energy (w = −1). The dark interaction, when present, will impinge
on the density perturbations. Recently, using the results of Ref. [20, 21], a consistent
treatment of perturbations in models of dark coupling has been proposed. It was
pointed out in Ref. [18] that early time instabilities may arise for constant equation
of state, w 6= −1, driven by the coupling terms appearing in the non-adiabatic dark
energy pressure perturbations. It was also claimed that such instabilities are present
no matter how weak is the coupling.

In this paper:

• We formalize the evolution equations for a general coupling Q, up to first order
in linear perturbation theory.

• We definitely clarify the origin of the non-adiabatic instabilities, identify the
instability regions as a function of the model parameters and propose the general
conditions necessary to avoid them.

• The above results will be then illustrated within a successful class of models, in
which Q is proportional to the dark energy density. Present data will be shown to
allow for a sizeable interaction strength and to imply weaker cosmological limits
on neutrino masses or cosmic curvature with respect to non-interacting scenarios.

• Finally, a comparative discussion of the existing literature will shed light on
previously proposed models.

6It is to be noticed that an alternative parametrization, in which the right-hand side of Eqs. (1)
and (2) would be substituted simply by Q and −Q, would lead for the choices of Q considered in this
work to the same results than those found below, as the difference only shows up in the equations for
the θdm evolution, which are not operative in the synchronous gauge, comoving with dark matter.

7 Notice as well that more covariantly-written parametrizations are possible and even desirable,

such as for instance to assume instead a dark coupling term ∝ T µ

(i)µu
(j)
ν , or ∝ T µ

(i)νu
(j)
ν , with i, j

denoting some species, and alike phenomenological ansatzs. The qualitative findings to be developed
in this paper will also hold for such constructions, whose details will be explored elsewhere [19]. In
order to compare with previous work in the literature we will stick in this paper to the formulation
adopted in Eqs. (1) and (2) above.
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2 Background and linear perturbations

Consider a flat universe described by the Friedman-Robertson-Walker (FRW) metric.
We will work in the synchronous gauge [22,23] comoving with dark matter, i.e. a gauge
in which the dark matter peculiar velocity vanishes. Focusing on the dark energy and
dark matter evolution and assuming pressureless dark matter wdm = Pdm/ρdm = 0, it
follows from Eqs. (1) and (2) that the evolution of the background energy densities is
given by:

ρ̇dm + 3Hρdm = Q , (3)

ρ̇de + 3Hρde(1 + w) = −Q , (4)

where the dot indicates derivative with respect to conformal time dτ = dt/a and
H = ȧ/a. The effective background equations of state for the two fluids are thus given
by

weff
dm = − Q

3Hρdm
, (5)

weff
de = w + Q

3Hρde
, (6)

where w would be the dark-energy equation of state for a vanishing interaction. Equa-
tions (5) and (6) suggest immediately how the interaction between the two fluids can
contribute to the effective value of the dark energy equation of state. Furthermore, they
show that positive (negative) values of Q contribute as an effective negative (positive)
pressure in the dark matter background equation. This leads to less (more) dark mat-
ter in the past than in the uncoupled case and, as a consequence, the matter radiation
equality will happen later (earlier) on.

Also notice that a universe in accelerated expansion today requires w < −1/3 even
in the presence of a dark coupling. Indeed, the deceleration parameter satisfies:

q = −
Ḣ

H2
=

1

2
(1 + 3 w Ωde) (7)

either with or without dark coupling. In this equation we neglected the curvature
contribution.

The coupling between the two dark sectors will also affect the evolution of the
dark matter and dark energy density perturbations, δρdm and δρde, respectively. In
the synchronous comoving gauge, metric scalar perturbations are described by the two
usual fields [24] h(x, τ) and η(x, τ). Defining δ ≡ δρ/ρ for the fluid density perturba-
tions, θ ≡ ∂iv

i for the divergence of the fluid proper velocity vi and using Eq. (1) for
presureless dark matter, it results at first order in perturbation theory:

δ̇dm = −
1

2
ḣ + δ [Q/ρdm] . (8)

For dark energy, using Eq. (2) it follows that:

δ̇de = −(1 + w)(θde +
1

2
ḣ) − 3H

(

δPde

δρde

− w

)

δde − δ [Q/ρde] , (9)

θ̇de = −H(1 − 3w)θde +
k2

1 + w

δPde

δρde

δde +
Q

ρde

θde . (10)
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The initial conditions for the dark matter and dark energy density perturbations will
be taken in what follows as in Ref [24]; in particular we assume δde = 0 initially. For
numerical computations and illustrative plots, we have used the publicly available CAMB
code [25], which includes the full evolution for all species (photons, neutrinos, baryons,
dark matter and dark energy), modifying it to take into account the dark coupling.

2.1 The doom factor

Equations (8), (9) and (10) are written in the dark matter rest frame. However, a
priori, the dark energy sound speed, c2

s de = δPde

δρde
, is only well known in the rest frame

of dark energy [26]. It can be shown [26] that:

δPde = ĉ2
s deδρde − (ĉ2

s de − c2
a de)ρ̇de

θde

k2
, (11)

where ĉ2
s de is the propagation speed of pressure fluctuations in the rest frame of dark

energy and c2
a de = Ṗde/ρ̇de is the so called “adiabatic sound speed”, which for constant

w satisfies c2
a de = w. In the presence of a dark coupling, from Eqs. (4) and (11) it

follows that

δPde

δρde

= ĉ2
s de + 3(ĉ2

s de − c2
a de)(1 + weff

de )
Hθde

k2δde

= ĉ2
s de + 3(ĉ2

s de − c2
a de)(1 + w) (1 + d)

Hθde

k2δde

, (12)

where we define

d ≡
Q

3Hρde(1 + w)
, (13)

where d stands for doom: we dub it so as it is precisely this extra factor, proportional
to the dark coupling Q, which may induce non-adiabatic instabilities in the evolution
of dark energy perturbations. Its sign will be determinant, as we are going to show.

Rewriting Eqs. (8), (9) and (10) in terms of ĉ2
s de and d, we have:

δ̇dm = −
1

2
ḣ + 3H(1 + w) δ

[

ρde

ρdm

d

]

, (14)

δ̇de = −(1 + w)(θde +
1

2
ḣ) − 3H(1 + w) δ [d]

−3H
(

ĉ2
s de − w

)

[

δde + 3H(1 + w) (1 + d)
θde

k2

]

, (15)

θ̇de = −H
(

1 − 3ĉ2
s de − 3d(ĉ2

s de + 1)
)

θde +
k2

1 + w
ĉ2
s deδde , (16)

where δ[d ] includes δQ and δde contributions.
Below, in addition to w < −1/3, the speed of sound ĉ2

s de will be assumed positive,
with ĉ2

s de = 1 in numerical computations.
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2.2 Early time (in)stabilities

In general, the evolution of the dark energy and the dark matter perturbations are
directly coupled. Indeed, it is known that, even in the uncoupled case, once w 6= −1
the dark matter and dark energy perturbation evolution depend on each other [27] (see
also Sec. 2.3).

When the dark fluid linear perturbation equations are combined into second order
differential equations, they take the generic form 8:

δ′′dm = Am

δdm

a2
+ Bm

δ′dm

a
+ F(ρi, δi, δ

′
i; i 6= dm) , (17)

δ′′de = Ae

δde

a2
+ Be

δ′de

a
+ G(ρi, δi, δ

′
i; i 6= de) , (18)

where ′ = ∂/∂a and the function F (G) stores the dependence in all variables but δdm

or δ′dm (δde or δ′de).
The evolution of a perturbation will depend on the relative weight of the three

terms in the corresponding equation and on their signs:

1. For positive A, the A and B terms taken by themselves would induce a rapid
growth of the perturbation, which may be damped or antidamped (reinforced)
depending on whether B is negative or positive, respectively 9. In particular,
for A and B both positive, the solution may enter in an exponentially growing,
unstable, regime.

2. For negative A, in contrast, the A and B terms taken alone describe a harmonic
oscillator, with oscillations damped (antidamped) if B is negative (positive). In
the A, B < 0 regime, the third term may plays in fact the leading role.

It is worth reviewing the uncoupled scenario in detail before proceeding further: in it,
dark matter perturbations behave as in case 1 above (with A > 0 and B < 0), while
dark energy ones provide an example of behavior as in case 2.

2.3 Uncoupled case

Consider first the growth of dark matter and dark energy density perturbations, in the
absence of dark coupling (Q = 0), at large scales (H/k2 ≪ 1) and early times, when
Ωdeδde can be neglected as Ωde ≪ Ωi for i = all other species. In this regime,

δ′′dm =
3

2
Ωdm

δdm

a2
−

3

2

δ′dm

a
+ F , (19)

δ′′de = −
9

2
(c2

s de − w)
δde

a2
− (

5

2
− 3w)

δ′de

a
+ G , (20)

8We surrender here to the extend habit of expressing first order temporal differential equations in
terms of conformal time, ˙ = ∂/∂τ , while in second order ones ′ = ∂/∂ a is used.

9Obviously, for |B| >> |A| a negative B would prevent the onset of growth for any sign of A.
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Figure 1: Left panel: The blue (red) curve depicts the evolution of the δdm perturbation
vs the scale factor for k = 0.001 h/Mpc and w = −1.1 (w = −0.9). Right panel: same
as in the left panel but for the δde evolution.

with the functions F and G are given by:

F =
3

2

∑

i6=dm

(

1 + 3
δPi

δρi

)

Ωi

δi

a2
,

G =
(1 + w)

2

[

3
∑

i6=de

(

1 + 3
δPi

δρi

)

Ωi

δi

a2
− 2

(

3ĉ2
s de − 1

) δ′dm

a

]

. (21)

Equation (19) for dark matter density perturbations has A > 0 and B < 0: the
latter term damps the growth of dark matter perturbations propitiated by the A term,
with the overall well known polynomial rising, see Fig. 1 (left panel) .

Equation (20) for dark energy perturbations has instead both A and B coefficients
negative, with the first two terms describing then a damped harmonic oscillator and
in this case the contribution of radiation, dark matter and matter encoded in G drives
the evolution, see Fig. 1 (right panel). Equations (20) and (21) also illustrate that, for
constant w 6= −1, dark energy perturbations do develop even in absence of coupling,
seeded by the G term, in contrast to the w = −1 (pure vacuum energy) case, in which
no perturbation can develop in the dark energy background.
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2.4 Strongly coupled case

Consider now the opposite case in which the dark-coupling terms dominate over the
usual one. For ĉ2

s de > 0 considered all through, the strong coupling regime can be
characterized by

|d| =

∣

∣

∣

∣

Q

3Hρde(1 + w)

∣

∣

∣

∣

> 1 , (22)

which guarantees that the interaction among the two dark sectors drives the non-
adiabatic contribution to the dark energy pressure wave, see Eq. (12), and becomes the
leading term in Eq. (15) for δ̇de and Eq. (16) for θ̇de. At large scales, those equations
reduce to:

δ̇de ≃ −3H
(

ĉ2
s de − w

)

(

δde + 3H(1 + w)d
θde

k2

)

− (1 + w)

(

3H δ [d] +
ḣ

2

)

,(23)

θ̇de ≃ 3Hd (ĉ2
s de + 1) θde +

k2ĉ2
s de

1 + w
δde . (24)

The complete second order differential equation describing the growth of dark energy
perturbations can be found in Appendix A; for values of w near −1 and in the strong
coupling regime, the δde and δ′de contribution to the second order differential equation
reads

δ′′de ≃ 3d (ĉ2
s de + 1)

(

δ′de

a
+ 3

δde

a2

(ĉ2
s de − w)

ĉ2
s de + 1

+
3(1 + w)

a2
δ[d ]

)

+ ... (25)

The sign of the coefficient Be of δ′de in this expression is crucial for the analysis of
instabilities, as previously argued, see Eq. (18). Notice that the size and sign of the
Be coefficient also determines the growth rate of θe in Eq. (24). Assuming ĉ2

sde > 0, it
reduces to the sign of the doom factor d defined in Eq. (13).

Indeed, as previously argued, a positive d acts as an antidamping source in the
growth Eq. (25). Whenever d > 1, it will trigger an exponential runaway growth of the
dark energy perturbations when simultaneously the overall sign of the Ae coefficient
of δde, resulting from the last two terms in Eq. (25), is also positive. Large scale
instabilities arise then and the universe appears to be nonviable.

3 A simple viable model: Q ∝ ρde

Let us consider now a specific simple coupled model, with the interaction rate Q =
ξHρde. Equations (1) and (2) become consequently:

∇µT
µ

(dm)ν = ξHρdeu
(dm)
ν /a , (26)

∇µT µ

(de)ν = −ξHρdeu
(dm)
ν /a , (27)
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where ξ is a dimensionless coupling which will be taken as constant. It parametrizes
in this model the dark coupling strength. Somewhat similar coupled models have been
explored in the literature [15,18,28–31] In particular the authors of Ref. [18], assuming
Q ∝ ρdm or Q ∝ ρdm + ρde, concluded that their models, with constant w, do not
provide viable scenarios due to the presence of early time instabilities.

We will show here, though, that the model described by Eqs. (26) and (27) can
satisfy all current observational constraints, without suffering from the instabilities
pointed out in [18], even for constant w. In this section we will analyze this model in
detail, postponing, and extending, the discussion of the scenarios presented in Ref. [18]
to Sec. 4.

3.1 Background

The dark matter and dark energy background densities evolve in this model as two
fluids, coupled with a strength linearly dependent on the dark energy density present
at any given time of the cosmic evolution,

ρ̇dm + 3Hρdm = ξHρde (28)

ρ̇de + 3Hρde(1 + wde) = −ξHρde , (29)

which then correspond to two fluids with effective equations of state given by

weff
dm = − ξ

3
ρde

ρdm
, (30)

weff
de = w + ξ

3
. (31)

Note that for constant w, weff
de is also constant while weff

dm is redshift dependent. The
solutions to equations (3) and (4) are then:

ρdm = ρ
(0)
dma−3 + ρ

(0)
de

ξ

3weff
de

(1 − a−3w
eff
de )a−3 , (32)

ρde = ρ
(0)
de a−3(1+w

eff
de

) . (33)

The dark energy density is thus always positive, all along the cosmic evolution and
since its initial moment. To ensure that the same happens with the dark matter density,
all values of w < 0 are acceptable for ξ < 0, while for positive ξ it is required that
ξ∼< − w.

The resulting evolution of the relative energy densities is shown in Fig. 2, where
the present matter and dark energy densities have been imposed to be 0.27 and 0.73
(a procedure to be repeated all through the paper). We see that negative (positive)
couplings lead to more (less) dark matter in the past than in the uncoupled case, as
expected. As a consequence, the matter radiation equality happens earlier (later) on.
Fig. (2) illustrates as well that positive (negative) values of Q soften (worsen) the
coincidence problem, although the difference turns out to be quantitatively minor for
the phenomenologically allowed values of ξ. It will be shown in Sect. 3.5 that models
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Wde

Wdm+b

Wrad

10-5 10-4 0.001 0.01 0.1 1
0.0

0.2

0.4

0.6

0.8

1.0

a

Wi

Figure 2: Scenario with Q ∝ ρde. Relative energy densities of dark matter plus baryons
Ωdm+b (blue), radiation Ωrad (black) and dark energy Ωde (red), as a function of the
scale factor a, for w=-0.9. Three values of the coupling are illustrated: ξ = 0 (solid
curve), 0.25 (long dashed curve) and −0.25 (short dashed curve).

with ξ < 0 and 1 + w > 0 will give the best agreement with large scale structures
observations.

Finally, Eqs. (31) and (33) show that the so-called phantom regime, in which the
dark energy density would diverge in the future, can only happen in this model for
1 + weff

de < 0, that is, for w < −1 − ξ/3, instead of w < −1 in the uncoupled case.

3.2 Dark coupling vs. dynamical dark energy

From the previous analysis one can wonder what would be the dark energy equation of
state reconstructed from observational data, if analyzed assuming no coupling. Indeed
a dynamical, redshift-dependent, equation of state w̃(z) (where z denotes redshift), can
be mimicked by the combination of constant w plus the dark coupling ξ .

A wealth of data are sensitive to the Hubble parameter H(z) or functions of its inte-
gral. When such data are analyzed assuming no dark coupling, the following expression

9



for the Friedmann equation is to be considered 10:

RH(z) =
H2(z)

H2
0

= Ω
(0)
dm(1 + z)3 + Ω

(0)
de exp

[

3

∫ z

0

dz′
1 + w̃(z′)

1 + z′

]

, (34)

where Ω
(0)
i = ρ

(0)
i /ρ

(0)
c , being ρ

(0)
c the critical energy density today. Relation (34) can

be inverted to obtain w̃(z) as a function of RH(z):

w̃(z) =
1

3

(1 + z)dRH/dz − 3RH

RH − Ω
(0)
dm(1 + z)3

. (35)

An analogous relation between the redshift dependent equation of state and the lumi-
nosity distance and its derivative was also obtained previously [32].

In contrast, in the presence of the dark coupling, from Eqs. (32) and (33) it results
for the simple model analyzed in this section

RH(z) = (1 + z)3

[

Ω
(0)
dm + Ω

(0)
de

ξ

3weff
de

(

1 − (1 + z)3w
eff
de

)

+ Ω
(0)
de (1 + z)3w

eff
de

]

.(36)

Comparing Eqs. (34) and (36), it follows the relation between the hypothetically re-
constructed expression of a dynamical equation of state w̃(z) and the constant w, ξ
parameters of the darkly coupled universe:

w̃(z) =
w

1 − ξ

3w
eff
de

(1 − (1 + z)−3w
eff

de )
, (37)

an expression which at small redshifts tends to:

w̃(z) ∼ w(1 + ξ z) , (38)

while w̃(z) → 0 at very large redshifts.
A striking implication of Eq. (37) is that the reconstructed equation of state would

show a peculiar divergent behavior for those models in which the denominator vanishes.
In fact, for modified gravity models and coupled scalar-tensor models a similar behavior
was previously pointed out [33, 34]: their reconstructed w̃(z) could appear singular at
some point in the past and cross the “phantom boundary” w = −1.

In the phenomenologically viable model discussed here no such divergent behavior
can arise in the w̃(z) reconstruction, for negative values of the dark coupling ξ for
any w < 0. Whereas, for positive dark coupling values, a “phantom-like” behavior
appears, with the divergence occurring at redshift z ∼ O(1 − 10), depending on the
specific values of the parameters.

All these different behaviors are illustrated in Fig. 3, for w = −0.9 and ξ =
±0.8,±0.2. The model with w = −0.9 and ξ = 0.8 is not viable, due to negative
dark matter energy density, and it is shown only for illustration purposes. Notice that

10We obviate here as well, for the sake of the argument, the contribution to Ω
(0)
TOT of any species

other than dark matter and dark energy: baryons, neutrinos and curvature.
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0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

z

w�

Ξ=+0.8

Ξ=+0.2

Ξ=-0.2

Ξ=-0.8

Figure 3: Scenario with Q ∝ ρde. Reconstructed w̃(z) as function of z, for w = −0.9.
The black (solid) and magenta (short dashed) curves depict the w̃(z) behaviour for
ξ = 0.2 and ξ = 0.8. The blue (long-short dashed) and the red (long dashed) curves
denote the w̃(z) behaviour for ξ = −0.2 and ξ = −0.8. Notice that for positive values
of ξ we recover the divergent phantom-crossing behavior appearing in scalar-tensor
theories.

an apparently diverging behavior of the equation of state could thus be a clean indi-
cator of the sign of a putative dark coupling. Furthermore, the degeneracy between
a dynamical equation of state and a constant w plus dark coupling, discussed in this
subsection, can be disentangled with other z−sensitive data, such as precision BAO
or SuperNovae measurements and the growth of perturbations seeding large structure
formation, as it will be seen in Sec. 3.5.

3.3 Linear perturbation theory

The propagation of dark energy pressure waves is driven by Eq. (12) as explained
above, with the doom factor Eq. (13) given in this case by:

d =
ξ

3(1 + w)
. (39)

The evolution of the perturbations, in the synchronous comoving gauge, is described
by Eqs. (14), (15) and (16) with, in the present scenario,

δ [d] = 0 , (40)

δ

[

ρde

ρdm

d

]

= d
ρde

ρdm

(δde − δdm) . (41)
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The dark matter density perturbation changes in size with respect to the uncoupled
case. It is easy to confirm numerically that the major effect of the coupling on the dark
matter distribution results from the background, though, for dark coupling values small
enough so as to allow viable models. For negative couplings, there is more dark matter
in the past. As a consequence, dark matter perturbations cluster more and the density
perturbation is larger.

3.4 Early time (in)stability

The strong coupling regime is defined by |d| > 1, as explained in Sec. 2.4. In this
regime and for large scales, H/k ≫ 1, the dark energy perturbations are described by
Eqs. (23) and (24), where in this case Eqs. (39), (40) and (41) above apply. It leads,
for constant w 6= −1, to a δde and δ′de contribution to the early time growth at large
scales, described by

δ′′de ≃ 3(1 + ĉ2
s de)d

(

δ′de

a
+ 3

δde

a2

(ĉ2
s de − w)

ĉ2
s de + 1

)

+ ... (42)

which shows that the sign of d defines the (un)stable regimes 11:

1. For d < 0, that is, for ξ < 0 and 1 + w > 0 (or ξ > 0 and 1 + w < 0), no
instabilities are expected;

2. When ξ and 1 + w have the same sign, instabilities can develop at early times
whenever d > 1 .

Sweeping over all possible values of ξ and w, we have indeed confirmed numerically
these predictions. We summarize our instability criteria for the present model in Tab. 1.
An example of the onset of unstable behaviour is shown in Fig. 4, right panel, in which
the particular choice of w and ξ makes the model unstable at early times, see Tab. 1.
The left panel of Fig. 4 depicts instead the dark energy perturbation, δde, versus the
scale factor a in a model free of instabilities and pathological behaviors in the linear
perturbation evolution, notwithstanding the strong coupling regime.

In the next subsection, we will confront in detail the model with data, sweeping
over values of the dark coupling strength ξ < 0, although models with ξ > 0 are also
viable as long as ξ > −w, as previously shown.

3.5 Cosmological constraints

We explore here the current constraints on the dark energy-dark matter coupling ξ,
considered constant, allowing for a non zero spatial curvature. The framework used is
a cosmological model described by ten free parameters,

θ = {ωb, ωdm, θCMB, τ, Ωk, fν , w, ξ, ns, As} , (43)

11Recall that ĉ2
s de ≥ 0 is assumed all through.
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Model: Q ∝ ρde 1 + w ξ ρdm ρde d Early time
instability?

+ + ∓ + + Yes
+ – + + – No
– – + + + Yes
– + ∓ + – No

Table 1: Scenario with Q ∝ ρde. Stability criteria driven by the sign of d in Eq. (39),
for |d| > 1. The ∓ signs indicates that ρdm is negative in the past for large positive
couplings only.

Parameter Prior

ωb 0.005-0.1
ωdm 0.01-0.99

θCMB 0.5-10
τ 0.01-0.8
Ωk -0.1-0.1
fν 0-0.3
w -1-0
ξ -2-0
ns 0.5-1.5

ln(1010As) 2.7-4.0

Table 2: Priors for the cosmological fit parameters considered in this work. All priors
are uniform in the given intervals.

where ωb = Ωbh
2 and ωdm = Ωdmh2 are the physical baryon and dark matter densities

respectively, θCMB
12 is proportional to the ratio of the sound horizon to the angular

diameter distance, τ is the reionisation optical depth, Ωk is the spatial curvature,
fν = Ων/Ωdm refers to the neutrino fraction, ns is the scalar spectral index and As the
scalar amplitude. The priors adopted on those parameters are given in Tab. 2.

We use the publicly available package cosmomc [35], modifying it in order to in-
clude the coupling among the dark matter and dark energy components, for the model
considered in this section.

A conservative compendium of cosmological datasets is considered. First, what we
call run 0 includes the WMAP 5-year data [1, 2], a prior on the Hubble parameter
of 72 ± 8 km/s/Mpc from the Hubble key project (HST) [36], the constraints coming
from the latest compilation of supernovae [3] and the H(z) data13 at 0 < z < 1.8 from
galaxy ages obtained by [37]. We present a second data analysis, that we call run I, in

12The θCMB parameter can be replaced by the H0 parameter. However, using θCMB is better due
to its smaller correlation with the remaining parameters.

13We thank R. Jiménez and L. Verde for suggesting the H(z) data addition to the analysis.
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Figure 4: Scenario with Q ∝ ρde in the strong coupling regime. Left (right) panel:
Evolution of the δde perturbation vs the scale factor for scales k = 0.001 h/Mpc, for
ξ = −0.8 and w = −0.9 (w = −1.1). Notice the early time instability present when the
doom factor d in Eq. (39) is sizeable and positive, as predicted from the study of the
instabilities.

which we add to run 0 the data on the matter power spectrum (large scale structure
data or LSS data) from the spectroscopic survey of Luminous Red Galaxies (LRGs)
from the Sloan Digital Sky Survey (SDSS) survey [4].

In summary,

• run0=WMAP(5yr)+HST+SN +H(z),

• runI=run0+LSS.

Figure 5 (left panel) illustrates the 1 and 2σ marginalized contours in the ξ–Ωdmh2

plane. The results from the two runs described above are shown. We restrict ourselves
here to negative couplings and w > −1, which guarantees that instability problems in
the dark energy perturbation equations are avoided for all values of ξ. Notice that a
huge degeneracy is present, being ξ and Ωdmh2 positively correlated. The shape of the
contours can be easily understood. In a universe with a negative dark coupling ξ, the
matter content in the past is higher than in the standard ΛCDM scenario due to an
extra contribution proportional to the dark energy component, see Eq. (32). Therefore,
the amount of intrinsic dark matter needed - that is, not including the contribution of
dark energy through the coupling term - should decrease as the dark coupling becomes
more and more negative and can be as small as 0.02, as indicated by run 0 results. The
addition of LSS data to the analysis reduces considerably the allowed parameter space.
This is due to the enormous growth of clustering for values of the coupling ξ < −0.5.
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Figure 5: Scenario with Q ∝ ρde. Left (right) panel: 1σ and 2σ marginalized contours
in the ξ–Ωdmh2 (ξ–Ωk) plane. The largest, green contours show the current constraints
from WMAP (5 year data), HST, SN and H(z) data. The smallest, red contours show
the current constraints from WMAP (5 year data), HST, SN, H(z) and LSS data.

For this range, the amplitude of the fluctuations increases, reaching values of σ8 > 2
and therefore providing a bad fit to LSS data14.

The right panel of Fig. 5 shows a positive correlation between the coupling ξ and
the spatial curvature Ωk. High precision CMB data indicates that currently the spatial
curvature is a subdominant contribution to the energy budget of the universe15, which
implies Ω

(0)
de +Ω

(0)
dm +Ω

(0)
b ≃ 1. A non zero spatial curvature component implies instead

Ω
(0)
de + Ω

(0)
dm + Ω

(0)
b + Ω

(0)
k = 1. A negative coupling ξ will increase the dark matter

contribution and therefore a small negative curvature (closed universe) is needed to
compensate the effect and describe well CMB data. The degeneracy between ξ and Ωk

gets alleviated if one adds LSS data to the analysis.
Figure 6 (left panel) depicts the constraints on the ξ–w plane. We restrict ourselves

here to w > −1 and ξ < 0, a parameter region which ensures a negative doom factor,
see Eq. (39), and thus spans an instability–free region of scenarios to explore (see
Sec. 3.4). Current data is unable to set strong constraints on the equation of state
parameter w.

The right panel of Fig. 6 shows next the correlation among the fraction of matter
energy-density in the form of massive neutrinos fν and the dark coupling ξ. The relation
between the neutrino fraction used here fν and the neutrino mass for Nν degenerate
neutrinos reads

fν =
Ωνh

2

Ωdmh2
=

∑

mν

93.2eV
·

1

Ωdmh2
=

Nνmν

93.2eV
·

1

Ωdmh2
. (44)

14The authors of Ref. [2] have reported a best fit value σ8 = 0.812 ± 0.026.
15The authors of Ref. [38] have found Ω

(0)
k = −0.002+0.041

−0.032 (95% CL limits) assuming a dynamical
dark energy component.
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Figure 6: Scenario with Q ∝ ρde. Left (right) panel: 1σ and 2σ marginalized contours
in the ξ–w (ξ–fν) plane. The largest, green contours show the current constraints from
WMAP (5 year data), HST, SN and H(z) data. The smallest, red contours show the
current constraints from WMAP (5 year data), HST, SN, H(z) and LSS data.

Neutrinos can indeed play a relevant role in large scale structure formation and leave
key signatures in several cosmological data sets, see Ref. [39] and references therein.
More specifically, the amount of primordial relativistic neutrinos changes the epoch of
the matter-radiation equality, leaving an imprint on both CMB anisotropies (through
the so-called Integrated Sachs-Wolfe effect) and on structure formation, while non-
relativistic neutrinos in the recent Universe suppress the growth of matter density
fluctuations and galaxy clustering. This can be observed in Fig. 7, where the dotted
curve depicts the matter power spectrum for three degenerate massive neutrinos (Nν =
3) with mν = 0.4 eV. Notice that the matter power spectrum is reduced with respect
to the mν = 0 case, especially after the matter–radiation equality era (imprinted in
the power spectrum as a turnover).

There is a strong and very well known degeneracy in the
∑

mν − w plane, as first
noticed in Ref. [40]. Cosmological neutrino mass bounds become weaker if the dark
energy equation of state is taken as a free parameter. If w is allowed to vary, Ωdm

can take very high values, as required when mν is increased in order to have the same
matter power spectrum. More recently, the authors of Ref. [41] have pointed out that a
higher neutrino mass is possible if dark matter and dark energy are coupled. Figure 7
shows the matter power spectrum in several scenarios. The long dashed line refers to
a universe with three massless neutrinos and a coupling in the dark sector ξ = −0.24.
Notice that the matter power spectrum is enhanced with respect to the ξ = 0 scenario,
due to the higher matter energy density in models with a non-negligible coupling.
However, the power enhancement effect induced by the presence of a coupling can be
compensated by adding massive neutrinos in the game. Those neutrinos will reduce the
power spectrum, see the short dashed curve in Fig. 7, which is indistinguishable from
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Figure 7: Scenario with Q ∝ ρde. The black solid line depicts the matter power spectrum
for the ΛCDM model with three massless neutrinos. The blue dotted line shows the
mater power spectrum for a ΛCDM universe with three massive degenerate neutrinos
with

∑

mν = 1.2 eV. The green long–dashed curve refers to a universe with three
massless neutrinos with a dark energy-dark matter coupling ξ = −0.24. The red short–
dashed line illustrates a universe with

∑

mν = 1.2 eV and a coupling ξ = −0.24.

the matter power spectrum in a ΛCDM universe. This mν − ξ degeneracy is shown
in Fig. 6 (right panel): a neutrino mass of

∑

mν ∼ 1.5 eV is allowed for couplings
ξ > −0.6 at the 2σ level.

4 Comparison with the literature: Q ∝ ρdm

Early time non-adiabatic instabilities were pointed out in Ref. [18], in which several
coupled models were considered. In particular they studied an interaction rate of
the form: Q = ξHρdm, with constant w and ξ, concluding that it was unstable for
constant w even for very small values of the coupling. We will readdress that model
here, to clarify if and when it is subject to non-adiabatic instabilities and explore some
supplementary aspects.
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Figure 8: Scenario with Q ∝ ρdm. Relative energy densities of dark matter + baryon
Ωdm+b (blue), radiation Ωrad (black) and dark energy Ωde (red), as a function of the
scale factor a, for w = −0.9. Three values of the coupling are illustrated: ξ = 0 (solid
curve), 0.25 (long dashed curve) and −0.25 (short dashed curve).

In this scenario, Eqs. (1) and (2) lead to the following background equations:

ρ̇dm + 3Hρdm = ξHρdm , (45)

ρ̇de + 3Hρde(1 + w) = −ξHρdm . (46)

These two fluids exhibit thus effective equations of state given by

weff
dm = − ξ

3
, (47)

weff
de = w + ξ

3
ρdm

ρde
. (48)

Notice that now the effective dark energy equation of state is redshift-dependent, and
consequently, for constant w and ξ,

ρdm = ρ
(0)
dma−3+ξ , (49)

ρde = ρ
(0)
de a−3(1+w) + ρ

(0)
dm

ξ

ξ + 3w

(

a−3(1+w) − a−3+ξ
)

. (50)

The authors of Ref. [18] chose to restrict their analysis to constant negative ξ and
1 + w > 0. For such parameter values, in their model the dark energy density ρde
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is negative for any w < 0 16. This is illustrated in Fig. (8), where the short dashed
curve corresponds to ξ = −0.25 values and Ωde is seen to be negative since the universe
birth until late times, while Ωdm+b is always positive. This is in stark contrast with
the behaviour in the scenario with Q ∝ ρde discussed in Sect. 3, for which all energy
densities remain positively defined all through the universe history. Figure (8) exem-
plifies numerically as well how positive (negative) values of Q ameliorate (worsen) the
coincidence problem, although again the effect is quantitatively unimportant for the
phenomenologically allowed values of ξ.

Moreover, the authors of Ref [18] found that the instabilities appear no matter how
weak the coupling is. Before turning to the analysis of the doom factor and instabilities
for this model, let us explore some further background-dependent properties.

4.1 Reconstructing w̃(z)

For this scenario, the reconstructed equation of state w̃(z), if obtained from data mainly
sensitive to the fluid background and analyzed assuming no dark coupling, will diverge
for positive couplings and redshifts around z ∼ O(1 − 10). It will show a phantom
crossing behavior typical of scalar-tensor dark energy models, see Fig. 9. Indeed using
Eq. (35), we get a somewhat more complicated expression than for the Q ∝ ρde scenario:

w̃(z) = w
ξ − (1 + z)3w+ξ [(ξ + 3w)r + ξ]

−3w + (1 + z)ξ(3w + ξ) − (1 + z)3w+ξ [(ξ + 3w)r + ξ]
(51)

with r = Ω
(0)
de /Ω

(0)
dm. At small redshifts it reduces to:

w̃(z) ∼ w

(

1 +
ξ

r
z

)

, (52)

while at large redshifts the reconstructed w̃(z) in Eq. (51) obeys

w̃(z) ≃
−ξ

3

1

1 − zξ
→ 0 for ξ > 0 , (53)

→ −
ξ

3
for ξ < 0 , (54)

assuming |ξ| < 1.

4.2 Linear perturbation theory

The propagation of dark energy pressure waves is again driven by Eq. (12), with the
doom factor Eq. (13) reading now:

d =
ξ

3(1 + w)

ρdm

ρde

. (55)

16And thus not only within the −2/3 > w > −1 region explored in Ref. [18]. Notice that in our
convention ξ = −α, with α defined in that work.

19



0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

z

w�

Ξ=+0.8

Ξ=+0.2

Ξ=-0.2

Ξ=-0.8

Figure 9: Scenario with Q ∝ ρdm. Reconstructed w̃(z) as function of z. We have
considered w = −0.9. The black (solid) and magenta (short dashed) curves depict the
w̃(z) behaviour for ξ = 0.2 and ξ = 0.8. The blue (long-short dashed) and the red (long-
dashed) curves denote the w̃(z) behaviour for ξ = −0.2 and ξ = −0.8. Notice that for
positive values of ξ we recover the divergent phantom-crossing behavior appearing in
scalar-tensor theories.

This expression should be compared to the analogous one when Q ∝ ρde, see Eq.(39):
they differ in the ρdm/ρde factor in the dark coupling term, which can be large at early
times when ρde may become negligible. At early times, the doom factor will always
thus be large even for tiny values of ξ, as the ratio ρdm/ρde is very large then. This
ratio is the major difference between the scenarios with Q ∝ ρdm (or Q ∝ ρdm + ρde

and alike) and those in which Q ∝ ρde. As the true expansion factor is d instead of ξ,
this fact also explains why in the present scenario the phenomenological analysis only
allows for ξ values much smaller in magnitude than those permitted for Q ∝ ρde.

The evolution of the perturbations, in the synchronous comoving gauge, is described
in this scenario by Eqs. (14), (15) and (16) with

δ [d] =
ξ

3(1 + w)

ρdm

ρde

(δdm − δde) , (56)

δ

[

ρde

ρdm

d

]

= 0 . (57)

4.3 Early time (in)stability

The strong coupling regime is defined by |d| > 1, as explained in Sect. 2.4. In this
regime and for large scales, H/k ≫ 1, the dark energy perturbations are described by
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Model: Q ∝ ρdm 1 + w ξ ρdm ρde d Early time
instability?

+ – + ∓ + Yes
+ + + + + Yes
– + + + – No
– – + ∓ – No

Table 3: Scenario with Q ∝ ρdm. Stability criteria driven by the sign of d in Eq. (55),
whenever |d| > 1. The ∓ signs indicates that ρde is negative in the past for negative
couplings independently of their value.

Eqs. (23) and (24), for which in this case Eqs. (55), (56) and (57) above apply. It leads,
for constant w 6= −1, to a δde and δ′de contribution to the early time growth at large
scales, described by

δ′′de ≃ 3(ĉ2
s de + 1)d

[

(

3
ĉ2
s de − w

ĉ2
s de + 1

− (1 + w)d

)

δde

a2
+

δ′de

a

]

+ ... (58)

where dots account for all other terms, which will be subdominant whenever the two
terms above induce by themselves an exponential growth.

Once again, for d > 0 the δ′de term signals an antidamping -growing- regime, which
may induce instabilities, whenever d > 1, when combined with either a positive or
a negligible negative δde coefficient. Interestingly, Eq. (58) shows that the latter is
determined in this case by a competition between the two factors within brackets. We
have verified numerically that, for values of |ξ| < 1 and w around -1, both terms are
of the same order and strongly cancel. For positive d, all cases of Sec. 4.3 with Ae > 0
or < 0 and Be > 0 develop then a strong instability at early time, see upper panels in
Fig. 10.

Turning back to the characteristics of the doom factor in this model, Eq. (55), it
is to be noted that the ratio ρdm/ρde not only enhances in the past the magnitude of
d and thus the onset of the strong coupling regime even for very small ξ values, but it
also influences its sign. Indeed, recall that ρde is negative in the past for negative ξ, as
can be seen from Eq. (50), with an obvious impact on the sign of d.

The identification of the d factor allows thus to predict the range of parameters
for which this model will be stable, even with constant w. We have summarized the
analysis of the early time (in)stability criteria for a model with Q ∝ ρdm in Tab. 3.
It is illustrative and amusing to further analyze these patterns with some examples.
Figure 10 shows two cases of early time instabilities in the upper panels, and two
examples of early time stability in the lower panels:

• The two upper graphics both assume 1+w > 0, while the dark coupling strength
ξ has opposite sign in the right and left panels. Nevertheless, both scenarios are
unstable from their birth, as the sign of ρde is also opposite as can be seen from
Eq. (50) and depicted as a discontinuous line in the figures, resulting in a doom
factor d - Eq. (55) - which is positive for both scenarios.
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Figure 10: Q ∝ ρdm. Upper panels: Evolution for the δde perturbation vs the scale
factor at scales k = 10−5 h/Mpc for w = −0.9 and ξ = ±0.1. Early time instability is
present in both cases, as predicted from our analytical study. The black dashed curve
shows the positive (negative) value of the dark energy density Ωde(a) (right scale). The
lower right (left) panel shows the δde perturbation vs the scale factor at scales k = 10−5

(k = 0.001) h/Mpc for w = −1.1. For both positive and negative couplings the model is
free of early-time instabilities. However, for negative couplings, there exists a late-time
instability (see right panel), caused by a change in the sign of the dark energy density
Ωde(a), shown by the black dashed curve (right scale).
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• The two lower panels analyze the analogous cases although with 1+w < 0 instead.
Again, at early times both models have opposite sign as well for the dark energy
density ρde, combining into a safe negative value for d.

• A late time instability is seen to appear, though, for the model in the lower right
panel. Indeed, this is well understood as for this model ρde is seen to change sign
during cosmic evolution, and in consequence precisely at that temporal point the
model finds its doomsday, as d becomes positive.

This latter example pinpoints that our (in)stability criteria on the growth of dark
energy perturbations also applies to late evolution, if handled with care.

Finally, as pointed out in Ref. [18], a possible way to avoid the early time instability
of their models is to relax the assumption of a constant equation of state of the dark
energy component and allow instead for a dynamical behavior, i.e, for a time-varying
w(a), even when the dark coupling is turned off. For instance, the CPL [42, 43] pa-
rameterization w(a) = w0 + wa(1 − a) can alleviate the instability problem because
of its smaller ratio ρdm/ρde in the past. From our perspective, this may allow those
models to avoid in the past the strong coupling regime as we defined it, trading it for a
softly coupled model, that is, one in which the evolution is dominated by the coupling-
independent terms and thus alike to the stable uncoupled regime discussed in Sec. 2.3.
A detailed perturbation analysis with different dark energy parameterizations and/or
time dependent couplings will be presented elsewhere [19].

Note as well that models with Q ∝ (α ρdm+β ρde), with α and β arbitrary constants
and α 6= 0 [30] will also be subject to reinforced behaviour at early times, as in these
scenarios the dark energy perturbations will generically present as well a dependence
of the coupling terms on 1/ρde. The corresponding stability analysis and criteria will
parallel that of the scenario analyzed in this section.

5 Conclusions

We have considered the possibility that dark energy -the engine for accelerated expan-
sion of the universe- is not pure vacuum energy but has some dynamical nature. In
these conditions, dark matter and dark energy may evolve independently or be coupled.
We have allowed for such a coupling, the dark coupling, and explored the conditions
for a viable universe and its phenomenological signals. The generic evolution of both
the cosmic background and the coupled dark matter-dark energy density perturbations
within the linear regime has been developed.

In particular and without referring to any particular model, we have identified the
origin of non-adiabatic large scale instabilities at early times, which affect many cou-
pled models with constant w, where w would be the dark energy equation of state in
the absence of dark-coupling. The instability is related to the presence of the cou-
pling terms in the propagation of dark energy pressure waves within the dark matter
background [18]. We have shown that the size and sign of the dark-coupling terms is
essential, identifying the combination of parameters which characterize the (un)stable
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regimes: the doom factor d given by the ratio

d =
Q

3Hρde (1 + w)
, (59)

where Q encodes the interaction rate between the two dark sectors. We showed that
when d is positive and sizeable, d > 1, the dark-coupling dependent terms may dom-
inate the evolution of dark energy perturbations, which will then enter a runaway,
unstable, growth regime. We have thus established a general condition necessary to
obtain models free from non-adiabatic instabilities at large scales. Although for the
sake of precision the analysis has concentrated on early time instabilities, it also sheds
light on late time non-adiabatic ones.

The insight provided by the analysis allows to predict, for any given model, which
range of parameters may result in an a priori stable universe. As an illustration, we
have analyzed in detail the simple scenario in which Q is proportional to the evolving
dark energy density, Q = ξHρde. In addition to the analytical study, we have used
the publicly available codes CAMB and cosmomc, modifying them to account for the
interaction between the two dark sectors, and considering WMAP-5 year data, HST
data, supernova data, H(z) data and large scale data structure from the SDSS survey.

Models of the class discussed in the previous paragraph, with negative dark-coupling
ξ < 0 and positive (1 + w), besides being stable as d < 0, give the best agreement
with data on large scale structure formation 17. For them, both w and ξ are not
very constrained from data, and large values for both parameters, near -0.5, are easily
allowed. Furthermore, ξ turns out to be positively correlated with both Ωdmh2 and the
curvature Ωk. The results show as well the neutrino mass - dark coupling degeneracy:
i.e. a neutrino mass of

∑

mν ∼ 1.5 eV is allowed for couplings ξ > −0.6, at the
2σ level. In resume, the scenario satisfies all current constraints from WMAP, HST,
SN, LSS and H(z) data and is free from instabilities, including early ones. Future
direct measurements of H(z), as those provided by BAO surveys, might be crucially
important to improve the current bounds on the dark coupling ξ. A detailed analysis
will be presented elsewhere [44].

Within the same class of models, positive values of ξ < −w are not excluded (with
1+w < 0 to ensure d < 0), and enjoy the smoking-gun signal of inducing an apparently
divergent reconstructed equation of state, at redshifts z −O(1 − 10), when extracted
from background-dominated data and analyzed assuming no-coupling. It is remarkable
that, in contrast, no such divergent “crossing of the phantom divide” occurs for any
ξ < 0.

Our results have also clarified the origin of early time non-adiabatic instabilities
found in previous models in the literature in which Q ∝ ρdm and Q ∝ ρdm + ρde, and
we have analyzed the former class in detail, up to the level of linear perturbations. By
the same token, our analysis indicates how to stabilize those models even for constant
w, by selecting for them the range and size of model parameters which avoids a positive,
and thus catastrophic, doom factor.

17Although models with ξ < 0 worsen the coincidence problem, while for ξ > 0 it gets alleviated,
these effects are quantitatively minor in viable models.
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A Growth of perturbations in strongly coupled sce-

narios

The strong coupling regime can be characterized by
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∣

∣

∣

Q

Hρde

∣

∣

∣

∣

≫ |3(1 + w)| , (60)
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∣1 − 3ĉ2
s de
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∣ , (61)

which ensure that the dark-coupling terms dominate the evolution of both δde and θde.
With c2

s de > 0, Eq. (60) alone is enough to define the regime.
The resulting growth equation for dark energy perturbations at large scales is well

approximated by

δ′′de ≃
δ′de
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ĉ2
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