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Abstract

Four-quark states may exist as colorless meson-meson molecules or compact systems with two-

body colored components. We derive an analytical procedure to expand an arbitrary four–quark

wave function in terms of nonorthogonal color singlet–singlet vectors. Using this expansion we de-

velop the necessary formalism to evaluate the probability of physical components with an arbitrary

four-quark wave function. Its application to characterize bound and unbound four–quark states as

meson-meson, molecular or compact systems is discussed
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I. INTRODUCTION

The physics of heavy quarks has become one of the best laboratories exposing the lim-

itations and challenges of the naive quark model and also giving hints into a more mature

description of hadron spectroscopy. More than thirty years after the so-called November

revolution [1], heavy meson spectroscopy is being again a challenge. Its formerly comfort-

able world is being severely tested by new experiments reporting states that do not fit into a

simple quark-antiquark configuration [2]. It seems nowadays unavoidable to resort to higher

order Fock space components to tame the bewildering landscape arising with these new

findings. Four–quark components, either pure or mixed with qq̄ states, constitute a natural

explanation for the proliferation of new meson states [3]. They would also account for the

possible existence of exotic mesons as could be stable ccn̄n̄ states, the topic for discussion

since the early 80’s [4].

Four-quark systems present a richer color structure than standard baryons or mesons.

While the color wave function for standard mesons and baryons leads to a single vector,

working with four–quark states there are different vectors driving to a singlet color state

out of colorless or colored quark-antiquark two-body components. Thus, dealing with four–

quark states an important question is whether we are in front of a colorless meson-meson

molecule or a compact state, i.e., a system with two-body colored components. While the

first structure would be natural in the naive quark model, the second one would open a new

area on the hadron spectroscopy.

In this manuscript we derive the necessary formalism to evaluate the probability of phys-

ical channels (singlet–singlet color states) in an arbitrary four–quark wave function. For

this purpose one needs to expand any hidden–color vector of the four–quark state color

basis, i.e., vectors with non–singlet internal color couplings, in terms of singlet–singlet color

vectors. We will see that given a general four–quark state [q1q2q̄3q̄4] the above procedure re-

quires to mix terms from two different couplings, [(q1q̄3)(q2q̄4)] and [(q1q̄4)(q2q̄3)]. If (q1, q2)

and (q̄3, q̄4) are identical quarks and antiquarks then, a general four-quark wave function

can be expanded in terms of color singlet-singlet nonorthogonal vectors and therefore the

determination of the probability of physical channels becomes cumbersome. A particular

case has been discussed in the literature trying to understand the light scalar mesons as KK̄

molecules [5]. This problem has also been found in other fields, as for example in molecular
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systems [6].

The manuscript is organized as follows. In Sec. II the formalism to expand the four–

quark wave function in terms of singlet–singlet color vectors is derived. Without loss of

generality, the evaluation of the probabilities is exemplified with the QQn̄n̄ system. In

Sec. III we discuss some examples of bound and unbound states in the charm and bottom

sectors. Finally, we summarize in Sec. IV our conclusions.

II. FORMALISM

Given an arbitrary state |Ψ〉 made up of two quarks, q1 and q2, and two antiquarks, q̄3

and q̄4, its most general wave function will be the direct product of vectors from the color,

spin, flavor and radial subspaces. We start discussing the color substructure.

A. Color substructure.

There are three different ways of coupling two quarks and two antiquarks into a colorless

state:

[(q1q2)(q̄3q̄4)] ≡ {|3̄12334〉, |6126̄34〉} ≡ {|3̄3〉12c , |66̄〉12c } (1a)

[(q1q̄3)(q2q̄4)] ≡ {|113124〉, |813824〉} ≡ {|11〉c, |88〉c} (1b)

[(q1q̄4)(q2q̄3)] ≡ {|114123〉, |814823〉} ≡ {|1′1′〉c, |8′8′〉c} , (1c)

being the three of them orthonormal basis. Each coupling scheme allows to define a color

basis where the four–quark problem can be solved. The first basis, Eq. (1a), being the

most suitable one to deal with the Pauli principle is made entirely of vectors containing

hidden–color components. The other two, Eqs. (1b) and (1c), are hybrid basis containing

singlet–singlet (physical) and octet–octet (hidden–color) vectors.

In order to express a four–quark state in terms only of physical components it is necessary

to define the antiunitary transformation connecting the basis (1b) and (1c) [7]

| 11〉c = cos α | 1′1′〉c + sin α | 8′8′〉c
| 88〉c = sin α | 1′1′〉c − cos α | 8′8′〉c , (2)
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and the projectors on the different vectors:

P = | 11〉c c 〈11 |

Q = | 88〉c c 〈88 | , (3)

and

P̂ = | 1′1′〉c c 〈1′1′ |

Q̂ = | 8′8′〉c c 〈8′8′ | . (4)

With these definitions any arbitrary state |Ψ〉 can be written as

|Ψ〉 = P |Ψ〉+ Q|Ψ〉 = P̂ |Ψ〉 + Q̂|Ψ〉 . (5)

One can extract the singlet–singlet components from the octet–octet one, Q|Ψ〉, by inserting

identities 11 = P + Q = P̂ + Q̂ in the following iterative manner:

|Ψ〉 = P |Ψ〉 + P̂Q|Ψ〉 + Q̂Q|Ψ〉 =

= P |Ψ〉 + P̂Q|Ψ〉 + PQ̂Q|Ψ〉 + QQ̂Q|Ψ〉 =

= P |Ψ〉 + P̂Q|Ψ〉 + PQ̂Q|Ψ〉 + P̂QQ̂Q|Ψ〉 + Q̂QQ̂Q|Ψ〉 = . . . =

= P
[

11 + Q̂Q + Q̂QQ̂Q + . . .
]

|Ψ〉 + P̂
[

Q + QQ̂Q + QQ̂QQ̂Q + . . .
]

|Ψ〉 . (6)

From the definition of the projectors in Eqs. (3) and (4) and the antiunitary transformation

in Eq. (2) one can see that

QQ̂Q = | 88〉c c 〈88 | 8′8′〉c c 〈8′8′ | 88〉c c 〈88 | =| c 〈88 | 8′8′〉c |2 Q = cos2 α Q . (7)

Therefore, Eq. (6) can be rewritten as,

|Ψ〉 = P |Ψ〉 + PQ̂Q
[

1 + cos2 α + cos4 α + . . .
]

|Ψ〉

+ P̂Q
[

1 + cos2 α + cos4 α + . . .
]

|Ψ〉 . (8)

Noting that,
∞
∑

k=0

cos α2k =
1

1 − cos2 α
, (9)

Eq. (8) becomes,

|Ψ〉 =

[

P + PQ̂Q
1

1 − cos2 α

]

|Ψ〉 +

[

P̂Q
1

1 − cos2 α

]

|Ψ〉 . (10)
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This equation can be simplified by considering

PQ̂P = | 11〉c c 〈11 | 8′8′〉c c 〈8′8′ | 11〉c c 〈11 | = sin2 α P (11)

and thus

P + PQ̂Q
1

1 − cos2 α
= P + PQ̂(1 − P )

1

1 − cos2 α
(12)

= PQ̂
1

1 − cos2 α
+ P − PQ̂P

1

1 − cos2 α
= PQ̂

1

1 − cos2 α

Therefore Eq. (10) can be finally written in a compact form as

|Ψ〉 =
1

1 − cos2 α
PQ̂|Ψ〉 +

1

1 − cos2 α
P̂Q|Ψ〉 = PNH1

|11〉c
|Ψ〉 + PNH1

|1′1′〉c
|Ψ〉 , (13)

where PNH1

|11〉c
and PNH1

|1′1′〉c
are nonhermitian projection operators on the corresponding singlet-

singlet subspaces (see Appendix A for proof of their properties). This expression demon-

strates that any octet–octet color component can be expanded, in general, as an infinite

sum of singlet–singlet color states [8].

To obtain hermitian operators one can repeat the same procedure using the projectors

on | 1′1′〉c and | 8′8′〉c given in Eq. (4),

|Ψ〉 = Q̂|Ψ〉 + QP̂ |Ψ〉 + PP̂ |Ψ〉 =

= Q̂|Ψ〉 + QP̂ |Ψ〉 + Q̂P P̂ |Ψ〉 + P̂P P̂ |Ψ〉 =

= Q̂|Ψ〉 + QP̂ |Ψ〉 + Q̂P P̂ |Ψ〉 + QP̂P P̂ |Ψ〉 + P̂P P̂ |Ψ〉 = . . . =

= Q̂
[

11 + PP̂ + PP̂P P̂ + . . .
]

|Ψ〉 + Q
[

P̂ + P̂P P̂ + P̂P P̂P P̂ + . . .
]

|Ψ〉 , (14)

where

P̂P P̂ = | 1′1′〉c c 〈1′1′ | 11〉c c 〈11 | 1′1′〉c c 〈1′1′ | =| c 〈1′1′ | 11〉c |2 P̂ = cos2 α P̂ , (15)

what allows to rewrite Eq. (14)

|Ψ〉 = Q̂|Ψ〉 + Q̂P P̂
[

1 + cos2 α + cos4 α + . . .
]

|Ψ〉

+ QP̂
[

1 + cos2 α + cos4 α + . . .
]

|Ψ〉 . (16)

Using Eq. (9) one can finally write

|Ψ〉 =

[

Q̂ + Q̂P P̂
1

1 − cos2 α

]

|Ψ〉 +

[

QP̂
1

1 − cos2 α

]

|Ψ〉 . (17)
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This equation can be simplified noting that

Q̂P Q̂ = | 8′8′〉c c 〈8′8′ | 11〉c c 〈11 | 8′8′〉c c 〈8′8′ | = sin2 α Q̂ , (18)

then

Q̂ + Q̂P P̂
1

1 − cos2 α
= Q̂ + Q̂P (1 − Q̂)

1

1 − cos2 α
(19)

= Q̂P
1

1 − cos2 α
+ Q̂ − Q̂P Q̂

1

1 − cos2 α
= Q̂P

1

1 − cos2 α
.

arriving to the compact notation

|Ψ〉 =
1

1 − cos2 α
Q̂P |Ψ〉 +

1

1 − cos2 α
QP̂ |Ψ〉 = PNH2

|11〉c
|Ψ〉 + PNH2

|1′1′〉c
|Ψ〉 , (20)

where PNH2

|11〉c
and PNH2

|1′1′〉c
are nonhermitian projection operators on the corresponding singlet-

singlet subspaces.

Combining Eqs. (13) and (20) one can write any arbitrary state in the following form,

|Ψ〉 =
1

2

{[

PQ̂
1

1 − cos2 α

]

|Ψ〉 +

[

P̂Q
1

1 − cos2 α

]

|Ψ〉
}

+
1

2

{[

Q̂P
1

1 − cos2 α

]

|Ψ〉 +

[

QP̂
1

1 − cos2 α

]

|Ψ〉
}

, (21)

or equivalently

|Ψ〉 =
1

2

(

PQ̂ + Q̂P
) 1

1 − cos2 α
|Ψ〉

+
1

2

(

P̂Q + QP̂
) 1

1 − cos2 α
|Ψ〉 . (22)

Thus, one arrives to two hermitian operators that are well–defined projectors on the two

physical singlet–singlet color states

P |11〉c
=
(

PQ̂ + Q̂P
) 1

2(1 − cos2 α)

P |1′1′〉c
=
(

P̂Q + QP̂
) 1

2(1 − cos2 α)
(23)

and finally,

|Ψ〉 = P |11〉c
|Ψ〉 + P |1′1′〉c

|Ψ〉 . (24)

Thus, given an arbitrary state |Ψ〉 its projection on a particular subspace E is given by

|Ψ〉|E = PE|Ψ〉. Thus, the probability of finding such an state on this subspace is

E|〈Ψ|Ψ〉|E = 〈Ψ|P †
EPE|Ψ〉 = 〈Ψ|P 2

E|Ψ〉 = 〈Ψ|PE|Ψ〉 . (25)
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Therefore, once the projection operators have been constructed, Eq. (23), the probabilities

for finding singlet–singlet components are given by,

P |Ψ〉([11]) =
〈

Ψ | P |11〉c
| Ψ
〉

P |Ψ〉([1′1′]) =
〈

Ψ | P |1′1′〉c
| Ψ
〉

. (26)

Using Eq. (23) one arrives to

P |Ψ〉([11]) =
1

2(1 − cos2 α)

[〈

Ψ | PQ̂ | Ψ
〉

+
〈

Ψ | Q̂P | Ψ
〉]

P |Ψ〉([1′1′]) =
1

2(1 − cos2 α)

[〈

Ψ | P̂Q | Ψ
〉

+
〈

Ψ | QP̂ | Ψ
〉]

(27)

where it can be easily checked that P |Ψ〉([11]) + P |Ψ〉([1′1′]) = 1.

B. Spin substructure

For a four–quark state one has three different total spins: 0, 1 and 2. The ST = 2 case is

trivial, because the basis is one-dimensional. Let us discuss the other two possibilities. For

ST = 0 the spin basis, in analogy with Eqs. (1), are given by:

[(s1s2)S12
(s3s4)S34

]0 ≡ {|00〉12s , |11〉12s } (28a)

[(s1s3)S13
(s2s4)S24

]0 ≡ {|00〉s, |11〉s} (28b)

[(s1s4)S14
(s2s3)S23

]0 ≡ {|0′0′〉s, |1′1′〉s} (28c)

and the corresponding spin projectors

Ps ≡ |00〉s s〈00| (29)

Qs ≡ |11〉s s〈11|

P̂s ≡ |0′0′〉s s〈0′0′|

Q̂s ≡ |1′1′〉s s〈1′1′| .

It is important to note that the projectors used in the color space determine the coupling

in the spin space. Thus, introducing the corresponding spin projectors in Eq. (24) one

arrives to

|Ψ〉 = P |11〉c
(Ps + Qs) |Ψ〉 + P |1′1′〉c

(

P̂s + Q̂s

)

|Ψ〉 = (30)

= P |11〉c
Ps|Ψ〉 + P |11〉c

Qs|Ψ〉 + P |1′1′〉c
P̂s|Ψ〉 + P |1′1′〉c

Q̂s|Ψ〉 ≡

≡ P |11〉c,|00〉s |Ψ〉 + P |11〉c,|11〉s |Ψ〉 + P |1′1′〉c,|0′0′〉s |Ψ〉 + P |1′1′〉c,|1′1′〉s |Ψ〉 ,
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where P |11〉c,|00〉s and P |1′1′〉c,|0′0′〉s stand for the projectors on the physical state made up of

two S = 0 qq̄ mesons, and P |11〉c,|11〉s and P |1′1′〉c,|1′1′〉s for the projectors on the physical state

made up of two S = 1 qq̄ mesons.

Following our discussion in Subsection IIA the probabilities are given by

P [ | 11〉c |00〉s] = 〈Ψ|P |11〉c,|00〉s |Ψ〉 (31)

P [ | 11〉c |11〉s] = 〈Ψ|P |11〉c,|11〉s |Ψ〉

P [ | 1′1′〉c |0′0′〉s] = 〈Ψ|P |1′1′〉c,|0′0′〉s |Ψ〉

P [ | 1′1′〉c |1′1′〉s] = 〈Ψ|P |1′1′〉c,|1′1′〉s |Ψ〉,

and therefore, the total probabilities of finding a physical state made up of two S = 0 qq̄

mesons will be given by

PMM = P [ | 11〉c |00〉s] + P [ | 1′1′〉c |0′0′〉s] (32)

and correspondingly the total probability of a physical state made up of two S = 1 qq̄ states

PM∗M∗ = P [ | 11〉c |11〉s] + P [ | 1′1′〉c |1′1′〉s] . (33)

In the ST = 1 case the spin basis are

[(s1s2)S12
(s3s4)S34

]1 ≡ {|01〉12s , |10〉12s , |11〉12s } (34a)

[(s1s3)S13
(s2s4)S24

]1 ≡ {|01〉s, |10〉s, |11〉s} (34b)

[(s1s4)S14
(s2s3)S23

]1 ≡ {|0′1′〉s, |1′0′〉s, |1′1′〉s} (34c)

and the corresponding projectors,

Ps ≡ |01〉s s〈01| (35)

Qs ≡ |10〉s s〈10|

Ws ≡ |11〉s s〈11|

P̂s ≡ |0′1′〉s s〈0′1′|

Q̂s ≡ |1′0′〉s s〈1′0′|

Ŵs ≡ |1′1′〉s s〈1′1′| .
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Following the same procedure as in the ST = 0 case one arrives to

|Ψ〉 = P |11〉c
(Ps + Qs + Ws) |Ψ〉 + P |1′1′〉c

(

P̂s + Q̂s + Ŵs

)

|Ψ〉 = (36)

= P |11〉c
Ps|Ψ〉 + P |11〉c

Qs|Ψ〉 + P |11〉c
Ws|Ψ〉

+ P |1′1′〉c
P̂s|Ψ〉 + P |1′1′〉c

Q̂s|Ψ〉 + P |1′1′〉c
Ŵs|Ψ〉 ≡

≡ P |11〉c,|01〉s |Ψ〉 + P |11〉c,|10〉s |Ψ〉 + P |11〉c,|11〉s |Ψ〉

+ P |1′1′〉c,|0′1′〉s |Ψ〉 + P |1′1′〉c,|1′0′〉s |Ψ〉 + P |1′1′〉c,|1′1′〉s|Ψ〉 ,

where P |11〉c,|01〉s , P |1′1′〉c,|0′1′〉s , P |11〉c,|10〉s , and P |1′1′〉c,|1′0′〉s stand for the projectors on the

physical state made up of one S = 0 and one S = 1 qq̄ mesons and P |11〉c,|11〉s and P |11〉c,|1′1′〉s

for the projectors on the physical state made up of two S = 1 qq̄ mesons.

Finally, the probabilities can be expressed as

P [ | 11〉c |01〉s] = 〈Ψ|P |11〉c,|01〉s|Ψ〉 (37)

P [ | 11〉c |10〉s] = 〈Ψ|P |11〉c,|10〉s|Ψ〉

P [ | 11〉c |11〉s] = 〈Ψ|P |11〉c,|11〉s|Ψ〉

P [ | 1′1′〉c |0′1′〉s] = 〈Ψ|P |1′1′〉c,|0′1′〉s |Ψ〉

P [ | 1′1′〉c |1′0′〉s] = 〈Ψ|P |1′1′〉c,|1′0′〉s |Ψ〉

P [ | 1′1′〉c |1′1′〉s] = 〈Ψ|P |1′1′〉c,|1′1′〉s |Ψ〉 ,

and therefore, the total probability of a physical state made up of one S = 0 and one S = 1

qq̄ meson will be given by

PMM∗ = P [ | 11〉c |01〉s] + P [ | 11〉c |10〉s] + P [ | 1′1′〉c |0′1′〉s] + P [ | 1′1′〉c |1′0′〉s] (38)

and the total probability of a physical state made up of two S = 1 qq̄ mesons by

PM∗M∗ = P [ | 11〉c |11〉s] + P [ | 1′1′〉c |1′1′〉s] . (39)

C. Flavor substructure

The previous discussion about the color and spin substructure is general and valid for

any four–quark state. For the flavor part one find several different cases depending on the

number of light quarks. Although the present formalism can be applied to any four–quark
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state, it becomes much simpler whether distinguishable quarks are present. This would be,

for example, the case of the nQn̄Q̄ system, where the Pauli principle does not apply. In this

system the basis (1b) and (1c) are distinguishable due to the flavor part, they correspond

to [(i1i4)I14(i2i3)I23]I ≡ [(qc̄)1/2(cq̄)1/2]I and [(i1i3)I13(i2i4)I24 ]I ≡ [(qq̄)I(cc̄)0]I , and therefore

they are orthogonal. This makes that the probabilities can be evaluated in the usual way

for orthogonal basis as has been done in Ref. [9].

Non-orthogonal basis are necessary for the following cases: QQn̄Q̄′, QQ′n̄n̄, Qnn̄n̄ and

nnn̄n̄ (Q may be equal to Q′) or their corresponding antiparticles. The isospin basis are:

• QQn̄Q̄′

[(i1i2)I12(i3i4)I34 ] 1

2

≡ |01
2
〉12f (40a)

[(i1i3)I13(i2i4)I24 ] 1

2

≡ |1
2
0〉f (40b)

[(i1i4)I14(i2i3)I23 ] 1

2

≡ |0′ 1
2

′〉f . (40c)

• QQ′n̄n̄

[(i1i2)I12(i3i4)I34 ]I ≡ |0I〉12f (41a)

[(i1i3)I13(i2i4)I24 ]I ≡ |1
2

1
2
〉f (41b)

[(i1i4)I14(i2i3)I23 ]I ≡ |1
2

′ 1
2

′〉f . (41c)

• Qnn̄n̄

– I = 1/2

[(i1i2)I12(i3i4)I34 ] 1

2

≡ {|1
2
0〉12f , |1

2
1〉12f } (42a)

[(i1i3)I13(i2i4)I24 ] 1

2

≡ {|1
2
0〉f , |121〉f} (42b)

[(i1i4)I14(i2i3)I23 ] 1

2

≡ {|1
2

′
0′〉f , |12

′
1′〉f} . (42c)

– I = 3/2

[(i1i2)I12(i3i4)I34 ] 3

2

≡ |1
2
1〉12f (43a)

[(i1i3)I13(i2i4)I24 ] 3

2

≡ |1
2
1〉f (43b)

[(i1i4)I14(i2i3)I23 ] 3

2

≡ |1
2

′
1′〉f . (43c)
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• nnn̄n̄

– I = 0

[(i1i2)I12(i3i4)I34 ]0 ≡ {|00〉12f , |11〉12f } (44a)

[(i1i3)I13(i2i4)I24 ]0 ≡ {|00〉f , |11〉f} (44b)

[(i1i4)I14(i2i3)I23 ]0 ≡ {|0′0′〉f , |1′1′〉f} . (44c)

– I = 1

[(i1i2)I12(i3i4)I34 ]1 ≡ {|01〉12f , |10〉12f , |11〉12f } (45a)

[(i1i3)I13(i2i4)I24 ]1 ≡ {|01〉f , |10〉f , |11〉f} (45b)

[(i1i4)I14(i2i3)I23 ]1 ≡ {|0′1′〉f , |1′0′〉f , |1′1′〉f} . (45c)

– I = 2

[(i1i2)I12(i3i4)I34]2 ≡ |11〉12f (46a)

[(i1i3)I13(i2i4)I24]2 ≡ |11〉f (46b)

[(i1i4)I14(i2i3)I23]2 ≡ |1′1′〉f . (46c)

For those cases where the basis is one-dimensional the recoupling among the three different

basis introduced in Eq. (1) is straightforward. For those cases where the basis in not one-

dimensional one should follow the procedure described in Sect. II B.

D. Radial substructure

In order to derive the probability of the physical channels one has finally to analyze the

symmetry of the radial wave function. Such analysis will depend on the particular state

chosen. Without loss of generality we will exemplify the procedure with the particular case

of the QQn̄n̄ system. Any other four–quark system discussed in Sect. IIC could be analyzed

in the same manner. Let us start with the ST = 0 state, whose most general wave function

11



reads

|Ψ〉 = |R1〉|3̄3〉12c |00〉12s |0I〉12f + |R2〉|3̄3〉12c |11〉12s |0I〉12f (47)

+ |R3〉|66̄〉12c |00〉12s |0I〉12f + |R4〉|66̄〉12c |11〉12s |0I〉12f ,

where |R1〉, |R2〉, |R3〉, and |R4〉 are radial wave functions that due to symmetry properties

satisfy 〈R1|R1〉 + 〈R2|R2〉 + 〈R3|R3〉 + 〈R4|R4〉 = 1, 〈R1|R2〉 = 〈R1|R3〉 = 〈R2|R4〉 =

〈R3|R4〉 = 0, 〈R1|R4〉 6= 0, and 〈R2|R3〉 6= 0. Applying Eqs. (32) and (33) one obtains

PMM = P [|11〉c|00〉s] + P [|1′1′〉c|0′0′〉s] (48)

=
1

4
(1 + 2〈R2|R2〉 + 2〈R4|R4〉) +

3
√

6

8
(〈R1|R4〉 + 〈R2|R3〉)

PM∗M∗ = P [|11〉c|11〉s] + P [|1′1′〉c|1′1′〉s]

=
1

4
(1 + 2〈R1|R1〉 + 2〈R3|R3〉) −

3
√

6

8
(〈R1|R4〉 + 〈R2|R3〉) .

Finally, the QQn̄n̄ ST = 1 most general wave function reads

|Ψ〉 = |R1〉|3̄3〉12c |01〉12s |0I〉12f + |R2〉|3̄3〉12c |10〉12s |0I〉12f + |R3〉|3̄3〉12c |11〉12s |0I〉12f (49)

+ |R4〉|66̄〉12c |01〉12s |0I〉12f + |R5〉|66̄〉12c |10〉12s |0I〉12f + |R6〉|66̄〉12c |11〉12s |0I〉12f ,

where |Ri〉 are radial wave functions that due to symmetry properties satisfy
∑6

i=1〈Ri|Ri〉 =

1 and all the cross products are zero except for 〈R1|R5〉 and 〈R2|R4〉. Applying Eqs. (38)

and (39) one gets

PMM∗ =
1

2

(

1 + 〈R3|R3〉 + 〈R6|R6〉 −
3
√

2

2
(〈R1|R5〉 + 〈R2|R4〉)

)

(50)

PM∗M∗ =
1

2

(

1 − 〈R3|R3〉 − 〈R6|R6〉 +
3
√

2

2
(〈R1|R5〉 + 〈R2|R4〉)

)

.

III. SOME ILLUSTRATIVE EXAMPLES

In the previous section we have derived the analytical expansion of an arbitrary four–

quark state wave function in terms of a non-orthogonal basis containing only physical chan-

nels. The calculation of the probabilities has been exemplified with the QQn̄n̄ system.

We now apply this formalism to discuss the four-quark nature: unbound, molecular or

compact states, of some illustrative examples. The same discussion could be done with any

12



FIG. 1: H–type Jacobi vectors. 1,2 stand for heavy quarks and 3,4 for light antiquarks.
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other four–quark state just changing the coupling in isospin space, see Subsect. II C. The

results we are going to discuss have been obtained solving the four-body problem by means

of a variational method using as trial wave function the most general linear combination of

gaussians [10]. The accuracy of the variational approach has been tested by comparing with

results obtained by means of the hyperspherical harmonic expansion [11]. Both approaches

are in good agreement The interaction between the quarks is taken from the model of

Ref. [12]. The same interacting potential used to calculate the four-quark energy is used to

calculate the mass of the thresholds, i.e., the meson masses.

The stability of a four–quark state can be analyzed in terms of ∆E, the energy difference

between its mass and that of the lowest two-meson threshold,

∆E = E4q − E(M1, M2) , (51)

where E4q stands for the four–quark energy and E(M1, M2) for the energy of the two-meson

threshold. Thus, ∆E < 0 indicates all fall-apart decays are forbidden, and therefore one has

a proper bound state. ∆E ≥ 0 will indicate that the four–quark solution corresponds to an

unbound threshold (two free mesons). Thus, an energy above the threshold would simply

mean that the system is unbound within our variational approximation, suggesting that the

minimum of the Hamiltonian is at the two-meson threshold. Another helpful tool analyzing

the structure of a four–quark state is the value of the root mean square radii: 〈x2〉1/2, 〈y2〉1/2,

and 〈z2〉1/2. They correspond to the Jacobi coordinates given in Fig.1. Compact four–quark

13



TABLE I: Probabilities for ccn̄n̄ states with quantum numbers (ST , I) = (1,1) and (1,0). The

notation used stands for P [|{Color state}〉|{Spin state}〉] where {Color state} corresponds to the

basis vectors given in Eqs. (1) and {Spin state} to the ones given in Eqs. (34). Flavor component

|0I〉f , |12 1
2〉f , and |12

′ 1
2
′〉f is understood. We list in Appendix C a summary of the expressions used.

(1,1) (1,0) (1,1) (1,0) (1,1) (1,0)

P [|3̄3〉12c |01〉s] 0.000 0.875 P [ | 11〉c |01〉s] 0.277 0.094 P [ | 1′1′〉c |0′1′〉s] 0.277 0.094

P [|3̄3〉12c |10〉s] 0.000 0.006 P [ | 11〉c |10〉s] 0.277 0.094 P [ | 1′1′〉c |1′0′〉s] 0.277 0.094

P [|3̄3〉12c |11〉s] 0.333 0.000 P [ | 11〉c |11〉s] 0.002 0.186 P [ | 1′1′〉c |1′1′〉s] 0.002 0.186

P [|66̄〉12c |01〉s] 0.000 0.090 P [ | 88〉c |01〉s] 0.222 0.156 P [ | 8′8′〉c |0′1′〉s] 0.222 0.156

P [|66̄〉12c |10〉s] 0.000 0.029 P [ | 88〉c |10〉s] 0.222 0.156 P [ | 8′8′〉c |1′0′〉s] 0.222 0.156

P [|66̄〉12c |11〉s] 0.667 0.000 P [ | 88〉c |11〉s] 0.000 0.314 P [ | 8′8′〉c |1′1′〉s] 0.000 0.314

P [|3̄3〉12c ] 0.333 0.881 P [ | 11〉c] 0.556 0.374 P [ | 1′1′〉c] 0.556 0.374

P [|66̄〉12c ] 0.667 0.119 P [ | 88〉c] 0.444 0.626 P [ | 8′8′〉c] 0.444 0.626

states can be distinguished from two free mesons by means of their root mean square radius

RMS4q(2q) =

(

∑4(2)
i=1 mi〈(ri − R)2〉
∑4(2)

i=1 mi

)1/2

, (52)

and in particular, their corresponding ratio,

∆R =
RMS4q

RMSM1
+ RMSM2

. (53)

where RMSM1
+ RMSM2

stands for the sum of the radii of the mesons corresponding to the

lowest threshold.

We show in Table I the probabilities in color and spin space obtained for two ccn̄n̄ states.

The first one, with quantum numbers (ST , I) = (1, 1), is unbound, while the second one,

(ST , I) = (1, 0), is bound. We give the probabilities in the three different rearrangements

in color space defined in Eqs. (1). Let us note that in the three color rearrangements of

Eqs. (1), the hidden–color vectors (|3̄3〉, |66̄〉, |88〉, and |8′8′〉) contain probability of physical

channels as we have discussed in Sect. II. It is possible to prove from simple group theory

arguments that for a system composed of two identical quarks (QQ) and two identical

14



TABLE II: Four–quark state properties for selected quantum numbers. All states have positive

parity and total orbital angular momentum L = 0. Energies are given in MeV and distances in fm.

The notation M1M2 |ℓ stands for mesons M1 and M2 with a relative orbital angular momentum

ℓ. P [|3̄3〉12c (|66̄〉12c )] stands for the probability of the 33̄(6̄6) components given in Eq. (1a) and

P [ | 11〉c ( | 88〉c)] for the 11(88) components given in Eq. (1b). PMM , PMM∗ , and PM∗M∗ have

been calculated as explained in text.

(ST , I) (0,1) (1,1) (1,0) (1,0) (0,0)

Flavor ccn̄n̄ ccn̄n̄ ccn̄n̄ bbn̄n̄ bbn̄n̄

Energy 3877 3952 3861 10395 10948

Threshold DD |S DD∗ |S DD∗ |S BB∗ |S B1B |P
∆E +5 +15 −76 −217 −153

P [|3̄3〉12c ] 0.333 0.333 0.881 0.974 0.981

P [|66̄〉12c ] 0.667 0.667 0.119 0.026 0.019

P [ | 11〉c] 0.556 0.556 0.374 0.342 0.340

P [ | 88〉c] 0.444 0.444 0.626 0.658 0.660

PMM 1.000 − − − 0.254

PMM∗ − 1.000 0.505 0.531 −

PM∗M∗ 0.000 0.000 0.495 0.469 0.746

〈x2〉1/2 60.988 13.804 0.787 0.684 0.740

〈y2〉1/2 60.988 13.687 0.590 0.336 0.542

〈z2〉1/2 0.433 0.617 0.515 0.503 0.763

RMS4q 30.492 6.856 0.363 0.217 0.330

∆R 69.300 11.640 0.799 0.700 0.885

antiquarks (n̄n̄), the octet–octet component probability of the wave function either in the

(1b) or (1c) arrangements is restricted to the interval [1/3, 2/3], see Appendix B. Do these

numerical and analytical results prove the unavoidable presence of important hidden–color

components in all QQn̄n̄ states regardless of their binding energy? We shall see that the

answer is no.
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To respond this question we summarize in Table II the results obtained for several different

four–quark states, among them those used in Table I, making use of the formal development

of Sect. II. As shown in Table II, independently of their binding energy, all of them present a

sizable octet-octet component when the wave function is expressed in the (1b) coupling. Let

us first of all concentrate on the two unbound states, ∆E > 0, one with ST = 0 and one with

ST = 1, given in Table II. The octet-octet component of basis (1b) can be expanded in terms

of the vectors of basis (1c) as explained in the previous section. Thus, once expressions (42)

and (44) are considered one finds that the probabilities are concentrated into a single physical

channel, PMM or PMM∗. In other words, the octet-octet component of the basis (1b) or (1c)

is a consequence of having identical quarks and antiquarks. Thus, four-quark unbound states

are represented by two isolated mesons. This conclusion is strengthened when studying the

root mean square radii, leading to a picture where the two quarks and the two antiquarks

are far away, 〈x2〉1/2 ≫ 1 fm and 〈y2〉1/2 ≫ 1 fm, while the quark-antiquark pairs are located

at a typical distance for a meson, 〈z2〉1/2 ≤ 1 fm.

Let us now turn to the bound states shown in Table II, ∆E < 0, one in the charm sector

and two in the bottom one. Contrary to the results obtained for unbound states, when

the octet-octet component of basis (1b) is expanded in terms of the vectors of basis (1c),

equations (42) and (44) drive to a picture where the probabilities in all allowed physical

channels are relevant. It is clear that the bound state must be generated by an interaction

that it is not present in the asymptotic channel, sequestering probability from a single

singlet–singlet color vector due to the interaction between color octets. Such systems are

clear examples of compact four–quark states, in other words, they cannot be expressed in

terms of a single physical channel. Moreover, as can be seen in Table II, their typical sizes

point to compact objects 20% smaller than a standard two–meson system.

We have studied the dependence of the probability of a physical channel on the binding

energy. For this purpose we have considered the simplest system from the numerical point of

view, the (ST , I) = (0, 1) ccn̄n̄ state. Unfortunately, this state is unbound for any reasonable

set of parameters. Therefore, we bind it by multiplying the interaction between the light

quarks by a fudge factor. Such a modification does not affect the two–meson threshold while

it decreases the mass of the four–quark state. The results are illustrated in Fig. 2 (PMM)

and Fig. 3 (∆R, 〈x2〉1/2, 〈y2〉1/2, and 〈z2〉1/2). In Fig. 2 it is shown how in the ∆E → 0 limit,

the four–quark wave function is almost a pure single physical channel. Close to this limit
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FIG. 2: PMM as a function of ∆E .
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one would find what could be defined as molecular states. In Fig. 3 we see how the size of

the four–quark state increases when ∆E → 0. It can be observed that when the probability

concentrates into a single physical channel (PMM → 1) the size of the system gets larger

than the sum of two isolated mesons (Fig. 3 left panel). In Fig. 3 (right panel) we identify

the subsystems responsible for increasing the size of the four–quark state. Quark-quark

(〈x2〉1/2) and antiquark-antiquark (〈y2〉1/2) distances grow rapidly while the quark–antiquark

distance (〈z2〉1/2) remains almost constant. This reinforces our previous result, pointing to

the appearance of two meson like structures whenever the binding energy goes to zero. This

illustrative example emphasizes the importance of performing a simultaneous analysis both

of energy and wave function in order to detect bound states in the vicinity of a two-meson

threshold.

To illustrate in more detail the differences observed in the calculated four–quark wave

functions we depict in Fig. 4 the position distributions defined as

R(rα, rβ) = rαrβ

∑

i

∫

V

|Ri(~rα, ~rβ, ~rγ)|2d~rγ dΩrα
dΩrβ

, (54)

where Ri(~rα, ~rβ, ~rγ) are the radial wave functions introduced in Eqs. (47) and (49). We

present results for an unbound, a molecular and a bound state, showing the position distri-

bution for the different planes (rα, rβ) = (z, x), (z, y), and (x, y). Clear differences among

them can be observed. The position distribution for the unbound case spreads in the x and
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FIG. 3: ∆R (a) and 〈x2〉1/2(solid line), 〈y2〉1/2 (dashed line), and 〈z2〉1/2(dashed-dotted line) (b)

as a function of ∆E.
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y coordinates up to 60 fm, while the bound and molecular systems are restricted to the

region below 3 fm (molecular) and 1 fm (bound). In the (x, y) plane the unbound state is

so widely spread that the values for the position distribution are three orders of magnitude

lower than in the (z, y) and (z, x) cases, and therefore they will not appear in the picture

unless artificially magnified. In the case of the molecular state a long range tail propagating

in the x = y region can be observed contrary to the constrained values obtained for bound

systems.

The conclusions derived are independent of the quark-quark interaction used. They

mainly rely on using the same hamiltonian to describe tensors of different order, two and four-

quark components in the present case. Dealing with a complete basis, any four-quark bound

deeply bound state has to be compact. Only slightly bound systems could be considered as

molecular. Unbound states correspond to a two-meson system. A similar situation would be

found in the two baryon system, the deuteron could be considered as a molecular like state

with a small percentage of its wave function on the ∆∆ channel, while the H−dibaryon

would be a compact six–quark state. Working with central forces, the only way of getting a

bound system is to have a strong interaction between the constituents that are far apart in

the asymptotic limit, quarks or antiquarks in the present case. In this case the short-range

interaction will capture part of the probability of a two-meson threshold to form a bound
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FIG. 4: Position distribution corresponding to unbound (ST = 1, I = 1, ccn̄n̄), molecular (ST = 0,

I = 1, ccn̄n̄, last point in Fig.2), and bound (ST = 1, I = 0, bbn̄n̄) states.

state. This can be reinterpreted as an infinite sum over physical states. This is why the

analysis performed in the present manuscript is so important before concluding the existence

of compact four–quark states beyond simple molecular structures.

If the prescription of using the same hamiltonian to describe all tensors in the Fock space

is relaxed, new scenarios may appear. Among them, the inclusion of many–body forces is

particularly relevant. In Ref. [13] the stability of QQn̄n̄ and QQ̄nn̄ systems was analyzed

in a simple string model considering only a multiquark confining interaction given by the

minimum of a flip-flop or a butterfly potential in an attempt to discern whether confining
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interactions not factorizable as two–body potentials would influence the stability of four–

quark states. The ground state of systems made of two quarks and two antiquarks of equal

masses was found to be below the dissociation threshold. While for the cryptoexotic QQ̄nn̄

the binding decreases when increasing the mass ratio mQ/mn, for the flavor exotic QQn̄n̄

the effect of mass symmetry breaking is opposite. Others scenarios may emerge if different

many–body forces, like many–body color interactions [14] or ’t Hooft instanton–based three-

body interactions [15], are considered.

IV. CONCLUSIONS

In this work we have developed the necessary formalism to express the wave function of

a general four–quark state in terms of physical channels, i.e., those constructed by using

color singlet states. Once this is done the four–quark wave function is expressed in terms

of nonorthogonal vectors and hence the traditional way to compute probabilities needs to

be generalized. We have obtained expressions to evaluate such probabilities for all possible

nontrivial four–quark states containing two heavy antiquarks and two light quarks. We have

applied these expressions to illustrative cases, where the difference among unbound, compact

and molecular four–quark states has been made evident. The importance of performing a

complete analysis of the system, energy and wave function, in the vicinity of a two-meson

threshold has been emphasized.
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APPENDIX A: PROJECTORS PROPERTIES

The following properties are proved for one particular set of projectors, PNH1

|11〉c
and PNH1

|1′1′〉c
.

The same procedure can be followed in all the remaining cases. By construction, see Eq.

(24), they span the complete space, PNH1

|11〉c
+ PNH1

|1′1′〉c
= 11. We demonstrate that we have
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constructed idempotent operators,

(

PNH1

|11〉c

)2

=

(

1

1 − cos2 α

)2

PQ̂PQ̂ (A1)

=

(

1

1 − cos2 α

)2

| 1′1′〉c c 〈1′1′ | 88〉c c 〈88 | 1′1′〉c c 〈1′1′ | 88〉c c 〈88 |

=

(

1

1 − cos2 α

)2

| 1′1′〉c c 〈1′1′ | 88〉c c 〈88 | | c 〈1′1′ | 88〉c |2

=

(

1

1 − cos2 α

)2

| 1′1′〉c c 〈1′1′ | 88〉c c 〈88 | sin2 α

=
1

1 − cos2 α
PQ̂ = PNH1

|11〉c
.

APPENDIX B: MINIMUM AND MAXIMUM VALUE FOR THE OCTET–

OCTET COMPONENT PROBABILITY.

Without loss of generality we consider the ST = 0 case. The Pauli Principle requires that

the radial wave functions |Ri〉 in Eq. (41) have well-defined permutation properties under

the exchange of quarks and that of antiquarks, i.e., symmetric (S) or antisymmetric (A).

Hence, |R1〉 must be antisymmetric under the exchange of the identical quarks and also

under the exchange of antiquarks what we will denote by |R1(AA)〉. Similarly for the other

components: |R2(SS)〉, |R3(SS)〉, and |R4(AA)〉. The transformations from (1a) to (1b)

and from (28a) to (28b) are

|3̄3〉12c =
1√
3
| 11〉c −

√

2

3
| 88〉c (B1)

|66̄〉12c =

√

2

3
| 11〉c +

1√
3
| 88〉c

and

|00〉12s =
1

2
|00〉s +

√
3

2
|11〉s (B2)

|11〉12s =

√
3

2
|00〉s −

1

2
|11〉s
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and therefore Eq. (41) can be written as

|Ψ〉 = | 11〉c |00〉s|
1

2

1

2
〉f

1

2
√

3

{

|R1〉 +
√

3|R2〉 +
√

2|R3〉 +
√

6|R4〉
}

+ (B3)

| 11〉c |11〉s|
1

2

1

2
〉f

1

2
√

3

{√
3|R1〉 − |R2〉 +

√
6|R3〉 −

√
2|R4〉

}

+

| 88〉c |00〉s|
1

2

1

2
〉f

1

2
√

3

{

−
√

2|R1〉 −
√

6|R2〉 + |R3〉 +
√

3|R4〉
}

+

| 88〉c |11〉s|
1

2

1

2
〉f

1

2
√

3

{

−
√

6|R1〉 +
√

2|R2〉 +
√

3|R3〉 − |R4〉
}

.

Considering the symmetry properties of the radial part of the wave function, the probabilities

are calculated as

P [ | 11〉c |00〉s] =
1

12
{〈R1|R1〉 + 3〈R2|R2〉 + 2〈R3|R3〉 + 6〈R4|R4〉 (B4)

+ 2
√

6 Re (〈R1|R4〉 + 〈R2|R3〉)
}

P [ | 11〉c |11〉s] =
1

12
{3〈R1|R1〉 + 〈R2|R2〉 + 6〈R3|R3〉 + 2〈R4|R4〉

− 2
√

6 Re (〈R1|R4〉 + 〈R2|R3〉)
}

P [ | 88〉c |00〉s] =
1

12
{2〈R1|R1〉 + 6〈R2|R2〉 + 〈R3|R3〉 + 3〈R4|R4〉

− 2
√

6 Re (〈R1|R4〉 + 〈R2|R3〉)
}

P [ | 88〉c |11〉s] =
1

12
{6〈R1|R1〉 + 2〈R2|R2〉 + 3〈R3|R3〉 + 〈R4|R4〉

+ 2
√

6 Re (〈R1|R4〉 + 〈R2|R3〉)
}

.

Thus,

P [ | 11〉c] = P [ | 11〉c |00〉s] + P [ | 11〉c |11〉s] (B5)

=
1

12
{4〈R1|R1〉 + 4〈R2|R2〉 + 8〈R3|R3〉 + 8〈R4|R4〉}

P [ | 88〉c] = P [ | 88〉c |00〉s] + P [ | 88〉c |11〉s]

=
1

12
{8〈R1|R1〉 + 8〈R2|R2〉 + 4〈R3|R3〉 + 4〈R4|R4〉} .

By construction P [|3̄3〉12c ] = 〈R1|R1〉 + 〈R2|R2〉 and P [|66̄〉12c ] = 〈R3|R3〉 + 〈R4|R4〉 with

P [|3̄3〉12c ] + P [|66̄〉12c ] = 1. Therefore Eqs. (B5) can be expressed as

P [ | 11〉c] =
1

3

{

1 + P [|66̄〉12c ]
}

(B6)

P [ | 88〉c] =
1

3

{

2 − P [|66̄〉12c ]
}

.

and since P [|66̄〉12c ] ∈ [0, 1] is normalized, a minimum (1/3) and a maximum (2/3) value for

P [ | 11〉c] and P [ | 88〉c] do exist.
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APPENDIX C: PROBABILITIES FOR DIFFERENT CHOICES OF BASIS.

The ST = 0 case is given in Eqs. (B5), for the sake of completeness note that

P [ | 11〉c |00〉s] = P [ | 1′1′〉c |0′0′〉s], P [ | 11〉c |11〉s] = P [ | 1′1′〉c |1′1′〉s], P [ | 88〉c |00〉s] =

P [ | 8′8′〉c |0′0′〉s],P [ | 88〉c |11〉s] = P [ | 1′1′〉c |1′1′〉s]. For ST = 1 one has

P [ | 11〉c |01〉s] = P [ | 1′1′〉c |0′1′〉s] = (C1)

1

6

(

1 − 1

2
〈R1|R1〉 −

1

2
〈R2|R2〉 + 〈R6|R6〉 −

√
2[〈R1|R5〉 + 〈R2|R4〉]

)

P [ | 11〉c |10〉s] = P [ | 1′1′〉c |1′0′〉s] =

1

6

(

1 − 1

2
〈R1|R1〉 −

1

2
〈R2|R2〉 + 〈R6|R6〉 −

√
2[〈R1|R5〉 + 〈R2|R4〉]

)

P [ | 11〉c |11〉s] = P [ | 1′1′〉c |1′1′〉s] =

1

6

(

〈R1|R1〉 + 〈R2|R2〉 + 2〈R4|R4〉 + 2〈R5|R5〉 + 2
√

2[〈R1|R5〉 + 〈R2|R4〉]
)

P [ | 88〉c |01〉s] = P [ | 8′8′〉c |0′1′〉s] =

1

6

(

1 − 1

2
〈R4|R4〉 −

1

2
〈R5|R5〉 + 〈R3|R3〉 +

√
2[〈R1|R5〉 + 〈R2|R4〉]

)

P [ | 88〉c |10〉s] = P [ | 8′8′〉c |1′0′〉s] =

1

6

(

1 − 1

2
〈R4|R4〉 −

1

2
〈R5|R5〉 + 〈R3|R3〉 +

√
2[〈R1|R5〉 + 〈R2|R4〉]

)

P [ | 88〉c |11〉s] = P [ | 8′8′〉c |1′1′〉s] =

1

6

(

2〈R1|R1〉 + 2〈R2|R2〉 + 〈R4|R4〉 + 〈R5|R5〉 − 2
√

2[〈R1|R5〉 + 〈R2|R4〉]
)
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