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In this study, the effect of long-term Plum pox virus (PPV) infection in the response of 

some antioxidant enzymes, at subcellular level, was studied in plants of peach 

(Prunus persica (L.) Batch) cultivar GF305, characterised by its great susceptibility to 

this virus. In infected plants, a decrease in the efficiency of excitation energy capture 

by PSII (F’v/F’m) was observed, that was accompanied by a decrease in the non-

photochemical quenching (NPQ). p-hydroxy mercury benzoic acid-insensitive APX 

activity (class III peroxidase) was detected in both chloroplastic and soluble fractions. 

In soluble fractions from inoculated peaches, a significant increase in pHMB-sensitive 

APX and a significant decrease in SOD activity were observed. These changes were 

correlated with what occurred in isolated chloroplasts, where an increase in both 

pHMB-sensitive and pHMB-insensitive APX activities was observed, whereas a 

significant SOD, MDHAR and GR decreases were produced. According to these 

results, as a consequence of PPV infection, an oxidative stress, indicated by an 

increase in lipid peroxidation and in protein oxidation, was produced in peach leaves, 

which was monitored by the DAB-peroxidase coupled H2O2 probe. PPV infection 

produced an alteration in chloroplast ultrastructure, giving rise to dilated thylakoid 

membranes. PPV-infected peach leaves showed a lower amount of starch in 

chloroplasts from palisade parenchyma, as well as an increase in the number and 

size of plastoglobuli, in relation to control plants. The results suggest that long-term 

PPV infection produced an oxidative stress and an antioxidative metabolism 

imbalance may be related to the progress of PPV infection and symptoms in peach 

plants.  
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Introduction 

Plum pox virus (PPV, sharka disease) is a serious limiting factor for temperate fruit 

production in those areas that are affected. PPV affects most Prunus species, 

resulting in severe economic losses in apricot, plum, prune and peach (Kölber 2001). 

In the short term, one way to control the spread of sharka in orchards is to remove 

infected trees and to use certified healthy plants. An alternative solution for 

eradication of the disease is the use of resistant cultivars (Dicenta et al. 1999). 

Obtaining Prunus cultivars resistant to sharka is one of the main objectives of 

breeders. The evaluation of programmes for PPV resistance is time-consuming and 

very expensive (Martínez-Gómez and Dicenta 2000a). Therefore, the search for 

biochemical and molecular markers associated with resistance would be of great 

interest. These markers will improve the selection process, in the evaluation of a 

higher number of individuals. 

One of the most outstanding events in the early phase of incompatible plant-

pathogen interaction is the rapid and transient production of activated oxygen species 

(AOS), such as O2
.-, H2O2 , .OH and 1O2, called the oxidative burst (Baker and Orlandi 

1995). It is thought that a plasma membrane-associated NAD(P)H oxidase is activated 

during the response of plants to pathogens (Jabs et al. 1996). This results in the 

production of O2
.-, which dismutates, spontaneously or via superoxide dismutase (SOD; 

EC 1.15.1.1), into H2O2. However, H2O2 could also be produced enzymatically by 

peroxidase, urate oxidase, xantine oxidase or glucose oxidase (Bolwell et al. 1998, 

Halliwell and Gutteridge 1989, Montalbino 1992). Several studies have indicated that 

in incompatible reactions AOS are key mediators of programmed cell death during 

the hypersensitive response (Levine et al., 1994; Jabs et al., 1996). In contrast to 

incompatible reactions, little is known about the involvement of AOS in symptom 

development and pathogenesis in compatible plant-virus interactions. 
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Plants contain several mechanisms that detoxify O2
.- and H2O2, called 

antioxidant systems. The primary components of these antioxidant systems include 

non-enzymatic antioxidants (carotenoids, ascorbate, glutathione and tocopherols) and 

enzymes such as SOD, catalase (EC 1.11.1.6), glutathione peroxidase (GPX, EC 

1.11.1.9), peroxidases and the enzymes involved in the ascorbate-glutathione cycle 

(ASC-GSH cycle); ascorbate peroxidase (APX, EC 1.11.1.1), dehydroascorbate 

reductase (DHAR, EC 1.8.5.1), monodehydroascorbate reductase (MDHAR, EC 

1.6.5.4) and glutathione reductase (GR, EC 1.6.4.2). The components of this 

antioxidant defence system can be found in different subcellular compartments 

(Jiménez et al. 1998, Hernández et al. 2000). 

An increasing body of data support the hypothesis that a fine regulation of 

antioxidant systems is part of the signalling pathways activating defence responses. 

However, the diversity in the systems used for studying plant-pathogen interplay 

make it difficult to formulate a clear picture of whether, and to what extent, changes 

in antioxidant systems are directly involved in the actuation of plants defence 

responses or are a mere consequence of the oxidative stress occurring in the 

attacked cells (de Gara et al., 2003). Several lines of evidences support the 

regulatory role that cellular antioxidants, especially GSH and GSH-related enzymes, 

play in biochemical and physiological responses of plants to biotic stress (Gullner et 

al., 1999; Fodor et al., 1997). In this sense, exposure of tobacco leaf discs to the 

cysteine precursor L-2-oxo-4-thiazolidine-carboxylic acid led to a massive 

accumulation of GSH as well as in a reduced TMV coat protein contents and 

suppression of disease symptoms in TMV-inoculated tobacco plants (Gullner et al., 

1999). In a recent paper, it has been proposed that a decline in AOS scavenging 

capacity may be required before a rapid increase in virus replication could take place. 

Phaseolus vulgaris L. plants treated with the cytokinin dihidrozeatin, salicylic acid or 
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jasmonic acid showed elevated CAT, GR and peroxidase activities. These 

treatments, when applied before inoculation with White clover mosaic potexvirus, 

inhibited virus replication and symptom development (Clarke et al., 2002). 

Most of the studies with PPV have been carried out at the level of 

characterisation of nucleotide sequence, identification of the pathogenicity 

determinants, characterization of hybrid potyviruses at the morphological level, studying 

their replication and mapping for PPV resistance (Martin and García 1991, Sáenz et al. 

2000, Tóbiás et al. 2001, Hurtado et al. 2002). However, no data concerning the 

response of antioxidant systems to PPV infection at the subcellular level have been 

reported for woody plants.  

In this study, the effect of PPV infection on fluorescence parameters and the 

response of some antioxidant enzymes were studied in soluble fractions and 

chloroplasts from peach leaves cv. GF305, characterised by its great susceptibility to 

sharka disease. The extent of lipid peroxidation, protein oxidation, the histochemical 

detection of H2O2 and the leaf ultrastructure were also analysed, in order to know if 

oxidative stress could be involved in the symptoms development and pathogenesis 

produced by this virus in peach leaves. 

 

Material and Methods 

Plant Material  

Seedlings of peach (Prunus persica L.) rootstock GF305, characterised by their 

susceptibility to fruit viruses including PPV  (Bernhard et al. 1969) and usually used as 

a rootstock in PPV resistance tests on Prunus, both in vivo (Martínez-Gómez and 

Dicenta 2000a) and in vitro (Martínez-Gómez and Dicenta 2000b), were assayed. 

GF305 peach seedlings were grown in 2-litre pots in an insect-proof greenhouse. Five 

repetitions of three-month-old seedlings were inoculated by grafting a chip from an 
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herbaceous GF305 individual showing strong sharka symptoms. Another five 

repetitions were kept as a control. Two months after inoculation, seedlings were 

subjected to an artificial rest period, in a cold chamber at 7 °C, in darkness for six 

weeks. They were then transferred to the greenhouse and were inspected for sharka 

symptoms  4 weeks later. In addition, to ascertain the presence or absence of Plum pox 

virus, an ELISA-DASI (detection of PPV coat protein) and an RT-PCR (detection of 

PPV nucleic acid) were applied to the leaves.  

 

PPV isolate  

The PPV isolate used was RB3.30, a Dideron Type isolate obtained from the Red 

Beaut plum cultivar in Spain, from the PPV collection of the Instituto Valenciano de 

Investigaciones Agrarias (IVIA) in Valencia (Spain). This isolate is considered to be 

representative of the Spanish PPV population, and produces strong sharka 

symptoms in young leaves, consisting of venal chlorosis in peach GF305, and venal 

chlorosis and rings in susceptible apricot leaves (Pelet and Bovey 1968). 

 

PPV detection 

Symptoms in the GF305 leaves were scored on a scale from 0 (no symptoms) to 5 

(maximum severity), as is usual in resistance tests in apricot (Martínez-Gómez and 

Dicenta 2000a). In addition, an ELISA-DASI (Double Antibody Sandwich Indirect) test 

was applied to the leaves, using the 5B monoclonal antibody against the coat protein 

of PPV (Cambra et al. 1994). Optical densities (OD) were recorded at 405 nm after 60 

min. Samples with OD double that of the healthy control were considered as ELISA-

positive (Sutula et al. 1986). Finally, for the detection of PPV nucleic acid, an RT-

PCR analysis was carried out, using total RNA extracted using the Rneasy Plant Mini 

Kit (Qiagen, Hilden, Germany) as described by MacKenzie et al. (1997). Two specific 
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primers within the coat protein (CP) gene, VP337 (CTCTGTGTCCTCTTCTTGTG), 

complementary to positions 9487-9508 of genomic PPV, and VP338 

(CAATAAAGCCATTGTTGGATC), homologous to 9194-9216 positions, were 

assayed. PCR parameters were: one cycle at 94 ºC for 2 min followed by 30 cycles 

of 94 ºC for 30 sec, 55 ºC for 30 sec and 72 ºC for 30 sec, and finally an extension 

temperature of 72 ºC for 5 min (Martínez-Gómez et al. 2003). Amplified products were 

electrophoresed in 1% agarose gels in 40 mM Tris-acetate and 1 mM EDTA, pH 8.0, 

and stained with ethidium bromide.  

 

Fluorescence measurements 

Ten control and PPV-infected peach plants were analysed. Modulated chlorophyll 

fluorescence was measured in dark-adapted peach leaves at midday, using a 

chlorophyll fluorometer OS-30 (Optisciences, USA) with an excitation source intensity 

of 2000 µmol m-2 s-1. The quantum yield of photosystem II photochemistry (ΦPSII) was 

calculated empirically as the fluorescence parameter (Fm
’ – Ft)/Fm

’ (Genty et al. 

1989), and the maximum quantum yield of photosystem II (Fv/Fm) as (Fm – Fo)/Fm 

(Maxwell and Johnson 2000). Non-photochemical quenching (NPQ) was calculated 

as a Stern-Vollmer-type quenching (Bilger and Björkman 1990). The photochemical 

quenching coefficient, equivalent to the fraction of open PSII reaction centres, was 

calculated as qp= (F’m-Ft)/(F’m-F’o) (Maxwell and Johnson 2000). 

The efficiency of excitation energy capture by PSII, corresponding to the 

probability that an absorbed photon reaches the PSII reaction centres, was 

calculated in light-adapted leaves as F’v/F’m= (F’m-F’o)/F’m. 

The minimal “dark” fluorescence level following illumination (Fo
’) was measured in the 

presence of a background far-red light, to favour rapid oxidation of intersystem 

electron carriers. 
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Isolation of cell fractions 

For the isolation of cell fractions four weeks-old plants were used. All operations were 

carried out at 0-4 ºC. Soluble fractions were prepared by homogenising 3 g of fresh leaf 

material with a mortar and pestle, with 6 ml of a grinding medium containing 0.35 M 

mannitol, 30 mM MOPS buffer (pH 7.5), 4 mM L-cysteine, 1 mM EDTA, 5% insoluble 

PVPP (w/v) and 0.2% (w/v) BSA. For APX activity, 20 mM ascorbate was added. The 

homogenate was filtered through 2 layers of cheesecloth and centrifuged at 2200 g for 

30 s, to pellet the chloroplast fraction. The supernatant was centrifuged at 12000 g, to 

discard mitochondria and peroxisomes. Then, the 12000 g supernatant was centrifuged 

for 20 min at 82000 g. The resulting supernatant obtained was partially purified, in 

Sephadex G-25 NAP columns (Amersham Pharmacia Biotech AB, Uppsala, Sweden) 

equilibrated with the same buffer (with or without 2 mM ascorbate) used for 

homogenisation, and was considered as the soluble fraction for use in different assays. 

Chloroplasts were prepared by homogenising 5 g, of fresh leaf material, with a 

mortar and pestle, with 15 ml of a grinding medium containing 0.35 M mannitol, 30 mM 

MOPS buffer (pH 7.5), 4 mM L-cysteine, 1 mM EDTA, 5% soluble PVP (w/v) and 0.2% 

(w/v) BSA. For APX activity, 20 mM ascorbate was added. The homogenate was 

filtered through 2 layers of cheesecloth and centrifuged at 2200 g for 30 s; the resulting 

pellet was suspended in 0.3 M mannitol, 20 mM MOPS buffer (pH 7.0), 1 mM EDTA 

and 0.2% BSA (washing medium), with or without 2 mM ascorbate. The suspension 

was centrifuged at 2200 g for 30 s, and the pellet obtained was resuspended in 6 ml of 

the same washing medium. Resuspension medium containing 40% (v/v) Percoll 

(Amersham Pharmacia Biotech) was layered under the chloroplasts suspension by 

slowly pipetting 5 ml into the bottom of the tube. Tubes were centrifuged at 1700 g for 1 
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min. The pellet of intact chloroplasts was resuspended in 1 ml of washing medium, 

without BSA, and used for enzyme assays. 

 

Assays performed 

Catalase and the ASC-GSH cycle enzymes were measured as described in 

(Hernández et al. 2001a, 2001b). SOD activity was assayed by the ferricytochrome c 

method using xanthine/xanthine oxidase as the source of O2
.- radicals (McCord and 

Fridovich, 1969). Total peroxidase was analysed according to (Ros-Barceló 1998). 

The extent of lipid peroxidation in leaves was estimated by determining the 

concentration of substances reacting with thiobarbituric acid (TBARS) (Cakmak and 

Horst 1991). Protein oxidation(CO-protein contents) was measured by reaction with 

2,4-dinitrophenylhydrazine as described by Levine et al. (1990).  

 

Histochemical detection of H2O2 in peach leaves 

The histochemical detection of H2O2 in peach leaves was performed using endogenous 

peroxidase-dependent in situ histochemical staining, in which whole leaves were 

vacuum-infiltrated with 0.1 mg ml-1 3,3’-diaminobenzidine in 50 mM Tris-acetate buffer 

(pH 5.0) and incubated at 25 ºC, in the dark, for 24 h. Controls were performed in the 

presence of 10 mM ascorbic acid. Leaves were rinsed in 80 % (v/v) ethanol for 10 min 

at 70 ºC, mounted in lactic acid:phenol:water (1:1:1, v/v/v) and photographed directly 

using an Olympus SZX 12 microscope (Hernández et al. 2001b). 

 

Transmission electron microscopy 

For microscopy, samples were fixed for 2.5 h, at 4 οC, in a 0.1 M Na-phosphate 

buffered (pH 7.2) mixture of 2.5 % glutaraldehyde and 4 % paraformaldehyde 

(Morales et al. 2001). Tissue was postfixed with 1% osmium tetroxide, for 2 h. The 
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samples were then dehydrated in a graded alcohol series and embedded in Spurr´s 

resin. Blocks were sectioned on a Reichert ultramicrotome (Germany). Thin sections 

for transmission electron microscopy were placed on copper grids and stained with 

uranyl acetate, followed by lead citrate. The ultrastructure of the tissue was observed 

with a Philip Tecnai electron microscope (Germany). 

 

Results 

GF305 peach proved to be very susceptible to the PPV-D isolate assayed in 

our controlled inoculation conditions. The evaluated repetitions developed strong 

PPV symptoms in leaves. The mean intensity of PPV symptoms of all the infected 

repetitions was around 3.0, in a scale from 0 to 5, confirming the high susceptibility 

described in this cultivar, and their use as PPV-indicator plants. In addition, PPV 

presence in leaves was confirmed by an ELISA-DASI test (presence of PPV coat 

protein) and RT-PCR analysis (presence of PPV nucleic acid), both positives (Table 

1, Fig. 1). These serological and molecular techniques also confirmed the high PPV 

susceptibility of GF305 peach cultivar. 

In infected plants, no evident changes in the PSII efficiency (Fv/Fm), the 

quantum yield of PSII electron transport (ΦPSII) or the photochemical quenching 

coefficient (qp) was produced. However, a decrease in the efficiency of excitation 

energy capture by PSII (F’v/F’m) was observed. This decrease in F’v/F’m was 

accompanied by a decrease in the non-photochemical quenching (NPQ) (Table 2), 

that could results in a diminished capacity of thermal dissipation of excess excitation 

energy in PSII.  

In GF305 peach, p-hydroxy mercury benzoic acid-insensitive APX activity 

(class III peroxidase) was detected in both chloroplastic and soluble fractions. These 

peroxidases exhibit high specific APX activity and oxidise ASC and organic phenols 
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at comparable rates (Kvaratskhelia et al. 1999). Specific inhibitors of APX, such as p-

chloro-mercury benzoate, hydroxy urea, p-aminophenol or p-hydroxy-mercury 

benzoate (pHMB), have only a slight effect on the ASC-dependent peroxidase 

activity of this type of peroxidases.  

In soluble fractions from the inoculated peaches, long-term PPV infection 

produced a significant increase in pHMB-sensitive APX, whereas a significant 

decrease in soluble SOD activity was observed. However, no changes in the other 

antioxidant enzymes studied (CAT, MDHAR, DHAR, GR, pHMB-insensitive APX or 

total peroxidase) were produced in the soluble fraction from peach leaves in 

response to PPV (Table 3). 

Long-term PPV infection also produced an alteration in the levels of 

antioxidant enzymes in leaf chloroplasts from peach plants cv GF305. In these 

organelles, significant increases in both pHMB-sensitive and pHMB-insensitive APX 

activities were observed. However, a significant decrease in chloroplastic SOD, 

MDHAR and GR occurred in response to the infection, whereas no changes in 

chloroplastic DHAR were observed (Table 4). According to these data, it seems that 

chloroplasts were more affected to PPV infection than the cytosolic compartment.  

As a consequence of long-term PPV infection, an oxidative stress was 

produced in peach leaves, as reflected by the 70 % increase in lipid peroxidation 

(given as TBARS) and the 2.27-fold increase in protein oxidation (measured as CO-

proteins) (Fig 2). In younger leaves (2-weeks-old leaves), an increase in lipid 

peroxidation was observed also, although values were lower than that observed in 

older leaves (1.684 ± 0.013 and 2.360 ± 0.062 nmol g-1FW, for control and PPV-

infected leaves, respectively). 
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When long-term PPV-infected leaves were stained with DAB reagent, to locate 

H2O2 production, a red-brown staining was observed in mesophyll cells near the 

minor veins (Fig. 3A, C). This staining seemed to be due to H2O2, since it was totally 

suppressed by 10 mM ascorbic acid and no staining was observed in control plants 

(Fig. 3B,D) or in asymptomatic infected leaves (not shown). The DAB-staining was 

even more marked in leaves after two weeks of infection (Fig. 3A). 

Control plants showed a well-developed ultrastructure, mitochondria, 

endoplasmatic reticulum, golgi and nucleus. Chloroplasts from control plants 

exhibited high numbers of starch granules per chloroplast and only showed a low 

number of plastoglobuli (Fig. 4A, B). However, PPV-infected peach leaves showed a 

lower amount of starch in chloroplasts from palisade parenchyma, as well as an 

increase in the number and size of plastoglobuli (Fig. 4C-D-E). PPV infection 

produced mainly an alteration in chloroplast ultrastructure, giving rise to dilated 

thylakoid membranes (Fig. 4F), but other organelles were unaffected (Fig. 4E-F). 

 
Discussion 

The peach cultivar GF305 is very susceptible to PPV, as shown by the strong 

chlorosis symptoms observed after 4 weeks of infection and as described previously 

(Martínez-Gómez and Dicenta 2000a, 2000b). Mean intensity of PPV symptoms range 

normally around 1 to 2 in the ligneous hosts as the Prunus species (Martínez-Gómez 

and Dicenta, 2000a). In addition, optical densities of ELISA were very high in 

comparison with date observed in other peach cultivars (Cambra et al. 1994). 

PPV infection produced a decrease in F’v/F’m and NPQ. The decrease in 

F’v/F’m has been described also in TMV-infected tobacco plants and in PMMoV- and 

PaMMoV-infected Nicotiana bentamiana plants (Van Kooten et al. 1990, Rahoutei et 

al. 2000), indicating a lower efficiency of excitation energy capture by open PSII 

reaction centres. The reduction in F’v/F’m could be attributed also, in part, to the 
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destruction of PSII reaction centres (Rahoutei et al. 2000). However, this was not the 

case for peach plants, because the values for Fv/Fm were around 0.8 for both control 

and PPV-infected plants. In virus-infected tobacco and Nicotiana bentamiana plants, 

the decrease in F’v/F’m was parallel with an increase in NPQ (Van Kooten et al. 1990; 

Rahoutei et al., 2000). The maintenance of NPQ values under stress situations has 

been associated with a capacity to dissipate light energy safely, and it can be seen 

as a protective response in order to avoid photoinhibitory damage to the reaction 

centres (Van Kooten et al. 1990, Rahoutei et al. 2000). However, a decrease in NPQ 

was observed in PPV-infected peach leaves, that could reflect a diminished capacity 

for the safe dissipation of excess light energy, and therefore does not avoid the 

production of harmful species, such as 1O2 (Fryer et al., 2002). 

In most incompatible responses, the rapid induction of highly localised events 

determines unfavourable conditions for pathogen growth. This defence response 

culminates in a localised cell death, called the hypersensitive response, designed to 

impair pathogen spread (De Gara et al. 2003). It has been suggested that during the 

first hours of barley-mildew interaction, H2O2 could contribute to the first line of 

defence against mildew invasion (Thordal-Cristensen et al. 1997). However, in the 

present work, different factors, including the use of woody plants, the mode of 

inoculation (a piece of bark from diseased GF305 plants) and the time which passed 

between the subjection of plants to the artificial dormancy and the growth of the first 

expanding leaves, made it difficult to study the short-term responses against PPV 

infection, and results were obtained for long-term PPV infection. Changes in 

antioxidant metabolism have also been reported in compatible plant-virus 

interactions, but contradictory results were shown, with both induction and reduction 

of antioxidant enzymes activities being described (Riedle-Bauer 2000, Hernández et 

al. 2001a, Clarke et al. 2002). These studies suggested that AOS could act as signal 
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activating defence genes and that regulation of antioxidant enzymes could be 

important in determining susceptibility or resistance, indicating that AOS and 

antioxidant metabolism could be involved in the symptom development and 

pathogenesis (Riedle-Bauer 2000; Hernández et al. 2001a, Clarke et al. 2002; de 

Gara et al., 2003). 

It has been described that ASC oxidation may also be catalysed by pHMB-

insensitive class III peroxidases (Class III family) (Kvaratskhelia et al. 1999). They 

exhibit high specific APX activity and oxidise ASC and organic phenols at 

comparable rates (Kvaratskhelia et al. 1999). In leaves from GF305 peach, pHMB-

insensitive APX activity has been detected in both chloroplasts and soluble fractions. 

The increases in soluble and chloroplastic pHMB-sensitive APX, as well the increase 

in chloroplastic pHMB-insensitive APX and the maintenance of soluble catalase, 

pHMB-insensitive APX and total peroxidase activities, could have prevented an 

excessive H2O2 accumulation in leaves, and thus may have led to a reduced signal 

transduction effect for defence genes induction (Levine et al. 1994). Alternatively, if 

these H2O2-scavenging enzymes, were important for resistance against PPV, they 

may have occurred too late to afford protection against the oxidative stress induced 

by the long-term PPV infection. On the other hand, the increases in APX activities 

observed in peach leaves could be also a response to cellular damage, rather than a 

direct response to the presence of PPV. Probably, this increase in APX activity could 

not stop the development of symptoms that resulted from the infection by PPV, but 

could have helped to reduce the severity of the disease and, probably, to allow the 

plants to recover. This situation is similar to that described in leaves of Dactylis 

glomerata L., susceptible to Cocksfoot mottle virus, where an increase in antioxidant 

enzymes was described in response to the cellular damage imposed by long-term 

virus infection (Li and Burritt 2002).  
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No changes could be observed in soluble DHAR or MDHAR activities from 

infected plants. However, values were higher for DHAR than for MDHAR (nearly 2-

fold), suggesting that, in cytosol from peach leaves, ASC could be regenerated 

mostly via DHAR. Conversely, in chloroplasts from control leaves, MDHAR values 

were higher than these of DHAR, suggesting that ASC could be regenerated mostly 

via MDHAR. However, in infected plants, decreases in chloroplastic MDHAR and GR 

occurred, suggesting that these plants could have a lower capacity for regeneration 

of chloroplastic ASC and GSH. This, linked to the observed decreases in soluble and 

chloroplastic SOD, could favour the long-term PPV-induced oxidative stress, as 

shown by the increases in lipid peroxidation and protein oxidation and the 

appearance of oxidative microbursts. In two apricot cultivars, foliar DHAR activity 

increased in response to PPV infection, but the rise was much higher in the resistant 

plants (300%) that in the susceptible ones (only 37%), suggesting that the inoculated 

resistant cultivar had a higher capacity for regeneration of ASC than the inoculated 

susceptible plants (Hernández et al. 2001a). This higher DHAR induction in the PPV-

resistant cultivar could contribute to an increased antioxidant capacity, which could 

be related, among other factors, to their resistance to PPV. Besides ASC, it has been 

reported that GSH can be also important in the reduction of both, number of necrotic 

lesion and virus contents in TMV-infected tobacco plants (Gullner et al., 1999). 

In long-term PPV-infected leaves, H2O2 production has been observed in 

mesophyll cells near the minor veins. Such production was more intense in younger 

leaves and resembled the leaf microbursts observed by other authors in response to 

pathogenic stress situations where H2O2 is accumulated (Alvarez et al. 1998, 

Orozco-Cardenas and Ryan 1999). Similar microbursts has been observed in ozone-

treated tobacco plants as well as in salt-treated pea plants, and in both cases, the 

appearance of DAB-stainable areas was in parallel with the establishment of an 
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oxidative stress (Schraudner et al. 1998, Hernández et al. 2001b). The accumulation 

of H2O2, despite the decreases in soluble and chloroplastic SOD, indicates that this 

metabolite could be produced also in other ways (by NADPH oxidase, peroxidase, 

xanthine oxidase, urate oxidase, glycolate oxidase or glucose oxidase) (Halliwell and 

Gutteridge 1989, Montalbino 1992, Bolwell et al. 1998). Therefore, the H2O2 

production could be associated with the establishment of an oxidative stress caused 

by the long-term PPV infection. On the other hand, PPV infection produced intervenal 

chlorosis symptoms, which could have been induced by an increased generation of 

AOS, as shown in pea plants subjected to NaCl stress (Hernández et al. 2001b). As 

mentioned earlier, the decrease in NPQ in infected plants could increase the 

production of AOS in chloroplasts (Fryer et al. 2002), and it was accompanied by a 

decrease of chloroplastic antioxidant enzymes. Thus, the chlorosis symptoms 

observed in PPV-infected leaves could be ascribed both to a higher AOS generation 

and to a lower capacity for scavenging AOS. 

Lipid peroxidation and protein oxidation are the symptoms most easily 

ascribed to oxidative damage and they are often used as indicator of oxidative 

damage (Gómez et al., 1999; Hernández et al., 2001b, 2004). In salt-treated plants, 

the observed increases in lipid peroxidation and protein oxidation were correlated 

with the rise in AOS production (Gómez et al., 1999; Hernández et al., 2001b). In 

TRSV-infected cowpea laves, AOS generation, in particular O2
.-, is responsible for 

the increased lipid peroxidation which resulted in membrane damage (Beleid El-

Moshanty et al., 1993). In PPV-infected peach leaves, a decrease in both 

chloroplastic and soluble SOD took place. This could reduce the ability to eliminate 

O2
.-, thus increasing the risk of .OH formation (Halliwell and Gutteridge 1989) that 

could contribute to the increases in lipid peroxidation and protein oxidation observed. 
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PPV infection produced some ultrastructural alterations in peach cv. GF305. 

The presence of dilated thylakoids and the increase in plastoglobuli seem to be a 

general stress response, because they have been described previously, both under 

biotic and abiotic stress situations. In Chenopodium guinoa plants infected with 

Saguaro cactus virus, chloroplasts were severely damaged, showing frequent 

dilations of lamellae, a lower number of grana and numerous large plastoglobuli 

(Russo and Marterlli 1982). Similarly, ultrastructural changes induced by Zucchini 

yellow mosaic virus in leaves of Styrian pumpkin plants revealed that, in chloroplasts 

of infected leaves, the amounts of plastoglobuli increased significantly, whereas the 

amount of thylakoids significantly decreased (Zechmann et al. 2003). The alterations 

induced in the chloroplast ultrastructure by pathogen attacks are similar to those 

induced by NaCl stress (Hernández et al. 1995; Morales et al. 2001). The lower 

amount of starch in chloroplasts from PPV-infected leaves could have been due to an 

increased demand of plant tissues for normal respiration and growth, caused by 

activated defence responses and by the requirements of the pathogen. Thus, 

competition among plant sinks and with the pathogen is increased, with the 

consequence that, in compatible interactions, less carbon from the nutrient pool is 

available for storage and translocation (Ayres et al. 1996). 

Replication of some mammalian viruses is triggered by AOS and it is thought 

that cellular antioxidants may play an important role in preventing viral diseases 

(Schwarz 1996). In cell culture systems, H2O2 promotes replication of HIV while 

antioxidants, such as N-acetyl-cysteine or ASC, have the opposite effect (Harakeh et 

al. 1990, Staal et al. 1990). It has been proposed that a decline in free radical-

scavenging capacity may be required before a rapid increase in virus replication can 

take place, and treatments increasing the ability of plants to scavenge AOS may 

hinder virus replication (Clarke et al., 2002). If the same situation occurs in PPV-
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infected peach plants, the oxidative stress, accompanied by decreases in cytosolic 

and chloroplastic antioxidative enzymes, could be related to the progress of PPV 

infection and symptoms in leaves.  

The results indicate that infection by PPV led to changes in the antioxidative 

enzymes of peach, both in the cytosol and in the chloroplasts. In conclusion, long-

term PPV infection produced an oxidative stress in leaves of peach cv. GF305, 

characterised by its great susceptibility to sharka disease, as shown by the 

decreases in soluble and chloroplastic SOD and chloroplastic MDHAR and GR, the 

increases in lipid peroxidation and protein oxidation and the appearance of oxidative 

microbursts. This suggests that an antioxidative metabolism imbalance may be 

related to the progress of PPV infection and symptoms in peach leaves. 
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Table 1. PPV detection in inoculated and control GF305 peach seedlings. Number of 

plants giving positive results by ELISA and/or RT-PCR analysis. The results of two 

different cycles of experiments are shown. 

 

 Evaluated Cycle 1 Cycle 2 

 plants  Symptomsa ELISAb RT-PCR Symptomsa ELISAb RT-PCR 

Control 5 0 (0.0) 0 (0.07) 0 0 (0.0) 0 (0.06) 0 

Inoculated 5 5 (3.5) 5 (2.40) 5 5 (3.0) 0 (2.26) 5 

 

aSymptoms intensity on a scale from 0 (no symptoms) to 5  (maximum intensity). 
bMean optical density (OD) of ELISA at 405 nm after 60 minutes. 
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Table 2. Fluorescence parameters measured in control and long-term PPV-infected 

GF305 peach leaves. 

 

Data represent the mean ± SD from ten repetitions. Differences from control values 

are significant at P<0.05 (a), according to Duncan’s multiple range test 

 

 

 

 

Fluorescence parameters Control plants PPV-infected plants 

Fv/Fm 0.803 ±0.010 0.795±0.005 

F’v/F’m 0.781±0.040 0.662±0.021a 

ΦPSII 0.102±0.008 0.107±0.018 

qp 0.131±0.020 0.162±0.015 

NPQ 0.300±0.008 0.252±0.017a 
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Table 3. Effects of long-term PPV infection on antioxidant enzymes in soluble 

fractions from GF305 peach leaves. 

 

Enzymatic activity Control plants PPV-infected 
plants 

pHMB-sensitive ascorbate peroxidase 
nmol oxidised asc min-1 mg-1 protein 

143.9±3.9 173.1±5.2a 

pHMB-insensitive ascorbate peroxidase 
nmol oxidised asc min-1 mg-1 protein 

28.2±2.5 30.7±1.8 

Monodehydro ascorbate reductase (MDHAR) 
nmol oxidised NADH min-1 mg-1 protein 

33.9±3.3 33.7±2.0 

Dehydroascorbate reductase (DHAR) 
nmol reduced asc min-1 mg-1 protein 

71.0±2.5 72.8±3.7 

Glutathione reductase (GR) 
nmol oxidised NADPH min-1 mg-1 protein 

25.3±2.0 28.4±1.5 

Superoxide dismutase (SOD) 
U mg-1 protein 

19.5±0.6 13.5±1.3a 

Catalase 
µmol reduced H2O2 min-1 mg-1 protein 

8.9±0.8 11±0.9 

Peroxidase 
µmol oxidised 4-MN min-1 mg-1 protein 

382.7±18.9 403.6±5.5 

 

Data represent the mean ± SD from at least three repetitions. Differences from 

control values were significant at P<0.05 (a), according to Duncan’s multiple range 

test. 
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Table 4. Effects of long-term PPV infection on antioxidant enzymes in chloroplast 

suspensions from GF305 peach leaves. 

 

Enzymatic activity Control plants PPV-infected 
plants 

pHMB-sensitive ascorbate peroxidase 
nmol oxidised asc min-1 mg-1 protein 

205.0 ±19.2 1753.2 ±15.4b 

pHMB-insensitive ascorbate peroxidase 
nmol oxidised asc min-1 mg-1 protein 

162.0±24.0 289.1±14.5a 

Monodehydro ascorbate reductase (MDHAR) 
nmol oxidised NADH min-1 mg-1 protein 

99.84±9.94 36.83±2.14b 

Dehydroascorbate reductase (DHAR) 
nmol reduced asc min-1 mg-1 protein 

23.5±0.7 22.4±3.7 

Glutathione reductase (GR) 
nmol oxidised NADPH min-1 mg-1 protein 

27.7±2.5 20.1±1.5a 

Superoxide dismutase (SOD) 
U mg-1 protein 

19.2±0.6 14.0±1.2a 

 

Data represent the mean ± SD from at least three repetitions. Differences from 

control values were significant at P<0.05 (a), P< 0.01 (b), according to Duncan’s 

multiple range test.  
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Legend to Figures 
 

Fig. 1. Amplification products (313 bp) indicative of the presence of PPV, obtained 

using RT-PCR for PPV detection in different samples. Lane 1: healthy GF305 

seedling, Lane 2: GF305 seedling infected by PPV and showing strong sharka 

symptoms. M: molecular weight marker 1 Kb (Gibco BRL). 

 

Fig. 2. Effect of long-term PPV-infection on lipid peroxidation (given as TBARS) and 

protein oxidation in GF305 peach leaves. Data represent the mean ± standard errors 

of at least three replicates. Differences from control values were significant at P<0.05 

(a) or P<0.01 (b), according to Duncan’s multiple range test. GFc, control plants; Gfi, 

PPV-inoculated plants. 

 

Fig. 3. Detection of H2O2 generation in leaves from DAB-stained GF305 peach 

plants. A) two-week-old PPV-infected plants; B) two-week-old control plants; C) four-

week-old PPV-infected plants; D) four-weeks-old control plants. Bars = 500 µm.  

 

Fig. 4. Electron micrographs from GF305 peach leaves. A) Palisade parenchyma 

cells from control plants. B) Control plant. Detail of a chloroplast of a palisade 

parenchyma cell, showing large starch granules and few plastoglobuli. C) Palisade 

parenchyma cells from PPV-inoculated plants. D), E) Inoculated plants. Detail of 

chloroplasts of palisade parenchyma cells, showing few starch granules and a large 

amount of plastoglobuli. F) Inoculated plant. Detail of chloroplasts, showing dilated 

thylakoids and a large amount of plastoglobuli. 
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