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Ghost and tachyon free gauge theories of gravity
A systematic approach

Yun-Cherng Lin

Abstract
In this thesis, we present a systematic method for determining the conditions on the

parameters in the action of a parity-preserving gauge theory of gravity about a Minkowski

background for it to be free of ghost or tachyon particles. The approach naturally accommo-

dates critical cases in which the parameter values satisfying some critical conditions causing

changes of particle contents and may lead to additional gauge invariances. In Chapter 1, we

give an overall introduction to the field. We then introduce the systematic method in Chapter

2. The method is implemented as a computer program, and the details of its implementation

are presented in Chapter 3. In Chapter 4, we apply the method to investigate the particle

content of parity-conserving Poincaré gauge theory (PGT+). We find 450 critical cases

that are free of ghosts and tachyons and compare the no-ghost-and-tachyon conditions of

some critical cases with literature. We also examine the power-counting renormalisability

of some of the critical cases of PGT+ and clarify the treatment of non-propagating modes

in determining whether a theory is power-counting renormalisable (PCR) in Chapter 5. We

identify 58 of the ghost and tachyon free PGT+ critical cases that are also PCR, of which

seven have 2 massless degrees of freedom (d.o.f.) in propagating modes and a massive 0− or

2− mode, 12 have only 2 massless d.o.f., and 39 have only massive mode(s). In chapter 6, we

analyse parity-preserving Weyl gauge theory (WGT+) in a similar way. Within a subset of

WGT+, we find 168 critical cases that are free of ghosts and tachyons. We further identify 40

of these cases that are also PCR. Of these theories, 11 have only massless tordion propagating

particles, 23 have only a massive tordion propagating mode, and 6 have both. We also repeat

our analysis for PGT+ and WGT+ with vanishing torsion or curvature, respectively. In

Chapter 7, we summarise the contents in this thesis and suggest some future work.
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Notations and conventions

Units, signs, and factors

• We use natural units: c =h̄ = 1.

• Minkowski metric: ηµν = diag(+1,−1,−1,−1).

• Fourier transformation:

f (x) =
∫ d4 p

(2π)4 f̃ (p)eip·x, f̃ (p) =
∫

d4x f (x)e−ip·x (1)

Sometimes we will drop the tilde of the fields in the momentum space if the meaning

is obvious.

• Propagators: For a free Lagrangian in momentum space L(p) = 1
2ϕ(−p)O(p)ϕ(p),

the propagator is O−1(p).

Indices

• Greek letters µ,ν · · · : coordinate frame

• Uppercase Latin letters A,B · · · : local Lorentz frame

• Lowercase Latin letters a,b,c · · · : labels for fields

• Lowercase Latin letters i, j,k · · · : labels for orthogonal components in the same spin-

parity sector

• Greek index with an acute accent (ά ,β́ ): representing the collection of the local Lorentz

indices of a field

Gauge fields, field strengths, actions

• AAB
µ : Lorentz rotational gauge field
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• h µ

A : translational gauge field, with inverse bA
µ

• h = det(h µ

A ), b = det(bA
µ)

• Bµ : dilational gauge field

• RAB
µν = 2(∂[µAAB

ν ]+AA
E[µAEB

ν ]): Lorentz field strength (for PGT and WGT)

• T A
µν = 2(∂[µbA

ν ]+AA
E[µbE

ν ]): translational field strength (for PGT)

• T ∗CAB = T C
AB +2B[AδC

B]: translational field strength (for WGT)

• Hµν = 2∂[µBν ]: dilational field strength (for WGT)

• S =
∫

d4xh−1 (LG +LM) =
∫

d4x(LG +LM): action for PGT/WGT, where LG and LM

correspond to the free gravitational part and matter part, respectively.

Acronyms

• GR: general relativity

• SR: special relativity

• PGT: Poincaré gauge theory

• WGT: Weyl gauge theory

• eWGT: extended Weyl gauge theory

• PGT+,WGT+: general PGTs or WGTs with parity-preserving Lagrangians

• d.o.f.: degrees of freedom

• SPO: spin projection operator

• PC: power-counting

• PCR: power-counting renormalisable

• EC theory: Einstein–Cartan theory

• GCT: general coordinate transformation

• EP: equivalence principle
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Chapter 1

Introduction

It is known that Einstein’s theory of general relativity (GR) is compatible with the experi-

mental and observational data at intermediate length scales [ 1 ]. For large scales, while the

ΛCDM model seems successful, it assumes the existence of dark matter, for which there

is no confirmed candidate. It also requires a non-zero positive cosmological constant. The

cosmological constant we observe today is too small compared to the vacuum energy pre-

dicted by quantum field theory (the cosmological constant problem), and the energy density

of the cosmological constant is surprisingly close to the matter density now (the coincidence

problem).

On the other hand, the theory also has problems at small length scales from the theoretical

perspective. GR is not perturbatively renormalisable. At first glance, it is not power-counting

(PC) renormalisable, but a power-counting non-renormalisable theory might turn out to be

renormalisable. While GR is renormalisable at the one-loop level without coupling to other

particles, it is not renormalisable at the one-loop level if it couples to matter [ 2 ]. Another

problem is that spacetime singularities are expected in GR [ 3 ].

An approach to solve the renormalisation problem is to modify the action of gravity. It

seems that GR is an inevitable gravitational theory because of the Lovelock theorem [  4 ,  5 ].

The theorem states that the only divergence-free rank-2 tensors which are constructed from

the metric tensor gµν and its derivatives up to second differential order in four spacetime

dimensions and preserving diffeomorphism invariance are the Einstein tensor and the metric

1
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tensor. However, if we relax the assumptions, we can obtain several ways to modify gravity.

There are several methods that we can use to relax the assumptions of the theorem [ 1 ,  6 ]:

• Additional fields

• Allowing higher order derivatives

• Violations of diffeomorphism invariance

• Higher dimensions

• Violations of Weak Equivalence Principle (WEP)

• Allowing non-locality

In 1977, Stelle [ 7 ] showed that the theories with the followingR+R2 type action with

appropriate parameters are renormalisable:

S =
∫

d4x
√
−g
(
αR+βRµνρσRµνρσ + γRµνRµν

)
. (1.1)

However, this kind of theory is a higher-derivative theory, and it usually suffers from

Ostrogradsky’s instability [  8 ,  9 ]. This is generally related to containing modes with negative

energy (ghosts). The ghost modes make the theory unstable for small oscillations at the

classical level, and violate unitarity at the quantum level [  10 ]. The Hamiltonian is not

bounded from below, so the energy of the system can be negative. This does not cause

any problem for the free theory because the overall sign of the Lagrangian does not change

the equation of motion in classical theories. If there are interactions with systems with

positive energy, then it is possible that the system is bounded from below. However, there

are infinite excited states around the ground state, and so the system can “evaporate” into

these ground states and thus be unstable. This may be the underlying reason why Nature

prefers theories with second-order equations of motion. At the quantum level, the ghost

particles have negative norms, so the probability of finding a particle in a state can be negative

or greater than one, and unitarity is therefore violated. Higher-derivative theory may also

contain modes with imaginary (complex) mass (tachyons). The tachyon modes propagate

faster than light and thus violate causality. They also make the theory unstable at the classical

level and destroy unitarity at the quantum level. The classical field can grow exponentially
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[ 11 ], and the norm of a quantum state can evolve exponentially because of the imaginary

(complex) energy. There are some special types of Lagrangian with the formR+R2 that

do not contain ghosts or tachyons, such as L(R) gravity, but they do not improve the UV

behaviour [ 12 ].

An approach to improve the high energy behaviour is to include infinite sets of higher

derivative terms [ 12 – 16 ]. Biswas, Mazumdar and Siegel [ 13 ] argued that it is the only way to

obtain a renormalisable and ghost-free theory if the Lagrangian is constructed fromRµνρσ

and gµν [ 13 ]. These kinds of theories are called Infinite Derivative theories of Gravity

(IDG) and can be free of ghost and asymptotic-free simultaneously. However, including

infinite higher derivatives makes the theories non-local. If the field equation contains infinite

derivatives, then we need the initial value of the field and its derivatives up to infinite order

to solve the equation. This is equivalent to requiring the initial value everywhere to get the

later value of the field at a point, not only requiring the initial values over a finite domain,

and so it may violate causality.

1.1 Poincaré gauge theory

Another approach is inspired by Yang–Mills theory [ 17 ]. The Standard Model of particle

physics describes the electroweak and strong interactions as gauge theories of SU(3)C×

SU(2)L×U(1)Y , but it does not include gravity. Hence, it is a natural assumption that gravity

is a gauge theory as for the other interactions. The equivalence principle (EP) states that at

each point x in an arbitrary gravitational field one can choose a locally inertial frame S(x) in

which the laws of physics take the same form as in special relativity (SR). Although not often

pointed out, the EP is closely related to local Poincaré symmetry, since the frame S(x) can be

obtained from an arbitrarily fixed frame S0 ≡ S(x0) by the combination of a translation, to

bring the origin of S0 to coincide with that of S(x), and a Lorentz rotation, to bring the axes of

S0 to coincide with those of S(x) [ 18 ]. These transformations are the elements of the Poincaré

group, and its parameters depend on the point x at which S(x) is defined. Moreover, these

Poincaré transformations are symmetry transformations because the laws of physics possess
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the same form in all inertial frames. Thus, according to the EP, an arbitrary gravitational field

is characterized by the group of local Poincaré transformations, which act on the set of all

locally inertial frames. Therefore, it is reasonable to consider gravity as a gauge theory of

the Poincaré group.

Following the gauging of the Lorentz group by Utiyama [ 19 ], Kibble was the first to gauge

the Poincaré group [ 20 ], and the theory was also considered by Sciama [ 21 ]. This class of

theories is called Poincaré gauge theory (PGT). In Kibble’s model, a continuum matter field(s)

ϕ with energy-momentum and spin-angular-momentum tensors is distributed continuously

in background Minkowski spacetime. The action of the matter field SM =
∫

d4xLM(ϕ,∂µϕ)

is invariant under global Poincaré transformation and can be made invariant under local

Poincaré transformation by introducing the gauge fields h µ

A and AAB
µ , which correspond to

translation and Lorentz transformation respectively. Note that AAB
µ is antisymmetric in (A,B).

Greek indices denote the coordinate frame, and Latin capital indices correspond to the local

Lorentz frame. We need these gauge fields to compensate for the unwanted effect of local

Poincaré transformations, ensuring the theory has local symmetry. This is fulfilled by using

the minimal coupling procedure, which replaces the partial derivatives ∂µϕ in the original

(special-relativistic) Lagrangian with their corresponding covariant derivatives DAϕ , which

are constructed with the gauge fields h µ

A and AAB
µ . The local Poincaré invariant action is

then SM =
∫

d4xh−1LM(ϕ,DAϕ), where h≡ det(h µ

A ) makes the integrand a scalar density

and thus the integral is invariant.

After Kibble’s initial work, several authors proposed different approaches to gauging the

Poincaré group. Hehl et al. [  22 ] performed active Poincaré transformations on the fields,

rather than the passive ones on the coordinates as in Kibble’s work. The active interpretation

of the transformation considers the “form” variation δ0ϕ(x)≡ ϕ ′(x)−ϕ(x), while the passive

one considers the “total” variation δϕ(x)≡ ϕ ′(x′)−ϕ(x). The active approach makes the

symmetry closer to the spirit of conventional gauge theories, where the symmetries are

internal symmetries, whereas Kibble’s approach is more directly related to the geometric

interpretation [ 18 ,  23 ]. It turns out that both the active and passive interpretations give the

same final structure of theories. To preserve the geometrical meaning of translation when
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localising the Poincaré symmetry, Hehl et al. further replaced the partial derivative in the

translational generator by a covariant derivative. The variation with the replaced translational

generator only differs from the original one by a Lorentz transformation, and thus invariance

under δ0ϕ(x) is equivalent to its counterpart with the replaced translational generator. One

can also consider finite transformations instead of infinitesimal ones as in Kibble’s work.

Mukunda [ 24 ] applied passive finite local Poincaré transformations in his work. Using the

powerful language of geometric algebra, Lasenby, Doran and Gull [ 25 ] constructed the

gauge theory by considering active finite local Poincaré transformations and studied its

astrophysical and cosmological applications. No matter how the Poincaré group is gauged,

the resulting theories are equivalent. We will adopt the approach of passive infinitesimal

transformations in this thesis.

Besides the matter Lagrangian, the free Lagrangian for the gravitational gauge fields is

also required to make these fields dynamic. Similar to Yang-Mills theory, we can commute

the covariant derivatives and get the field strengths. The commutator [DA,DB]ϕ leads to the

identification of the Lorentz field strengthRAB
CD and the translational field strength T A

BC .

The local Poincaré invariant free gravitational action SG =
∫

d4xh−1LG(RAB
CD,T A

BC ) can

then be constructed with the field strengthsRAB
CD and T A

BC .

Although it is natural to consider the gauge theories of gravity as a field theory in

Minkowski spacetime, which will be adopted in this thesis, one can also interpret it as a

geometric theory. It turns out that PGT has the geometric structure of the Riemann-Cartan

spacetime (U4). The difference between the Riemann-Cartan spacetime (U4) and the usual

Riemann spacetime (V4) is that the torsion is zero in V4 but in general non-zero in U4. The U4

manifold has a metric gµν , and we can define local Lorentz frame with a set of orthonormal

basis vectors eA at each point. It can be shown that the gauge field h µ

A is interpreted as

the vierbein (or tetrad) field in the geometric interpretation, i.e. eA = h µ

A eµ , where eµ is

the basis vector for the coordinate frame. The tetrad field h µ

A and its inverse bA
µ can be

used to convert tensors between the coordinate frame and the local Lorentz frame. Similarly,

the gauge field AAB
µ acts as the spin connection in the geometric construction. The rule

of parallel transport for a vector uA in the local Lorentz frame is δuA =−AA
Bµ

uBdxµ . The
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field strengthsRAB
CD and T A

BC are interpreted geometrically as the curvature and torsion,

respectively.

To avoid higher derivatives, we should construct the free gravitational LagrangianLG with

at most quadratic field strengths, and therefore LG is at most quadratic in the first derivatives

of the gauge fields. Because AAB
µ is an independent field, quadratic field strengths do

not contain higher derivatives, unlike the conventional R2 theories. The restriction also

makes the theory satisfy the so-called pseudolinearity (or quasi-linearity) hypothesis, which

suggests that the second derivatives must occur linearly in the field equations [ 26 – 28 ].

Unlike Yang-Mills theory, in PGT we can have an action linear in field derivatives. In

Kibble’s work, the gravitational action is SG =
∫

d4xh−1R, where R ≡ RAB
AB. This is

the Einstein–Cartan–Sciama–Kibble theory (or Einstein–Cartan theory, EC theory). It is a

direct generalisation of the standard Einstein–Hilbert action, but the torsion sourced by the

spin-angular-momentum of matter fields is included. The propagator of the free gravitational

theory has a similar structure as that of ordinary GR, and it is equivalent to GR if one does

not couple it to fermionic matter [  29 ]. Hence, it does not improve the ultraviolet behaviour

when coupled to bosonic matter. However, recent research indicates that a universe with

Einstein–Cartan–Sciama–Kibble theory avoids the unphysical big-bang singularity [ 30 – 32 ].

Terms with quadratic field strengths can also be added into LG, so the most general LG is

then LG ∼ R+R2 +T 2, where we omit the coefficients and indices, and it is natural to

require parity invariance.  

1
 The linear term R typically ensures that PGT has the correct

macroscopic limit as GR [ 33 ], and the quadratic terms mimic the conventional Yang-Mills

theory.

In the most general free PGT, while there are 40 dynamical variables (16 in h µ

A , or

equivalently bA
µ , and 24 in AAB

µ ), 10 of the field equations represent initial data because the

Lagrangian does not contain ∂0bA
0 and ∂0AAB

0 due to the antisymmetric structure in the field

strengths. One can further fix the gauge of Poincaré symmetry so that ten more dynamical

variables are not independent, and the number of independent variables becomes 20. One

may give constraints on the Lagrangian parameters and make the properties of the theory

1We denote PGTs with parity-preserving Lagrangians as PGT+.
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different. For example, one may consider LG ∼R+T 2, which is one of the most simple

generalisations of the EC theory. Because there is no kinetic term for the A-field, it becomes

a “non-propagating” field, which vanishes outside any sources. We can make the A-field

propagating by addingR2 terms into the Lagrangian, and one may consider LG ∼R+R2

instead [ 34 – 36 ], or LG ∼R2 +T 2 [ 37 ]. Obukhov et al. [ 33 ] summarised the conservation

laws and field equations of theR+R2+T 2 theories and gave their correspondence with GR,

exact Friedman-type solutions and weak gravitational radiation. The coupling to matter fields

is studied in [ 38 ], with the gravitational Lagrangian of type f (R). Theories with parity-odd

terms in LG have also been investigated by [ 32 ,  33 ,  39 – 42 ], but we will only consider parity

invariant LG in this thesis. It is also possible to broaden the choice of the free gravitational

Lagrangian by introducing a scalar [ 43 ].

As mentioned above, we require the gravitational theory to be unitary and renormalisable.

Both properties can be investigated by studying the particle spectrum. To obtain the particle

spectrum, one may split the fields into irreducible tensors, find the linearised (weak field

perturbation) field equations, perform variable changes so that the field equations become

Klein–Gordon-like, and then read off the masses [ 44 – 46 ]. The particle spectrum can also be

obtained by the Hamiltonian method [ 42 ,  47 – 50 ]. However, it is most convenient to obtain

the particle spectrum with spin projection operators (SPOs) [ 51 – 53 ]. One has to linearise the

gauge fields around the trivial vacuum solution and obtain the linearised Lagrangian L(2)G in

momentum space containing only the terms with bilinear linearised gauge fields. Then the

linearised gauge fields of h µ

A and AAB
µ can be decomposed into irreducible representations

of the Poincaré group, and each of the irreducible representations corresponds to a specific

spin and parity JP. If we view the 40 linearised gauge fields as a column vector, then L(2)G can

be viewed as a 40×40 matrix sandwiched by a row and a column vector. When projected into

the SPO basis, the matrix of L(2)G becomes block-diagonal, with each block corresponding to

a JP. Note that if LG violates parity invariance, then each block corresponds only to a specific

spin J. By fixing the gauge and inverting the blocks of LG, one obtains the propagator for

each JP sector. The particle spectrum can then be obtained by studying the poles and residues

of the gauge-invariant saturated propagators, which are the propagators sandwiched by the
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source currents. Note that when the momentum square is zero (k2 = 0), some of the SPOs

have zero denominators and thus the basis is not well-defined. One needs more careful

investigation for these massless particles.

To make PGT unitary, we need to require the particle spectrum of the gravitational fields

to be free from ghosts and tachyons. We can obtain no-tachyon and no-ghost conditions on

the parameters of LG by requiring the poles of the saturated propagator to be positive and the

residues at the poles to be positive definite, respectively. The renormalisability of PGT can

be examined by requiring the theory to be power-counting renormalisable (PCR) as a first

step. To be PCR, the propagators of the h-field (graviton) and the A-field (tordion, or roton)

[ 26 ] should behave as ∼ 1/k4 and ∼ 1/k2 in the high energy limit, respectively [ 29 ]. If we

require the propagator goes as ∼ 1/k4, however, one may encounter some problems. If there

are poles with the structure
(
k2−m2

1
)−1 (k2−m2

2
)−1, then by the partial fractions

F(k)(
k2−m2

1
)(

k2−m2
2
) = F(k)

m2
1−m2

2

(
1

k2−m2
1
− 1

k2−m2
2

)
, (1.2)

one should find the residues at the two poles have opposite signs when F has the same

sign at the two poles. If the ghost is in a lower spin-sector and massless, as in GR, it may

be compensated by some degrees of freedom (d.o.f.) from massless modes in a higher

spin-sector since the SPOs are not orthonormal at the massless poles. If the ghost is in the

spin-2 sector, there is no mode from a higher spin-sector to compensate it. When there are

∼ 1/
(
k2−m2

1
)4 poles (m2

1 = m2
2), where m2 can be zero, in the saturated propagator, there

exist dipole ghosts, which again violate unitarity [ 11 ,  54 – 56 ]. It can be illustrated by setting

m2
2 = m2

1 + ε in ( 1.2 ). When ε → 0, there must be a pole with positive residue and the other

with a negative one, and so one of them must be a ghost. Therefore, it is widely considered

that for any PCR theories, there must be ghosts in the spin-2 sector. However, the statement

is not robust. As we can see in Eq. (8-10) in [ 57 ], the massless poles can be eliminated

by not only compensation with higher spin-sectors but also source constraints and index

symmetries 

2
 .

2While there is a sign error in Eq. (8) in [ 57 ], it does not affect the discussion here.
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The SPO formulation for rank-2 tensor fields was introduced by Fronsdal [ 51 ] and

developed by Barnes [  52 ] and Rivers [  53 ]. Van Nieuwenhuizen [ 58 ] applied the SPO

formulation to study the no-ghost-and-tachyon conditions for the most general quadratic

rank-2 tensor field theory with at most two derivatives. Neville [ 36 ] constructed a set of

SPO for the h and A-fields of PGT+ and considered PGT+ withR+R2 actions. He found a

ghost-and-tachyon-free action with a 0− massive tordion in addition to the ordinary graviton.

Neville also considered actions at most quadratic in the curvature tensor, the contorsion

tensor Kµλν =−1
2

(
Tµλν −Tνµλ +Tλνµ

)
, and covariant derivatives of Kµλν in [ 59 ]. Sezgin

and van Nieuwenhuizen [  29 ] examined the most general PGT+ action with no more than

two derivatives, i.e. R+R2 +T 2, using a systematic method with SPOs, while they used

a different basis from Neville’s one. The “most general” PGT+ contains a 2+ ordinary

massless graviton and massive tordions with spin-parity JP = 0−, 0+, 1−, 1+, 2−, 2+, with

2+(1+1+3+3+5+5) = 20 degrees of freedom in total. The result is consistent with

the analysis from the aspect of field equations. However, the “most general” PGT+ must

contain massive ghosts or tachyons. Note that if the Lagrangian parameters meet some

“critical conditions”, the theory may change qualitatively. For example, massive modes may

become massless or non-propagating, and the theory may gain additional gauge invariances.

Therefore, ghosts and tachyons may appear or disappear in these critical theories. They

found five critical theories that are free of ghosts and tachyons. Sezgin [ 57 ] further found

12 six-parameter ghost and tachyon free critical cases of PGT+ by removing some massive

poles from the most general theory. The paper also found a ghost and tachyon free critical

case with additional gauge invariance. The theory contains a propagating massless 1−

tordion in addition to the ordinary graviton. Kuhfuss and Nitsch [ 27 ] also examined the

same theory with SPO but with a different method to tackle the massless poles, but they

found no propagating massless tordion. The appearance of the tordion was caused by a sign

error in Sezgin’s equation, which was confirmed by Blagojević and Vasilić [  48 ], where they

studied critical cases with additional gauge invariance of the most general PGT+. Kuhfuss

and Nitsch also examined teleparallel (setting the curvature to zero) PGT+ and illustrated a

ghost and tachyon free critical case, while they found the most general theory contains dipole
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ghosts. Battiti and Tollek [ 60 ] found three critical cases with additional propagating massless

particles which are not ghosts or tachyons, using the field equation method. Karananas

[ 41 ] studied the “most general” R+R2 +T 2 action for PGT with parity-violating terms

with SPOs but found it must contain ghosts or tachyon. Blagojević and Cvetković [ 42 ] also

studied the same theory with the Hamiltonian approach and made the same conclusion, while

some details are different. They also gave an outline of how to deal with the critical cases

with the Hamiltonian approach. While some of the theories above contain no ghosts or

tachyons, none of them is PCR simultaneously. However, it is still possible that there exist

some ghost-and-tachyon-free and PCR critical cases which have not been investigated yet,

and thus a complete study of the critical cases is essential.

1.2 Weyl gauge theory

Because of the difficulties encountered in PGT, one may consider gauging extra symmetries

beyond the Poincaré one. Since a scale-invariant theory contains no dimensionful parameter

and no absolute energy scale, it may have better ultraviolet behaviour. Thus, rather than

gauging the Poincaré group, one may instead gauge the Weyl group so that the action is also

invariant under local dilations. Inspired by the early work of Weyl [  61 ] in the late 1910s,

which introduced a new gauge field Bµ in an attempt to unify gravity and electromagnetism 

3
 ,

the authors of [  62 ], [ 63 ] and [ 64 ] gauged the Weyl group W (1,3). The Weyl group is a

subgroup of the conformal group C(1,3) and extends the Poincaré group to be scale-invariant.

The theory is called Weyl gauge theory (WGT). Similar to PGT, the theory can be formulated

by considering active or passive, finite or infinitesimal Weyl transformation, but they are all

equivalent.

As in PGT, the action of the matter field is also obtained by the minimal coupling rule

SM =
∫

d4xh−1LM(ϕ,D∗Aϕ), where ϕ is a continuum matter field(s) with energy-momentum

and spin-angular-momentum tensors and dilational current distributed continuously in back-

ground Minkowski spacetime, and D∗Aϕ is the covariant derivative in WGT. The gauge fields

3The gauge field Bµ interacts with particles and antiparticles in the same way, which is not the case for
electromagnetism.
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h µ

A and AAB
µ are also required to build the covariant derivatives, while h µ

A has a different

transformation rule in WGT. In contrast to PGT, WGT contains an additional gauge field, Bµ ,

which corresponds to the dilation part of the Weyl group. In WGT, each field transforms like

ϕ(x)→ ϕ ′(x′) = ew(ϕ)ρ(x)ϕ(x) under the dilation transformation, where w(ϕ) is called the

weight of ϕ . Because w(h−1) = 4, the weight of the matter Lagrangian must be w(LM) =−4

if we require SM to be Weyl invariant. Note that “ordinary” matter can not have mass in this

case. Because the Dirac field ψ has the weight w(ψ) = w(ψ̄) =−3/2, the mass term mψ̄ψ

is not allowed in the matter Lagrangian.

We can also obtain the field strengths RAB
CD and T ∗ABC from the commutation re-

lations of the covariant derivatives, in addition to a new field strength HAB correspond-

ing to the new gauge field Bµ . Note that the form of the translational field strength

T ∗ABC is different from T A
BC in PGT. The field strengths have weights w(RAB

CD) = −2,

w(T ∗ABC ) = −1, and w(HAB) = −2, respectively. Since we require the free gravitational

action SG =
∫

d4xh−1LG(RAB
CD,T ∗ABC ,HAB) to be Weyl invariant, the free gravitational

Lagrangian must have the weight w(LG) =−4. Hence, the most general LG in WGT with at

most two derivatives in the gauge fields is LG ∼R2 +H2 +RH, which is more restricted

compared with the one in PGT. However, we may increase the choices of LG by introducing

a scalar field (compensator [ 18 ]) φ with weight w(φ) =−1 and allow it to couple with the

field strengths non-minimally. Indeed, a scalar field can also be coupled to Einstein’s gravity

in a similar way so that the gravitational constant can vary over the spacetime (for example,

see Brans–Dicke theory [ 65 ]), and the theory becomes free of dimensionful parameters.

With the compensator, the most general LG with at most two derivatives in the gauge fields

becomes LG ∼ φ 2R+R2 +φ 2T ∗2 +H2 +RH+(D∗φ)2 +φ 4. Dirac [ 66 ] investigated the

φ 2R+H2 +(D∗φ)2 +φ 4 theory without torsion and found gauge theories of gravity with

scale invariance compatible with “ordinary” matter. The matter Lagrangian also becomes

more flexible if we include the compensator, and we can include “ordinary” matter in it. For

the Dirac field, we may include the term µφψ̄ψ with the correct weight −4, where µ is a

dimensionless constant, instead of the non-scale-invariant mass term mψ̄ψ . After choosing
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the gauge φ = φ0 (or interpreted as spontaneous symmetry breaking, see Chapter  6 ), the

Dirac field can be interpreted as a massive field.

Similar to PGT, we also require WGT to be unitary and renormalisable. However, the

unitarity and renormalisability of WGT are far less well understood, compared to PGT.

For more details of broader topics about gauge theories of gravity, one may refer to the

books [ 18 ,  67 – 69 ].

1.3 Outline of thesis

In this thesis, we provide a systematic approach to investigate the no-ghost-and-tachyon

conditions and the power-counting renormalisability for gauge theories of gravitation and

their critical cases. We then apply it to study those properties of PGT+ and WGT+.

The remainder of this thesis is arranged as follows 

4
 .

In Chapter  2 , we present a systematic approach to investigate the no-ghost-and-tachyon

conditions for general gauge theories of gravitation. The method can systematically deal

with the no-ghost condition in the massless sector, including those with additional gauge

invariances, which is not fully investigated in the literature. It also classifies all critical

conditions into three categories and can find all critical cases, including those conditions

preventing them from becoming other critical cases if the critical conditions contain only

linear combinations of the Lagrangian parameters. In the appendix of this chapter, we explain

the relation between the polarisation basis and SPO and show some details about the no-ghost

condition.

In Chapter  3 , we show some details of the implementation of the systematic method,

which is implemented in MATHEMATICA.

In Chapter  4 , we construct PGT by gauging the Poincaré symmetry and apply the method

to investigate the most general parity-preserving PGT with up to two derivatives, as well

as all of the critical cases. We also examine torsion-free and curvature-free PGT+ in the

same way. We then compare our results with those previously presented in the literature. In

4Chapters  2 and  4 are based on the paper [ 70 ], Chapter  5 is based on the paper [ 71 ], and Chapter  6 is based
on the paper [ 72 ].
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the appendix to the chapter, we list the details about the intermediate steps for finding the

no-ghost-and-tachyon conditions for the most general PGT+ (“root” theory).

In Chapter  5 , we review the criterion of PCR and list critical cases of PGT+ which

are ghost and tachyon free and PCR simultaneously. We also clarify the treatment of non-

propagating modes in determining whether a theory is PCR. The criterion can be implemented

in addition to the method presented in Chapter  2 , and the implementation is described in the

appendix to the chapter. We also apply the criterion to the much simpler cases of the Proca

and Stueckelberg theories in the appendix.

In Chapter  6 we apply the systematic method to study the most general parity-preserving

WGT with up to two derivatives and investigate a subset of the critical cases. We found that

some of them are ghost and tachyon free and PCR. We then find that some results are related

to some critical cases in PGT+, and the results can be extended to some critical cases of the

most general WGT+ outside the subset. The torsion-free and curvature-free parity-preserving

WGTs are also investigated. In the appendix to the chapter, we discuss the completeness of

the critical conditions and additional conditions of the critical cases.

Finally, we summarise the contents in this thesis in Chapter  7 and make some suggestions

for future work.





Chapter 2

Systematic method

In this chapter, we present our systematic method to determine the conditions on the parame-

ters in the action of a parity-preserving gauge theory of gravity for it to contain no ghost or

tachyon particles. If the parameters in the action satisfy certain “critical conditions”, however,

the theory may possess different particle contents or additional gauge invariances or both.

This increases the difficulty of obtaining the no-ghost condition of the massless sector of a

gauge theory of gravity systematically. Therefore, following a brief primer on spin projection

operators and notation in Section  2.1 , we present in Section  2.2 a systematic approach to

investigating all such critical cases and accommodating the associated additional source

constraints. The technique naturally accommodates critical cases in which the parameter

values lead to additional gauge invariances. The method is implemented as a computer

program in MATHEMATICA, and we present the implementation in Chapter  3 . The program

is used in Chapters  4 and  6 to investigate the particle content of parity-conserving Poincaré

gauge theory and Weyl gauge theory, respectively, which we compare with previous results

in the literature.

15
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2.1 Spin projection operators

We begin by briefly reviewing the spin projection operator (SPO) formalism [ 52 ,  53 ,  73 ] and

establishing our notation. The SPOs may be used to decompose a field in momentum space

into parts with definite spin J and parity P.

A field ζά , where a Greek index with an acute accent (ά , ...) represents the collection of

the local Lorentz indices of the field, may be decomposed as

ζ (k)ά = ∑
J,P,i

ζi(JP,k)ά , (2.1)

ζi(JP,k)ά ≡ Pii(JP,k) β́

ά
ζ (k)

β́
, (2.2)

where there is no sum on i in ( 2.2 ). There may be more than one component, or none, with

spin-parity JP. The index i (or, more generally, lowercase Latin letters from the middle of the

alphabet) labels these components in the same spin-parity sector and also labels the SPOs.

The momentum kA is a timelike vector, but for simplicity we omit the tensor indices of the

momentum k and position x when they appear as function arguments. Indeed, for brevity’s

sake, we will omit the dependence of fields and SPOs on k or x for the remainder of this

section.

There are also off-diagonal SPOs Pi j(JP)
β́

ά
, where i ̸= j, which complete a basis for

parity-conserving operators acting on ζά . The SPO basis is Hermitian, complete, orthonormal,

and the diagonal elements are positive (or negative) definite. Thus, they satisfy

Pi j(JP)άβ́ = P∗ji(J
P)β́ ά , (2.3)

∑
i,J,P

Pii(JP)
άβ́

= I
άβ́

, (2.4)

Pik(JP)
µ́

ά
Pl j(J′P

′
)

µ́β́
= δJJ′δPP′δklPi j(JP)

άβ́
, (2.5)

[ϕ∗
ά

Pii(JP)άβ́
ϕ

β́
]P≥ 0 ∀i,ϕά , (2.6)

where I
άβ́

is the identity operator for the field ζ , and in the final condition ϕ
β́

is an arbitrary

field in the same tensor space as ζ and P (without indices) is the parity.



2.1 Spin projection operators 17

Now consider the (usual) case in which the action contains multiple fields ζ
(1)
ά1

, ζ
(2)
ά2

,

. . . , ζ
( f )
ά f

, where the index a = 1, . . . , f labels the fields (generally we will use lowercase

Latin letter from the start of the alphabet for this purpose). One can then generalise the SPO

Pi j(JP)
άβ́

in the single-field case to P(ab)
i j (JP)

άβ́
, where the latter now projects the jth part

with spin-parity JP of the field ζ
(b)
β́

into the ith part with spin-parity JP of the field ζ
(a)
ά

.

It is clear from the above discussion that the description of SPOs requires the introduction

of several sets of indices of different types. In an attempt to ease somewhat this notational

burden, we introduce a matrix-vector formalism that removes two of these sets of indices.

We begin by defining the generalised field vector

ζ̂ ≡
n

∑
a=1

ζ
(a)
άa

ea, (2.7)

where ea is a column vector with ath element equal to unity and the remaining elements zero.

On the left-hand side (LHS) of ( 2.7 ), we have suppressed the local Lorentz indices, and it

should be understood that the ath element of ζ̂ consists of the tensor expression ζ
(a)
άa

. The

contraction of two generalised field vectors ζ̂ and ξ̂ is then given by

ζ̂
† · ξ̂ =

n

∑
a=1

ζ
∗(a)
άa

ξ
(a)άa, (2.8)

where we have “overloaded” the dot notation on the LHS to encompass the summations both

over the field index a and the collection of local Lorentz indices ά .

Turning to the SPOs, we begin by considering the tensor quantities P(ab)
i j (JP)

άβ́
as the

elements of a block matrix P(JP), for which the indices (a,b) label the f × f blocks and the

indices (i, j) label the individual elements within each block. Note that since not every field

has parts belonging to a given spin-parity sector JP, some of the blocks will have zero size.

We then redefine the indices (i, j) such that Pi j(JP)
άβ́

denotes simply the tensor expression

in the ith row and jth column of P(JP). Finally, for each such element, we define the f × f

matrix

P̂i j(JP)≡ Pi j(JP)
άβ́

eae†
b, (2.9)
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where (a,b) denotes the block in P(JP) to which the element belongs. By analogy with (  2.7 ),

we have again suppressed the local Lorentz indices on the LHS of ( 2.9 ) for brevity. The

advantage of this notation is that these generalised quantities (denoted by a caret) satisfy

relationships of an analogous form to those given in Equations ( 2.3 )–( 2.6 ).

The SPO block matrices P(JP) used in this thesis are listed in Appendix  2.A . One can

obtain the operators for other fields by the method described in [ 73 ].

2.2 Method

We determine whether a theory contains ghosts or tachyons by adapting the systematic method

of spin projection operators used in [ 29 ,  41 ]. We apply the method to parity-preserving

actions S =
∫

d4xL with arbitrary real tensor fields, for which the linearised Lagrangian can

be written as

L = LF +LI,

= 1
2 ∑

a,b
ζ
(a)
ά

(x)O(ab)(∂ )άβ́
ζ
(b)
β́

(x)−∑
a

ζ
(a)
ά

(x) j(a)ά(x),

= 1
2 ζ̂

T(x) · Ô(∂ ) · ζ̂ (x)− ζ̂
T(x) · ĵ(x), (2.10)

where ζ
(a)
ά

(x) are the fields, j(a)
ά

(x) are the corresponding source currents, and we have

defined the generalised operator Ô(∂ )≡O(ab)(∂ )άβ́ eae†
b (again suppressing local Lorentz

indices on the LHS), in which O(ab)(∂ )άβ́ is a polynomial in ∂ and depends linearly on the

coefficients of the terms in the free-field Lagrangian.

By Fourier transformation, the free-field part of the Lagrangian can be written

LF = 1
2 ζ̂

T(−k) · Ô(k) · ζ̂ (k), (2.11)

where, without loss of generality, one may take Ô(k) to be Hermitian. A theory has no

tachyons if all particles have real masses, and it contains no ghost particle if the real parts of
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the residues of the saturated propagator at all poles are non-negative:

Re
[

Res
k2=m2

(Π)

]
≥ 0, (2.12)

where the saturated propagator is the propagator sandwiched between currents

Π(k) = ĵ†(k) · Ô−1(k) · ĵ(k). (2.13)

We will show more details about ( 2.12 ) in Appendix  2.C .

To obtain the propagator, one first decomposes Ô(k) into sectors with definite spin and

parity:

Ô(k) = ∑
J,P
Ô(JP,k) = ∑

i, j,J,P
ai j(JP,k)P̂i j(JP,k). (2.14)

Pre- and post-multiplying ( 2.14 ) by SPOs and using the orthonormality conditions ( 2.5 ), one

obtains (omitting the explicit dependence of quantities on k for brevity)

P̂ii(JP) · Ô · P̂j j(JP) = ∑
k,l,J′,P′

akl(J′P
′
)P̂ii(JP) · P̂kl(J′P

′
) · P̂j j(JP)

= ai j(JP)P̂i j(JP), (2.15)

from which one can read off ai j(JP) as the coefficient of P̂i j(JP). The quantity ai j(JP) may

be considered as the (i, j)th element of a s× s matrix a(JP), where s is the number of parts

of spin-parity JP across all the fields.

The next step is to invert Ô(k) to obtain the propagator. The orthonormality property of

the SPO means that inverting Ô(k) is equivalent to inverting the matrices a(JP). One may,

however, find that some of the a-matrices are singular, and so cannot be inverted.

If a(JP) is singular, then the theory possesses gauge invariances, as follows. If a(JP) has

dimension s× s and rank r, then it has (s− r) null right eigenvectors vw,R
i (JP), where i is the

vector component index and w is a label enumerating the null eigenvectors (a null eigenvector

is an eigenvector that corresponds to a zero eigenvalue). Similarly, it also has (s− r) null left
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eigenvectors vw,L
i (JP). Thus, if the generalised field ζ̂ is subjected to a change of the form

δ ζ̂
w = ∑

k,J,P
vw,R

k (JP)P̂k j(JP) · ϕ̂, (2.16)

where ϕ̂ is some arbitrary generalised field, then the equations of motion Ô · ζ̂ = ĵ remain

unchanged.

The null eigenvectors also lead to constraints on the source currents ĵ. From the equations

of motion, one may show that

∑
l

vw,L
l (JP)P̂kl(JP) · ĵ = ∑

l,i, j
vw,L

l (JP)P̂kl(JP) ·ai j(JP)P̂i j(JP) · ζ̂

= ∑
i, j

[
vw,L

i (JP)ai j(JP)
]

P̂k j(JP) · ζ̂

= 0 ∀k,JP,w. (2.17)

Hence, one can use the (s− r) field transformations in ( 2.16 ) to set the corresponding (s− r)

parts ζk(JP)ά of the field to zero and hence fix the gauge. This is equivalent to deleting the

corresponding (s− r) rows and columns in a(JP), and thereby a(JP) becomes nonsingular

(this is most easily implemented by successively proposing each row/column pair for deletion,

and eliminating only those for which the rank of the matrix is unchanged). We denote the

a−matrices after deleting the rows and columns by b(JP) . Note that, if the rank of a(JP)

is zero, then there is no particle content in this spin-parity sector and we will ignore these

spin-parity sectors in the following discussion.

The inverse of Ô(JP) then becomes

Ô−1(JP) = ∑
i, j

b−1
i j (JP)P̂i j(JP), (2.18)

where b−1
i j (JP) denotes the (i, j)th element of the inverse b-matrix, and the saturated propa-

gator is thus given by

Π = ∑
i, j,J,P

b−1
i j (JP) ĵ† · P̂i j(JP) · ĵ. (2.19)
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The no-ghost condition ( 2.12 ) requires us to locate the poles of the saturated propagator.

We first consider those arising from the elements of the inverse b-matrices, which can be

written as

b−1
i j (JP) =

1
det [b(JP)]

CT
i j(J

P), (2.20)

where Ci j(JP) is the cofactor of the element bi j(JP). Since Ci j(JP) is polynomial in k, all

poles of b−1
i j (JP) are located at the zeroes of det

[
b(JP)

]
. The determinant in each spin-parity

sector can be written as

det
[
b(JP)

]
= αk2q(k2−m2

1)(k
2−m2

2)...(k
2−m2

r ), (2.21)

where α and m1,m2, . . . ,mq (which we assume are nonzero) are functions of the Lagrangian

parameters but independent of k, and q and r are non-negative integers. Thus, b−1
i j (JP) has

poles only at k2 = 0 and k2 = m2
1, k2 = m2

2,. . . , k2 = m2
r .

It is worth noting that the reason why there are no odd-order k terms in the determinant is

that only the off-diagonal elements of b-matrices contain odd-order k terms. Such an element

must belong to a row and column corresponding to one field with odd indices and the other

with even indices. The odd-order k is always accompanied by a factor i, so such elements

are purely imaginary. Since the b-matrix is Hermitian, however, its determinant is real. The

terms in odd powers of k must cancel because they are imaginary, and so the determinant

contains only terms with even powers of k.

2.2.1 Massless sector

The no-ghost condition ( 2.12 ) in the massless sector is that the residue of the saturated

propagator ( 2.19 ) at k2 = 0 be non-negative. Besides the poles at k2 = 0 present in b−1
i j (JP),

the SPOs Pi j(JP) also contain singularities of the form k−2n, where n is a positive integer.

Letting kA = (E, p⃗) and p≡
√

p⃗2, the particle energy is given by E =
√

k2 + p2, and the

saturated propagator can be written (most conveniently in a slightly unorthodox form) as a
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Laurent series in k2 in the neighbourhood of k2 = 0

Π(k2, p⃗) =
N

∑
n=−∞

Q2n

k2n , (2.22)

where N is an integer and the coefficients Q2n are some functions of the on-shell momentum

k̄A ≡ (p, p⃗) and the on-shell source currents j(a)
ά

(k̄). If N is zero or negative, then there is no

pole at k2 = 0 and there is no propagating massless particle. We will only discuss the N > 0

cases here. The no-ghost conditions ( 2.12 ) are that the residue of k2 = 0 be non-negative, so

Q2 ≥ 0. Furthermore, we require that the saturated propagator has a simple pole in k2 at this

point, since terms proportional to k−2n with n > 1 contain ghost states [ 54 ]. For example, if

the Laurent series of the saturated propagator about k2 = 0 contains a term proportional to

k−4, one can write this as
1
k4 = lim

ε→0

1
ε

(
1
k2 −

1
k2 + ε

)
, (2.23)

which contains a normal state and a ghost state.

To obtain the coefficients Q2n in the Laurent series ( 2.22 ), one may expand the SPOs in

the saturated propagator, which can then be written as a sum of terms of the form

Π(k) = ∑
P1(k2)C(kA,ηAB, j(a)

ά
)

P2(k2)
, (2.24)

where P1(k2) and P2(k2) are polynomials of k2, and C(· · ·) is a scalar that is obtained from

contracting the tensors in its argument. We require that C(· · ·) does not contain the factor k2

because it can be absorbed into P1(k2). Note that the coefficient Q2n may not necessarily be

given by

∑

{
Res
k2=0

[
k2(n−1)P1(k2)

P2(k2)

]
C(kA,ηAB, jφ ,ά)|k2=0

}
, (2.25)

if there exists any nonzero higher-order (larger n) terms because there may be kA terms in

C(· · ·). One can accommodate this situation by expanding the tensor expressions into their

components before taking residues. To this end, it is convenient to choose a coordinate

system such that kA = (E,0,0, p); this greatly simplifies the calculation without loss of

generality, since the saturated propagator is Lorentz invariant.
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Note that the source currents have to satisfy the source constraints ( 2.17 ). However,

( 2.17 ) is a set of tensor equations, which is difficult to use systematically in the no-ghost

conditions. We thus expand the source constraints into their components, and then solve the

component equation set and substitute them back to the saturated propagator. Since ( 2.17 ) is

a set of homogeneous linear equations, we can write it in matrix-vector form as

C · j≡

 c11 c12 . . . c1q
... . . . . . .

...
cm1 cm2 . . . cmq




j(1)0···0
j(1)0···1

...
j( f )
3···3

= 0, (2.26)

where m and q are integers, ci j is the coefficient of the jth component of the source current in

the ith equation, f is the total number of fields, and the subscripts of j(i) are Lorentz indices.

The solution is

j = ∑
i

Xini, (2.27)

where ni are the null vectors of C, and Xi are some free variables. Note that we have to

rescale those null vectors with factors (E − p)n in the denominator to avoid introducing

spurious singularities to the saturated propagator, where n is the minimum integer to make

the null vector nonsingular at E = p. We then replace the source current components with Xi

using ( 2.27 ).

Now the residue only contains the free variables Xi, and we can put them in a column

matrix X. The saturated propagator can then be written as a matrix M sandwiched by current

vectors X:

Π = X† ·M ·X. (2.28)

We can also write Q2n in terms of a matrix Q2n in a similar way:

Q2n = X† ·Q2n ·X. (2.29)
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Since Q2n = 0 for n > N, then k2(N−1)Π contains only a simple pole or no pole at k2 = 0,

and one obtains

Q2N = Res
k2=0

[
k2(N−1)M

]
= lim

E→p

[
k2NM

]
. (2.30)

One then calculates the remaining Q2n by subtracting all the higher singularities:

Q2n = lim
E→p

[
k2N

(
Π−

N

∑
j=n+1

Q2 j

k2 j

)]
, (2.31)

Thus, we obtain recursively all of the Q-matrices with positive n: Q2N , Q2(N−1), ..., Q2.

For Q2n with n > 1, one requires that each element in the matrix is zero:

Q2n = 0 ∀ p ̸= 0,n > 1. (2.32)

For n = 1, corresponding to the k−2 pole, the no-ghost condition is equivalent to requiring

that each eigenvalue of Q2 is non-negative:

Eigenvalues(Q2)≥ 0 ∀ p ̸= 0. (2.33)

The number of nonzero eigenvalues is equal to the number of degrees of freedom of the

propagating massless particles.

Solving the inequalities in ( 2.33 ) may be quite time consuming, however, in the cases

where the eigenvalues contain some roots of cubic or even higher polynomials. It is therefore

convenient to convert them into an alternative form. In particular, if x1, · · · ,xn are the roots

of a polynomial xn +an−1xn−1 + · · ·+a0 = 0 and the roots are guaranteed to be real, then

x1, · · · ,xn > 0⇔ (−1)n−iai > 0 ∀ ai. (2.34)

We can extend the above relation to non-negative roots using the fact that if there are exactly

z zero roots, then a0, · · · ,az−1 = 0 and az ̸= 0. We then collect the conditions with 0 to n zero

roots. This gives the conditions for non-negative roots.
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2.2.2 Massive sector

In the massive sector, the no-tachyon conditions are simply:

m2
s > 0 ∀s (2.35)

for every spin-parity sector. If this condition is satisfied, one must then determine if any of

the massive particles is a ghost. For non-tachyonic particles, k is real around k2 = m2
s , and so

the b-matrices are Hermitian. Although one can thus expand the saturated propagator and

analyse its poles in a similar manner to that used in the massless sector, there is a simpler

approach in the massive sector, provided all the masses in all spin sectors are distinct, which

is true in PGT+. We first discuss this case and discuss the other more general cases later.

From Eqs. ( 2.19 )–( 2.21 ), for an arbitrary current ĵ, the no-ghost condition ( 2.12 ) may be

written as

( 2.12 )⇔

[
∑
i, j,J

1
αk2q

(
∏
r ̸=s

1
k2−m2

r

)
CT

i j(J
P) ĵ† · P̂i j(JP) · ĵ

]
k2=m2

s

≥ 0 ∀ ĵ,s,J,P,

⇔

[
∑
i,J

1
αk2q

(
∏
r ̸=s

1
k2−m2

r

)
CT

D,ii(J
P) ĵ†

D · P̂ii(JP) · ĵD

]
k2=m2

s

≥ 0 ∀ ĵD,s,J,P,

(2.36)

where CT
D,i j(J

P) = ∑k,l Uik(JP)CT
kl(J

P)U†
l j(J

P), ĵD = ∑i, j U(JP)i jP̂(JP)i j · ĵ and U(JP)i j are

the elements of a unitary matrix of which each column is a eigenvector of the matrix with

elements CT
i j (the subscript D thus denotes a diagonal basis). We can write the last line in

( 2.36 ) safely because the matrix with elements CT
i j(J

P,k2 = m2
s ) is finite and Hermitian, so

it must have finite real eigenvalues and the transform matrix with elements Ui j(JP) is finite

even at the pole. Since the current ĵD is arbitrary and b−1
D,ii(J

P) has either no singularity or a

simple pole at k2 = m2
s , which we will explain later, then using ( 2.20 ) again gives

( 2.36 )⇔∑
i,JP

Res
k2=m2

s

[
b−1

D,ii(J
P)
]
·
[

ĵ† · P̂ii(JP) · ĵ
]

k2=m2
s

≥ 0 ∀ ĵ,s,J,P. (2.37)



26 Systematic method

Since bi j(JP,k2) is Hermitian for real k2 about m2
s > 0, its eigenvalue bD,ii(JP,k2) is analytic

as a function of k2 about m2
s > 0 [ 74 , p. 139], and one can Taylor expand it about k2 = m2

s :

bD,ii(JP,k2) =bD,ii(JP,m2
s )+b′D,ii(J

P,m2
s ) · (k2−m2

s )+ ..., (2.38)

where the prime denotes the derivative with respect to k2. The determinant is a polynomial in

k2, so it must also be analytic. Since it equals zero at k2 = m2
s , we can write:

det
[
b(JP)

]
(k2) = det

[
b(JP)

]′
(m2

s ) · (k2−m2
s )+

1
2

det
[
b(JP)

]′′
(m2

s ) · (k2−m2
s )

2 + ...

(2.39)

As we are assuming that all the masses are distinct, then det
[
b(JP)

]′
(m2

s ) ̸= 0 and

det
[
b(JP)

]
(k2) ∼ O(k2 −m2

s ) when k2 is near m2
s . Hence, there should be one i with

bD,ii(JP)(m2
s ) ∼ O(k2 − m2

s ), and the other bD,ii(JP)(m2
s ) ∼ O(1). Thus, exactly one

Resk2=m2
s

[
b−1

D,ii(J
P)
]

is nonzero. Together with the property ( 2.6 ), the massive no-ghost

condition therefore becomes

( 2.37 )⇔ Res
k2=m2

s

[
b−1

D,ii(J
P)
]
·P≥ 0 ∀s,

⇔ Res
k2=m2

s

[
Trb−1

D (JP)
]
·P≥ 0 ∀s,

⇔ Res
k2=m2

s

[
Trb−1(JP)

]
·P≥ 0 ∀s. (2.40)

Let us now examine the case where Resk2=m2
s

[
Trb−1(JP)

]
= 0. This violates the conclu-

sion that exactly one Resk2=m2
s

[
b−1

D,ii(J
P)
]

is nonzero. The violation is equivalent to that at

least one of the assumptions we made fails. The assumptions are that there is no tachyon,

all masses are distinct, and the Lagrangian parameters do not satisfy any of the critical

conditions, which we will mention later. Therefore, if Resk2=m2
s

[
Trb−1(JP)

]
= 0, there must

be a tachyon or there exist identical masses.
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Hence, the combined massive no-ghost-and-tachyon conditions are

m2
s > 0 ∀s, (2.41)

Res
k2=m2

s

[
Trb−1(JP)

]
·P > 0 ∀s, (2.42)

if the masses in each spin sector are distinct. To obtain the masses, one merely has to calculate

the roots of the determinants of the b-matrices. We assume that all the roots that depend on

the parameters of the Lagrangian are indeed non-zero. If one sets a nonzero mass to zero,

however, a massive pole becomes massless pole and one has to recalculate the massless

no-ghost conditions because the additional massless pole was not included in the calculation

in the previous previous step. We will discuss such “critical cases” later and assume that they

do not occur here.

If any mass in a spin sector has multiplicity greater than one, Eq. ( 2.38 ) will not hold. In

that case, one has to calculate b−1
D,ii(J

P) explicitly and use the condition ( 2.37 ) directly. One

should also avoid higher singularities in these cases. In the PGT+ case that we will consider

in Chapter  4 , however, there is at most one massive mode in each spin sector.

We note that the condition ( 2.42 ) is the same as Eq. (27b) in [ 29 ], but differs from Eq.

(47) in [  41 ]. The reason is that Karananas considers full PGT, with parity-violating terms,

so that his spin projectors do not satisfy P∗i j(J
P)

άβ́
= Pji(JP)

β́ ά
and the parity-even and odd

parts are mixed. Hence, ( 2.37 ) is not valid in this case. It is not clear, however, how one

arrives at Eq. (47) in [ 41 ] in the full PGT case.

Finally, we note that the full combination of conditions on the Lagrangian are given by

( 2.32 ), ( 2.33 ), ( 2.41 ) and ( 2.42 ).

2.2.3 Critical cases

There are a number of assumptions in the analysis outlined above, so the process is not

complete. To understand this better, let us reexamine the determinants in ( 2.21 ), which can
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be written as

det
[
b
(
JP)]= k2q

r

∑
j=0

(
A2 jk2 j)= k2qA2r

r

∏
j=1

(
k2−m2

j
)
, (2.43)

where q and r are non-negative integers, and A2 j are some finite functions of the parameters,

with A2r ̸= 0 and A0 ̸= 0. In the above process, we have implicitly assumed m j ̸= 0 and finite.

We now discuss what may happen if the parameters in the Lagrangian satisfy some equalities

and violate these assumptions in a given spin-parity sector JP.

In particular, we consider the following eventualities.

1. det
[
b
(
JP)] = 0: This is equivalent to all A2 j = 0. The determinant becomes zero,

and there are more gauge freedoms. Hence, we need to calculate the new source

constraints and b−1
i j
(
JP) matrix elements, and the massless, as well as massive poles,

have different forms.

2. det
[
b
(
JP)] ̸= 0, A2r ̸= 0, but A0 = 0: The determinant can then be written as

det
[
b
(
JP)]= k2(q+l)

r

∑
j=l

(
A2 jk2( j−l)

)
, (2.44)

where A2l ̸= 0, l is a positive integer and r ≥ l > 0. Some masses becomes zero,

so some massive poles of the propagator become massless. The number of massive

conditions decreases, and the massless conditions change. Hence, there is no further

gauge invariance, and the source constraints and the matrix elements b−1
i j
(
JP) remain

in the same form. One needs to calculate the new massless and massive conditions.

3. det
[
b
(
JP)] ̸= 0, A0 ̸= 0, and A2r = 0: The second equality of ( 2.43 ) becomes invalid

since some masses become infinite. In this case, we can write the determinant as

det
[
b
(
JP)]= k2q

r−l

∑
j=0

(
A2 jk2 j) , (2.45)

where l is a non-negative integer. There is no new gauge freedom, but the number

of the roots is decreased. The poles are “removed” in this case. Since only the k2q

part will affect the massless poles in the saturated propagator [see Eq. ( 2.19 )–( 2.21 )],
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the forms of the massless poles are unchanged. Hence, one need only recalculate the

massive conditions. In this case, some non-propagating modes (propagator with no

pole) might appear. We do not forbid these modes in this thesis.

4. det
[
b
(
JP)] ̸= 0, A0 = 0, and A2r = 0: This eventuality is a combination of  2 . and  3 .

There is no new gauge freedom, but some masses become zero, and the number of the

roots is decreased.

We can find all conditions that cause a theory to be a critical case by finding all conditions

that cause det
[
b
(
JP)]= 0, A0 = 0, or A2r = 0 in any spin sectors. While some conditions

may cause more than one of the above situations, we can still divide all the critical conditions

into three categories.

A. Those causing det
[
b
(
JP)] = 0 in any spin-parity sector: The source constraints,

b−1
i j
(
JP) matrix elements, and the massless as well as massive poles have different

forms.

B. Those causing A0 = 0 in any spin-parity sector, and not belonging to Type A: The

form of the source constraints and the b−1
i j
(
JP) matrix elements are the same, but the

massless and massive conditions have different forms.

C. Those conditions not belonging to Type A and Type B: These conditions cause A2r = 0

in some spin sectors. Only the form of the massive condition is changed. We can

substitute the conditions into the massless condition directly.

We can then traverse all possible critical cases. First, we find the type A, B and C

conditions for the parameters in the original Lagrangian satisfying only one equality. Each

type A and B condition is a child theory of the original theory. For the type C conditions,

any combination of type C conditions of a theory is also a type C condition of the theory,

provided they are not contradictory. Note that we are assuming that a child theory does not

satisfy the other sibling critical conditions, and it does not include the critical cases of itself.

Hence, some combinations of type C conditions might be contradictory, and we have to

remove these cases. We first calculate the no-ghost-and-tachyon conditions for all the type C
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child theories. We then calculate the no-ghost-and-tachyon conditions for the first type A or

B child theory and then find its critical cases.

We traverse the “tree” in a pre-ordered way: we repeat the above process until the theory

we are investigating has no type A or B child theory, and then return to its parent theory and

consider the next unevaluated child theory of the parent theory. Because it is possible to

reach the same theory by different routes, we have to check whether the child theory has been

evaluated. If it has been evaluated, we neither calculate it again nor find its child theories.

The reason why we do not have to find the child theories for type C conditions is that their

type A and B child conditions must be evaluated in some other branches of their sibling

type A or B conditions. As for the type C child theories, they are already included in the

combination of the sibling type C conditions. We can then find all possible critical cases and

collect all no-ghost-and-tachyon conditions.

This process is best illustrated by examples, which we provide in Chapter  4 , in the context

of PGT+.
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Appendix 2.A List of spin projection operators

The block matrices P(JP) containing the most general spin projection operators for theories

used in this paper are as follows (see Section  2.1 for details). In PGT+, only the rows/columns

of A, s, and a-fields are used. In WGT+, the rows and columns of B-field are also required.

While the scalar φ -field is not used in this thesis, we also include it here for completeness.

P
(
0−
)
=

( AABC

A∗IJK
2
3ΘICΘJAΘKB +

1
3ΘIAΘJBΘKC

)
, (2.46)

P
(
0+
)
=



AABC sAB sAB φ BC

A∗IJK
2
3ΘCBΘKJΩIA

√
2

3 k̃JΘABΘKI

√
2
3 k̃JΘKIΩBA

√
2
3 k̃JΘKI −

√
2
3ΘKJΩIC

s∗IJ

√
2

3 k̃BΘCAΘIJ
1
3ΘABΘIJ

1√
3
ΘIJΩAB

1√
3
ΘIJ

1√
3
k̃CΘIJ

s∗IJ

√
2
3 k̃BΘCAΩJI

1√
3
ΘABΩIJ ΩABΩIJ ΩIJ k̃CΩIJ

φ ∗
√

2
3 k̃BΘCA

1√
3
ΘAB ΩAB 1 k̃C

B∗K −
√

2
3ΘCBΩAK

1√
3
k̃KΘAB k̃KΩAB k̃K ΩKC


,

(2.47)

P
(
1−
)
=



AABC AABC sAB aAB BC

A∗KIJ ΘCBΘIAΘKJ
√

2ΘIAΘKJΩCB
√

2k̃BΘIAΘKJ
√

2k̃BΘIAΘKJ ΘICΘKJ

A∗KIJ

√
2ΘAIΘCBΩKJ 2ΘIAΩCBΩKJ 2k̃JΘIAΩKB 2k̃JΘIAΩKB

√
2ΘICΩKJ

s∗IJ

√
2k̃JΘAIΘCB 2k̃BΘAIΩCJ 2ΘIAΩJB 2ΘIAΩJB

√
2k̃JΘIC

a∗IJ

√
2k̃JΘAIΘCB 2k̃BΘIAΩCJ 2ΘIAΩJB 2ΘIAΩJB

√
2k̃JΘIC

B∗K ΘAKΘCB
√

2ΘAKΩCB
√

2k̃BΘAK
√

2k̃BΘAK ΘKC


,

(2.48)
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P
(
1+
)
=


AABC AABC aAB

A∗IJK ΘICΘKBΩJA +ΘIAΘKCΩJB −
√

2ΘJAΘKBΩIC
√

2k̃JΘIAΘKB

A∗IJK −
√

2ΘBIΘCJΩAK ΘIAΘJBΩKC k̃KΘIAΘJB

a∗IJ

√
2k̃BΘAIΘCJ k̃CΘAIΘBJ ΘAIΘBJ

, (2.49)

P
(
2−
)
=

( AABC

A∗IJK
2
3ΘICΘJBΘKA +

2
3ΘIAΘJBΘKC−ΘCBΘIAΘKJ

)
, (2.50)

P
(
2+
)
=


AABC sAB

A∗IJK −2
3ΘCBΘKJΩIA +ΘICΘKAΩJB +ΘIAΘKCΩJB

√
2k̃J
(
ΘIAΘKB− 1

3ΘABΘKI
)

s∗IJ

√
2k̃B
(
ΘCJΘIA− 1

3ΘCAΘIJ
)

−1
3ΘABΘIJ +ΘIAΘJB

.

(2.51)

where k̃A = kA/
√

k2, ΩAB = kAkB/k2, and ΘAB = ηAB− kAkB/k2. The operators are adapted

from [ 41 ]. The fields have some symmetry properties: the AABC field is antisymmetric

in AB, the aAB field is antisymmetric in AB, and the sAB field is symmetric in AB. Note

that the spin projection operators satisfy the symmetry properties implicitly. For example,

although P33(1−) = P(ss)
11 (1−) is notated as 2ΘIAΩJB above, its correctly symmetrised form

is (ΘIAΩJB +ΘIBΩJA +ΘJAΩIB +ΘJBΩIA)/2. We have verified that the above set of spin

projection operators satisfies ( 2.4 ) and ( 2.5 ).

Appendix 2.B Polarisation basis vectors  

1
 

If we consider SO(3) space rotation, we can decompose Lorentz tensors into SO(3) represen-

tation spaces. For a Lorentz vector, vA, the timelike component v0 is invariant under space

rotation, and vi is a 3-vector. If we perform a parity transform, v0 is invariant, but all the

components of vi gain a different sign. Hence, we can decompose vA into 0+⊕1−.

1We are taking inspiration from [ 75 ,  76 ] in this appendix.
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We can find a set of polarisation basis vectors for a vector in the momentum space 

2
 . We

choose the momentum kA to be kA = (k0,0,0,k3) without loss of generality 

3
 . The bases

ε(JP,m) are 

4
 

ε
A
(1−,1) =

1√
2


0
1
i
0

 , ε
A
(1−,−1) =

1√
2


0
−1
i
0

 , ε
A
(1−,0) =

1
k


k3

0
0
k0

 , ε
A
(0+,0) =

1
k


k0

0
0
k3

 .

(2.52)

The basis vectors satisfy the orthonormal and completeness conditions,

ε
∗A
(JP1

1 ,m1)
ε
(JP2

2 ,m2),A
= P1δJ1,J2δP1,P2δm1,m2, (2.53)

∑
J,P,m

Pε
A
(JP,m)ε

∗
(JP,m),B = δ

A
B . (2.54)

Hence, the operator εA
(0+,m)ε

∗
B,(0+,m) projects a Lorentz vector to the spin-0+ part, and

similarly ∑m

(
−εA

(1−,m)ε
∗
B,(1−,m)

)
projects a Lorentz vector to the spin-1− part.

The numbers of the basis vectors are consistent with the fact that an off-shell spin- j

particle has 2 j+1 degrees of freedom. For the massless on-shell particle, we can set k3→ k0

so that εA
(1−,0)→ εA

(0+,0) and the degrees of freedom decrease.

Now we define the tensors:

Ω
AB =

kAkB

k2 , Θ
AB = η

AB− kAkB

k2 , (2.55)

and we can find they satisfy the following properties:

Ω
A

CΩ
C

B = Ω
A

B, Θ
A

CΘ
C

B = Θ
A

B, Ω
A

CΘ
C

B = Θ
A

CΩ
C

B = 0,

Ω
AB +Θ

AB = η
AB. (2.56)

2From now on, all the calculations are in the momentum space if not specified.
3We are considering the off-shell case here, so in general k2 ̸= 0 even if the particle is massless.
4The ε

µ

(0+,0) does not correspond to the v0 part because now we are in a different representation from that
in the last paragraph.
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The operators have the following relations with the polarisation basis:

Ω
AB = ε

A
(0+,m)ε

∗B
(0+,m), Θ

AB = ∑
m

(
ε

A
(1−,m)ε

∗B
(1−,m)

)
, (2.57)

so they are proportional to the spin projector operators which project a Lorentz vector to

spin-0+ and spin-1− space respectively.

For the higher rank tensors, we can apply the addition rules for angular momentum. For

example, a (2,0) tensor f AB can be decomposed as

f AB ∈ (0+⊕1−)⊗(0+⊕1−)

=(0+⊗0+)⊕(0+⊗1−)⊕(1−⊗0+)⊕(1−⊗1−)

= 0+⊕1−⊕1−⊕ (0+⊕1+⊕2+). (2.58)

The polarisation basis can be obtained by the Clebsch-Gordan coefficients 

5
 . For example,

some bases εAB
(JP1

1 ,JP2
2 ,J′P′ ,mJ′)

obtained by JP1
1 ⊗ JP2

2 are

ε
AB
(1−,1−,2+,+2) = ε

A
(1−,1)⊗ ε

B
(1−,1),

ε
AB
(1−,1−,2+,+1) =

1√
2

(
ε

A
(1−,1)⊗ ε

B
(1−,0)+ ε

A
(1−,0)⊗ ε

B
(1−,1)

)
. (2.59)

We can decompose any (0,2) tensor into f AB = sAB +aAB, where s is symmetric and a

is antisymmetric. We can observe from the Clebsch-Gordan coefficients table that the 2+

and the 0+s are symmetric, and the 1+ is antisymmetric in A and B. We can make a linear

combination of the two 1− sectors to get a symmetric sector and an antisymmetric sector:

ε
AB
(sym,1−,m) ≡

1√
2

(
ε

AB
(0+,1−,1−,m)+ ε

AB
(1−,0+,1−,m)

)
(2.60)

ε
AB
(ant,1−,m) ≡

1√
2

(
ε

AB
(0+,1−,1−,m)− ε

AB
(1−,0+,1−,m)

)
. (2.61)

5We are using the same notations as the Particle Data Group, which can be found at  http://pdg.lbl.gov/
2008/reviews/clebrpp.pdf .

http://pdg.lbl.gov/2008/reviews/clebrpp.pdf
http://pdg.lbl.gov/2008/reviews/clebrpp.pdf
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Hence, we can conclude that the symmetric part of Equation (  2.58 ) is 2+⊕1−⊕0+⊕0+,

which has 5+ 3+ 1+ 1 = 10 degrees of freedom, and the antisymmetric part is 1+⊕ 1−,

which has 3+3 = 6 degrees of freedom, all as expected.

One can similarly decompose the AABC fields, which are antisymmetric on A and B, into

AABC ∈ (1+⊕1−)⊗ (0+⊕1−)

= 1+⊕ (0−⊕1−⊕2−)⊕1−⊕ (0+⊕1+⊕2+).

= 0−⊕0+⊕2(1−)⊕2(1+)⊕2−⊕2+,

for which the basis is straightforwardly constructed following an analogous approach to that

illustrated above.

The bases for higher rank tensors satisfy similar orthonormality and completeness condi-

tions to ( 2.53 ) and ( 2.54 ),

ε
∗ά
(i1,J

P1
1 ,m1)

ε
ά,(i2,J

P2
2 ,m2)

= P1δi1,i2δJ1,J2δP1,P2δm1,m2 (2.62)

∑
i, j,P,m

(
Pε

ά

(i,JP,m)ε
∗
β́ ,(i,JP,m)

)
= Iά

β́
, (2.63)

where i is the label of the basis in the spin sector JP, as there might be more than one basis in

a sector. The ά and β́ indices are shorthand for some generic indices, such as ά = A1A2...An.

We can write the basis vectors together with its corresponding column vector ea indicating

the field (see ( 2.7 )) in bra-ket notation |i,JP,m⟩,

|i,JP,m⟩ ≡ε
ά

(i,JP,m)ea, (2.64)

⟨i,JP,m| ≡ε
∗ά
(i,JP,m)e

†
a. (2.65)

The SPOs in Appendix  2.A are related with those polarisation basis vectors by

P̂i j(JP) = ∑
m

P |i,JP,m⟩⟨ j,JP,m| . (2.66)
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Note that the bras and kets here do not denote a quantum state, but are used merely to denote

the field decomposition in a straightforward manner.

These operators forms a complete and orthonormal basis for the O operator, as shown in

Equations ( 2.4 ), ( 2.5 ) and ( 2.14 ).

We can view O as a block diagonal matrix with diagonal sub-blocks numbered by JP,

and in each sub-block the matrix indices are i and j. Note that each matrix element possesses

the same Lorentz indices as the corresponding P̂i j(J). Note that for any matrices of the form

( 2.14 ), they obey,

M̂i j(J) = mi j(J)P̂i j(J),

N̂i j(J) = ni j(J)P̂i j(J),

∑
k

M̂ik(J)N̂k j(J) = ∑
k

mik(J)nk j(J)P̂ik(J)P̂k j(J),

= ∑
k

mik(J)nk j(J)P̂i j(J). (2.67)

Hence for each J, we can treat M̂i j(J) as a matrix with elements mi j(J) (with out P̂i j(J)), and

it obeys matrix addition and multiplication rules (and the rules derived from them). Note that

the inverse of M̂i j(J) share the same form of m−1
i j (J), since the ∑k M̂ik(J)

[
m−1

k j (J)P̂k j(J)
]
=

δi jP̂i j(J) = Îi j(J), and the same for ∑k
[
m−1

ik (J)P̂ik(J)
]

M̂k j(J).

Note that the spin projection operators are Hermitian by construction. From Equa-

tions ( 2.64 )–( 2.66 ), we obtain

[
P̂ji(J)

]∗
=

(
∑
m
| j,JP,m⟩⟨i,JP,m|

)∗
= ∑

m
Pε
∗άa
( j,JP,m)

ε
άb
(i,JP,m)

eae†
b

= ∑
m

Pi j(JP)άbαaeae†
b, (2.68)

and therefore

Pi j(JP)άβ́ = P∗ji(J
P)β́ ά . (2.69)
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Appendix 2.C The no-ghost condition  

6
 

We consider here a Lagrangian quadratic in the real fields ϕ̂ with integer spins. Starting from

the path integral, we can obtain the vacuum-vacuum amplitude:

L[ϕ̂] =
1
2

ϕ̂
T Ôϕ̂ (2.70)

Z0 (J) = ⟨0,∞|0,−∞⟩=
∫
Dϕ̂ei

∫
d4x(L[ϕ̂]−ĴT ϕ̂), (2.71)

where ϕ̂ is a boson field, and Ĵ is the source current. Fourier transforming the integrand, we

obtain,

∫
d4x
(
L [ϕ̂]− ĴT

ϕ̂
)
=
∫ d4k

(2π)4
1
2
(
ϕ̂

T (−k)Ô(k)ϕ̂(k)− ĴT (−k)ϕ̂(k)− ĴT (k)ϕ̂(−k)
)
.

(2.72)

Now we define ψ̂ ≡ ϕ̂ − θ̂ and set θ̂(k) = Ô−1(k)Ĵ(k), where θ̂ is independent of ϕ̂ .

Since the fields are real and Ô(k) = Ô†(k)  

7
 , we obtain

∫
d4x
(
L [ϕ̂]− ĴT

ϕ̂
)
=
∫ d4k

(2π)4
1
2
(ψ̂†(k)Ô(k)ψ̂(k)− Ĵ†(k)Ô(k)−1Ĵ(k)). (2.73)

Since Dϕ̂ =Dψ̂ , the path integral becomes,

Z0
(
Ĵ
)
= ⟨0,∞|0,−∞⟩=

∫
Dψ̂e

i
∫ d4k

(2π)4
1
2 (ψ̂

†(k)Ô(k)ψ̂(k)−Ĵ†(k)Ô(k)−1Ĵ(k))

= Z0(0)exp
(
−i
∫ d4k

(2π)4
1
2

Ĵ†(k)Ô(k)−1Ĵ(k)
)
. (2.74)

6This appendix is adapted from Buoninfante [ 76 ] with more clarification.
7Let ϕ and ξ be two different fields. Since there are even derivatives in Oϕϕ(∂ ), we obtain Oϕϕ(k) =

Oϕϕ(−k). Odd order of derivatives can only exist in the terms with two different fields. The corresponding
action has contribution from two O components:

Sϕξ =
∫ d4k

(2π)4
1
2
[
ϕ(−k)Oϕξ (k)ξ (k)+ξ (−k)Oξ ϕ(k)ϕ(k)

]
=
∫ d4k

(2π)4
1
2

ϕ(−k)
[
Oϕξ (k)+Oξ ϕ(−k)

]
ξ (k).

The only relevant value is the sum Oϕξ (k)+Oξ ϕ(−k), so we have the freedom to set O(k)ξ ϕ =O(−k)ϕξ .
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The integrand is proportional to the saturated propagator, so only the saturated propagator

is physical. The terms which appear in the propagator but which disappear after sandwiching

the currents do not affect the physics. From Equations (  2.20 ) and ( 2.21 ), we can write the

integrand as

iĴ†(k)Ô(k)−1Ĵ(k) = ∑
n1,n2···

Fn1n2···(Ĵ(k),k
A)∏

j

1(
k2−m2

i
)n j (2.75)

where Fn1n2···(Ĵ(k),k
A) is a polynomial of Ĵ(k) and kA (and ηAB). Now we let kA = (E, p⃗)

and p≡
√

p⃗2. Restoring the small ε term in the path integral and doing the E integral first,

we obtain

i
∫ d4k
(2π)4 Ĵ†(k)Ô(k)−1Ĵ(k) = i

∫ d3 p⃗
(2π)4

∫
dEĴ†(k)Ô(k)−1Ĵ(k)

= i
∫ d3 p⃗

(2π)4

∫
dE ∑

n1,n2···
∏

j

Fn1n2···(Ĵ(k),k
A)

(k0− (
√

p2 +m2
j − iε))n j(k0 +(

√
p2 +m2

j − iε))n j
.

(2.76)

We choose the contour from E =−∞ to E = ∞ on the real axis and go back to −∞ by the

lower half circle. The integral on the lower half circle is assumed to be zero, and the poles on

the lower half plane is at E =
√

p2 +m2
j − iε . By the residue theorem, we obtain

i
∫ d4k

(2π)4 Ĵ†(k)Ô(k)−1Ĵ(k) =
∫ d3 p⃗

(2π)3 ∑
j

Res
[
Ĵ†(k)Ô(k)−1Ĵ(k)

]
E=
√

p2+m2
j−iε

. (2.77)

With the relations
∫

γ
f (z)dz =

∫
g−1(γ) f [(g(s))]g′(s)ds, E(k2) =

√
k2 + p2 around E =√

p2 +m2
j , and Res [ f (z)]z=c =

1
2πi
∫
|z−c|=ε

f (z)dz, we obtain

Res
[
Ĵ†(k)Ô(k)−1Ĵ(k)

]
E=
√

p2+m2
j

=
1

2
√

m2
j + p2

Res
[
Ĵ†(k)Ô(k)−1Ĵ(k)

]
k2=m2

j

. (2.78)



2.C The no-ghost condition 39

Hence, with the normalisation choice Z0(0) = 1 and making ε → 0, ( 2.74 ) becomes

⟨0,∞|0,−∞⟩= exp
∫ d3 p⃗

(2π)3 ∑
j

−Res
{

Ĵ(k)Ô(k)−1Ĵ(−k)
}

k2=m2
j

2
√

p2 +m2
j

. (2.79)

If Re
{

Res
[
Ĵ(k)Ô(k)−1Ĵ(−k)

]
k2=m2

}
≥ 0 for all j and Ĵ(k), then the absolute value of ( 2.79 )

is always no more than one. However, if Re
{

Res
[
Ĵ(k)Ô(k)−1Ĵ(−k)

]
k2=m2

}
< 0 for any

j or Ĵ(k), then the absolute value of ( 2.79 ) can be more than one, and the probability for

a ground state at t = −∞ remaining in ground state at t = +∞ is greater than one. Since

the probability is always positive and sums up to one, the case violates unitarity. Hence the

condition for not violating unitarity is

Re
{

Res
[
Ĵ(k)Ô(k)−1Ĵ(−k)

]
k2=m2

j

}
≥ 0 ∀ j, Ĵ(k). (2.80)

Note that Equation ( 2.80 ) (i.e. requiring no ghost) is only a necessary condition for unitarity.

It may still be violated for other reasons.





Chapter 3

Details of the implementation

In this chapter, we will introduce the details of the implementation of our systematic method

in Chapter  2 . The discussion of these implementation details is inevitably rather lengthy and

intricate. Although this material is important for an understanding of how our systematic

method has been automated, the reader more interested in its application to PGT+ and WGT+

can safely omit this chapter, since it is not relied upon in the remainder of the thesis.

We use MATHEMATICA 11.1 with the MATHGR package [ 77 ] to deal with tensor

calculations. We write the program as a package, so we do not have to copy the same codes

whenever we are analysing different theories. The package consists of the main part with

the functions to calculate the no-ghost-and-tachyon conditions and find the critical cases, a

part extending the MATHGR package, a part with tool functions, and a part converting the

expressions to LaTeX codes. There is also a part analysing the critical cases further, such

as counting the number of no-ghost-and-tachyon and PCR cases and exporting the results

to the form used in the webpages. We will introduce only the details of the main part in

this chapter and mention only some contents in the other parts, and we leave the part about

power-counting renormalisability to Appendix  5.B . The codes shown here are simplified to

keep only those relevant to the core process, and we sometimes put sentences in (*...*) to

replace some trivial steps. We also omit all the codes printing the results in the main part, as

well as the codes letting us control the program better, such as time and memory limits. Note

that some of the notations in the code are different from those in the other parts of this thesis,

41
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such as the order of the tensor indices and some signs of the fields. We will always convert

results to the standard notation when they are outputted to LaTeX or webpages.

3.1 The MATHGR package

We are using the MATHGR package to deal with tensor calculations. The tensors are notated

in the code, for example, XA
BC as X[UP["A"],DN["B"],DN["C"]]. It also has the function

to display the tensors in the sub/superscript format and turn them to LaTeX codes. We can

assign symmetry properties to the tensors and use “Simp” to simplify the tensor expressions.

For example, we declare the symmetry for the gauge fields at the beginning,

DeclareSym[A,{DN,DN,DN},Antisymmetric [{2 ,3}]];

DeclareSym[a,{DN,DN},Antisymmetric [{1 ,2}]];

DeclareSym[s,{DN,DN},Symmetric [{1 ,2}]];

where we declare the A-field to be antisymmetric in the second and third indices when the

indices are all lowered, a-field to be antisymmetric, and s-field to be symmetric, respectively.

Note that the order of the indices in the code is different from those in the other parts in this

thesis. The Greek indices are at the left of the Latin indices in the code for historical reasons,

for example, AµAB, b A
µ , and hµ

A. We then convert the notations to the correct order at the

output stage.

We use the default metric g in gr.m, and set it to the Minkowski metric by setting its

partial derivative to zero,

PdT[g[__],_]:=0;

and set the spacetime dimension to 4,

DefaultDim :=4;

The Simp function does not raise and lower the indices when contracting tensors with

metrics by default, but we can assign the replacement rules to the variable SimpHook. Note

that the indices in the tensors with partial derivatives can also be raised or lowered by

the Minkowski metric. We assign this rule to the variable SimpHookDefault so that we
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can switch the SimpHook between this value and the empty rule {}. We also add a rule

k[DN[x_]]k[UP[x_]]:>kk at the end of the SimpHookDefault so that the momentum

contraction kAkA yields k2 (the symbol kk).

Before starting the calculation, we have to set the list of constant parameters in this

calculation and set the SPOs. The derivatives of the parameters are then set to zeros, and we

will discuss the SPOs in the next section.

3.2 Setting the spin projection operators

We write a set of default SPO in the package so that one can choose one of the default SPO

sets. The default SPO contains the A-, s-, a-, φ - (scalar), and the vector B-field. For the

theories not containing all of them, such as PGT+, the package will select their corresponding

submatrices of the most general default SPO.

The most general SPO is a list of length 6, which corresponds to (0−,0+,1−,1+,2−,2+).

The SPOs of the theory we want to calculate, the a- and b-matrices, and the source currents

are all arranged in the same way. We also create a list to label the fields corresponding to the

rows/columns of the SPOs. The numbers corresponding to the fields are

1 : A,2 : s,3 : a,4 : φ ,5 : B, (3.1)

and for example, PGT+ will have

fieldListOld ={{1},{1,2,2},{1,1,2,3},{1,1,3},{1,2}},

where “Old” means the variable corresponds to the a-matrices, where we have not deleted

the rows and columns to fix the gauge.

We then write down the most general default SPO in ΘAB, ΩAB and k̃A = kA/
√

k2 as in

Appendix  2.A and the corresponding fields.

P0nR[c_,a_,b_,k_,i_,j_ ]:={{1/3*Θ[c,k]Θ[a,i]Θ[b,j]+2/3*Θ[a,k]Θ←↩

↪→[b,i]Θ[c,j]}};

field0n ={1};
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· · ·

tmpP={P0nR ,P0pR ,P1nR ,P1pR ,P2nR ,P2pR};

tmpF={field0n ,field0p ,field1n ,field1p ,field2n ,field2p };

We then select the fields we will be using for the theory we want to calculate to build the

SPO and the list of corresponding fields. For example, for PGT we have

containField ={1,2,3};

validIdx=Map[Join@@Position [#, Alternatives@@containField ]&

,tmpF];

PListRawOrigin=MapThread[Function [{c,a,b,k,i,j},

If [#2==={} ,{{}} ,#1[c,a,b,k,i,j][[#2 ,#2]]]

]&,{tmpP ,validIdx }];

fieldListOld=MapThread [#1[[#2]]& ,{ tmpF ,validIdx }];

Note that we still have to apply the corresponding symmetries to the indices in the SPO. We

make those indices corresponding to ACAB or aAB antisymmetric in AB, those corresponding

to sAB symmetric in AB, and the remaining unchanged. The AntiSym and Sym can antisym-

metrise or symmetrise a tensor with the given indices without multiplying the normalise

factor 1/n! to it, so we have to put it back.

fieldSym ={AntiSym ,Sym ,AntiSym ,NoSym ,NoSym};

fieldSymListOld=Map[fieldSym [[#]]& , fieldListOld ,{2}];

ApplySym2P[PP_ ,ffx_ ,ffy_ ,c_,a_,b_,k_,i_,j_]:= MapThread[

Function [{PPe ,ffxe ,ffye},ffye[ffxe[PPe ,{i,j}],{a,b}]/4]

,{PP[c,a,b,k,i,j],ffx ,ffy},2];

meshgrid[x_List ,y_List ]:={ ConstantArray[x,Length[x]],←↩

↪→Transpose@ConstantArray[y,Length[y]]};

PListOrigin=MapThread[Function [{PP,ff},Function [{c,a,b,k,i,j},

If[PP[c,a,b,k,i,j]==={{}} ,{{}} , ApplySym2P[PP,meshgrid[ff,ff←↩

↪→][[1]] , meshgrid[ff,ff][[2]] ,c,a,b,k,i,j]]

]],{ PListRawOrigin ,fieldSymListOld }];
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Now we have the SPO elements Pi j(JP)CABKIJ that we will use to obtain a-matrices. We then

define ΩAB and ΘAB in terms of kA and ηAB so that the SPOs are now expressed in kA and

ηAB.

Θ[x_,y_]:= g[x,y]-ks[x]*ks[y];

Ω[x_,y_]:=ks[x]ks[y];

ks[x_]:=k[x]/Sqrt[kk];

We also create the lists of the source current for later use. The “L”s, such as the one in σL,

are to denote the current is on the left (i.e. the momentum is −k).

PListOld=Map[#[UP["C"],UP["A"],UP["B"],UP["K"],UP["I"],UP["J"←↩

↪→]]&, PListOrigin ];

jLeftListOld=Map[#[DN["C"],DN["A"],DN["B"]]&,jListOld ,{2}]/.{σ←↩

↪→->σL,τ -> τ L,φ -> φL,χ-> χL,ζ -> ζ L};

jRightListOld=Map[#[DN["K"],DN["I"],DN["J"]]&,jListOld ,{2}];

3.3 Linearising the Lagrangian

We define the field strengthsR, T , T ∗,H, and the covariant derivative Dφ in the package as

RR[m_,n_,a_,b_]:=Pd[A1[n,a,b],m]-Pd[A1[m,a,b],n]+←↩

↪→MetricContract[A1[m,a,DG["RR1"]]A1[n,b,DG["RR1"]]]-←↩

↪→MetricContract[A1[n,a,DG["RR1"]]A1[m,b,DG["RR1"]]];

T[m_,n_,r_]:=Pd[bb[n,r],m]-Pd[bb[m,r],n]-MetricContract[A1[m,r←↩

↪→,DG["T1"]]bb[n,DG["T1"]]]+ MetricContract[A1[n,r,DG["T1"]]bb[←↩

↪→m,DG["T1"]]];

Ts[m_,n_,r_]:=T[m,n,r]+g[n,r]B1[m]-g[m,r]B1[n];

HH[x_,y_]:=Pd[B1[y],x]-Pd[B1[x],y];

SetAttributes[D,HoldFirst ];

D[φ 0,x_]:=-φ 0*B1[x];

D[φ 1,x_]:=Pd[φ 1,x]-φ 1*B1[x];

We also define the contractions of theR tensor
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RR2[m_,n_]:=(RR[DN[#1],m,DN[#2],n]g[UP[#1],UP [#2]]& @Uq [2]);

RR4:=hh[DN[#1], DN [#3]]* hh[DN[#2], DN [#4]]*

RR[DN[#5], DN[#6], DN[#7], DN [#8]]*g[UP[#1], UP [#5]]*

g[UP[#2], UP [#6]]*g[UP[#3], UP [#7]]*g[UP[#4], UP[#8]] &@Uq [8];

Note that we can use ηAB to contractRAB
µν becauseRAB only appears in the ∼R2 terms,

and only the terms ∼ O( f ) in RAB
µν can affect the O( f 2) terms in the Lagrangian. Since

RAB
µν is already at order O( f ), the f µ

A in h µ

A does not make any difference, and we can

use δ
µ

A instead of h µ

A . However, the scalar R can appear as ∼ R1 in the Lagrangian as

∼ det(b)h µ

A h ν
B RAB

µν . Because det(b)h µ

A h ν
B ∼ O(1) and RAB

µν ∼ O( f ), the terms at

order O( f ) in det(b)h µ

A h ν
B are important after linearisation, and we have to use the full

expression. One may wonder whether choosing to linearise AABµ or AABC can give different

linearisation in the R term. The difference is at O( f 2) in the ∂ (A) part of RAB
µν , and to

affect the O( f 2) order of the Lagrangian, the corresponding part of det(b)h µ

A h ν
B must be

O(1), which is δ
µ

A δ ν
B and can be moved into the partial derivative. Hence, the difference is

just a total derivative and does not change the result at order O( f 2) of the Lagrangian.

For each theory, we can then build the Lagrangian in the notebook file with the elements

we defined above, for example,

LagTTABCABC :=

1/12*(4 t1+t2+3λ)*(T[DN[#1], DN[#2], DN [#3]]*T[DN[#4], DN[#5], ←↩

↪→DN [#6]]*g[UP[#1], UP [#4]]*g[UP[#2], UP [#5]]*g[UP[#3], UP←↩

↪→[#6]] &@Uq [6]);

LagRRABAB :=(r4+r5)*(RR2[DN[#1], DN[#2]] RR2[DN[#3], DN [#4]]*g[←↩

↪→UP[#1], UP [#3]]*g[UP[#2], UP[#4]] &@Uq [4]);

(*... *)

LagRaw=LagTTABCABC+LagRRABAB+(*... *);

Lag=bbb*LagRaw;

We then declare the parameters in the Lagrangian and which type of theory it is (e.g. PGT+,

WGT+, ...), and we can start the main process in the package.
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We then linearise the fields. The tetrads are linearised around the Minkowski metric as

hA
µ = δ A

µ + f A
µ , (3.2)

while A and B-fields are linearised around zero. The inverse of h becomes

bA
µ = δ

A
µ − f µ

A +O
(

f 2) , (3.3)

and its determinant is

det(b) = 1− f +
1
2

(
f 2− fAB f BA

)
+O( f 3), (3.4)

where f = f A
A . We expand det(b) to order O( f 2) in case it is needed, while theories in this

thesis only need it up to O( f ) order.

hh[x_,y_]:=g[x,y]+f[x,y];

bb[x_,y_]:=g[x,y]-f[y,x];

bbb:=(1-ff +1/2*( ff*ff -(f[DN[#1],DN[#2]]f[DN[#3],DN[#4]]g[UP←↩

↪→[#1],UP[#4]]g[UP[#2],UP [#3]]& @Uq [4])));

ff:=(f[DN[#1],DN[#2]]g[UP[#1],UP [#2]]& @Uq [2]);

f[x_,y_]:=a1[x,y]+s1[x,y];

The Lagrangian Lag is now expressed by the small fields A1, s1, a1, φ1, B1. We then

set the small fields proportional to a parameter t. The terms with t2 are then quadratic in the

small fields. 

1
 

a1[x_,y_]:=t*a[x,y];

s1[x_,y_]:=t*s[x,y];

A1[x_,y_,z_]:=-t*A[x,y,z];

B1[x_]:=t*B[x];

φ 1:=t*φ ;

1There is a minus sign in the linearised A field because the definitions of the field strengthsR and T are
different in the code and the main text. The A1 in the code is indeed −A in the main text.
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Note that we have to declare the Lagrangian parameters and t as constant with respect to

partial derivatives.

PdT[t|Alternatives@@parameters ,_]:=0;

3.4 Obtaining a-matrices

We then collect the part with t2 and do the Fourier transformation. Note that the rule of

transformation is
∫

dxX(x)Y (x) =
∫

dkX(−k)Y (k), so the terms with odd partial derivatives

will have sign problems. The terms with odd derivatives are those terms with a field with

odd indices (A, B) and one with even indices (s, a, φ ). For these terms, we have to know

which field is on the left and which is on the right. We will always follow the “standard field

order” ( 3.1 ) so that A is always on the left and B is always on the right. Because a field will

only carry up to two derivatives in the theories we will study in this thesis, the patterns of

the terms with derivatives can only be ∂ 2X∂ 2Y , ∂ 2XY , or ∂X∂Y . Both the first two cases

have a minus sign, but the third case does not. For the terms with odd derivatives, we have to

replace ∂AY with −ikAY , A∂Y with ikAY , ∂BY with ikBY , and B∂Y with −ikBY . Now we

have the terms with two different fields all in the order ( 3.1 ), and it will be easier to assign

one field to the left in those terms with two same fields. We do this by replacing one of the

fields with a different symbol (e.g. A→ AA) to mark that it is on the right.

SimpHook ={Pd[Pd[x_,y_],z_]:> -k[y] k[z]x,Pd[x_,y_]Pd[u_,v_]:> ←↩

↪→k[y]k[v] x u,Pd[A[x__],y_]z_[u__]:> -I k[y] A[x]z[u],A[x__]←↩

↪→Pd[z_,y_]:> I k[y] A[x]z,Pd[B[x__],y_]z_[u__]:> I k[y] B[x]z←↩

↪→[u],B[x__]Pd[z_,y_]:> -I k[y] B[x]z,k[DN[x_]]g[UP[x_],UP[y_←↩

↪→]]:> k[UP[y]],k[DN[x_]]k[UP[x_]]:> kk};

Lag2=Simp[Coefficient[ReleaseHold[Lag]/. OptionValue[←↩

↪→LagReplaceRule],t^2]];

SimpHook ={A[DN["d"],x__]A[y__]:> A[DN["d"],x]AA[y],s[DN["a"],←↩

↪→x__]s[y__]:> s[DN["a"],x]ss[y],a[DN["a"],x__]a[y__]:> a[DN["←↩

↪→a"],x]aa[y],φ *φ :> φ *φφ ,B[DN["a"]]B[y__]:> B[DN["a"]]BB[y]};
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Lag2New=Simp[Lag2];

The next step is to obtain the operator Ô in L = (1/2) ϕ̂T · Ô · ξ̂ where ϕ̂ and ξ̂ are

fields, and then decompose it into Ô = ∑i, j,J,P ai j(P)P̂i j(JP). To obtain Ô, we first expand

the Lagrangian to a summation of operators sandwiched by two fields. We then write a

tool function fixIndices to fix the dummy indices of the fields to A(−k)CAB, s(−k)AB,

a(−k)AB, B(−k)C, A(k)KIJ , s(k)IJ , a(k)IJ , and B(k)K . Therefore, the operators sandwiched

by the same pair of fields can be summed up directly.

Lag2New=toTermList@Lag2New;

LagAANew=fixIndices[Total[Cases[Lag2New ,A[__]*AA[___]*_]],{{A←↩

↪→,{"C","A","B"}},{AA ,{"K","I","J"}}},DN];

LagAsNew=fixIndices[Total[Cases[Lag2New ,A[__]*s[_,_]*_]],{{A,{←↩

↪→"C","A","B"}},{s,{"I","J"}}},DN];

(*... *)

OAA=Replace[LagAANew , A[DN["C"],DN["A"],DN["B"]] AA[DN["K"],DN←↩

↪→["I"],DN["J"]]*z_:> z,All];

(*... *)

We can obtain Õάβ́

ϕξ
in the Lagrangian in the form of (1/2)∑ϕξ ϕ(−k)άÕϕξ (k)άβ́ ξ (k)

β́
,

where Õάβ́

ϕξ
is the summation of the “operators” from all the terms with the ϕ on the left

and the ξ -field on the right. We then create a matrix for each sector with the same size

as the default most general SPO, with each element in the row corresponding to field ϕ

and the column corresponding to field ξ being Õάβ́

ϕξ
. Note that the value of an element

with the index of ϕ greater than that of ξ is zero by construction. Before we decompose

each element with the SPOs, we should note that we can make the a-matrices Hermitian.

The a-matrices are Hermitian if and only if the operator in the Fourier space satisfies

Oξ ϕ(k)άβ́ =Oϕξ (−k)β́ ά . If ϕ = ξ , then there are only even-derivative terms, and we obtain

Oϕϕ(k)άβ́ =Oϕϕ(−k)άβ́ . Hence, the operators should satisfy Oϕϕ(k)άβ́ =Oϕϕ(k)β́ ά , and

we have to symmetrise the raw operators Õ to obtain O: Oάβ́

ϕϕ =
(
Õάβ́

ϕϕ + Õβ́ ά

ϕϕ

)
/2. We

can do this because symmetrising the raw operator is equivalent to exchanging k ⇄ −k

of the fields in a part of the operator, and it does not change the Lagrangian. For those
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ϕ ̸= ξ , the raw operators with the fields obeying ( 3.1 ), contain two parts from the operatorO,

Õξ ϕ(k)άβ́ =Oξ ϕ(k)άβ́ +Oϕξ (−k)β́ ά , while those with the fields not obeying ( 3.1 ) are zeros.

Because the Lagrangian is real, we knowOξ ϕ(k)άβ́ =Oϕξ (−k)β́ ά =Oϕξ (k)∗β́ ά . Therefore,

if φξ satisfies ( 3.1 ), the operatorsO can be obtained from the raw operators byOϕξ = 1
2Õϕξ

and Oξ ϕ = 1
2Õ
∗
ϕξ

. Note that because the momentum k and the Lagrangian parameters are

real, so we have to simplify the expressions with the real conditions (realCondition), or

the conjugate will also be applied to them. We also choose only the rows and columns

corresponding to the fields we will be using from the most general O-matrix.

iRule[c_,a_,b_,k_,i_,j_]:={UP["C"]:> c,UP["A"]:> a,UP["B"]:> b←↩

↪→,UP["K"]:> k,UP["I"]:> i,UP["J"]:> j,gg[x__]:> g[x]};

OOAA[c_,a_,b_,k_,i_,j_]:= (Replace[OAA ,iRule[c,a,b,k,i,j],All←↩

↪→]+ Replace[OAA ,iRule[c,a,b,k,i,j],All])/2;

OOAs[c_,a_,b_,k_,i_,j_]:= Replace[OAs ,iRule[c,a,b,k,i,j],All];

(*· · ·*)

OS2p[c_,a_,b_,kt_ ,i_,j_]:= Simplify [{

{OOAA[c,a,b,kt,i,j],OOAs[c,a,b,kt,i,j]/2}

,{OOAs[kt,i,j,c,a,b]\[ Conjugate ]/2,OOss[c,a,b,kt,i,j]}

},realCondition ];

OSListOld ={OS0n ,OS0p ,OS1n ,OS1p ,OS2n ,OS2p};

OSList=MapThread [( Function [{c,a,b,k,i,j},

If [#2==={} ,{{}} ,#1[c,a,b,k,i,j][[#2 ,#2]]]

])&,{OSListOld ,validIdx }];

The next step is to put spin projectors at the front and back of O to obtain ai j(JP) as in

( 2.15 ) 

2
 

P[ϕϕ]
ii (JP)ά µ́O

µν

ϕξ
P[ξ ξ ]

j j (JP)
νβ́

= ∑
k,l,J′,P′

akl(J′P
′
)Pii(JP)ά µ́Pkl(J′P

′
)µ́ ν́Pj j(JP)

ν́ β́

= ai j(JP)Pi j(JP)
ν́ β́
. (3.5)

2The square brackets in P[ϕξ ]
i j (JP)

άβ́
denote the fields to which the SPO corresponds, which is similar to

the parentheses in P(ϕξ )
i j (JP)

άβ́
. However, the numbering of i j of the former is the same as Pi j(JP)

άβ́
, which is

different from that in P(ϕξ )
i j (JP)

άβ́
.
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We then divide the left hand side by Pi j(JP)
ν́ β́

to obtain ai j(JP). Note that we have

treated Ô as if L = ∑ ϕ̂ · Ô · ξ̂ , so we recover the factor 2 in the a-amtrices here to obtain

L = 1
2 ∑ ϕ̂ · Ô · ξ̂ .

PDiaCol[P_]:= meshgrid[Diagonal[P],Diagonal[P]];

GetFrontBackProject[P_,o_,c_,a_,b_,k_,i_,j_]:=(

PDiaCol[P[c,a,b,DN[#1],DN[#2],DN [#3]]][[2]]*

o[UP[#1],UP[#2],UP[#3],UP[#4],UP[#5],UP [#6]]*

PDiaCol[P[DN[#4],DN[#5],DN[#6],k,i,j]][[1]]& @Uq [6]);

SimpHook=SimpHookDefault;

getaa[OS_ ,PP_]:=Map[Simp[#,"Method"->"Fast"]&,

GetFrontBackProject[PP,OS,DN["C"],DN["A"],DN["B"]

,DN["K"],DN["I"],DN["J"]] ,{2}]/

PP[DN["C"],DN["A"],DN["B"],DN["K"],DN["I"],DN["J"]]//←↩

↪→Simplify;

aaListOrigin =2* MapThread[If[#1[1 ,2 ,3 ,4 ,5 ,6]==={{}} ,{{}}

,getaa [#1 ,#2]]& ,{ OSList ,PListOrigin }];

We then obtain the b-matrices by deleting rows/columns. We accomplish this by finding

all possible submatrices with the dimensions equal to the rank of the undeleted a-matrices

and filter out those submatrices with the correct ranks. We then use the first valid submatrices

in all sectors to analyse the unitarity but still save all the possibilities for the PCR analysis.

Note that when we are doing a critical case derived from a type A condition, we should

replace the a-matrices with the critical condition before we find the nonsingular matrices.

getAllNonsingularMatrix[mat_ ]:= Module [{rank ,dim ,possibleIdx ,←↩

↪→validIdx},

If[mat ==={{}} , Return [{{{{}} ,{}}}]];

dim=Length@mat;

rank=MatrixRank[mat];

If[rank ===0, Return [{{{{}} ,{}}}]];

possibleIdx=Subsets[Table[i,{i,1,dim}],{rank ,rank }];

validIdx=Select[possibleIdx ,MatrixRank[mat [[# ,#]]]=== rank &];
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Map[{mat[[#,#]],#}&, validIdx]

];

aaList=aaListOrigin /. OptionValue[LagReplaceRule ];

nonsingularAA=Map[getAllNonsingularMatrix ,aaList ];

bbList=Map [#[[1 ,1]]& , nonsingularAA ];

bbInvIdxListAll=Map[Function[nonSin ,Map[

{If [#[[1]]==={{}} ,{{}} , Inverse [#[[1]]]] ,#[[2]]}&

,nonSin ,{1}]] , nonsingularAA ];

We can also obtain the inverse b−1 and the determinant det(b).

bbInvList=Map[If[#==={{}} ,{{}} , Inverse [#]]&,bbList ,{1}];

bbDet=Map[If[#==={{}} ,Null ,Expand@Det [#]]&, bbList ,{1}];

We can also obtain the saturated propagator expressed in tensors by deleting rows/columns

of SPO and source currents to match the b-matrices and sandwiching b−1 by the source

currents to obtain Π.

PList=MapThread[If[#2==={} ,{{}} , Part [#1 ,#2 ,#2]]&

,{PListOld ,bbIdxList }];

jLeftList=MapThread[Part [#1 ,#2]& ,{ jLeftListOld ,bbIdxList }];

jRightList=MapThread[Part [#1 ,#2]& ,{ jRightListOld ,bbIdxList }];

SimpHook ={};

Π=Total[MapThread[If[#1==={} ,0 , Simp [(#1.(#2*#3) .#4) ]]&

,{jLeftList ,bbInvList ,PList ,jRightList }]];

With the determinants, we can obtain the critical parameters as described in Section  2.2.3 .

We first factorise the coefficients of k2 in the determinants of all spin-parity sectors, collect

the distinct factors, and use Solve to obtain the replacement rules for the factors. We can

use the tool function isRealCondsEquiv to check whether two conditions are equivalent if

all the parameters and coefficients are real.

isRealCondsEquiv[e1_ ,e2_]:= Reduce [!Xor[e1 ,!e2],Reals ]=== False;
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The idea is that two conditions are equivalent if and only if one of the conditions together

with the complement of the other condition cover the whole domain, and there is no overlap.

Note that theoretically, in some extreme situations, the function may return False for two

equivalent conditions. However, we do not find this kind of “false-negative” in our cases,

and the consequence of the false-negative does not affect the physical results.

getAllPossibleParas[det_ ,masses_ ]:= Module [{aP,paras ,ans ,coeffs←↩

↪→,typeOfParas},

det=det/.{Null -> 0};

aP=Map[( Select[FactorList [#][[All ,1]],! NumericQ [#]&])&

,Cases[CoefficientList [#,kk],Except [0]]&/ @det ,{2}];

paras=DeleteDuplicates[Sort@Flatten@allPossible

,isRealCondsEquiv [#1==0 ,#2==0]&];

coeffs =( trimHeadZeroes/@(CoefficientList [#,kk]&/ @dets))←↩

↪→/.{{} - >{0}};

typeOfParas=(*Get the type of each parameter*)

ans=<||>;

(ans [#]= Sort@Cases[typeOfParas ,{_ ,#}][[All ,1]])&

/@{"A","B","C","D"};

ans["All"]= Sort@Join[ans["A"],ans["B"],ans["C"],ans["D"]];

ans

];

To obtain the type of each parameter, we use the replacement rule of each factor to

substitute the coefficients. We first check whether the factor is linear by checking whether the

factor is a polynomial of the Lagrangian parameters, and the total power of the parameters in

each term is one. If not, the nonlinear critical parameters exist, and our algorithm will not

hold. We mark these parameters as “type D”. If there is no nonlinear factor and all of the

coefficients in any sector become zero after the substitution, then the factor is type A. If it

is not type A and the lowest coefficient in any sector becomes zero, then it is type B. If the

factor is not type A or B and the highest coefficient in any sector becomes zero, then the

factor is type C.
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typeOfParas=Map[Function[p1,Module [{turnToZero ,isA ,isB ,isC ,←↩

↪→type},

turnToZero=Map[MapThread [#1=!=0&& FullSimplify [#2]===0& ,#]&

,Transpose@{coeffs ,coeffs /.( Solve[p1 ==0][[1]]) }];

isD=! ruleListLinearHomoQ [{p1-> 0}];

isA=Or@@Map[And@@#&, turnToZero ];

isB=Or@@Map [#[[1]]& , turnToZero ];

isC=Or@@Map [#[[ -1]]& , turnToZero ];

type=If[isD ,"D",If[isA ,"A",If[isB ,"B",If[isC ,"C",False ]]]];

{p1,type}

]],paras];

We can then obtain the child additional condition for the theory and put together the child

and sibling additional condition to obtain the total additional condition. We will explain how

the sibling additional conditions are obtained later.

parasAll=getAllPossibleParas[bbDet ,bbDetRootNonZero ];

addConds=Simplify [( And@@Map [#!=0& , parasAll["All"]])&&←↩

↪→addCondsSibling ];

3.5 Source constraints

To obtain the no-ghost condition for the massless sector, we have to obtain the source

constraint first. We obtain the source constraints ( 2.17 ) in the form of tensor equations

and then turn it into component equations. We first obtain the null left eigenvectors of the

a-matrices, and this is equivalent to getting the columns of the nullspace matrices of the

transposes of the a-matrices. We then obtain the left hand side of ( 2.17 ) in tensor expressions.

nullLeftVec=Map[If[#==={{}} ,{} , NullSpace[Transpose [#]]]&

,aaList ]// Simplify;

jTemp=Map[#[DN["c"],DN["a"],DN["b"]]&,jListOld ,{2}];
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scTen=Simp/@Flatten@MapThread[Function [{P,j,nv},Map[

Function[v,P[DN["k"],DN["i"],DN["j"],UP["c"],UP["a"],UP["b"←↩

↪→]].(v*j)]

,nv ,{1}]] ,{ PListOrigin ,jTemp ,nullLeftVec },1];

We then turn the tensor expression of the left hand side of ( 2.17 ) into component equations.

The tool function getTensorValue turns a tensor expression into component expressions,

and we appoint that the momentum is pointing to ẑ so that kA = (E,0,0, p). We also write all

k2 as E2− p2 here, and E and p are denoted as k0 and kr in the code respectively. The tool

function solveHomoLinearSet then converts the set of linear homogeneous equations, the

component equations of the source constraints, into matrix expression ( 2.26 ) and find the

solution ( 2.27 ) in terms of the free variables Xi. We are requiring here that the coefficients of

Xi should not contain any factor ∼ 1/(E− p)) so that we do not bring in spurious poles.

scVal=Map[getTensorValue [#,Massless -> False ,Dir -> 3]&

,scTen ]/.{kk-> (k0^2-kr^2)};

sceqns =(#==0&)/@DeleteCases[Flatten@Map [#["Mat"]&

,(Flatten@scVal)],0];

sourceConstraintsRule=solveHomoLinearSet[sceqns ,cComps ,←↩

↪→NullVectorNoFactors -> {k0-kr}]["Rules"];

We then save the result in a map (Association) with the key as the null vector. When

we are evaluating the critical cases later, we can check whether the source constraints of the

same null vector has been already solved and just read the saved result.

3.6 Massless sector

We then turn the saturated propagator into tensor components with the same setting as the

source constraints and replace the source current components with the free variables Xi by

( 2.27 ). After substituting, we have to expand the complex conjugates with the fact that

the momentum is real. The tool function getBilinearTensorMatrix then extracts the

M-matrix in ( 2.28 ) from the saturated propagator by direct calculation.
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PiValue=getTensorValue[Π/.{σL[x__]-> Conjugate[σ[x]], (*Similar ←↩

↪→ for the other currents *)},Massless ->False ,Dir -> 3]["Mat"][[1]];

PiSimp=FunctionExpand[PiValue /. sourceConstraintsRule ,{k0∈Reals←↩

↪→,kr∈Reals ,k0^2>kr^2}];

PiMat=getBilinearTensorMatrix[Expand [( PiSimp /.{kk-> k0^2-kr←↩

↪→^2})],(*The pattern of Xi*)];

The next step is to obtain the Q2n-matrices in ( 2.29 ). In the theories we are studying, n can

be at most 3, so we only have to find Q6, Q4, and Q2. We first apply ( 2.30 ) and ( 2.31 ) to

obtain those n > 1.

PiMat6=Map[Limit[(k0-kr)^3(2kr)^3 #,k0-> kr]&,PiMat ,{2}];

PiMat4=Map[Limit[(k0-kr)^2(2kr)^2 #,k0-> kr]&,(PiMat -PiMat6 /((←↩

↪→k0-kr)(2kr))^3) ,{2}];

We then apply ( 2.32 ), and requiring the additional condition at the same time because

sometimes the results of ( 2.32 ) may conflict the additional conditions. We are using Solve

here because we can then use the result to simplify Q2.

PiMat46Eles=DeleteDuplicates@Flatten[Join[PiMat4 ,PiMat6 ]];

k4k6CondSolve=Quiet[Solve[ForAll[kr,kr!=0, addConds && And@@Map←↩

↪→[#==0& , PiMat46Eles ]],parameters ,MaxExtraConditions ->All ,←↩

↪→Method ->Reduce],Solve::svars];

We then extract the replacement rules to k4k6Rule. Note that the equation set may have

multiple solutions, so k4k6Rule is a list of rules, and we make it like {{{(*rules1*)}},

{{(*rules2*)}},...}. If there is no solution, then k4k6Rule will be {{}}. Each solution

may only be valid when some extra conditions hold, and we save them in k4k6AddCond.

Note that it contains both additional conditions and the extra conditions of the solution, but

this does not matter because we will put everything together eventually.

Now we obtain Q2 and use k4k6Rule to simplify it. If there is no solution for k4k6Rule,

we will keep Q2 unchanged if we want to do the remaining calculation in any case. After

the replacement by k4k6Rule, there are sometimes infinities in Q2. This is because the
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expressions are generally very complicated, and for example, MATHEMATICA sometimes

cannot find some structures like x/x. If we set x→ 0 then the result will be Indeterminate.

If any problem about infinity happens, we will undo the replacement. We then find the

eigenvalues for each of Q2, and the number of nonzero eigenvalues is the d.o.f. of massless

propagating mode. We store all the d.o.f. gotten by using different solutions of k4k6Rule in

a list, but we expect that all the d.o.f. should be the same.

PiMat2=Map[Limit[(k0-kr)(2kr)#,k0-> kr]&,(PiMat -PiMat6 /((k0-kr←↩

↪→)(2kr))^3-PiMat4 /((k0-kr)(2kr))^2) ,{2}];

k4k6RuleUsing=If[k4k6Rule ==={{}} ,{{{}}} , k4k6Rule ];

Pikm2MatWithk4k6Cond=Quiet[Map[

Simplify[PiMat2 /.#[[1]]]& , k4k6RuleUsing]

,{Power::infy ,Infinity ::indet ,Simplify ::infd }];

Pikm2MatWithk4k6Cond=Map[If[Length@Cases[Flatten@#,Infinity|-←↩

↪→Infinity|ComplexInfinity|DirectedInfinity[___]| Indeterminate←↩

↪→|__*Infinity]>0,PiMat2 ,#]&, Pikm2MatWithk4k6Cond ];

Pikm2Eigenvalues=Map[Eigenvalues [#]&, Pikm2MatWithk4k6Cond ];

masslessDim=Map[Length@Cases [#,x_/;x=!=0]& , Pikm2Eigenvalues ];

Before we solve ( 2.33 ), we have to note that some eigenvalues are roots of some high

degree polynomials (≥ 2) multiplied by a rational function of the Lagrangian parameters.

Solving inequalities with these complicated expressions may block the process for a very

long time (≳ a few weeks until we gave up). However, we can transform the inequality

into a different form to speed it up. For the non-rational roots of a polynomial with degree

≥ 3, MATHEMATICA does not calculate them explicitly by default. Instead, they are shown

as Root[ploy,# of the roots]. We write a tool function getAllNonNegRootsCond

to convert the condition in the form c·Root[...]≥ 0 to the form as in ( 2.34 ) with some

modification to include the “= 0” part. The function first extract the coefficient of the

polynomial equation and call the function allRootNonPosCond which implements ( 2.34 )

to obtain the simplified condition. Note that ( 2.34 ) is easier to be implemented if we set
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x→−x so that the condition becomes requiring non-positive roots, and we do not have to

deal with the (−1)n−i factors in ( 2.34 ).

allRootNonPosCond[coeff_List ]:= Module [{},

(And@@Map [#>0&,coeff] )|| Or@@Table[

(And@@Map [#==0& , coeff[[i+1;; -1]]]&&

And@@Map [#>0&,coeff [[1;;i]]])

,{i,1,Length[coeff ] -1}]];

getAllNonNegRootsCond[c_ Root[f_,n_]]:= Module [{var ,cl,alt},

var=Unique[X];

cl=Reverse@CoefficientList[f[var],var];

alt=Table [(-1)^i,{i,0,Length[cl]-1}];

(c==0) ||(c>0&& allRootNonPosCond[cl*alt])||

(c<0&& allRootNonPosCond[cl])];

getAllNonNegRootsCond[Root[f_,n_]]:= getAllNonNegRootsCond [2 ←↩

↪→Root[f,n]];

getAllNonNegRootsCond[x_]:=x>=0;

There are also expressions with square roots in the non-rational roots of quadratic polyno-

mials, and they may slow down the calculation, too. Similarly, we use the tool function

getQuadNonNegCond to convert these roots into the form of ( 2.34 ). Note that by construction

the roots are eigenvalues of Hermitian matrices, so they are automatically real, and we do not

have to require that again.

getQuadNonNegCond[x__+y_*Sqrt[z__ ]]:= Module [{X,Z},

X=Total@{x};Z=Total@{z};

Simplify[X^2-y^2*Z>=0&&X>=0]

]

getQuadNonNegCond[y_*Sqrt[z__ ]]:=(y^2*z<= 0);

getQuadNonNegCond[Sqrt[z__ ]]:=(z==0);

getQuadNonNegCond[x_]:=x>=0;
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Now we can apply the functions above and obtain the condition ( 2.33 ) requiring the eigen-

values of Q2 to be non-negative, with each of the solutions of k4k6Rule, respectively.

Pikm2EvWithRoots=Map[Select[#, Length@Cases [#,Root[__]] >0&]&

,Pikm2Eigenvalues ];

Pikm2EvNoRoots=(*Same but >0→ ===0*)

k2CondList=MapThread [{

Map[ForAll[kr,kr!=0,#]&, getQuadNonNegCond/@Expand [#1]],

Map[ForAll[kr,kr!=0, getAllNonNegRootsCond@ #]& ,#2]

}&,{ Pikm2EvNoRoots ,Pikm2EvWithRoots }];

Theoretically, we can solve all the Q2 conditions with the same k4k6Cond solution together

and then combine the results with Or. However, in many cases this method gets stuck. Instead,

we write a tool function to speed up the calculation. The main idea is that if any condition in

the conditions connected by And is False (no solution), then the connected condition will be

False as well. We do this in two rounds of calculations. In the first round, we evaluate each

condition one by one and set a reasonable time limit for calcualtion. If a calculation finishes

before the time limit, we will check whether it is False or not. If it is False, then we stop

the proccess and return the whole condition as False. If the calculation does not finish in

time, we will stop it and mark the condition as “unevaluated”. If none of the condition is

False after the first round, we then collect the finished parts of the first round, evaluate them

together, and check whether it is False. If not, we then evaluate the unevaluated part and

solve everthing together. We also make the function able to let us know where the False

comes from. It will also check whether the conditions conflict with additional condition and

return False earlier if so. We do not put the codes here because of their length.

Now we can put everything together and obtain the massless no-ghost condition and

check whether it conflicts with the additional condition again.

MasslessCond=Simplify[Or@@MapThread [#1&&#2&

,{k2CondList ,k4k6CondList }]];

MasslessCondAddCond=Reduce[MasslessCond &&addConds ,Reals];
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3.7 Massive sector

To obtain the no-ghost-and-tachyon conditions for the massive sector, we have to obtain the

masses in each spin-parity sector first. They are simply the nonzero roots of the determinants

of b-matrices.

bbDetRoot=Map[If[#===Null ,{}

,{ToRules@Roots[Expand@ #==0,kk]}]&,det];

bbDetRootAll=Map[(kk/.#)&,bbDetRoot ];

bbDetRootNonZero=Map[Select [# ,(!(# ===0)&)]&, bbDetRootAll ];

massiveDim=Length/@bbDetRootNonZero;

We then evaluate the no-tachyon, no-ghost, and the combined conditions in each sector

straightforwardly. We can mark the massive condition as False and stop the evaluation if

any of the no-ghost or no-tachyon condition in any sector is False. The codes for each sector

are in outline,

ResAtMasses[mat_ ,m2s_ ]:=Map[Residue[Tr[mat],{kk ,#}]&,m2s];

parityList ={-1,1,-1,1,-1,1};

multParity[listEle_ ,parity_ ]:=Map[#*parity >0&, listEle ];

(*For each sector *)

(*no−tachyon*)=Map[#>0&,(*masses*)];

bbInvTrRes=ResAtMasses[(*b−1*),(*masses*)];

(*no−ghost*)=multParity[bbInvTrRes ,(*parity *)];

(*combined*)=Reduce [( And@@ans["ghost"])&&( And@@ans["tachyon"]),←↩

↪→Reals];

However, for the unsimplified root theory of full WGT+, which is the most complicated case

we will study in this thesis, MATHEMATICA may be stuck in these steps. We can still use

another way to obtain some relatively simple expressions of the massive conditions when we

need them. The 1− sector causing problems has a 3×3 b-matrix with two nonzero masses.
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Its determinant is of the form

det(b) = k2n (Ak4 +Bk2 +C
)

= Ak2n (k2−m2
+

)(
k2−m2

−
)
, (3.6)

where m2
± =

(
−B±

√
B2−4AC

)
/(2A) are the roots of Ak4 +Bk2 +C. Note that A ̸= 0 and

C ̸= 0, or it will violate the additional condition and becomes a critical case. The no-tachyon

conditions are

−AB > 0,AC > 0,B2−4AC > 0, (3.7)

where we also require the roots to be real and distinct.

From Cayley–Hamilton theorem we can write b−1 as

b−1 =
1

det(b)

{
1
2

[
(trb)2− tr

(
b2)]I−b trb+b2

}
, (3.8)

and so

tr
(
b−1)= 1

2det(b)

[
(trb)2− tr

(
b2)]

=
1

2Ak2n
(
k2−m2

+

)(
k2−m2

−
) [(trb)2− tr

(
b2)] . (3.9)

Because each element of b is a polynomial of ik and b is Hermitian,
[
(trb)2− tr

(
b2)] can

be written as [
(trb)2− tr

(
b2)]≡ Dk4 +Ek2 +F. (3.10)

The residues at the poles are then

Res
k2=m2

±

tr
(
b−1)= Dm4

±+Em2
±+F

2Am2n
±
(
m2
±−m2

∓
) . (3.11)
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Because m± are roots of Ak4 +Bk2 +C, we can use Dm4
±+DB

Am2
±+DC

A = 0 to simplify the

numerator and obtain

Res
k2=m2

±

tr
(
b−1)= (E−DB

A

)
m2
±+

(
F−DC

A

)
2Am2n

±
(
m2
±−m2

∓
) . (3.12)

The no-ghost conditions ( 2.42 ) are then

P
[
(AE−BD)m2

±+(AF−CD)
]
≷ 0, (3.13)

where m2
+ corresponds to > and m2

− correspond to <. We can use the relation X > 0,Y <

0⇔ X −Y > 0,XY < 0 to get rid of the square roots in m2
±. The no-ghost condition then

becomes

P(AE−BD)> 0 (3.14)

(AF−CD)2− B
A
(AF−CD)(AE−BD)+

C
A
(AE−BD)2 < 0. (3.15)

We can then substitute the actual value of A, B, C, D, E, and F to obtain the no-ghost

condition in terms of the Lagrangian parameters.

Now we can combine the massless and massive conditions to obtain the total no-ghost-

and-tachyon conditions.

3.8 Critical cases and parallelisation

We then try to find all the descendant critical cases of the root theory. The tree-like structure

can be easily implemented in object-oriented programming (OOP), but MATHEMATICA is

not an OOP language. However, we can still emulate some essential functions of object and

class in MATHEMATICA  

3
 . A critical case (including the root theory) is stored in a “node”.

To create a node, we just have to call new.

Module [{parent ,children ,value ,flag ,bTree},

3This idea is from  https://stackoverflow.com/questions/6097071/ 

https://stackoverflow.com/questions/6097071/
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children[_]:={};

value[_]:= Null;

parent[_]:={};

bTree[_]:= Null;

node/:new[node []]:= node[Unique []];

node/:new[node[v_]]:= Module [{obj},

obj=node[Unique []]; obj.setValue[v];obj];

node/:node[tag_].(*function *)

(*...... *) ];

Each node can have multiple parents and children. We can also define member functions

to build the relations between the nodes and access the value of the node. The values

contain information about the critical condition, no-ghost-and-tachyon condition, additional

condition, and some results of the intermediate steps. We also store the information about

the critical parameter, its type, and the sibling additional condition between the node and

each of its parents.

(*In ...... in the previous block*)

(*Only showing parts after ‘‘ node/: node[tag_].’’ for each function *)

addParent[pt_ ,path_] := (

parent[tag]= Append[parent[tag],<|"node"->pt,"path"->path|>];

pt.getTree []. addNode[node[tag ]];);

getParents [] := parent[tag];

getChildren [] := children[tag];

addChild[child_node ,path_] := (

child.addParent[node[tag],path];

children[tag] = Append[children[tag], child ];);

getValue [] := value[tag];

setValue[val_] := value[tag] = val;

getTree [] := bTree[tag];

setTree[val_] := bTree[tag] = val;
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All the nodes derived from the same root theory belong to a “tree”. Besides storing its

root node in a tree, we also save all nodes in a list in it so that we do not need to traverse all

the nodes when we need them. It is accomplished by adding a new node to the list when it is

added as a child to a node in the tree.

Module [{root ,nodes},

root[_] := Null;

nodes[_] := {};

tree/:new[tree []]:= tree[Unique []];

tree/:new[tree[n_]]:= Module [{obj},

obj=tree[Unique []]; obj.setRoot[n];obj];

tree/:tree[tag_]. setRoot[nd_node ]:=(

root[tag] = n;tree[tag]. addNode[n]);

tree/:tree[tag_]. getRoot []:= root[tag];

tree/:tree[tag_]. getNodes []:= nodes[tag];

tree/:tree[tag_]. addNode[n_node] := (

nodes[tag]=If[! MemberQ[nodes[tag],n],n.setTree[tree[tag]];

Append[nodes[tag], n],nodes[tag]]; );

];

Now we can find the critical cases and evaluate their no-ghost-and-tachyon conditions

recursively. Start from the root node, we divide its critical parameters into several groups,

and the critical parameters in each group has the same type. We also require that all type C

parameters are in the same group. We will call these groups “missions”, and results of the

parent node “model”. The function below can evaluate the no-ghost-and-tachyon condition

and repeat the process recursively for each mission.

doMission[mission_ ,model_ ,(*options *)]:= Module [{(*... *)},

(*Deal with critical parameters , additional conditions *)

(*Calculate unitary conditions for the child nodes,

and do the critical cases of the child nodes*)];
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After the evaluation of the root theory, we can call doMission in series for each mission, and

all critical cases will be found. We can also divide the missions evenly into some sets and use

ParallelEvaluate to evaluate these sets in series in the parallel kernels at the same time.

This is the simplest way to parallelise the calculation of critical cases. While the evaluation

of some sets will finish earlier than the others causing wastes of the computation power of

these kernels, it is enough for our purpose to use this simple method rather than making

the code more complicated. Before starting the evaluation, We also set some functions as

shared functions by SetSharedFunction so that they are executed on the master kernel

synchronously. These functions include requestDoRule and the functions accessing the

map of the source constraints. Furthermore, because node and tree are not working properly

in the parallel kernels, we write some shared functions and will always access them through

these shared functions. Because the parallel kernels in MATHEMATICA use their own memory,

we have to distribute the definitions of the functions and variables except those related to

node and tree to the parallel kernels by DistributeDefinitions.

sets={(*Evenly gourped missions*)};

rootModel=<|(*results of the root *)|>;

ParallelEvaluate[If[Length@mission >=$KernelID ,

doMission[#,rootModel ,opt]&/ @sets[[$KernelID ]]]

];

In doMission, we first “combine” the critical parameters is the mission is type C. This is

done by finding all possible combinations of the parameters and eliminate the empty set. If

the mission is type A or B, then each critical parameter is itself a set. The sibling additional

condition corresponding to each set is then the complement of the set with respect to all

critical parameters of the parent node. We then use Solve to obtain the replacement rule of

each set of the critical condition with its sibling additional condition. If there is no solution

for a set, then it means that the critical condition contradicts its additional condition, and we

remove the set. This will only happen when the mission is type C because each set in type A

or B mission contains only one parameter, and the contradiction can only happen when the

parameter is proportional to one of the sibling additional condition, which cannot happen.
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(*Deal with critical parameters , additional conditions *)

allParaSets=If[mission["type"]==="C",

DeleteCases[Subsets[mission["paras"]],{}],

Map[{#}&, mission["paras"]]];

allAddConds=Map[Function[paraSet ,And@@Map [#!=0& ,

Complement[model["degenParas"]["All"],paraSet]

]], allParaSets ];

allRuleObjs=MapThread[Module [{ svRule},

svRule=Solve[mission["oldParas"]==0&&#1==0&&#2];

<|"rule"-> svRule ,"paras"-> #1,"addConds"-> #2|>

]&,{ allParaSets ,allAddConds }];

allRuleObjs=DeleteCases[allRuleObjs ,<|"rule"-> {},__|>];

We then deal with each critical parameter set. We first reset the values such as a and

b-matrices to the values of the parent node. A new node is created, as well as a path with

the information between the new node and the parent node, such as the critical parameter(s)

and the type, all the critical parameters accumulated from the root except the current one(s),

sibling additional condition, all the critical parameters of the parent node. Before evaluating

the unitary conditions for each set, we check whether the theory with the same critical

conditions is already evaluated. The function requestDoRule converts all equivalent critical

conditions to a unique form and returns whether the evaluation of the critical condition has

been started or not. If so, we add the existing node as a child of the parent node, skip the

evaluation and go to the next set; otherwise, we add the new node instead and evaluate its

unitary condition. If the mission is type A or B, we then find the critical cases of the new

node and repeat the process. Hence, the process goes recursively until all the critical cases

are found.

Do[

rule=allRuleObjs [[i]]["rule"]; (*Same for paras , addConds*)

(*setting the a, b−matrices, etc to the values in ‘‘ model’’*)

nodePath=<|(*info of the relation between the node and parent *)|>;
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If[! requestDoRule[rule ,condNodeK=newNode []],

condNodeK=getNodeFromRule[rule];

nodeAddChild[model["cNode"],condNodeK ,nodePath ];

,

nodeAddChild[model["cNode"],condNodeK ,nodePath ];

doCondsWithRule[rule ,paras ,mission["type"],model ,mission["←↩

↪→oldParas"],AdditionalCondition -> addConds ,opt];

If[mission["type"]=!="C",doSubCritical [{rule ,paras},←↩

↪→mission ,i=== Length@allRuleObjs ,opt]];

];

,{i,Length@allRuleObjs }];

In the function doCondsWithRule, we run the codes in the previous sections again to obtain

the no-ghost-and-tachyon conditions for the node. If the mission is type A, then we have

to replace the a-matrices with the rule, obtain the b-matrices and source constraints, and

obtain the massless as well as massive no-ghost-and-tachyon conditions. For the type B

missions, we can reuse the a, b-matrices and the saturated propagator of its parent node and

replace them with the rule, but we still have to run the codes of the massless and massive

parts again. As for the type C missions, we can replace everything except the masses and

massive condition with the rule and re-evaluate the massive condition. However, if the

massless condition is already False, then the total condition should be False as well, and

we do not need to process further. We then set the result to the value of the node. Note that

we are indeed setting time and memory limit in the steps evaluating the conditions, which we

do not show in the codes. If some step runs over the time or memory limit, then the results

are incomplete, and we mark the massless and massive conditions as skipped. For the type C

missions of a skipped node, we will also skip them because the massless condition is invalid.

doCondsWithRule[rules_ ,newParas_ ,type_ ,model_ ,oldParas_ ,(*... *)←↩

↪→]:= Module [{conds},

Switch[type ,

"A",
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(*Get b−matrices with ‘‘ rule ’’ *)

(*Get Source constraints , massless , massive conditions with ‘‘ rule ’’ *),

"B",

(*Replace a, b−matrices related variables and Π with ‘‘rule ’’ *)

(*Get massless , massive conditions with ‘‘ rule ’’ *),

"C",

(*Replace a, b−matrices related variables and Π with ‘‘rule ’’ *)

(*Replace massless conditions with ‘‘ rule ’’ *)

If[MasslessCond ===False ,

conds=(*Total and massless conditions are False *),

(*Get massive conditions with ‘‘ rule ’’ *)];];

nodeSetValue[condNodeK ,(*Results , note that the accumulated critical ←↩

↪→ parameters are Join [oldParas , newParas]*)];

];

In the function doSubCritical, we first set the a, b-matrices, masses, and the saturated

propagator to the correct value if the evaluation of the condition for the node run out of time or

memory. We then find the new critical parameters, the new accumulated critical parameters,

and save the information for the current node to model. We can then call doMission to

evaluate the child nodes of the current node. Note that we should avoid accessing the nodes

because it will occupy the main kernel to do this.

doSubCritical[rule ,paras_ ,mission_ ,(*options *)]:= Module [{oldParas←↩

↪→,model},

(*If the evaluation run out of time/ memory,set variables to correct values *)

paras=getAllPossibleParas[bbDet ,bbDetRootNonZero ];

nodeSetValue[condNodeK ,(*add ‘‘ paras ’’ into the value*)];

oldParas=Flatten [{paras ,mission["oldParas"]}];

model=(*Save the current results to ‘‘ model’’*);

If[Length@paras [#]>0, doMission[Mission[oldParas ,paras [#],#],←↩

↪→model ,opt ]]&/@{"C","A","B"};

];



Chapter 4

Ghost and tachyon free PGT

In this chapter, we will first construct and introduce PGT in more detail in Section  4.1 and

then apply the method in Chapter  2 to it and compare our results with those previously

presented in the literature.

4.1 Poincaré Symmetry and Poincaré gauge theory

In this section, we will gauge the Poincaré symmetry mainly following the method in [ 18 ]

and construct the local Poincaré invariant matter and gravitational actions.

In a Minkowski spacetime M4, we can choose a global coordinate xµ which has the metric

ηµν . If we perform an infinitesimal coordinate transformation,

xµ → x′µ = xµ +ξ
µ(x), (4.1)

then the metric transforms as

ηµν → g′µν(x) =
∂xρ

∂x′µ
∂xσ

∂x′ν
ηρσ ≈ ηµν − (ξµ,ν +ξν ,µ) (4.2)

Now we require the new metric to be flat, g′µ,ν(x) = ηµν . The most general solution ζ µ(x)

to ( 4.2 ) has the form,

ξ
µ(x) = ε

µ +ω
µ

ν xν , (4.3)

69



70 Ghost and tachyon free PGT

where ωµν is antisymmetric. Here εµ generates translation, and ωµν generates Lorentz

transformation. We then write the infinitesimal transformation rule for an arbitrary field ϕ(x)

which may carry spatial or spin indices (which we suppress) as

ϕ(x)→ ϕ
′(x′) =

(
1+

1
2

ω
µν

Σ
ϕ

µν

)
ϕ(x), (4.4)

where Σ
ϕ

µν is the spin part of the Lie algebra generator and carries indices correspond to

ϕ(x). For example, Σµν for a Dirac spinor one has ΣD
µν = 1

4 [γµ ,γν ], for a vector field V ρ

one has (Σ1
µν)

λ
ρ = δ λ

µ ηνρ − δ λ
ν ηµρ , and for a rank-2 tensor T µν one has (Σ2

µν)
λρ

σδ
=

(Σ1
µν)

λ
σ δ

ρ

δ
+(Σ1

µν)
ρ

δ
δ λ

σ . We then compare the transformed and untransformed fields at the

same point and get

δ0ϕ(x)≡ ϕ
′(x)−ϕ(x) =

[
1
2

ω
µν(Σ

ϕ

µν +Lµν)+ ε
µPµ

]
ϕ(x) (4.5)

=

[
1
2

ω
µν

Σ
ϕ

µν +ξ
µPµ

]
ϕ(x)≡Uϕ

ϕ(x) (4.6)

where

Lµν = xµ∂ν − xν∂µ , Pµ =−∂µ (4.7)

are the generators of Lorentz transformation and translation respectively.

It is convenient to define a local Lorentz frame at each point, with the orthonormal basis

eA(x) ≡ h µ

A (x)eµ(x) satisfying eA · eB = ηAB, where eµ(x) satisfying eµ · eν = gµν is the

coordinate basis vector. Note that gµν = ηµν here because the spacetime is Minkowski, and

so we can choose h µ

A = δ
µ

A . The capital Latin indices refer to local Lorentz frames, and the

Greek indices refer to coordinate frames. We can also find the inverse bA
µ of h µ

A satisfying

bA
µh µ

B = δ A
B and bA

µh ν
A = δ ν

µ . The tetrad vectors bA
µ and h µ

A can then be used to convert

Latin indices of tensors into Greek indices and vice versa. We then express ϕ in the matter

Lagrangian with only Latin indices. We then let the Σ operators act only on Lorentz indices,

which does not affect the result.
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The matter action SM =
∫

d4xLM(ϕ,∂Aϕ) is invariant under the global Poincaré transfor-

mation. An action is transformed as

δS =
∫

Ω′
d4x′L′(x′)−

∫
Ω

d4xL(x). (4.8)

Since the Jacobian is |∂ (x′)/∂ (x)| ≈ 1+∂µξ µ , the action is invariant if [ 20 ]

∆L ≡ δL+(∂µξ
µ)L= δ0L+ξ

µ
∂µL+(∂µξ

µ)L, (4.9)

where δL= L′(x′)−L(x). Because ∂µξ µ = 0 for global Poincaré transformation, we get

δLM = 0.

We can now make the transformation local by allowing the constants ωµν and εµ to

vary over the spacetime. Note that in the local transformation, ξ µ and ωµν are independent

parameters since we can always choose proper εµ so that ξ µ = 0 even if ωµν ̸= 0. We will

use them as the independent parameters for the local transformation from now on, and the

Poincaré group is split into the general coordinate transformation (GCT) corresponding to ξ µ

and the local Lorentz rotation (SO(3,1) or SL(2,C) to accommodate spinors) corresponding to

ωAB. While the transformation rule for ϕ remains the same (δ0ϕ =Uϕϕ), the transformation

rule for ∂Aϕ(x) is different from its global one. Under the global transformation, ∂Aϕ(x)

transforms as

δ0∂Aϕ(x) =
∂

∂xA ϕ
′(x)− ∂

∂xA ϕ(x) = ∂Aδ0ϕ(x) =Uϕ
∂Aϕ−ω

B
A ∂Bϕ, (4.10)

while under local transformation, it transforms as

δ0∂Aϕ(x) =Uϕ
∂Aϕ +

1
2

∂Aω
CD

Σ
ϕ

CDϕ−∂Aξ
ν
∂νϕ. (4.11)

Therefore, δLM is not zero any more, and SM becomes not invariant. To make SM invariant,

we can first make δLM = 0 in a minimal coupling way by replacing the derivative ∂Aϕ in

LM(ϕ,∂Aϕ) with the covariant derivative DAϕ , whose transformation rule is the same as the
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global one

δ0DAϕ =UϕDAϕ−ω
B

ADBϕ. (4.12)

The new Lagrangian LM(ϕ,DAϕ) then satisfies δLM = 0 because the matter field and its

covariant derivative satisfies the “old” transformation rule. In contrast to the Yang-Mills

theory, we accomplish this in two steps. The first step is to eliminate the term 1
2ωABΣ

ϕ

ABϕ

in ( 4.11 ) by introducing the “rotational” gauge field AAB
µ . Similar to the replacement

∂µ →Dµ = ∂µ +Aa
µT a (T a: generators) in the Yang-Mills theory, we define

Dµϕ = ∂µϕ +
1
2

AAB
µΣ

ϕ

ABϕ (4.13)

and require it to transform as

δ0Dµϕ =UϕDµϕ−∂Aξ
νDνϕ. (4.14)

We find the rotational gauge field has to transform as

δ0AAB
µ = ω

A
S ASB

µ +ω
B

S AAS
µ −ξ

ν
∂νAAB

µ −∂µξ
νAAB

ν −∂µω
AB

=
1
2

ω
EF(Σ2

EF)
AB

CDACD
µ −ξ

ν
∂νAAB

µ −∂µξ
νAAB

ν −∂µω
AB. (4.15)

We now define DAϕ as

DAϕ = h µ

A Dµϕ (4.16)

and require it to obey the “global transformation” ( 4.12 ). The h µ

A acts as the “transla-

tional” gauge field here to compensate for the effect of the last term in ( 4.14 ) so that the

transformation rule can become ( 4.12 ). Then the translation rule for h µ

A must be

δ0h µ

A =−ω
S
A h µ

S −ξ
ν
∂νh µ

A +h ν
A ∂νξ

µ

=
1
2

ω
CD(Σ1

CD)
B

A h µ

B −ξ
ν
∂νh µ

A +h ν
A ∂νξ

µ . (4.17)
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Note that we have let the Σ operator only act on the Latin indices, so we can extend the

covariant derivatives for the fields carrying Greek indices by simply ignoring them, or

equivalently, neglecting the effect of ξ µ . For example,

Dµh ν
A = ∂µh ν

A +
1
2

ACD
µ(Σ

1
CD)

B
A h ν

A = ∂µh ν
A −AS

Aµh ν
S . (4.18)

If we do not neglect GCT in δ0ϕ , and ϕ carries some Greek indices, then since

ϕ
′µ ′1...

ν ′1...
(x′) =

∂xµ ′1

∂xµ1
...

∂xν1

∂xν ′1
...ϕ

µ1...
ν1... (x) (4.19)

and ∂xµ ′1/∂xµ1 = δ
µ ′1
µ1 +∂µ1ξ µ ′1 we get

δ0(ω +Γ)ϕ
µ1...

ν1... (x) =Uϕ
ϕ

µ1...
ν1... (x)+

[
∂ρξ

µ1ϕ
ρµ2...

ν1... (x)+ ...

−∂ν1ξ
ρ

ϕ
µ1...

ρν2... (x)− ...
]

≡ [Uϕ +Gϕ(ξ )]ϕ
µ1...

ν1... (x), (4.20)

where Gϕ(ξ ) = ∂ρξ σ
X

ρ

σ , and Xρ
σ is the GL(4,R) generator matrices appropriate to the

GCT tensor character of the field to which the operator is applied. Note that the Σ in

Uϕ operators still only act on Latin indices here. 

1
 Hence, from the transformation rules

Equations ( 4.12 ), ( 4.14 ) and ( 4.17 ), we find h µ

A , Dµϕ and DAϕ all transform covariantly

under both local Lorentz rotation and GCT. As a consequence, we can use the h µ

A and

its inverse to convert the Latin/Greek indices in a covariantly transformed tensor, and the

resulting tensor also transforms covariantly.

The matter action SM is still not invariant because ∂µξ µ ̸= 0 under local Poincaré

transformation. One can show that SM is invariant if we multiply the Lagrangian by b≡ det(b)

SM =
∫

d4xbLM(ϕ,DAϕ). (4.21)

1If we go back to the global transformation, then we get ∂µ ξ ν = ων
µ and Gϕ(ξ ) = 1

2 ω ·Σϕ

Greek, where
Σ

ϕ

Greek only acts on Greek indices. One can then recover ( 4.6 ), where the Σϕ = Σ
ϕ

Greek +Σ
ϕ

Latin.
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As mentioned in Chapter  1 , we should also include the free action for the gravitational

gauge fields h µ

A and AAB
µ . Now we can obtain them explicitly from the commutators of the

covariant derivatives. The commutators are

[Dµ ,Dν ]ϕ =
1
2

RAB
µνΣ

ϕ
ϕ (4.22)

[DC,DD]ϕ =
1
2

RAB
CDΣ

ϕ
ϕ−T S

CD DSϕ, (4.23)

where RAB
CD = h µ

C h ν
D RAB

µν is the Lorentz field strength, T A
BC = h µ

B h ν
C T A

µν is the

translational field strength, and

RAB
µν = 2(∂[µAAB

ν ]+AA
E[µAEB

ν ]), (4.24)

T A
µν = 2(∂[µbA

ν ]+AA
E[µbE

ν ]). (4.25)

The action in PGT has the general form

S =
∫

d4x b
[
LG

(
RAB

CD,T A
BC

)
+LM (ϕ,DAϕ)

]
, (4.26)

where LG is the free gravitational Lagrangian.

PGT is most naturally interpreted as a field theory in Minkowski spacetime[  23 ,  25 ,  28 ].

It is more common, however, to reinterpret it geometrically in terms of a Riemann–Cartan

spacetime (U4). Riemann–Cartan spacetime is a manifold with linear connection (Γ) and

metric (gµν ) which satisfy the metricity condition

Dρ(Γ)gµν = 0, (4.27)

where the covariant derivative is defined by

Dµ(Γ) = ∂µ +Γ
σ

ρµX
ρ

σ . (4.28)
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One may solve for the connection Γ, which is given by

Γ
µ

νρ =
{

µ

νρ

}
+Kµ

νρ , (4.29)

where
{

µ

νρ

}
is the ordinary Christoffel symbol and Kµ

νρ is the contorsion tensor (discussed

further below).

As mentioned above, a local Lorentz frame at each point on the manifold describes the

tangent space and is determined by the tetrad basis h µ

A with its inverse bA
µ ; these quantities

may be used to convert between coordinate and local Lorentz indices. The local frame has a

connection AAB
µ , and the covariant derivative DA(A) has properties similar to ( 4.28 ), where

Dρ(A)ηAB = 0. (4.30)

One may also define the “total covariant derivative” Dρ(Γ+A) to act on quantities with both

coordinate and local Lorentz indices

Dρ(Γ+A)ϕ =
(
Dρ(Γ)+Dρ(A)−∂ρ

)
ϕ. (4.31)

Since the total covariant derivative Dρ(Γ+A)V A of the local Lorentz components of a vector

is a coordinate tensor in U4 spacetime, the relationDρ(Γ+A)V A = bA
µDρ(Γ+A)V µ should

hold, from which one obtains the so-called “tetrad postulate”

Dµ(Γ+A)bA
ν ≡ ∂µbA

ν +AA
BµbB

ν −Γ
σ

νµbA
σ = 0. (4.32)

One can therefore express the affine connection in the quantities corresponding to gauge

fields as

Γ
λ

νµ = h λ
A (∂µbA

ν +AA
BµbB

ν), (4.33)

and hence show that the translational gauge field strength is equivalent to (minus) the

geometric torsion tensor

T ρ

µν = Γ
ρ

νµ −Γ
ρ

µν , (4.34)
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in terms of which the contorsion is given by

Kµλν =−1
2

(
Tµλν −Tνµλ +Tλνµ

)
. (4.35)

From ( 4.33 ), ( 4.34 ), and ( 4.35 ), one also obtains

AABµ = ∆ABµ +KABµ , (4.36)

where we define the quantities

∆ABµ ≡
1
2
(cABC− cCAB + cBCA)bC

µ , (4.37)

cA
µν ≡ ∂µbA

ν −∂νbA
µ , (4.38)

where ∆ABµ are the Ricci rotation coefficients or “reduced" A-field [ 28 ]. One then finds that,

the geometric (Riemann) curvature tensor is equivalent to the rotational gauge field strength

Rρ

σ µν ,

Rρ

σ µν = ∂µΓ
ρ

σν −∂νΓ
ρ

σ µ +Γ
ρ

λ µ
Γ

λ
σν −Γ

ρ

λν
Γ

λ
σ µ . (4.39)

4.2 Application to PGT+

The most general free-field PGT+ Lagrangian that is at most quadratic in the gravitational

gauge fields may be written as:

L=−λR+(r4 + r5)RABRAB +(r4− r5)RABRBA +
(r1

3
+

r2

6

)
RABCDRABCD

+

(
2r1

3
− 2r2

3

)
RABCDRACBD +

(r1

3
+

r2

6
− r3

)
RABCDRCDAB

+

(
λ

4
+

t1
3
+

t2
12

)
T ABCTABC +

(
−λ

2
− t1

3
+

t2
6

)
T ABCTBCA

+

(
−λ − t1

3
+

2t3
3

)
T B

ABT CA
C, (4.40)
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where RA
B = RAC

BC, R = RA
A, and we have adopted the conventions in [ 29 ] for the

parameters, which simplifies calculations and enables a straightforward comparison with

the literature. Note that we have applied the Gauss-Bonnet identity [ 78 ] to remove the term

proportional toR2 in ( 4.40 ),

∫
d4x b

(
R2−4RABRBA +RABCDRCDAB

)
= 0. (4.41)

To determine the particle spectrum, one must first linearise the Lagrangian. We expand it

around a Minkowski background with

hA
µ = δ A

µ + f A
µ , (4.42)

and we set the A-field to be O( f ). The inverse of h becomes

bA
µ = δ

A
µ − f µ

A +O
(

f 2) . (4.43)

Since the effect of transforming Greek indices to Latin indices is only O
(

f 2), we can ignore

the difference between them and only use Latin indices in the linearised theory. We can

decompose f into symmetric and antisymmetric parts: 

2
 

f AB = sAB−aAB. (4.44)

Note that one may add a constant term c0 to the right-hand side of ( 4.40 ), but after the

weak field expansion the Lagrangian becomes

bL= c0 + t
(

2λ∂AABA
B− c0s

)
+O

(
t2) . (4.45)

The constant term in ( 4.45 ) does not affect the equation of motion, so we can neglect it, and

the ∂A term can be eliminated by partial integration regardless of whether c0 is zero. If c0 ̸= 0,

2The minus sign before aAB is due to the difference of the indices between the main text and the code. In
the code, the h-field is hµ

A, while it is h µ

A in the main text.
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however, the c0s term in the O(t) part of the Lagrangian results in the equation of motion

c0 = 0 at order t, which contradicts c0 ̸= 0. Furthermore, we consider only the Minkowski

background here, and adding a cosmological constant term will cause the background to be

de Sitter. Hence, c0 must always be zero, and so we do not add the constant term to ( 4.40 ).

Before considering the general case of PGT+, however, we begin by first studying the

simpler cases of PGT+ with vanishing torsion and curvature, respectively, which one should

note are not merely special cases of ( 4.40 ), because additional constraints are placed not only

the coefficients, but also on the fields.

4.2.1 Zero-torsion PGT+

The translational field strength T A
µν is interpreted as torsion in the geometric interpretation.

If we set torsion to zero, it will impose a relation between the A- and h-fields, and so they are

not independent fields any more. Since the A-field can be written as AABµ = ∆ABµ +KABµ as

shown in ( 4.36 ), setting the torsion to zero is equivalent to replacing AABµ with ∆ABµ . The

Lagrangian of torsionless PGT is thus

L=−λR+2r4RABRAB +(r1−r3)RABCDRABCD. (4.46)

We employ the general method described in Sec.  2.2 to this case, and present our results

in Fig.  4.1 , which also illustrates our methodology in diagrammatic form. The top “node” in

the figure (entitled “root”) represents the full theory described by ( 4.46 ), without imposing

any relationship between the parameters in the Lagrangian. The line “l” in each node lists the

number of degrees of freedom in the massless sector and the condition for that sector to be

ghost-free; alternatively it is marked with “G” to denote that the sector must contain a ghost,

or “dip.G” to denote that it must contain a dipole ghost. The line “v” in each node lists the

massive particles and the conditions that must be satisfied for them to be neither ghosts nor

tachyons; alternatively, it is marked with a “G” if one of them must be a ghost or tachyon. If

there is no massive particle, then × is written.
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The arrows between nodes point from parent theories to their child theories. The first line

of the label on each arrow indicates the type of the critical case, and the second line denotes

that one is setting the expressions in [...] to zero in the parent theory to obtain the child theory.

The first line in each node (except the “root” node) contains the full set of critical conditions

for that theory. Note that for each theory, the conditions that make it critical (the expressions

in the arrows from that node) are required not to hold. For example, for the theory with

λ = 0 in the second row of Fig.  4.1 , one requires 2r1−2r3 + r4 ̸= 0 and r1− r3 +2r4 ̸= 0.

The bottom node corresponds to the Lagrangian vanishing identically.

For the subset of cases considered previously by other authors, we compare our results

with those in the literature in Sec.  4.2.4 .

Root

l: 2 dof, λ > 0

v: 0+,2+(G)

λ = 0

l: dip.G

v: ×

r1 − r3 + 2r4 = 0

l: 2 dof, λ > 0

v: 2+(G)

2r1 − 2r3 + r4 = 0

l: 2 dof, λ > 0

v: 0+ (r1 < r3)

r1 = r3, r4 = 0

l: 2 dof, λ > 0

v: ×

2r1 − 2r3 + r4 = 0, λ = 0

l: 0 dof

v: ×

r1 − r3 + 2r4 = 0, λ = 0

l: dip.G

v: ×

r1 = r3, r4 = 0, λ = 0

l: 0 dof

v: ×

B
[λ]

C
[r1 − r3 + 2r4]

C
[2r1 − 2r3 + r4]

C
[r1 − r3 + 2r4 ,
2r1 − 2r3 + r4]

A
[2r1 − 2r3 + r4]

A
[r1 − r3 + 2r4]

A
[r1 − r3 + 2r4]

A
[2r1 − 2r3 + r4]

Fig. 4.1 The critical cases of zero-torsion PGT+, for which the Lagrangian has the form
( 4.46 ). See the text for details.
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4.2.2 Zero-curvature PGT+

One may impose zero curvature in PGT+ (to obtain teleparallel PGT+) by setting AABµ = 0

[ 18 ], and the corresponding Lagrangian is given by

L=
(t1

3
+

t2
12

)
T ABCTABC +

(
−t1

3
+

t2
6

)
T ABCTBCA +

(
−t1

3
+

2t3
3

)
T BA

BT C
AC. (4.47)

Applying the method described in Sec.  2.2 to this case yields the results presented in Fig.  4.2 ,

which uses the same conventions as in Fig.  4.1 . We again compare our results with the

literature in Sec.  4.2.4 .

Root

l: 8 dof (G)

v: ×

t1 = 0

l: 1 dof, t2 > 0

v: ×

t3 = 0

l: 7 dof (G)

v: ×

t1 + t2 = 0

l: 3 dof, t1 > 0,

t3(t1 + t3) > 0

v: ×

t1 + t3 = 0

l: 3 dof, t1 > 0,

t1 + t2 > 0

v: ×

t1 = t2 = 0

l: 0 dof

v: ×

t1 = t3 = 0

l: 1, t2 > 0

v: ×

t1 + t2 = t3 = 0

l: 2, t1 > 0

v: ×

t1 + t2 = t1 + t3 = 0

l: 2, t1 > 0

v: ×

t1 = t2 = t3 = 0

l: 0 dof

v: ×

A
[t1]

A
[t3]

A
[t1 + t2]

A
[t1 + t3]

A
[t2]

A
[t3]

A
[t1]

A
[t1 + t2]

A
[t1] A

[t3]

A
[t1 + t3]

A
[t1] A

[t1 + t2]

A
[t3]

A
[t2]

A
[t1]

A
[t1]

Fig. 4.2 The critical cases of zero-curvature (teleparallel) PGT+, for which the Lagrangian
has the form ( 4.47 ). See text for details.

4.2.3 Full PGT+

We now turn our attention back to the general case of full PGT+, for which the Lagrangian is

given by ( 4.40 ). Starting from the “root” theory, for which no relationship is imposed on the
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parameters in the Lagrangian, our method outlined in Sec.  2.2 systematically identifies 1918

critical cases (excluding the “vanishing” Lagrangian case for which all parameters are zero),

which thus cannot be displayed in diagrammatic form such as in Figs  4.1 and  4.2 . Of these

critical cases, we find that 450 can be free of ghosts and tachyons, provided the parameters

in each case satisfy some conditions without generating another critical case. The full set of

results displayed in an interactive form can be found at:  http://www.mrao.cam.ac.uk/projects/

gtg/pgt/ . We show some screenshots in Figure  4.3 .

4.2.4 Comparison with previous results

We content ourselves here with presenting in Table  4.1 our results for the root PGT+ theory

and the small subset of critical cases that have been studied previously in the literature. We

also list those critical cases of the torsionless and teleparallel PGT+ theories (see Figs.  4.1 

and  4.2 ) that have been considered previously in the literature. Overall, we find that our

results are indeed consistent with those reported by other authors, apart from a few minor

differences that are most likely the result of typographical errors in earlier papers.

Some of the cases listed in Table  4.1 are worthy of further discussion, as follows:

• Case  1 : This is the “root” PGT+ theory, in which no critical condition holds. We find

the massless no-ghost condition λ > 0, which agrees with [ 29 ]. In the massive case,

we find the no-tachyon condition in each spin-parity sector to be:

0− :− t2
r2

> 0

0+ :
t3λ

2(r1− r3 +2r4)(t3−λ )
> 0

1− :− 3t1t3
2(r1 + r4 + r5)(t1 + t3)

> 0

1+ :− 3t1t2
2(2r3 + r5)(t1 + t2)

> 0

2− :− t1
2r1

> 0

2+ :− t1λ

2(2r1−2r3 + r4)(t1 +λ )
> 0, (4.48)

http://www.mrao.cam.ac.uk/projects/gtg/pgt/
http://www.mrao.cam.ac.uk/projects/gtg/pgt/
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Table 4.1 Conditions for no ghosts or tachyons for the PGT+ root theory and a subset of
critical cases analyzed previously in the literature. “Massless/massive” denotes the particle
content found in the literature, and the parentheses contain the number of degrees of freedom
of particles in the massless sector. “Dip. G” means the massless sector contains a dipole
ghost. Where our results differ from those in the literature, ours are put in squared brackets.
Cells marked with “*” are discussed further in the text, and “-” means the particle content is
not mentioned in the cited paper.

# Paper Critical Conditions No-ghost-and-tachyon Conditions Massless Massive

1 [ 29 ] × Ghost (massive) 2+ (2) 0−,0+,1−,
1+,2−,2+

2 [ 29 ] t1 = t2 = t3 = r1 = r2 = r3
= r4 = r5 = 0 λ > 0 2+ (2) ×

3 [ 29 ] t1 =−t2 =−t3 =−λ ,
r1 = r2 = r3 = r4 = r5 = 0 λ > 0 2+ (2) ×

4 [ 29 ] t1 =−t2 =−t3 =−λ ,
r1 = r3 = r4 = r5 = 0 λ > 0,r2 < 0 2+ (2) 0−

5 [ 29 ] t1 =−t2,r1 = r3, r4 = r2 = 0 λ > 0,r1 > 0[< 0], r1 + r5 > 0[< 0],
t1 > 0, t3(t1 + t3)> 0 2+ (2) 1−, 2−

6 [ 29 ] t1 =−t2,r1 = r3, r4 = r2 = 0,
torsionless λ > 0 2+ (2) ×

7 [ 29 ] t1 =−t3 =−λ ,r1 = 0, r4 =−r5 t2 > λ > 0,r2 < 0, 2r3 + r5 > 0 2+ (2) 0−, 1+

8 [ 29 ] t1 =−t3 =−λ ,r1 = 0,
r4 =−r5,r2 = 0 2r3 + r5 > 0,λ > 0, t2(t2−λ )> 0 2+ (2) 1+

9 [ 29 ] t1 =−t3 =−λ ,r1 = 0,
r4 =−r5,r2 = 0, torsionless Ghost - -

10 [ 29 ] r1 = 0,2r3 = r4 =−r5
λ > 0,r2 < 0,r3 > 0, t2 > 0,
t3 (λ − t3)< 0 2+ (2) 0−, 0+

11 [ 29 ,  79 ] r1 = 0,2r3 = r4 =−r5,
torsionless λ > 0,r3 > 0 - [(2)] - [0+]

12 [ 57 ] (1)-(12)* * 2+ (2) *

13 [ 57 ] t1 = t2 = t3 = 0,r1 = r3,
r4 = 0,2r3 + r5 = 0

λ > 0,r1 > 0
[λ > 0]*

2+,1−*
(4) [(2)] ×

14 [ 27 ] t1 = t2 = t3 = 0,r1 = r3,
r4 = 0,2r3 + r5 = 0 λ > 0* 2+ (2) ×

15 [ 27 ] t1 =−t3, teleparallel t1 + t2 > 0, t1 +λ > 0* 2+,0+ (3) ×

16 [ 80 ] t1 =−t3, teleparallel t1 +λ > 0 2+ (2)
[(3)] ×

17 [ 60 ] r4 =−(r1/2)+ r3/2, t3 = 0 r1 + r3 +2r5 < 0, λ > 0 (massless) 2+,1 (4) -

18 [ 60 ] r2 = 0, t2 = 0 2r3 + r5 > 0,λ > 0 (massless) 2+,1 (4) -

19 [ 60 ] t2 = t3 = r1− r3 +2r4 = r2 = 0 2r3 + r5 > 0, r1 + r3 +2r5 < 0,
λ > 0 (massless) 2+,1,1 (6) -

20 [ 79 ] torsionless Ghost (massive 2+) 2+ (2) 0+,2+

21 [ 12 ,  79 ] r1− r3 +2r4 = 0, torsionless Ghost (massive 2+) 2+ (2) 2+

22 [ 81 ] r1− r3 +2r4 = λ = 0, torsionless Ghost (massless) 2+,1,2+
(dip. G)* ×
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(a) The 1918+2 critical cases with those derived from type C condition hidden. It is impossible to
show them clearly in an A4 paper (even in full page).

(b) A zoomed-in picture of a small area of Figure  4.3a .

Fig. 4.3 Screenshots of the website  http://www.mrao.cam.ac.uk/projects/gtg/pgt/ showing
the 1918+2 (“root” theory and zero Lagrangian) critical cases with those derived from type
C condition hidden.

http://www.mrao.cam.ac.uk/projects/gtg/pgt/
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Fig. 4.4 A screenshot of the website  http://www.mrao.cam.ac.uk/projects/gtg/pgt/ showing
details for a critical case.

and the no-ghost condition in each sector is:

0− :− 1
r2

> 0

0+ :
−r1t3 + r3t3−2r4t3− t3λ +λ 2

2(r1− r3 +2r4)λ (−t3 +λ )
> 0

1− :−
3
(
t2
1 +2t2

3
)

2(r1 + r4 + r5)(t1 + t3)2 > 0

1+ :
3
(
t2
1 +2t2

2
)

2(2r3 + r5)(t1 + t2)2 > 0

http://www.mrao.cam.ac.uk/projects/gtg/pgt/


4.2 Application to PGT+ 85

2− :− 1
r1

> 0

2+ :
−2r1t1 +2r3t1− r4t1 + t1λ +λ 2

(2r1−2r3 + r4)λ (t1 +λ )
> 0. (4.49)

These conditions are again equivalent to those in [ 29 ], as expected, and cannot be

satisfied simultaneously. Hence, the theory contains a massive ghost, as is well known.

We show details of obtaining Equations ( 4.48 ) and ( 4.49 ) in Appendix  4.A .

• Case  3 : This is Einstein–Cartan theory, and our results are consistent with the literature.

• Case  5 : Our conditions λ > 0,r1 < 0,r1 + r5 < 0, t1 > 0, t3(t1 + t3)> 0 differ from the

conditions λ > 0,r1 > 0,r1 + r5 > 0, t1 > 0, t3(t1 + t3)> 0 found in [ 29 ] in that two of

the inequalities have the opposite sign. We believe these are typos in [ 29 ].

• Case  6 : This torsionless theory corresponds to that in node 4 of row 2 in Fig.  4.1 . We

obtain the condition λ > 0, with only 2 massless degrees of freedom, but [ 29 ] also set

2t3− t1 = 3λ ,r5 = 0. These additional conditions neither cause the theory to become

a critical case nor contradict the other conditions, so adding them has no effect on

the particle content. [ 29 ] finds that the action reduces to the Einstein action, which is

consistent with our result.

• Case  12 : We find that the critical cases that contain three coefficient equations and

only type C critical conditions are precisely the 12 cases listed in Table I of [ 57 ], and

we obtained the same particle content for each theory.

• Case  13 : Our no-ghost conditions and massless particle content are different from

those found in [ 57 ]. However, [  27 ] studied the same theory and obtained the same

conditions and particle content as ours. Moreover, our result that there is no massless

propagating tordion in this theory is also found in [ 48 ]. We notice that, compared to

our analysis, some terms in Eq. (8) in [ 57 ] have different signs, which we believe to be

typos.
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• Case  14 and  15 : We find that there is an overall sign difference between our linearised

Lagrangian and that in [ 27 ], so the conditions also have an overall sign difference. We

assume that this is a minor error either in their calculation or our conversion of it to

our notation. We have thus added an overall minus sign to their conditions.

• Case  15 : This theory was also studied in [ 80 ] (along with Case  16 ), who found only a

spin-2 massless mode with the condition t1 +λ > 0. However, they studied only the

spin-2 particles, so our results are consistent.

• Case  19 : We believe that the condition α− γ3 = 0 quoted in [ 60 ] contains a typo and

should instead read α− γ3 ̸= 0, which is equivalent to t1 = 0→ t1 ̸= 0 in our notation,

thus yielding our result.

• Case  22 : This is conformal gravity. [ 81 ] showed it has a normal spin-2, a normal

spin-1, and a ghost spin-2 mode, all massless. We find there is no massive mode, and

there must be dipole ghost(s) in the massless sector. Our method can determine the

existence of ghosts, but not the degrees of freedom in the massless sector if there are

dipole ghost(s). Nonetheless, the results are consistent.

4.2.5 Source constraints

As mentioned previously, if the parameters in the PGT+ Lagrangian ( 4.40 ) satisfy some

specific conditions (type A critical cases), then the resulting theory may possess extra gauge

invariances beyond the Poincaré symmetry assumed in its construction. For example, for

Case  13 in Table  4.1 , it is noted in [ 27 ,  57 ] that the theory is additionally invariant under the

gauge transformation

δAABC = ∂AΛBC−∂BΛAC +∂CθAB, (4.50)
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where ∂ BΛAB = 0, θAB = ∂AVB−∂BVA, ∂ AVA = 0 and Λ and V are arbitrary (see also [ 48 ]),

and has the additional source constraints

∂
B
τABC = 0, ∂

C
τABC = 0, (4.51)

beyond the standard ones ∂ BσAB = 0 and σ[AB]− ∂CτABC = 0 arising from the Poincaré

symmetry. Here, σAB and τABC are the source currents of the fAB (graviton) and AABC

(tordion) gravitational fields, respectively.

Our approach also found the same source constraints for this theory, although not directly

as tensor equations, but instead in component form for k aligned with the z-direction. Indeed,

we found there are 310 different sets of source constraints among the root PGT+ theory

and its 1918 critical cases. We are not able to convert all of them automatically into their

corresponding tensor equations, but it is possible to make such a conversion in some cases.

This is performed by first suggesting possible tensor equations from the patterns present

in the component equations, then converting the possible tensor equations into component

forms, and finally comparing whether they are equivalent. In table  4.2 , we present the results

for all the sets of sources constraints that we were able to convert into tensor form. We find

that the same set of source constraints may hold for more than one critical case, so in the

table we list only the case having the simplest critical conditions. It is worth noting that the

first case listed is the root PGT+ theory, for which we recover the two well-known source

constraints arising from the Poincaré symmetry alone. We also note that, aside from the root

theory, the numbering of cases in the table is not related to that used in table  4.1 .

Table 4.2 Source constraints for the root PGT+ theory and those critical cases for which
the constraints could be found in tensor form. Note that there may be more than one critical
case sharing the same source constraints, so we list only the case having the simplest critical
conditions. The numbering of cases is not related to that used in Table  4.1 .

# Critical Conditions Source constraints

1 × kBσAB = σAB−σBA−2ikCτABC = 0

2 r1− r3 = r4 = λ = 0 iσAB + iσBA +2kCτCAB +2kCτCBA = iσAB− iσBA +2kCτABC =

0
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Table  4.2 (continued): Source constraints for some PGT+ critical cases.

# Critical Conditions Source constraints

3 r1/2−r3/2+r4 = r1/2+r3/2+r5 = t3 =

0

kBσAB = σAB−σBA−2ikCτABC = gBCτACB = 0

4 r1/2−r3/2+r4 = r1/2+r3/2+r5 = t1 =

t3 = 0

kBσAB = σAB−σBA−2ikCτABC = kBσBA = gBCτACB = 0

5 r1 = r3 = r4 = r5 = t1 = t3 = 0 kBσAB = σAB−σBA +2ikCτCBA = τACB + τBCA = 0

6 r1 = r3 = r4 = r5 = t1 = t2 = t3 = 0 kBσAB = σAB−σBA = kCτCBA = τACB + τBCA = 0

7 r1 = r3 = r4 = r5 = t1 = t2 = t3 = λ = 0 σAB = kCτCBA = τACB + τBCA = 0

8 r1 = r2 = r3 = r4 = r5 = t1 = t2 = t3 = 0 kBσAB = σAB−σBA = τBCA = 0

9 r1 = r3 = r4 = r5 = t1 = t3 = λ = 0 σAB + ikCτCBA = τACB + τBCA = 0

10 r1/3− r3 = r1/3+ r4 = 2r1/3+ r5 = t1 =

t3 = 0

kBσAB = σAB − σBA − ikCτCAB + ikCτCBA = gBCτACB =

2kCτABC− kCτCAB + kCτCBA = 0

11 r1/3− r3 = r1/3+ r4 = 2r1/3+ r5 = t1 =

t2 = t3 = 0

kBσAB = σAB − σBA = gBCτACB = kCτCAB − kCτCBA =

kCτABC = 0

12 r2 = r1/3− r3 = r1/3+ r4 = 2r1/3+ r5 =

t1 = t2 = t3 = 0

kBσAB = σAB−σBA = gBCτACB = kCτCAB− kCτCBA = τABC−
τACB + τBCA = 0

13 r2 = r1/3− r3 = r1/3+ r4 = 2r1/3+ r5 =

t1 = t2 = t3 = λ = 0

σAB = gBCτACB = kCτCAB−kCτCBA = τABC−τACB +τBCA = 0

14 r1/3− r3 = r1/3+ r4 = 2r1/3+ r5 = t1 =

t2 = t3 = λ = 0

σAB = gBCτACB = kCτCAB− kCτCBA = kCτABC = 0

15 r1/3− r3 = r1/3+ r4 = 2r1/3+ r5 = t1 =

t3 = λ = 0

σAB− ikCτABC = gBCτACB = 2iσAB + kCτCAB− kCτCBA = 0

16 r1− r3 = r4 = r1+ r5 = t1 = t2 = t3 = λ =

0

σAB = gBCτACB = kCτCAB + kCτCBA = kCτABC = 0

17 r1− r3 = r4 = r1 + r5 = t1 = t3 = 0 kBσAB = σAB − σBA − 2ikCτABC = gBCτACB = kCτCAB +

kCτCBA = 0

18 r1− r3 = r4 = r1 + r5 = t1 = t3 = λ = 0 σAB− ikCτABC = gBCτACB = kCτCAB + kCτCBA = 0

19 r1− r3 = r4 = r1 + r5 = t1 = t2 = t3 = 0 kBσAB = σAB − σBA = gBCτACB = kCτCAB + kCτCBA =

kCτABC = 0

20 r1/2−r3/2+r4 = r1/2+r3/2+r5 = t1 =

t2 = t3 = 0

kBσAB = σAB−σBA = gBCτACB = kCτABC = 0

21 r2 = r1 − r3 = r4 = 2r1 + r5 = t1 = t2 =

t3 = λ = 0

σAB = kCτCBA = τABC− τACB + τBCA = 0

22 r1/2−r3/2+r4 = r1/2+r3/2+r5 = t1 =

t2 = t3 = λ = 0

σAB = gBCτACB = kCτABC = 0
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Table  4.2 (continued): Source constraints for some PGT+ critical cases.

# Critical Conditions Source constraints

23 r1−r3 = r4 = 2r1+r5 = t1 = t2 = t3 = λ =

0

σAB = kCτCBA = kCτABC = 0

24 r1/2−r3/2+r4 = r1/2+r3/2+r5 = t1 =

t3 = λ = 0

kBσAB = gBCτACB = iσAB + kCτABC = 0

25 r1− r3 = r4 = 2r1 + r5 = t1 = t3 = λ = 0 σAB + ikCτCBA = 2σAB− ikCτABC− ikCτCAB = 0

26 r1− r3 = r4 = r1 + r5 = t3 = λ = 0 gBCτACB = iσAB + iσBA +2kCτCAB +2kCτCBA = iσAB− iσBA +

2kCτABC = 0

27 r1− r3 = r4 = t1 = t2 = t3 = λ = 0 σAB = kCτCAB + kCτCBA = kCτABC = 0

28 r1 = r3 = r4 = r5 = t2 = t3 = λ = 0 σAB−2ikCτCBA = σAB−2ikCτABC−2ikCτCAB = gBCτACB = 0

29 r1− r3 = r4 = t1 = t3 = λ = 0 kCτCAB + kCτCBA = iσAB + kCτABC = 0

30 r1 = r2 = r3 = r4 = r5 = t2 = t3 = λ = 0 σAB−2ikCτCBA = gBCτACB = τABC− τACB + τBCA = 0

31 r2 = r1− r3 = r4 = 2r1 + r5 = t2 = λ = 0 σAB−2ikCτCBA = τABC− τACB + τBCA = 0

32 r1− r3 = r4 = 2r1 + r5 = t2 = λ = 0 σAB−2ikCτCBA = σAB−2ikCτABC−2ikCτCAB = 0

33 r2 = r1/3− r3 = r1/3+ r4 = 2r1/3+ r5 =

t2 = t3 = 0

kBσAB = σAB − σBA + 2ikCτCAB − 2ikCτCBA = gBCτACB =

τABC− τACB + τBCA = 0

34 r1/3− r3 = r1/3+ r4 = 2r1/3+ r5 = t2 =

t3 = 0

kBσAB = σAB − σBA + 2ikCτCAB − 2ikCτCBA = σAB − σBA −
2ikCτABC = gBCτACB = 0

35 r1− r3 = r4 = t1 = t3 = 0 kBσAB = σAB−σBA−2ikCτABC = kCτCAB + kCτCBA = 0

36 r1− r3 = r4 = 2r1 + r5 = t1 = t3 = 0 kBσAB = σAB − σBA + 2ikCτCBA = σAB − σBA − ikCτABC −
ikCτCAB = 0

37 r1− r3 = r4 = 2r1 + r5 = t1 = t2 = t3 = 0 kBσAB = σAB−σBA = kCτCBA = kCτABC = 0

38 r2 = r1 − r3 = r4 = 2r1 + r5 = t1 = t2 =

t3 = 0

kBσAB = σAB−σBA = kCτCBA = τABC− τACB + τBCA = 0

39 r1− r3 = r4 = t1 = t2 = t3 = 0 kBσAB = σAB−σBA = kCτCAB + kCτCBA = kCτABC = 0

40 r2 = 2r3 + r5 = t1 = t2 = t3 = λ = 0 σAB = τABC− τACB + τBCA = kCτCAB− kCτCBA = 0

41 t1 = t3 = 0 kBσAB = σAB−σBA−2ikCτABC = kBσBA = 0

42 2r3 + r5 = t1 = t2 = t3 = λ = 0 σAB = kCτCAB− kCτCBA = kCτABC = 0

43 r2 = 2r3 + r5 = t1 = t2 = t3 = 0 kBσAB = σAB − σBA = τABC − τACB + τBCA = kCτCAB −
kCτCBA = 0

44 2r3 + r5 = t1 = t3 = λ = 0 3iσAB + kCτABC + kCτCAB − kCτCBA = 2iσAB + kCτCAB −
kCτCBA = 0

45 2r3 + r5 = t1 = t3 = 0 kBσAB = σAB − σBA − ikCτCAB + ikCτCBA = σAB − σBA −
2ikCτABC = 0

46 2r3 + r5 = t1 = t2 = t3 = 0 kBσAB = σAB−σBA = kCτCAB− kCτCBA = kCτABC = 0
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Table  4.2 (continued): Source constraints for some PGT+ critical cases.

# Critical Conditions Source constraints

47 t1 = t2 = t3 = 0 kBσAB = σAB−σBA = kCτABC = 0

48 t1 = t2 = t3 = λ = 0 σAB = kCτABC = 0

49 t1 = t3 = λ = 0 kBσAB = iσAB + kCτABC = 0

50 r2 = 2r3 + r5 = t2 = 0 kBσAB = σAB −σBA + 2ikCτCAB − 2ikCτCBA = τABC − τACB +

τBCA = 0

51 2r3 + r5 = t2 = 0 kBσAB = σAB − σBA + 2ikCτCAB − 2ikCτCBA = iσAB − iσBA +

2kCτABC = 0

4.3 Discussion and Conclusions

We have presented a systematic method for obtaining the no-ghost-and-tachyon conditions

for all critical cases of a parity-preserving gauge theory of gravity. We have implemented

the method as a computer program and examined the critical cases of PGT+, as well as of

torsionless PGT+ and teleparallel PGT+. In comparing our results with the literature for

the (small) subset of critical cases that have been analysed previously, we find that they are

consistent, apart from a few minor differences that most probably arise from typographical

errors in previous works.

Our method does, however, have the shortcoming that it does not yield the spins or parities

of the massless particles, but only their total number of degrees of freedom (when there is no

dipole ghost). Moreover, in the presence of a dipole ghost, our method can determine only

that the dipole ghost exists, but does not yield the number of degrees of freedom.

Although not a shortcoming of our method per se, it is also difficult to classify the results

obtained. In particular, care must be taken since, for a given ghost and tachyon free critical

case, it is not guaranteed that all of its child critical cases do not contain ghosts or tachyons.

Furthermore, in general, a theory has multiple child critical theories, and it also has multiple

parent theories, so it is difficult to divide the theories into some categories without cutting

lots of relations between parent and child theories. Our interactive interface available at
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 http://www.mrao.cam.ac.uk/projects/gtg/pgt/ is intended to assist in navigating this space of

theories.

An alternative method to that presented here is the Hamiltonian approach, which has

recently been used to study the particle spectrum of parity-violating PGT by Blagojević and

Cvetković [ 42 ]. Their results can be straightforwardly reduced to PGT+ by setting all the ā

and b̄ to zero in their paper. This will not cause any new “critical parameters" to vanish. By

comparing their “critical parameters" with our “critical conditions," we find that our type

C critical conditions are identical to their critical parameters. These critical parameters are

second class constraints [ 47 ,  82 ], so they do not lead to additional gauge invariance, which is

consistent with our definition of type C critical cases. As for the type A critical conditions,

we believe that they correspond to first class if-constraints because first class constraints

represent additional gauge invariance. In Blagojevic’s book [ 18 ], the critical parameters for

the most general teleparallel PGT+ are listed, and found to be first class. Our method found

4 type A conditions from the theory, which is the same as Blagojevic. This is consistent

with our supposition. As for the type B critical cases, however, [ 42 ] does not mention its

consequences (massive particle becomes massless), but only requires the mass squares to be

positive. Blagojević and Vasilić [ 48 ] studied what happens when massive modes become

massless. In particular, they claim that if any massive tordion becomes massless, there will

be extra gauge invariance. However, in their analysis they always include other critical

condition(s) in addition to setting the mass to zero to make the theory healthy, so they are not

purely applying type B conditions. It is possible that we combine some type B conditions

with some other conditions to get a type A condition and extra gauge invariance appears,

so their conclusion does not conflict with ours. The Hamiltonian approach also gives more

information. Indeed, it is shown in [  49 ,  50 ,  83 ,  84 ] that linearizing a theory can change its

structure qualitatively, so that the degrees of freedom and gauge invariances may differ. One

must therefore perform a full non-linear analysis to determine whether this is the case for the

theories considered here.

Finally, although we demonstrated our method only for PGT+ in this chapter, it may be

applied to more complex theories such as Weyl gauge theory (WGT) [ 62 – 64 ], which we will

http://www.mrao.cam.ac.uk/projects/gtg/pgt/
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present in Chapter  6 , or extended Weyl gauge theory (eWGT) [ 28 ]. It is also applicable to

conventional metric theories such asR2 theories.
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Appendix 4.A The “root” Poincaré gauge theory

In this section, we will show more details about the process of obtaining the no-ghost-and-

condition for the root PGT. The same topic has already been discussed discussed in [ 29 ]

using similar methods (and also [  41 ] which also included parity-odd terms), and one can

compare our process to theirs.

We first linearise the root PGT free gravitational Lagrangian ( 4.40 ). The first order

Lagrangian is

L1 = 2λ∂ BAA
A

B, (4.52)

and it is a total derivative. The quadratic Lagrangian is

L2 =

(
t1
3
− 2t2

3

)
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After Fourier transformation, ( 4.53 ) is in the form of ( 2.11 ). By applying ( 2.14 ) which

decomposes ( 2.11 ) by the SPOs, one obtains the a-matrices

a
(
0−
)
=

( A

A 2
(
k2r2 + t2

)) (4.54)

a
(
0+
)
=



A s s

A 2
(
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2i
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 (4.55)

a
(
1−
)
= (4.56)

1
3



A A s a

A 6k2 (r1 + r4 + r5)+ t1 +4t3 −
√

2(t1−2t3) −i
√

2k (t1−2t3) i
√

2k (t1−2t3)

A −
√

2(t1−2t3) 2(t1 + t3) 2ik (t1 + t3) −2ik (t1 + t3)

s i
√

2k (t1−2t3) −2ik (t1 + t3) 2k2 (t1 + t3) −2k2 (t1 + t3)

a −i
√

2k (t1−2t3) 2ik (t1 + t3) −2k2 (t1 + t3) 2k2 (t1 + t3)


(4.57)
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a
(
1+
)
=

1
3



A A a

A 6k2 (2r3 + r5)+ t1 +4t2
√

2(t1−2t2) −i
√

2k (t1−2t2)

A
√

2(t1−2t2) 2(t1 + t2) −2ik (t1 + t2)

a i
√

2k (t1−2t2) 2ik (t1 + t2) 2k2 (t1 + t2)

 (4.58)
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We then fix the gauge by removing rows and columns in the singular a-matrices. After

deleting the third row/column in a(0+), the third and fourth row/column in a(1−), and the

third row/column in a(1+), we obtain the b-matrices

b
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( A
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)) (4.61)
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b
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The inverses of the b-matrices are

b−1 (0−)= ( A

A 1
2(k2r2+t2)

)
(4.67)
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b−1 (2+)= 1
t1λ +2k2 (2r1−2r3 + r4)(t1 +λ )


A s

A t1 +λ − it1√
2k

s it1√
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The saturated propagator is obtained by sandwiching the b−1-matrices by source currents.

To obtain the no-ghost condition in the massless sector, we have to obtain the source

constraints first. The null left eigenvectors vw,L
i (JP) in ( 2.17 ) are

0+ :(0,0,1)

1− :(0,−ik,0,1),(0, ik,1,0)

1+ :(0,−ik,1) (4.73)

We then expand the SPOs in ( 2.17 ), solve the tensor component equations by Equa-

tions ( 2.26 ) and ( 2.27 ). By expanding the saturated propagator into tensor components and

applying ( 2.27 ) to express it in the form of ( 2.28 ), we obtain the residue matrices Q2N . Note

that the form of ( 2.27 ) is not unique, and therefore the Q2N-matrices are not unique, either.

We found the higher poles Q4 and Q6 vanish identically. The non-zero eigenvalues of Q2 are

1+6|⃗k|2

λ
,
1+8|⃗k|2

2λ
, (4.74)

and therefore the massless no-ghost condition is

λ > 0. (4.75)

For the massive conditions, we first obtain the determinants of the b-matrices

det(b(0−)) = 2t2 +2r2k2

det(b(0+)) =−8t3λk2 +16(r1− r3 +2r4)(t3−λ )k4



98 Ghost and tachyon free PGT

det(b(1−)) = 2t1t3 +
4
3
(r1 + r4 + r5)(t1 + t3)k2

det(b(1+)) = 2t1t2 +
4
3
(2r3 + r5)(t1 + t2)k2

det(b(2−)) = t1 +2r1k2

det(b(2+)) = 2t1λk2 +4(2r1−2r3 + r4)(t1 +λ )k4. (4.76)

The non-zero masses are the non-zero zeros of k2 in the determinants

m2 (0−)=− t2
r2

m2 (0+)= t3λ

2(r1− r3 +2r4)(t3−λ )

m2 (1−)=− 3t1t3
2(r1 + r4 + r5)(t1 + t3)

m2 (1+)=− 3t1t2
2(2r3 + r5)(t1 + t2)

m2 (2−)=− t1
2r1

m2 (2+)=− t1λ

2(2r1−2r3 + r4)(t1 +λ )
(4.77)

The massive no-tachyon conditions simply require the squares of the masses to be positive,

as shown in ( 4.48 ).

The no-ghost conditions ( 2.40 ) require the residue of the traces of the b−1-matrices at the

mass to be positive (parity even) or negative (parity odd). The results are shown in ( 4.49 ).

Combining the conditions in each sector, we obtain the no-ghost-and-tachyon conditions

for each massive JP sector

0− :t2 > 0,r2 < 0

0+ :r1 +2r4 > r3, t3 (t3−λ )λ > 0

1− :r1 + r4 + r5 < 0, t1t3 (t1 + t3)> 0

1+ :2r3 + r5 > 0, t1t2 (t1 + t2)< 0

2− :t1 > 0,r1 < 0
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2+ :2r1 + r4 > 2r3, t1λ (t1 +λ )< 0

However, it is impossible to satisfy all of the conditions at the same time, and so the root

PGT must contain ghosts and/or tachyons.





Chapter 5

Power-counting renormalisable, ghost

and tachyon free PGT

In the Chapter  4 , we have discussed the no-ghosts-and-tachyons conditions for PGT. In

addition to possessing no ghosts or tachyons, a healthy physical theory should also be

renormalisable. The first step in assessing whether this is possible is to determine whether the

theory is power-counting (PC) renormalisable. We will first introduce the criterion of power-

counting renormalisability in Section  5.1 , and then discuss power-counting renormalisable

PGT critical cases in Section  5.2 .

5.1 Power counting renormalisablity

In this section, we will introduce the PCR criterion requiring the dimensions of the coupling

constants to be non-negative, following the arguments in textbooks, for example, [ 85 – 87 ], see

also [ 88 ]. We will then clarify the relation between the asymptotic power of the propagators

and the PCR criterion and apply it to PGT.

We consider a quantum field theory in d dimensional spacetime with some fields labelled

by i, and we assume for each field the propagator→ p−li as p→ ∞. The interactions are

labelled by a, and for each interaction it has Na,i legs of field i, with a coupling constant λa

and δa derivatives. Let us consider a Feynman diagram with Ii internal legs and Ei external

101



102 Power-counting renormalisable, ghost and tachyon free PGT

legs of field i, and with va vertices a and L loops. The numbers have the following relations:

∑
i

Ei +∑
i

Ii = ∑
a,i

(Na,iva)−∑
i

Ii (5.1)

∑
i

Ei +∑
i

Ii = ∑
a,i

(Na,iva)−
(

∑
a

va−1
)
−L, (5.2)

so we have

L = ∑
i

Ii−∑
a

va +1. (5.3)

The amplitude is proportional to |M| ∼
∫

ddL p ∏a,i

(
pvaδa/pliIi

)
. The superficial degree of

divergence is

D = dL−∑
i
(liIi)+∑

a
(δava)

= d +∑
i
(d− li)Ii +∑

a
(δa−d)va

= d−∑
i
(d− li)

Ei

2
+

1
2 ∑

i,a
(d− li)Na,iva +∑

a
(δa−d)va (5.4)

for each Feynman diagram. For a renormalisable theory, only finite types of divergent D are

allowed, so D has a upper bound. Since Ei ≥ 0 and we assume li ≤ d, the conditions are 

1
 

δa−d +
1
2 ∑(d− li)Na,i ≤ 0 ∀a. (5.5)

We now define the canonical, or engineering dimension [ 85 ] of the field ϕi as

[ϕi]≡ (d− li)/2. (5.6)

The canonical dimension of a field sometimes coincides with the mass dimension of the

field in natural units. The mass dimension of a field can be inferred from the fact that

each term in the Lagrangian density has mass dimension d. For example, for the Klein-

1Note that if any i satisfies d− li = 0, then infinitely many values of Ei can give the same value of D.
Even if the theory satisfies ( 5.4 ) and the superficial divergence is bounded, we may still need infinitely many
parameters. We will not discuss this issue further for simplicity. Readers may refer to [ 85 ] for more details.
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Gordon field (LF = 1
2∂ µφ∂µφ − 1

2m2φ 2), the Dirac field (LF = ψ̄
(
i/∂ −m

)
ψ), and the

electromagnetic field (LF =−1
4

(
∂µAν −∂νAµ

)
(∂ µAν −∂ νAµ)) the mass dimension can be

read off directly from the corresponding Lagrangian, and matches the canonical dimension

in each case. However, for example, the dimensions do not match for a massive vector

field (LF = −1
4

(
∂µAν −∂νAµ

)
(∂ µAν −∂ νAµ)+ 1

2m2AµAµ ). In this case, the propagator

is D(p)µν =
(

ηµν −
pµ pν

m2

)
/
(

p2−m2), and it tends to a constant when p2→ ∞. We can

make a field redefinition by multiplying by a constant and make the two dimensions coincide.

For example, if we set A′µ = mAµ , then the mass dimension of A′µ becomes 2, which is the

same as [Aµ ]. We will assume the fields are redefined and the two dimensions coincide in the

following steps.

For the interaction terms, we can obtain the dimension of the coefficient [λa] = d−δa−

∑i Na,i[ϕi] = d−δa−1/2∑i Na,i(d− li), so the PC renormalisable condition is

[λa]≥ 0 ∀a. (5.7)

There should not be any coupling constant with negative dimension, or the theory is not PC

renormalisable. However, PC is not the ultimate criterion for renormalisability. Some PCR

theories may be non-renormalisable because of some deeper problems such as anomalies,

and non-PCR theories may turn out to be renormalisable (for example, see [ 89 ]).

Now we can check whether GR itself is PC renormalisable as an example. The Lagrangian

of GR is L =
M2

pl
2
√
−gR, and if we make the perturbation gµν = ηµν +hµν we obtain:

L=
M2

pl

2
√
−gR∼M2

pl
[
(∂h)2 +(∂h)2h+ ...

]
(5.8)

The propagator is

Dµνρσ (p) =
ηµ ρην σ +ηµ σ ην ρ −ηµ νηρ σ

2p2 , (5.9)

which goes as p−2 at high energy, so the canonical dimension of the h-field is (4−2)/2 = 1.

The mass dimension of the h-field is 0, so we can make the field redefinition h̃µν = Mplhµν
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so that the two dimensions of h̃µν coincide, and the Lagrangian becomes

L ∼ (∂ h̃)2 +
1

Mpl
(∂ h̃)2h̃+ ... (5.10)

Since it contains negative dimension coefficients, it is not PC-renormalisable. Let us assume

that the propagator ( 5.9 ) has a different asymptotic behaviour ∼ p−l . Then [hµν ] becomes

2− l/2, and we have to redefine the field as h̃µν = M2−l/2
pl hµν . If 2− l/2 > 0, there will be

negative dimension for the coefficient of the interaction terms. Hence, for a theory with the

form L ∼M2
pl
[
(∂h)2 +(∂h)2h+ ...

]
, we need l ≥ 4 to make it PCR.

In PGT, the Lagrangian is

bLG ∼ b
(
λR+ rR2 + tT 2)

∼
(
1+ f + f 2 + ...

){
λ (1+ f )2 (

∂A+A2)+ r (1+ f )4 (
∂A+A2)2

+t (1+ f )2 [
∂ ( f + f 2 + ...)+(1+ f + f 2 + ...)A

]2}
, (5.11)

where we do not show the detailed structures of the indices and coefficients, and the mass

dimension of the parameters and fields are [λ ]M = 2, [r]M = 0, [t]M = 2, [A]M = 1, and

[ f ]M = 0. Assuming the propagators of A and h behave as p−lA and p−lh respectively, we

need to redefine the fields as Ã = M1−lA/2
A A and h̃ = M2−lh/2

h h. Therefore we require lA ≥ 2

and lh ≥ 4 for the theory to be PCR.  

2
 

5.2 Power-counting renormalisability of PGT

In Chapters  2 and  4 , we presented a systematic method for identifying the ghost-and-

tachyon-free critical cases of parity-preserving gauge theories of gravity, and applied it to

parity-preserving Poincaré gauge theory (PGT+). We can now use the criterion in Section  5.1 

to identify PCR ghost-and-tachyon-free critical cases. However, even this condition can

2If r = 0, then the interaction terms with the highest degree of A are ∼ A2 with coefficients of dimension 2.
Hence, in this case, we may have a looser condition lA ≥ 0. However, there is no dynamical term for A if r = 0,
so we consider A not propagating. We will discuss this later.
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be quite difficult to establish in the general case in which the propagator for the theory

contains terms that mix different fields, which is the case for PGT+. Nonetheless, in the

decomposition of the propagator using SPOs, there are some critical cases for which the

mixing terms in the b-matrices vanish. In these cases, the physical meaning is much clearer.

We therefore focus only on the PGT+ critical cases that satisfy this property.

The key quantity for determining whether a theory is PCR is the propagator

D̂ = ∑
J,P,i, j

b−1
i j P̂(JP)i j. (5.12)

In particular, if the b-matrices contain no elements linking any of the A-, s- and a-fields ,

then it is straightforward to obtain the propagators for these fields separately from D̂. 

3
 In

Section  5.1 we pointed out that the PCR criterion on the A- and f -fields of PGT requires the

propagator of the A-field to decay at least as quickly as k−2 at high energy, and those of the

s- and a-fields to fall off at least as k−4. This criterion is also used in [  29 ], and we will call

it the “original PCR criterion”. By contrast, here we propose an alternative PCR criterion,

which also permits the presence of non-propagating fields (for which the propagator decays

no faster than ∼ k0) 

4
 , since these should completely decouple from the rest of the theory; we

will compare these two criteria further below.

In the remainder of this chapter, we will study only those cases for which the b-matrices

are block diagonal, with each block containing only one field, ensuring that there are no

mixing terms in the gauge-fixed Lagrangian. 

5
 It is worth noting that, the behaviour of the

propagators at high energy goes as the highest power of the corresponding elements in

the b−1-matrices. Moreover, in the PGT+ cases we consider, any non-diagonal block of a

b-matrix that does not mix fields is always the only block in the matrix, contains only the

A-field, and has size 2×2. Moreover, these blocks occur only in the 1− or 1+ sector. The

3Because the b-matrices are generally not unique, we should find out all possible b-matrices and pick only
those “non-mixing”.

4We will see later in Table  5.1 that for the PGT cases satisfying the restriction which will be mentioned
later in this chapter, the propagator decaying no faster than ∼ k0 is equivalent to there being fields in some spin
sectors without dynamical terms in the linearised Lagrangian

5We note that this extension therefore does not include Einstein-Cartan theory.
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most general forms of the b-matrices in these sectors are

b(1−) =
1
3


A A

A∗ 6(r1 + r4 + r5)k2 +(t1 +4t3) −
√

2(t1−2t3)

A∗ −
√

2(t1−2t3) 2(t1 + t3)

, (5.13)

b(1+) =
1
3


A A

A∗ 6(2r3 + r5)k2 +(t1 +4t2) −
√

2(t1−2t2)

A∗ −
√

2(t1−2t2) 2(t1 + t2)

, (5.14)

and they are both of the form

b =

 rk2 +(x+4y) −
√

2(x−2y)

−
√

2(x−2y) 2(x+ y)

 , (5.15)

where x, y, and r are real linear combinations of the parameters in the Lagrangian. The

determinant is

det(b) = 2r(x+ y)k2 +18xy, (5.16)

and the inverse is

b−1 =
1

det(b)

 2(x+ y)
√

2(x−2y)
√

2(x−2y) rk2 +(x+4y)

 . (5.17)

Hence, the element with the highest power of k in b−1 is always a diagonal element. Note

that when x+ y = 0 and r,x,y ̸= 0, the element with the highest power in b−1 goes as k2, not

k−2, even though the highest power in b is also k2. This is a similar case to that summarised

in Eqs. (1.2)–(1.4) of [ 59 ]. Since there is no pole in the determinant det(b) =−18x2 in this

case, there is no propagating mode in this sector. We list all the possible forms of ( 5.15 ) in all

critical cases of PGT+ and some of their properties in Table  5.1 . Note that we also include

here the situation that the matrix becomes diagonal, but the condition that makes it diagonal

does not make it critical in the sense defined in Chapter  2 . All the possible “extended critical
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Table 5.1 Summary of the properties of all the forms of b-matrix. The column “b-sector”
denotes the properties of the diagonal elements in b−1-matrix. it is notated as ϕn

v or ϕn
l ,

where ϕ is the field, −n is the power of k in the element in the b−1-matrix when k goes to
infinity, v means massive pole, and l means massless pole. If n = ∞, it represents that the
diagonal element is zero. The “&” connects the diagonal elements in the same b−1-matrix.
The superscript “N” represents that there is non-zero off-diagonal term in the b−1-matrix.
The column “k power” is the highest power of k in all non-zero elements of b−1. The column
“consistent” indicate whether the particle content is consistent with det(b) after we integrate
out the non-propagating field(s).

# b-matrix b-sector det(b)
k
power

Consis-
tent

A
(

4y+ k2r+ x −
√

2(−2y+ x)
−
√

2(−2y+ x) 2(y+ x)

) {(
A2

v&A0
v
)N
} 2k2r(x+ y)

+18yx
0 ◦

B
(

4y+ x −
√

2(−2y+ x)
−
√

2(−2y+ x) 2(y+ x)

) {(
A0&A0

)N
}

18yx 0 ◦

C
(

4y+ k2r 2
√

2y
2
√

2y 2y

) {(
A2

l &A0
l

)N
}

2k2yr 0 ◦

D
(

k2r+ x −
√

2x
−
√

2x 2x

) {(
A2

l &A0
l

)N
}

2k2rx 0 ◦

E
(

k2r−3x −3
√

2x
−3
√

2x 0

) {(
A∞&A−2

)N
}
−18x2 2 ◦

F
(

k2r+3x 0
0 3x

) {
A2

v&A0
}

3k2rx+9x2 0 ◦

G
(

4y
) {

A0
}

4y 0 ◦
H

(
x
) {

A0
}

x 0 ◦

I
(
−3x −3

√
2x

−3
√

2x 0

) {(
A∞&A0

)N
}

−18x2 0 ◦

J
(

3x 0
0 3x

) {
A0&A0

}
9x2 0 ◦

K
(

k2r
) {

A2
l

}
k2r -2 N/A

parameters” in the root case are x, y, r, x+ y, and x−2y. All the child theories do not have

“extended critical parameters” other than those listed above. 

6
 

We find 58 cases that are PCR and free from ghosts and tachyons, and we list them in

Tables  5.2 – 5.7 , in which the old cases are indicated with an asterisk followed by the old

number of the case as given in the previous paper [ 70 ]. Tables  5.2 and  5.3 summarise the

7 cases with both massless and massive modes, all of which have two massless degrees of

freedom (d.o.f.) in propagating modes and a massive 0− or 2− mode. Tables  5.4 and  5.5 

6We are only using the “extended critical parameters” here. In the remaining parts of this thesis, all “critical
parameter” should refer to the meaning defined in Chapter  2 unless otherwise specified.
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summarise the 12 cases with only massless modes, of which all contain only 2 massless d.o.f.

Finally, Tables  5.6 and  5.7 summarise the 39 cases with only massive modes. For each set

of tables, the first lists the various conditions for each critical case, and the second lists the

“particle content” in terms of the diagonal elements in the b−1-matrix of each spin-parity

sector in the sequence {0−,0+,1−,1+,2−,2+}. Note that within the 58 cases, Case  9 ,  10 ,

 11 , and  13 , each of which contains only 2 d.o.f. massless mode, satisfy both the original PCR

criterion and the alternative PCR criterion. All the others satisfy only the alternative one.

Since we are using the alternative PCR criterion, which differs from the original criterion

used in [ 29 ] by allowing the presence of non-propagating fields, it is worth discussing further

the status of such fields in the determination of whether a theory is PCR. We begin by noting

that an important consequence of allowing the existence of non-propagating fields is that

whether some critical cases obey our PCR criterion may depend on the choice of gauge fixing.

For example, in the spin-parity sector 0+ in Case  8 , the a-matrix is

a(0+) =


A s s

2t3 2i
√

2kt3 0

−2i
√

2kt3 4k2t3 0

0 0 0

, (5.18)

which is singular, indicating the presence of gauge invariances. One may render this matrix

non-singular by deleting rows and columns in two different ways, corresponding to two

different gauge fixings, which in this case correspond simply to keeping either the first or the

second column and row. If one chooses to keep only the second row and column, then this

sector contains only an s-field, with a propagator that goes as ∼ k−2 at high energy, which

thus violates both our alternative PCR criterion and the original one. Conversely, if one

chooses to retain only the first column and row, then the 0+ spin-parity sector contains only

a non-propagating A-field, which we contend is harmless and thus satisfies our alternative

PCR criterion, while violating the original one. The conclusions regarding PCR are therefore

gauge dependent.
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Overall, we take the view that a theory is PCR if one can find a gauge in which it satisfies

our PCR criterion, irrespective of the existence of other gauge choices in which the PCR

criterion is violated. The rationale for this view is that a theory should describe the same

physics independently of which gauge one adopts. Thus, if one uses a particular gauge to

make a physical prediction, then one should, in principle, be able to draw the same physical

conclusion in any other gauge, although most often not in such a transparent manner.

We therefore consider the 0+ sector of Case  8 to satisfy our PCR criterion, whereas

it violates the original one in [ 29 ]. Moreover, although the total propagator for a field is

the sum of the propagators across all sectors, it cannot satisfy either PCR condition if that

same condition is violated by the propagator in any sector individually. This occurs since

the high-energy asymptotic behaviour is determined by the term(s) with the highest power,

unless they cancel out, but the SPO decomposition guarantees that such cancellations cannot

happen if k2 ̸= 0, which is the case we are considering here. Thus, Case  8 as a whole violates

the original PCR criterion in [  29 ] because of the nature of the 0+ sector, whereas one finds

that it satisfies our alternative PCR criterion, and is hence listed in Tables  5.4 and  5.5 .

We now explain why this does not, in fact, lead to a contradiction. If one chooses to keep

only the first column and row in ( 5.18 ), the resulting b−1-matrix is clearly

b−1(0+) =
(

1
2t3

)
, (5.19)

so the field in this sector is not propagating, and the corresponding propagator is ∼ k0 at high

energy. The key point, however, is that there is no dynamical term in the Lagrangian for the

field corresponding to ( 5.19 ). Thus, one can integrate out this non-propagating field in the

path integral, which is equivalent to substituting for it in the Lagrangian using its classical

equation of motion obtained by varying the non-propagating field. This is most transparently

achieved by first introducing polarisation basis vectors to decompose the fields and the SPOs,

as discussed in Appendix  2.B . One then expands the fields in terms of these basis vectors,

|A⟩= ∑
J,P,i,m

Āi,JP,m |i,JP,m⟩ , (5.20)



110 Power-counting renormalisable, ghost and tachyon free PGT

from which one obtains the relation

P̂ji(JP) |A⟩= Āi,JP,m | j,JP,m⟩ . (5.21)

The Lagrangian corresponding to the 0+ sector then becomes

L(0+) = t3Ā2
1,0+,0, (5.22)

and the equation of motion is simply Ā1,0+,0 = 0, so one can simply ignore this sector. One

might alternatively use the Lagrangian containing the source current here, so that the equation

of motion becomes 2t3Ā1,0+,0 = j̄1,0+,0, where j̄1,0+,0 is appropriate expansion of the source

current in the polarisation. Since we are considering only free-field theories, however, the

source currents can themselves be due only to the gauge fields and thus at least quadratic.

Hence, these source currents can only affect the fields to the next order, so we can neglect

them in the linearised Lagrangian.

The 1− sector of Case  8 can also contain non-propagating fields. The a-matrix for this

sector is

a(1−) = 2



A A s a

3k2 (r1 + r5)+2t3
√

2t3 i
√

2kt3 −i
√

2kt3
√

2t3 t3 ikt3 −ikt3

−i
√

2kt3 −ikt3 k2t3 −k2t3

i
√

2kt3 ikt3 −k2t3 k2t3


, (5.23)

which is singular as a result of gauge invariances. One may render the matrix non-singular

and thereby fix the gauge by, for example, choosing the first two rows and columns to form

the corresponding b-matrix, in which case the sector contains a propagating A-particle and a

non-propagating A-particle with some mixing term. The resulting determinant is

det[b(1−)] =
4
3
(r1 + r5) t3k2, (5.24)



5.2 Power-counting renormalisability of PGT 111

so there can only be massless modes in this sector. Using the expansion ( 5.21 ) to reconstruct

the Lagrangian corresponding to the 1− sector, one obtains

L(1−) =−
1

∑
m=−1

{
Ā1,1−,m[−3(r1 + r5)∂

2 +2t3]Ā1,1−,m +2
√

2t3Ā1,1−,mĀ2,1−,m + t3Ā2
2,1−,m

}
.

(5.25)

Hence, it is clear that there is a propagating Ā1,1−,m field that is mixed with a Ā2,1−,m field

without a dynamical term. One can thus integrate out the latter field using its classical

equation of motion,

Ā2,1−,m =−
√

2Ā1,1−,m, (5.26)

and the Lagrangian becomes

L(1−) =−
1

∑
m=−1

{
Ā1,1−,m[−3(r1 + r5)∂

2]Ā1,1−,m
}
. (5.27)

This is consistent with there being no massive mode in this sector. Furthermore, one finds

that the effect of integrating out the non-propagating fields in the 0+ and 1− sectors in Case  8 

is the same as setting t3 to zero, and all the b-matrices become exactly the same as those of

Case  9 . Hence, at least in the free-field case we are considering, in which the gauge fields do

not couple to external matter fields, Case  8 and  9 are actually describing the same theory.

Moreover, since Case  9 may be shown to satisfy Sezgin’s original PCR criterion in [ 29 ],

there is thus no contradiction in Case  8 satisfying our alternative PCR criterion. Indeed, the

alternative criterion allows us to identify Case  8 as PCR, which would be missed using the

original PCR criterion.

For all Cases  1 – 58 , one may similarly check whether, after integrating out the non-

propagating fields, the remaining fields are consistent with the particle contents that their

determinants of b-matrices indicate. Because all the b-matrices containing non-propagating

terms in these cases are in the form of ( 5.15 ), one can perform this check by examining

only all the “special cases” of the form ( 5.15 ) (including the critical cases and those with

the parameters making any of the elements zero). We find that all of them are consistent.
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Note that after integrating out non-propagating fields in a critical case, its Lagrangian can be

written in the form of ( 5.27 ), but it may not match any other critical case.

Moreover, as one might expect, one may show that similar equivalences as Case  8 

and  9 exist between other cases. For example, one may further demonstrate in the manner

outlined above that: Case  2 is equivalent to Case  1 ; Cases  12 ,  14 , and  15 are equivalent

to Case  10 ; Case  16 is equivalent to Case  11 ; Case  25 is equivalent to Case  26 ; Case  29 

is equivalent to Case  30 ; Case  37 is equivalent to Case  35 ; and Case  41 is equivalent to

Case  27 . Unfortunately, it is not so straightforward to establish the equivalences amongst

the other cases. For the critical cases we do not list in this section, we anticipate that there

will similarly be some groups of equivalent cases in the above sense, provided they do not

couple to external matter fields, so that one may simplify the “tree” of critical cases. We

leave this analysis for future work. Nonetheless, we do find that after integrating out all

the non-propagating fields in Cases  1 - 58 , all the resulting theories satisfy the original PCR

condition. Hence, allowing for non-propagating fields does not violate this criterion in

practice.

We also investigated the PGT+ theories with either zero torsion or zero curvature, dis-

cussed in Secs.  4.2.1 and  4.2.2 respectively, but found that no cases are both unitary and PC

renormalisable.

5.3 Conclusions

In conclusion, we have found 58 critical cases of PGT+ that are both PCR and free of ghosts

and tachyons. Note that while a theory may pass our PCR criterion, this is no guarantee

that the theory is renormalisable, and this would take independent investigation and the

inclusion of interactions. We have also clarified the role played by non-propagating modes in

determining whether a theory is PCR. We illustrate this issue further in Appendix  5.A , where

we demonstrate the methods used in this section in the more familiar and much simpler cases

of the Proca and Stueckelberg theories for a massive spin-1 particle.
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In future work, we plan to investigate all these theories further, but especially those

that possess massless propagating particles, by considering their phenomenology in the

context both of cosmological and compact object solutions. Although these theories contain

no graviton, only tordions, they may provide some insights into the construction of a self-

consistent quantum theory of long-range gravitational interactions. In particular, cases 10

and 11 might be of interest, since they may possess particles in the 2+ sector. Indeed, it is

worth noting that in the absence of torsion the action for both of these cases reduces to that

of conformal gravity, which is PC renormalisable but not unitary, as discussed in Case  22 in

Section  4.2.4 .
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Table 5.2 Parameter conditions for the PC renormalisable critical cases that are ghost and
tachyon free and have both massless and massive propagating modes. The parameters listed
in “Additional conditions” must be non-zero to prevent the theory becoming a different
critical case.

# Critical condition Additional conditions No-ghost-and-tachyon condition

1 r1,
r3
2 − r4, t1, t3,λ = 0 r2,r3,2r3 + r5,r3 +2r5, t2 t2 > 0,r2 < 0,r3 (2r3 + r5)(r3 +2r5)< 0

2 r1,
r3
2 − r4, t1,λ = 0 r2,r1− r3,2r3 + r5,r1 + r3 +2r5, t2, t3 t2 > 0,r2 < 0,r3 (2r3 + r5)(r3 +2r5)< 0

3 r1,r3,r4, t1 + t2, t3,λ = 0 r2,r1 + r5,2r1 + r5, t1, t2 r2 < 0,r5 < 0, t1 < 0

4 r2,r1− r3,r4, t1 + t2, t3,λ = 0 r1,r1 + r5,2r1 + r5, t1, t2 t1 > 0,r1 + r5 < 0,r1 < 0

5 r2,r1− r3,r4, t2, t1 + t3,λ = 0 r1,r1 + r5,2r1 + r5, t1, t3 r5 > 0,2r1 + r5 > 0, t1 > 0,r1 < 0

6 r1,2r3− r4, t1 + t2, t3,λ = 0 r2,r1− r3,r1−2r3− r5,2r3 + r5, t1, t2 r2 < 0,2r3 + r5 < 0, t1 < 0

7 r2,2r1−2r3 + r4, t1 + t2, t3,λ = 0 r1,r1− r3,r1−2r3− r5,2r3 + r5, t1, t2 t1 > 0,r1 < 0,2r3 + r5 < r1

Table 5.3 Particle content of the PC renormalisable critical cases that are ghost and tachyon
free and have both massless and massive propagating modes. All of these cases have 2
massless d.o.f. in propagating modes, and also a massive mode. The column “b-sectors”
describes the diagonal elements in the b−1-matrix of each spin-parity sector in the sequence
{0−,0+,1−,1+,2−,2+}. Here and in Tables  5.5 and  5.7 it is notated as ϕn

v or ϕn
l , where ϕ

is the field, −n is the power of k in the element in the b−1-matrix when k goes to infinity,
v means massive pole, and l means massless pole. If n = ∞, it represents that the diagonal
element is zero. If n≤ 0, the field is not propagating. The “|” notation denotes the different
form of the elements of the b−1-matrices in different choices of gauge fixing, and the “&”
connects the diagonal elements in the same b−1-matrix. The superscript “N” represents that
there is non-zero off-diagonal term in the b−1-matrix.

#
Massless

mode d.o.f.

Massive

mode
b-sectors

1 2 0−
{

A2
v,×,A2

l ,
(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,×,A2
l

}
2 2 0−

{
A2

v,A
0|s2

l ,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N

,
(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,×,A2
l

}
3 2 0−

{
A2

v,×,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N

,
(
A∞&A−2)N |

(
A∞&a0

l
)N

,A0,A0|s2
l

}
4 2 2−

{
A0,×,

(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N

,
(
A∞&A−2)N |

(
A∞&a0

l
)N

,A2
v,A

0|s2
l

}
5 2 2−

{
×,A0|s2

l ,
(
A∞&A−2)N |

(
A∞&s0

l
)N |
(
A∞&a0

l
)N

,
(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,A2
v,A

0|s2
l

}
6 2 0−

{
A2

v,A
2
l ,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N

,
(
A∞&A−2)N |

(
A∞&a0

l
)N

,A0,A0|s2
l

}
7 2 2−

{
A0,A2

l ,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N

,
(
A∞&A−2)N |

(
A∞&a0

l
)N

,A2
v,A

0|s2
l

}
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Table 5.4 Parameter conditions for the PC renormalisable critical cases that are ghost and
tachyon free and have only massless propagating modes. The cases found previously in [ 70 ]
are indicated with an asterisk followed by its original numbering.

# Critical condition Additional condition No-ghost-and-tachyon condition

8 r2,r1− r3,r4, t1, t2,λ = 0 r1,r1 + r5,2r1 + r5, t3 r1 (r1 + r5)(2r1 + r5)< 0

∗19 r2,r1− r3,r4, t1, t2, t3,λ = 0 r1,r1 + r5,2r1 + r5 r1 (r1 + r5)(2r1 + r5)< 0

∗310 r1,r2,
r3
2 − r4, t1, t2, t3,λ = 0 r3,2r3 + r5,r3 +2r5 r3 (2r3 + r5)(r3 +2r5)< 0

∗411 r1,
r3
2 − r4, t1, t2, t3,λ = 0 r2,r3,2r3 + r5,r3 +2r5 r3 (2r3 + r5)(r3 +2r5)< 0

12 r1,r2,
r3
2 − r4, t1, t3,λ = 0 r3,2r3 + r5,r3 +2r5, t2 r3 (2r3 + r5)(r3 +2r5)< 0

∗213 r2,2r1−2r3 + r4, t1, t2, t3,λ = 0 r1,r1− r3,r1−2r3− r5,2r3 + r5 r1 (r1−2r3− r5)(2r3 + r5)> 0

14 r1,r2,
r3
2 − r4, t1, t2,λ = 0 2r3− r4,2r3 + r5,r4 + r5, t3 r3 (2r3 + r5)(r3 +2r5)< 0

15 r1,r2,
r3
2 − r4, t1,λ = 0 r3,2r3 + r5,r3 +2r5, t2, t3 r3 (2r3 + r5)(r3 +2r5)< 0

16 r1,
r3
2 − r4, t1, t2,λ = 0 r2,r3,2r3 + r5,r3 +2r5, t3 r3 (2r3 + r5)(r3 +2r5)< 0

17 r1,r2,r3,r4, t1 + t2, t3,λ = 0 r1 + r5,2r1 + r5, t1, t2 r5 < 0, t1 ̸= 0

18 r1,r2,r3,r4, t2, t1 + t3,λ = 0 r1 + r5,2r1 + r5, t1, t3 r5 > 0, t1 ̸= 0

19 r1,r2,2r3− r4, t1 + t2, t3,λ = 0 r1− r3,r1−2r3− r5,2r3 + r5, t1, t2 r3 <− r5
2 , t1 ̸= 0

Table 5.5 Particle content of the PC renormalisable critical cases that are ghost and tachyon
free and have only massless propagating modes. All of these cases have 2 massless d.o.f. of
propagating mode. The cases found previously in [ 70 ] are indicated with an asterisk followed
by its original numbering.

#
Massless

mode d.o.f.
b-sectors

8 2
{
×,A0|s2

l ,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N

,A2
l ,A

2
l ,×

}
∗19 2

{
×,×,A2

l ,A
2
l ,A

2
l ,×

}
∗310 2

{
×,×,A2

l ,A
2
l ,×,A

2
l
}

∗411 2
{

A2
l ,×,A

2
l ,A

2
l ,×,A

2
l
}

12 2
{

A0,×,A2
l ,
(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,×,A2
l

}
∗213 2

{
×,A2

l ,A
2
l ,A

2
l ,A

2
l ,×

}
14 2

{
×,A0|s2

l ,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N

,A2
l ,×,A

2
l

}
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Table  5.5 (continued)

#
Massless

mode d.o.f.
b-sectors

15 2

{
A0,A0|s2

l ,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N

,(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,×,A2
l

}
16 2

{
A2

l ,A
0|s2

l ,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N

,A2
l ,×,A

2
l

}
17 2

{
A0,×,

(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N

,
(
A∞&A−2)N |

(
A∞&a0

l
)N

,A0,A0|s2
l

}
18 2

{
×,A0|s2

l ,
(
A∞&A−2)N |

(
A∞&s0

l
)N |
(
A∞&a0

l
)N

,
(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,A0,A0|s2
l

}
19 2

{
A0,A2

l ,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N

,
(
A∞&A−2)N |

(
A∞&a0

l
)N

,A0,A0|s2
l

}

Table 5.6 Parameter conditions for the PC renormalisable critical cases that are ghost and
tachyon free and have only massive propagating modes. The cases found previously in [ 70 ]
are indicated with an asterisk followed by its original numbering.

# Critical condition Additional conditions No-ghost-and-tachyon condition

20 r1,r3,r4,r5,λ = 0 r2, t1, t2, t1 + t2, t3, t1 + t3 t2 > 0,r2 < 0

21 r1,r3,r4,r5, t1 + t2,λ = 0 r2, t1, t2, t3, t1 + t3 r2 < 0, t1 < 0

22 r1,r3,r4,r5, t1 + t3,λ = 0 r2, t1, t2, t1 + t2, t3 t2 > 0,r2 < 0

23 r1,r3,r4,r5, t1 + t2, t1 + t3,λ = 0 r2, t1, t2, t3 r2 < 0, t1 < 0

24 r1,r3,r4, t1,λ = 0 r2,r1 + r5,2r1 + r5, t2, t3 t2 > 0,r2 < 0

∗525 r1,r3,r4,r5, t1,λ = 0 r2, t2, t3 t2 > 0,r2 < 0

∗626 r1,r3,r4,r5, t1, t3,λ = 0 r2, t2 t2 > 0,r2 < 0

27 r1,
r3
2 − r4,

r3
2 + r5, t1, t3,λ = 0 r2,r3, t2 t2 > 0,r2 < 0

28 r1,r3,r4, t1, t3,λ = 0 r2,r5, t2 t2 > 0,r2 < 0

29 r1− r3,r4,2r1 + r5, t1,λ = 0 r1,r2,r1 + r5, t2, t3 t2 > 0,r2 < 0

∗730 r1− r3,r4,2r1 + r5, t1, t3,λ = 0 r1,r2, t2 t2 > 0,r2 < 0

∗831 r1,2r3− r4,2r3 + r5, t1, t3,λ = 0 r2,r3, t2 t2 > 0,r2 < 0

32 r1,r3,r4,r5, t3,λ = 0 r2, t1, t2, t1 + t2 t2 > 0,r2 < 0

33 r1,r3,r4,r5, t1 + t2, t3,λ = 0 r2, t1, t2 r2 < 0, t1 < 0

34 r1,2r3− r4, t1, t3,λ = 0 r2,r3,2r3 + r5, t2 t2 > 0,r2 < 0

∗935 r1,
r3
2 − r4,2r3 + r5, t1, t3,λ = 0 r2,r3, t2 t2 > 0,r2 < 0

∗1036 2r1−2r3 + r4,2r3 + r5, t1, t3,λ = 0 r1,r2,r1− r3, t2 t2 > 0,r2 < 0
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Table  5.6 (continued)

# Critical condition Additional conditions No-ghost-and-tachyon condition

37 r1,
r3
2 − r4,2r3 + r5, t1,λ = 0 r2,2r3− r4, t2, t3 t2 > 0,r2 < 0

38 r1,2r3− r4,2r3 + r5, t3,λ = 0 r2,r1− r3, t1, t2, t1 + t2 t2 > 0,r2 < 0

39 r1,2r3− r4,2r3 + r5, t1 + t2, t3,λ = 0 r2,r1− r3, t1, t2 r2 < 0, t1 < 0

40 r1,r4 + r5, t1, t3,λ = 0 r2,r3−2r4,2r3− r4, t2 t2 > 0,r2 < 0

41 r1,
r3
2 − r4,

r3
2 + r5, t1,λ = 0 r2,2r3− r4, t2, t3 t2 > 0,r2 < 0

42 r1,r3,r4, t1 + t2,λ = 0
r2,r1 + r5,2r1 + r5, t1, t2, t3,

t1 + t3

t3 > 0,r2 < 0,r5 < 0,

t1 < 0, t1 + t3 < 0

43 r1,r3,r4, t1 + t3,λ = 0
r2,r1 + r5,2r1 + r5, t1, t2,

t1 + t2, t3

r5 > 0, t2 > 0, t1 + t2 > 0,

r2 < 0, t1 < 0

44 r2,r1− r3,r4, t1 + t2,λ = 0
r1,r1 + r5,2r1 + r5, t1, t2, t3,

t1 + t3

t1 > 0,r1 < 0,r1 + r5 < 0,

t3 (t1 + t3)> 0

45 r2,r1− r3,r4, t1 + t3,λ = 0
r1,r1 + r5,2r1 + r5, t1, t2,

t1 + t2, t3

r5 > 0,2r1 + r5 > 0, t1 > 0,

t1 + t2 > 0,r1 < 0, t2 < 0

46 r1− r3,r4,2r1 + r5, t1 + t3,λ = 0 r1,r2,r1 + r5, t1, t2, t1 + t2, t3 t1 > 0, t2 > 0,r1 < 0,r2 < 0

47 r1,r2,r3,r4, t1 + t2,λ = 0 r1 + r5,2r1 + r5, t1, t2, t3, t1 + t3 r5 < 0, t1t3 (t1 + t3)> 0

48 r1,r2,r3,r4, t1 + t3,λ = 0 r1 + r5,2r1 + r5, t1, t2, t1 + t2, t3 r5 > 0, t1t2 (t1 + t2)< 0

49 r1,r3,r4, t1 + t2, t1 + t3,λ = 0 r2,r1 + r5,2r1 + r5, t1, t2, t3 r2 < 0, t1 < 0

50 r2,r1− r3,r4,r1 + r5, t1 + t2,λ = 0 r1,2r1 + r5, t1, t2, t3, t1 + t3 t1 > 0,r1 < 0

51 r2,r1− r3,r4,2r1 + r5, t1 + t3,λ = 0 r1,r1 + r5, t1, t2, t1 + t2, t3 t1 > 0,r1 < 0

52 r2,r1− r3,r4, t1 + t2, t1 + t3,λ = 0 r1,r1 + r5,2r1 + r5, t1, t2, t3 t1 > 0,r1 < 0

53 r2,r1− r3,r4,r1 + r5, t1 + t2, t1 + t3,λ = 0 r1,2r1 + r5, t1, t2, t3 t1 > 0,r1 < 0

54 r2,r1− r3,r4,2r1 + r5, t1 + t2, t1 + t3,λ = 0 r1,r1 + r5, t1, t2, t3 t1 > 0,r1 < 0

55 r2,r1− r3,r4,r1 + r5, t1 + t2, t3,λ = 0 r1, t1, t2 t1 > 0,r1 < 0

56 r2,r1− r3,r4,2r1 + r5, t2, t1 + t3,λ = 0 r1, t1, t3 t1 > 0,r1 < 0

57 r1− r3,r4,2r1 + r5, t2, t1 + t3,λ = 0 r1,r2, t1, t3 t1 > 0,r1 < 0

58
r2,2r1−2r3 + r4,r1−2r3− r5,

t1 + t2, t3,λ = 0
r1,r1− r3, t1, t2 t1 > 0,r1 < 0
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Table 5.7 Particle content of the PC renormalisable critical cases that are ghost and tachyon
free and have only massive propagating modes. The cases found previously in [ 70 ] are
indicated with an asterisk followed by its original numbering. Note that there are typos of
the b-sectors of Cases  30 and  31 (old numbers 7 and 8) in [ 70 ].

#
Massive

mode
b-sectors

20 0−
{

A2
v,A

0|s2
l ,
(
A0&A0)N |

(
A0&s2

l
)N |
(
A0&a2

l
)N

,
(
A0&A0)N |

(
A0&a2

l
)N

,A0,A0|s2
l

}
21 0−

{
A2

v,A
0|s2

l ,
(
A0&A0)N |

(
A0&s2

l
)N |
(
A0&a2

l
)N

,
(
A∞&A0)N |

(
A∞&a2

l
)N

,A0,A0|s2
l

}
22 0−

{
A2

v,A
0|s2

l ,
(
A∞&A0)N |

(
A∞&s2

l
)N |
(
A∞&a2

l
)N

,
(
A0&A0)N |

(
A0&a2

l
)N

,A0,A0|s2
l

}
23 0−

{
A2

v,A
0|s2

l ,
(
A∞&A0)N |

(
A∞&s2

l
)N |
(
A∞&a2

l
)N

,
(
A∞&A0)N |

(
A∞&a2

l
)N

,A0,A0|s2
l

}
24 0−

{
A2

v,A
0|s2

l ,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N

,
(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,×,×
}

∗525 0−
{

A2
v,A

0|s2
l ,A

0|s2
l |a

2
l ,A

0|a2
l ,×,×

}
∗626 0−

{
A2

v,×,×,A0|a2
l ,×,×

}
27 0−

{
A2

v,×,×,
(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,×,A2
l

}
28 0−

{
A2

v,×,A2
l ,
(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,×,×
}

29 0−
{

A2
v,A

0|s2
l ,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N

,A0|a2
l ,A

2
l ,×

}
∗730 0−

{
A2

v,×,A2
l ,A

0|a2
l ,A

2
l ,×

}
∗831 0−

{
A2

v,A
2
l ,×,A

0|a2
l ,×,×

}
32 0−

{
A2

v,×,A0|s2
l |a

2
l ,
(
A0&A0)N |

(
A0&a2

l
)N

,A0,A0|s2
l

}
33 0−

{
A2

v,×,A0|s2
l |a

2
l ,
(
A∞&A0)N |

(
A∞&a2

l
)N

,A0,A0|s2
l

}
34 0−

{
A2

v,A
2
l ,A

2
l ,
(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,×,×
}

∗935 0−
{

A2
v,×,A2

l ,A
0|a2

l ,×,A
2
l
}

∗1036 0−
{

A2
v,A

2
l ,A

2
l ,A

0|a2
l ,A

2
l ,×

}
37 0−

{
A2

v,A
0|s2

l ,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N

,A0|a2
l ,×,A

2
l

}
38 0−

{
A2

v,A
2
l ,A

0|s2
l |a

2
l ,
(
A0&A0)N |

(
A0&a2

l
)N

,A0,A0|s2
l

}
39 0−

{
A2

v,A
2
l ,A

0|s2
l |a

2
l ,
(
A∞&A0)N |

(
A∞&a2

l
)N

,A0,A0|s2
l

}
40 0−

{
A2

v,A
2
l ,×,

(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,×,A2
l

}
41 0−

{
A2

v,A
0|s2

l ,A
0|s2

l |a
2
l ,
(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,×,A2
l

}
42 0−,1−

{
A2

v,A
0|s2

l ,
(
A2

v&A0
v
)N |
(
A2

v&s2
vl
)N |
(
A2

v&a2
vl
)N

,
(
A∞&A−2)N |

(
A∞&a0

l
)N

,A0,A0|s2
l

}
43 0−,1+

{
A2

v,A
0|s2

l ,
(
A∞&A−2)N |

(
A∞&s0

l
)N |
(
A∞&a0

l
)N

,
(
A2

v&A0
v
)N |
(
A2

v&a2
vl
)N

,A0,A0|s2
l

}
44 1−,2−

{
A0,A0|s2

l ,
(
A2

v&A0
v
)N |
(
A2

v&s2
vl
)N |
(
A2

v&a2
vl
)N

,
(
A∞&A−2)N |

(
A∞&a0

l
)N

,A2
v,A

0|s2
l

}
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Table  5.7 (continued)

#
Massive

mode
b-sectors

45 1+,2−
{

A0,A0|s2
l ,
(
A∞&A−2)N |

(
A∞&s0

l
)N |
(
A∞&a0

l
)N

,
(
A2

v&A0
v
)N |
(
A2

v&a2
vl
)N

,A2
v,A

0|s2
l

}
46 0−,2−

{
A2

v,A
0|s2

l ,
(
A∞&A−2)N |

(
A∞&s0

l
)N |
(
A∞&a0

l
)N

,
(
A0&A0)N |

(
A0&a2

l
)N

,A2
v,A

0|s2
l

}
47 1−

{
A0,A0|s2

l ,
(
A2

v&A0
v
)N |
(
A2

v&s2
vl
)N |
(
A2

v&a2
vl
)N

,
(
A∞&A−2)N |

(
A∞&a0

l
)N

,A0,A0|s2
l

}
48 1+

{
A0,A0|s2

l ,
(
A∞&A−2)N |

(
A∞&s0

l
)N |
(
A∞&a0

l
)N

,
(
A2

v&A0
v
)N |
(
A2

v&a2
vl
)N

,A0,A0|s2
l

}
49 0−

{
A2

v,A
0|s2

l ,
(
A∞&A−2)N |

(
A∞&s0

l
)N |
(
A∞&a0

l
)N

,
(
A∞&A−2)N |

(
A∞&a0

l
)N

,A0,A0|s2
l

}
50 2−

{
A0,A0|s2

l ,
(
A0&A0)N |

(
A0&s2

l
)N |
(
A0&a2

l
)N

,
(
A∞&A−2)N |

(
A∞&a0

l
)N

,A2
v,A

0|s2
l

}
51 2−

{
A0,A0|s2

l ,
(
A∞&A−2)N |

(
A∞&s0

l
)N |
(
A∞&a0

l
)N

,
(
A0&A0)N |

(
A0&a2

l
)N

,A2
v,A

0|s2
l

}
52 2−

{
A0,A0|s2

l ,
(
A∞&A−2)N |

(
A∞&s0

l
)N |
(
A∞&a0

l
)N

,
(
A∞&A−2)N |

(
A∞&a0

l
)N

,A2
v,A

0|s2
l

}
53 2−

{
A0,A0|s2

l ,
(
A∞&A0)N |

(
A∞&s2

l
)N |
(
A∞&a2

l
)N

,
(
A∞&A−2)N |

(
A∞&a0

l
)N

,A2
v,A

0|s2
l

}
54 2−

{
A0,A0|s2

l ,
(
A∞&A−2)N |

(
A∞&s0

l
)N |
(
A∞&a0

l
)N

,
(
A∞&A0)N |

(
A∞&a2

l
)N

,A2
v,A

0|s2
l

}
55 2−

{
A0,×,A0|s2

l |a
2
l ,
(
A∞&A−2)N |

(
A∞&a0

l
)N

,A2
v,A

0|s2
l

}
56 2−

{
×,A0|s2

l ,
(
A∞&A−2)N |

(
A∞&s0

l
)N |
(
A∞&a0

l
)N

,A0|a2
l ,A

2
v,A

0|s2
l

}
57 2−

{
A2

l ,A
0|s2

l ,
(
A∞&A−2)N |

(
A∞&s0

l
)N |
(
A∞&a0

l
)N

,A0|a2
l ,A

2
v,A

0|s2
l

}
58 2−

{
A0,A2

l ,A
0|s2

l |a
2
l ,
(
A∞&A−2)N |

(
A∞&a0

l
)N

,A2
v,A

0|s2
l

}
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Appendix 5.A Proca and Stueckelberg theories

In this appendix, we illustrate the methods used in Section  5.2 in the context of the more

familiar and much simpler Proca and Stueckelberg theories.

Proca theory contains a massive vector field Bµ and has the free-field Lagrangian

LPr =−1
4

(
∂µBν −∂νBµ

)
(∂ µBν −∂

νBµ)+ 1
2m2BµBµ , (5.28)

with m > 0, which has no gauge freedoms. The corresponding SPOs are

P(0+) =
( Bµ

B∗ρ Ωµρ

)
, P(1−) =

( Bµ

B∗ρ Θµρ

)
, (5.29)

where Ωµρ = kµkρ/k2, and Θµρ = ηµρ − kµkρ/k2. The a-matrices of the theory are

a(0+) =
(Bµ

B∗µ m2
)
, a(1−) =

( Bµ

B∗µ −k2 +m2
)
, (5.30)

which are identical to the b-matrices because there are no gauge invariances and source

constraints. Therefore, the 0+ sector is non-propagating and the 1− sector corresponds to a

k−2 propagator. Thus, Proca theory satisfies the alternative PCR condition in [ 70 ], and hence

we classify it as PCR.

Conversely, Proca theory clearly violates the original PCR condition 

7
 . Indeed, Proca

theory is generally considered to be non-PCR in the literature, because the propagator is

D(k)µν =
ηµν −

kµ kν

m2

k2−m2 , (5.31)

7The original PCR condition can be obtained by considering a Dirac field minimally coupled to the vector
field iγµ ψ̄

(
∂µ − ieBµ

)
ψ−mψ̄ψ . The interaction term is eγµ ψ̄ψBµ , with [e]M = 0, [ψ]M = [ψ]M = 3/2, and

[Bµ ]M = 1. We have to redefine B̃µ = m1−lB/2Bµ so that the mass dimension and canonical dimension of B̃µ

coincide, where the propagator of Bµ behaves as ∼ k−lB as k2 → ∞. The coupling constant then becomes
∼ emlB/2−1, and so we require lB ≥ 2 to prevent the coupling constant from having negative dimension.
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so some components of it become ∼ k0 when k2→ ∞ and the offending term kµkν cannot

be eliminated by the renormalisation procedure [  90 ]. Using the polarisation basis method

mentioned in the main text, however, we can integrate out the non-propagating 0+ part. The

free Lagrangian then becomes LPr with the condition ∂ µBµ = 0, and the resulting propagator

goes as k−2, so the theory is PCR.

One may gain some insight into this apparent contradiction by noting that Proca theory

may be considered as a gauge-fixed version of a gauge theory, namely the Stueckelberg

theory, for which the Lagrangian is [ 91 – 93 ]

LSt =− 1
4

(
∂µBν −∂νBµ

)
(∂ µBν −∂

νBµ)+ 1
2m2BµBµ + 1

2∂µφ∂
µ

φ +mφ∂µBµ (5.32)

and which possesses the gauge invariance,

B′µ = Bµ +∂µΛ, φ
′ = φ +mΛ. (5.33)

The nonzero a-matrices are

a(0+) =


φ Bµ

φ∗ k2 −ikm

B∗µ ikm m2

, (5.34)

a(1−) =
( Bµ

B∗µ −k2 +m2

)
, (5.35)

and the corresponding SPOs are

P(0+) =


φ Bµ

φ∗ 1 k̃µ

B∗ρ k̃ρ Ωµρ

 , P(1−) =
( Bµ

B∗ρ Θµρ

)
, (5.36)
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where k̃µ = kµ/
√

k2. As might be expected, the matrix a(0+) is singular, with rank one, and

so we can choose to keep either the φ -column/row or the B-column/row. If we choose to keep

B, then one recovers Proca’s theory. If we instead choose to keep φ , then the b−1-matrices all

go as ∼ k−2 in the high-energy limit and the theory thus satisfies the original PCR condition.

Hence, Stueckelberg theory is PCR, and so Proca theory must also be PCR, since the two

theories are physically equivalent. Thus, our alternative PCR criterion succeeds in identifying

Proca theory as being PCR, whereas the theory violates the original PCR criterion.

Appendix 5.B Implementation of PCR criterion

In this appendix, we will continue the discussion of the implementation of the systematic

method in Chapter  3 . After the evaluation of the whole “tree”, we can perform some further

analysis of these nodes, for example, to check whether a node is PCR. Because we are only

checking PCR for those theories with no mixing, we have to check whether there is any

choice of b-matrices without mixing terms. We first write a function to check whether a

b-matrix in a sector is non-mixing. It checks whether there are any nonzero element whose

row and column correspond to different fields. We are viewing the s- and a-field as the same

field here because both of them come from the f -field.

isNoMixedSector[bM_ ,fIdx_ ]:= Module [{idxMesh ,mixMat},

idxMesh=If[fIdx ==={} ,{{{}} ,{{}}} , meshgrid[fIdx ,fIdx ]];

mixMat=MapThread[Function [{x,y},

!(x===y||(x===2&&y===3) ||(x===3&&y===2))

],idxMesh ,2];

And@@Flatten@(Function [{m,b},MapThread[

If [#1=== True ,FullSimplify [#2==0]=== True ,True]&

,{m,b},2]][mixMat ,bM])

];

We use isNoMixedSector to check whether those b-matrices are non-mixing. The criterion

is about the asymptotic behaviour of the diagonal elements of the b−1-matrices as k2 goes
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to infinity, so we also need to check it. The tool function mainTerm[exp_,kk] returns

the power of k2 of an expression when k2→ ∞, and it returns −∞ when the expression is

zero. We thus use mainTerm to obtain the powers of all diagonal elements in all possible

b-matrices in each spin-parity sector. We then use Tuple to obtain the above properties of all

possible combinations of b-matrices from each sector. We also create the list GIIdx which

denotes the fields in the rows/columns in the b-matrices of all combinations.

isAllPC[no_]:= Module [{(*... *)},

nV=no.getValue [];

kPower=Map[Function[bG,

Map[mainTerm[#,kk]["expon"]&,bG[[1]] ,{2}]

],nV["mats"]["bAll"] ,{2}];

isNoMix=MapThread[Map[Function[bG,

isNoMixedSector[bG[[1]] ,#2[[bG [[2]]]]]

],#1]&,{nV["mats"]["bAll"],fieldListOld }];

isNoMixTpl=Map[And@@#&,Tuples[isNoMix ]];

allKPD=Tuples@Map[Diagonal [#]&,kPower ,{2}];

GIIdx=Tuples@MapThread[Function [{ba,fIdx},

Map[fIdx [[#[[2]]]]& , ba]

],{nV["mats"]["bAll"],fieldListOld }];

(*Filter out those PCR combinations*)

<|"PC"-> Length@PCIdx >0,"PCIdx"-> PCIdx|>

];

With the variables mentioned above, we can now test whether each b-matrix in all combina-

tions satisfies the PCR criterion. For each b-matrix without mixing fields, we first put the

asymptotic behaviour of the diagonal elements with the same field into the same element in

a list. We then check whether the powers of k2 satisfy the PCR criterion correspondingly.

The power n should satisfy n≥ 0, n≤−nF , or n =−∞, where nF = 2 for the s and a-fields,

and nF = 1 for the remaining fields. We then collect the combinations with all its b-matrices

passing the PCR criterion. If there are more than one combinations collected, then the node

is PCR.
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PCIdx ={};

MapThread[Function [{kpd ,idx ,noMix},Module [{},If[noMix ,

pPowers ={{} ,{} ,{} ,{} ,{}};

MapThread[AppendTo[pPowers [[#2]] ,#1]&

,{Flatten@kpd ,Flatten@idx }];

APC=And@@Map [# <= -1||# >=0||#=== - Infinity&,pPowers [[1]]];

sPC=And@@Map [# <= -2||# >=0||#=== - Infinity&,pPowers [[2]]];

aPC=And@@Map [# <= -2||# >=0||#=== - Infinity&,pPowers [[3]]];

φ PC=And@@Map [# <= -1||# >=0||#=== - Infinity&,pPowers [[3]]];

BPC=And@@Map [#<= -1||# >=0||#=== - Infinity&,pPowers [[5]]];

If[APC&&sPC&&aPC &&[\ Phi]PC&&BPC ,AppendTo[PCIdx ,idx]];

]]],{allKPD ,GIIdx ,isNoMixTpl }];



Chapter 6

Application to Weyl gauge theory

In this chapter, we apply our systematic method for identifying ghost-and-tachyon-free

critical cases to parity-preserving Weyl gauge theory (WGT+), the ground-state particle

spectrum of which has rarely been discussed in the literature before.

This chapter is arranged as follows. In Section  6.1 , we give a brief introduction to WGT+,

and in Section  6.2 we consider the unitarity of the “root” theory, where none of the critical

conditions are satisfied. In Section  6.3 we apply our systematic approach to investigating

its critical cases and accommodating the associated additional source constraints, as well

as identifying some unitary critical cases that are also power-counting renormalisable. We

repeat our analysis for WGT+ with vanishing torsion in Section  6.4 and for WGT+ with

vanishing curvature in Section  6.5 . We conclude in Section  6.6 .

6.1 Weyl gauge theories

The action of an infinitesimal element of the Weyl group W (1,3) on Cartesian coordinates in

Minkowski spacetime has the form

xµ → x′µ = xµ + ε
µ +ω

µ

ν xν +ρxµ , (6.1)

125
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where εµ denotes a translation, ω
µ

ν denotes a Lorentz rotation, and ρ denotes a dilation. The

corresponding form variation δ0ϕ(x)≡ ϕ ′(x)−ϕ(x) of a field ϕ (belonging to an irreducible

representation of the Lorentz group) is δ0ϕ = δ P
0 ϕ +wρϕ , where δ P

0 means the variation

under a Poincaré transformation and w is a dimensionless constant known as the (Weyl)

weight of the field.

Similar to the procedure in Section  4.1 , one gauges the Weyl group W (1,3) by demanding

that the action be invariant with respect to (infinitesimal, passively interpreted) general coordi-

nate transformations (GCTs) and the local action of the subgroup H(1,3) (the homogeneous

Weyl group), obtained by setting the translation parameters εµ of W (1,3) to zero (which

leaves the origin xµ = 0 invariant), and allowing the remaining group parameters to become

independent arbitrary functions of position. In this way, one is led to the introduction of the

gravitational gauge fields hA
µ , AAB

µ and Bµ , corresponding to the translational, rotational

and dilational parts of the Weyl group, respectively, which transform under the gauged Weyl

group as δ0h µ

A = δ P
0 h µ

A −ρh µ

A , δ0AAB
µ = δ P

0 AAB
µ and δ0Bµ =−∂µρ .

The gauge fields are used to assemble the WGT covariant derivative [ 18 ,  28 ]

D∗Aϕ = h µ

A D
∗
µϕ = h µ

A

(
∂µ + 1

2AAB
µΣAB +wBµ

)
ϕ, (6.2)

where w is the weight of ϕ and ΣAB = −ΣBA are the generator matrices of the SL(2,C)

representation to which ϕ belongs. The asterisk on the derivative operators is a common

notation used in WGT to distinguish these operators from their PGT counterparts (to which

they reduce if w or Bµ vanishes). The corresponding commutators become

[
D∗µ ,D∗ν

]
ϕ =1

2R
AB

µνΣABϕ +Hµνwϕ, (6.3)

[D∗A,D∗B]ϕ =1
2R

CD
ABΣCDϕ−T ∗CAB D∗Cϕ +HABwϕ, (6.4)

where the field strengths have the forms

RAB
µν = 2(∂[µAAB

ν ]+AA
E[µAEB

ν ]), (6.5)

Hµν = 2∂[µBν ], (6.6)
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T ∗CAB = T C
AB +2B[Aδ

C
B], (6.7)

and T C
µν = 2D[µbC

ν ] is the usual expression for the translational gauge field strength in

PGT. In the above expressions, Latin and Greek indices are related by h ν
A and its inverse

bA
ν , with the relation

gµνh µ

A h µ

B = ηAB, ηABbA
µbB

µ = gµν . (6.8)

By convention, we set w(gµν) = 2, and one may show that the weights of the translational

and rotational gauge fields are w(h µ

A ) =−1 and w(AAB
µ) = 0, so that w(bA

µ) = 1 and the

weight of its determinant is w(b) = 4, but the dilatational gauge field Bµ itself transforms

inhomogeneously under dilations, as expected. The weights of the corresponding field

strengths are w(RCD
AB) = w(HAB) =−2 and w(T ∗CAB ) =−1.

In the action S =
∫

bLd4x, the Lagrangian L is the sum of terms corresponding to the free

gravitational fields and terms containing the matter fields, respectively, and has the general

form

L= LG(RCD
AB,T ∗CAB ,HAB)+LM(ϕ,D∗Aϕ). (6.9)

For S to be scale invariant (i.e. of weight 0), the weights of both LG and LM must be −4.

Restricting our attention to terms in LG that are at most quadratic in the field strengths, these

may thus be quadratic inRCD
AB andHAB, or consist of the product of the two, but may not

include terms linear inRCD
AB or quadratic in T ∗CAB .

One can, however, include further terms in the Lagrangian by introducing an additional

massless scalar field (or fields) φ with Weyl weight w(φ) =−1, often termed the compen-

sator(s) [ 18 ], which is usually non-minimally (conformally) coupled to the field strength

tensors of the gravitational gauge fields. For example, terms proportional to φ 2R or φ 2LT ∗2 ,

where LT ∗2 consists of terms quadratic in T ∗CAB, have weight w =−4 and so may be added

to the total Lagrangian [ 66 ,  94 – 96 ]. One should also include a free kinetic term (D∗φ)2 for

the scalar field, and may also add a self-interaction term φ 4, but we shall not consider the

latter here. Thus, also requiring parity-invariance, the Lagrangian for free WGT+ has the
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form 

1
 

LG = −λφ
2R+ 1

6 (2r1 + r2)RABCDRABCD + 2
3 (r1− r2)RABCDRACBD

+ 1
6 (2r1 + r2−6r3)RABCDRCDAB +(r4 + r5)RABRAB +(r4− r5)RABRBA

− c1RABHAB +ξHABHAB +
1
2νD∗AφD∗Aφ + 1

12 (4t1 + t2 +3λ )φ
2T ∗ABCT ∗ABC

− 1
6 (2t1− t2 +3λ )φ

2T ∗ABCT ∗BCA− 1
3 (t1−2t3 +3λ )φ

2T ∗BABT ∗CA
C, (6.10)

whereRA
B =RAC

BC,R=RA
A and D∗Aφ = ∂Aφ −BAφ . The parameters in the Lagrangian

are dimensionless and set in combinations that enable a straightforward comparison with our

previous studies of PGT+ in Chapters  4 and  5 . Note that the Gauss–Bonnet identity has been

used to remove the term proportional toR2.

Provided φ(x) does not vanish anywhere, one can use local scale invariance to set the

field to a constant value φ0, which is known as the Einstein gauge and is usually interpreted

as breaking the scale symmetry. This interpretation is questioned in [ 28 ], however, since

it is shown that if one rewrites the Lagrangian in terms of a set of scale-invariant variables

[ 64 ], then the resulting equations of motion are the same as those of Einstein gauge, yet this

approach involves no breaking of the scale symmetry. Relevant issues are recently discussed

in [ 97 ,  98 ]. In any case, we will adopt the Einstein gauge φ = φ0 here, the most significant

effect of which is that the term 1
2νD∗AφD∗Aφ in the Lagrangian becomes 1

2νφ 2
0 BABA. We

then absorb the φ 2
0 factor into the now dimensionful parameters λ , ν , t1, t2, and t3, without

loss of generality. Note that a potential term ∼ φ 4 for the compensator scalar field was not

included in the Lagrangian, since it becomes a constant in the Einstein gauge, acting like an

effective cosmological constant, which would be inconsistent with considering a Minkowski

background.

Similar to PGT, WGT is most naturally interpreted as a field theory in Minkowski

spacetime [ 23 ,  25 ,  28 ], in the same way as the gauge field theories describing the other

fundamental interactions. It is more common, however, to reinterpret it geometrically in

1The minus signs before λ and c1 are resulting from the sign difference of field strengthR in the code and
main text.
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terms of a Weyl–Cartan spacetime (W4), which generalises the Riemann–Cartan spacetime

(U4) underlying the geometric interpretation of PGT by incorporating local scale invariance

[ 18 ].

Weyl–Cartan spacetime is a manifold with linear connection (Γ) and metric (gµν ) which

satisfy

D∗ρ(Γ)gµν = 0, (6.11)

where the covariant derivative of a field ϕ with weight w is defined by

D∗µ(Γ)ϕ ≡
(
Dµ(Γ)+wBµ

)
ϕ, (6.12)

in which Dµ(Γ) = ∂µ +Γσ
ρµX

ρ
σ is the U4 covariant derivative. The semi-metricity con-

dition ( 6.11 ) replaces the metricity condition in U4. Since w(gµν) = 2, the semi-metricity

condition can also be written as Dρ(Γ)gµν = −2Bρgµν , from which one finds that the in-

finitesimal change of length of a parallel transported vector is proportional to the length itself,

Dρ(Γ)V 2 =−2BρV 2. One may solve for the connection Γ, which is given by

Γ
µ

νρ =
{

µ

νρ

}
+δ

µ

ν Bρ +δ
µ

ρ Bν −gνρBµ +Kµ

νρ . (6.13)

In a local Lorentz frame, the Minkowski metric ηAB is invariant under Weyl transforma-

tion and satisfy h µ

A h ν
B gµν = ηAB, so w(ηAB) = 0 and w(h µ

A ) =−1. The local frame has a

connection AAB
µ , and the covariant derivative D∗A(A) has properties similar to ( 6.12 ), where

D∗ρ(A)ηAB = 0, (6.14)

D∗ρ(A)ϕ ≡
(
Dρ(A)+wBρ

)
ϕ, (6.15)

and Dρ(A) is the covariant derivative in U4. One may also define the “total covariant

derivative” D∗ρ(Γ+A) to act on quantities with both coordinate and local Lorentz indices

D∗ρ(Γ+A)ϕ =
(
Dρ(Γ)+Dρ(A)−∂ρ −wBρ

)
ϕ. (6.16)



130 Application to Weyl gauge theory

Since the total covariant derivative D∗ρ(Γ+A)V A of the local Lorentz components of a vector

is a coordinate tensor in Weyl–Cartan spacetime, the relation D∗ρ(Γ+A)V A = bA
µD∗ρ(Γ+

A)V µ should hold, from which one obtains the “tetrad postulate” , which is similar to ( 4.32 )

but with ∂ → ∂ ∗,

D∗µ(Γ+A)bA
ν ≡ ∂

∗
µbA

ν +AA
BµbB

ν −Γ
σ

νµbA
σ = 0, (6.17)

where ∂ ∗µ ≡ ∂µ +wBµ . One can therefore express the affine connection in the quantities

corresponding to gauge fields as

Γ
λ

νµ = h λ
A (∂ ∗µbA

ν +AA
BµbB

ν), (6.18)

and hence show that the translational gauge field strength is equivalent to (minus) the

geometric torsion tensor

T ∗ρµν = Γ
ρ

νµ −Γ
ρ

µν , (6.19)

in terms of which the contorsion is given by ( 4.35 ).

From ( 6.18 ), ( 6.19 ), and ( 4.35 ), one also obtains

AABµ = ∆
∗
ABµ +KABµ , (6.20)

where we define the quantities

∆
∗
ABµ ≡ ∆ABµ |∂→∂ ∗ = ∆ABµ −BAbBµ +BBbAµ , (6.21)

where ∆ABµ is given in Equations ( 4.37 ) and ( 4.38 ).

One then finds that, in contrast to the torsion, the geometric (Riemann) curvature tensor

differs from the rotational gauge field strengthRρ

σ µν , so we denote the former by

R̃ρ

σ µν =Rρ

σ µν +Hµνδ
ρ

σ ,

= ∂µΓ
ρ

σν −∂νΓ
ρ

σ µ +Γ
ρ

λ µ
Γ

λ
σν −Γ

ρ

λν
Γ

λ
σ µ . (6.22)
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Unlike Rρσ µν , the curvature tensor R̃ρσ µν is not antisymmetric in (ρ,σ), while both

are antisymmetric in (µ,ν) [ 18 ,  28 ]. Indeed, one may take advantage of these symmetry

properties by using Rρσ µν to perform calculations instead of R̃ρσ µν . One should note,

however, that unlike the curvature tensor in Riemann spacetime V4 familiar from general

relativity, neitherRρσ µν nor R̃ρσ µν is symmetric in (ρσ ,µν). 

2
 

6.2 The “root” theory

We now apply the method described in Chapter  2 to the “root” theory ( 6.10 ), where none of

the critical conditions is satisfied. We first linearise the Lagrangian around the Minkowski

background using AABC ∼O(t), BA ∼O(t), hA
µ = δ A

µ + f A
µ , and f AB = sAB−aAB ∼O(t),

where s and a denote the symmetric and antisymmetric parts of f , respectively.  

3
 Note that

we cannot perturb φ as φ0 + ε , for some excitation ε , because we have already fixed the

gauge on φ . The Lagrangian then becomes

bLG =
(

2λ∂AABA
B

)
+O

(
t2) , (6.23)

where the linear term is just a total derivative. We then decompose the quadratic part into

bLG = ∑
J,P,i, j

a(JP)i jζ̂
† · P̂(JP)i j · ζ̂ , (6.24)

using the spin projection operators (SPOs) P̂(JP)i j [ 52 ,  53 ,  73 ]. Section II of [  70 ] contains

a description of our notation. The SPOs for WGT+ are given in Appendix  2.A . One then

obtains the a-matrices:

2Unlike the case in PGT, even if we set the torsion to zero, neither Rρσ µν nor R̃ρσ µν is symmetric in
(ρσ ,µν).

3Note that Eq. (52) in [ 70 ] contains a typographical error, and should read fAB = sAB−aAB, as here. This
correction does not affect the remaining contents in [ 70 ,  71 ].
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a(0−) =
( A

A 2
(
k2r2 + t2

))
, (6.25)

a(0+) =



A s s B

A 2
(
2k2 (r1− r3 +2r4)+ t3

)
2i
√

2kt3 0 −2
√

6(t3−λ )

s −2i
√

2kt3 4k2 (t3−λ ) 0 4i
√

3k (t3−λ )

s 0 0 0 0

B −2
√

6(t3−λ ) −4i
√

3k (t3−λ ) 0 4
(
3t3−3λ + ν

4

)


, (6.26)

a(1−) =



A A s a B

A
2
[
k2 (r1 + r4 + r5)

+ 1
6 (t1 +4t3)

] −
√

2
3 (t1−2t3) −

√
2

3 ik (t1−2t3)
√

2
3 ik (t1−2t3) −c1k2 +4t3−4λ

A −
√

2
3 (t1−2t3) 2

3 (t1 + t3) 2
3 ik (t1 + t3) −2

3 ik (t1 + t3) 2
√

2(t3−λ )

s
√

2
3 ik (t1−2t3) −2

3 ik (t1 + t3) 2
3 k2 (t1 + t3) −2

3 k2 (t1 + t3) −2i
√

2k (t3−λ )

a −
√

2
3 ik (t1−2t3) 2

3 ik (t1 + t3) −2
3 k2 (t1 + t3) 2

3 k2 (t1 + t3) 2i
√

2k (t3−λ )

B −c1k2 +4t3−4λ 2
√

2(t3−λ ) 2i
√

2k (t3−λ ) −2i
√

2k (t3−λ )
4(3t3−3λ+

ν

4 + k2ξ
)



,

(6.27)

a(1+) =



A A a

A 1
3

(
6k2 (2r3 + r5)+ t1 +4t2

) 1
3

√
2(t1−2t2) −1

3 i
√

2k (t1−2t2)

A 1
3

√
2(t1−2t2) 2

3 (t1 + t2) −2
3 ik (t1 + t2)

a 1
3 i
√

2k (t1−2t2) 2
3 ik (t1 + t2) 2

3 k2 (t1 + t2)

, (6.28)

a(2−) =
( A

A 2
(
k2r1 +

t1
2

))
, (6.29)
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a(2+) =


A s

A 2
(
k2 (2r1−2r3 + r4)+

t1
2

)
i
√

2kt1

s −i
√

2kt1 2k2 (t1 +λ ) .

 (6.30)

In general, if any of the matrices a(JP) in the decomposition ( 6.24 ) are singular, then

the theory possesses gauge invariances. One may fix these gauges by deleting rows and

columns of the a-matrices such that they become non-singular. The elements of the resulting

matrices are usually denoted by bi j(JP). For WGT+, some of the a-matrices given above are

indeed singular. In particular, one may delete the third row/column of a(0+), the third and

fourth row/column of a(1−), and the third row/column of a(1+) to obtain the corresponding

non-singular b-matrices. The singular nature of these three a-matrices results in them having

both null right and left eigenvectors, which give us gauge invariance and source constraints

respectively. For each spin-parity sector, the null left eigenvectors are given by

0+ :(0,0,1,0) (6.31)

1− :(0,−ik,0,1,0) ,(0, ik,1,0,0) (6.32)

1+ :(0,−ik,1) , (6.33)

where one should note that the B-field is not involved, since the corresponding vector

component is always zero, and the remaining components are the same as those found for

PGT+. This is no surprise, since the dilation gauge invariance has been fixed by adopting the

Einstein gauge, and the remaining symmetry should indeed be local Poincaré invariance.

The null eigenvectors may be used to derive the form of the associated gauge invariances

and the corresponding source constraints for WGT+, which are found to be the same as those

in PGT+, as expected. The gauge invariances are given by

δhAB = u[AB]+ ikBvA (6.34)

δAABC = ikCu[AB], (6.35)
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where u[AB] and vA are some arbitrary fields, and the source constraints have the form

kA
σAB = 0 (6.36)

ikA
τABC−σ[AB] = 0, (6.37)

where σAB is the source current of fAB, and τABC is the source current of AABC.

The requirement that a theory is free from ghosts and tachyons places conditions on the

b-matrices, and one must consider the massless and massive particle sectors separately. For

the massless modes, one requires only that there be no ghosts. As discussed in Chapter  2 ,

this is determined by considering the coefficient matrices Q2n in a Laurent series expansion

of the saturated propagator about the origin in momentum space. For WGT+, one finds that

all of the entries Q2n vanish identically for n > 1, and so the saturated propagator does not

have a higher pole at k2 = 0. The non-zero eigenvalues of Q2 are found to be

1+6|⃗k|2

λ
,
1+8|⃗k|2

2λ
, (6.38)

and so there are 2 degrees of freedom in the propagating massless particle sector. 

4
 The

massless no-ghost condition is that all eigenvalues of Q2n are non-negative, and so one

requires simply that

λ > 0. (6.39)

Turning to the massive particle sector, one must first determine the particle masses by

calculating the determinants of the b-matrices:

det
[
b
(
0−
)]

=2k2r2 +2t2, (6.40)

det
[
b
(
0+
)]

=16(r1− r3 +2r4)(t3−λ )νk4−8λ [12(t3−λ )λ + t3ν ]k2, (6.41)

det
[
b
(
1−
)]

=− 2
3 (t1 + t3)

[
c2

1−8(r1 + r4 + r5)ξ
]

k4 + 4
3 {6c1t1 (t3−λ )+(r1 + r4 + r5)

4Note that the expression for the eigenvalues is not unique, but depends on the form chosen for the source
constraints. To be precise, one can obtain another set of the null vectors ni in ( 2.27 ) by linear combination.
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[12(t3−λ )(t1 +λ )+(t1 + t3)ν ]+6t1t3ξ}k2 +2t1 [12λ (t3−λ )+ t3ν ] ,

(6.42)

det
[
b
(
1+
)]

=
4
3
(2r3 + r5)(t1 + t2)k2 +2t1t2, (6.43)

det
[
b
(
2−
)]

=2r1k2 + t1, (6.44)

det
[
b
(
2+
)]

=4(2r1−2r3 + r4)(t1 +λ )k4 +2t1λk2, (6.45)

from which one finds that there is no massive mode in the 0+ sector, and the particle masses

in the other sectors are given by

m2 (0−)=− t2
r2
, (6.46)

m2 (0+)= 12λ 2 (t3−λ )+ t3λ

2(r1− r3 +2r4)(t3−λ )ν
, (6.47)

m2 (1−)= (the two roots of det
[
b
(
1−
)]

), (6.48)

m2 (1+)=− 3t1t2
2(2r3 + r5)(t1 + t2)

, (6.49)

m2 (2−)=− t1
2r1

, (6.50)

m2 (2+)=− t1λ

2(2r1−2r3 + r4)(t1 +λ )
. (6.51)

The no-tachyon conditions are then simply m2(JP)> 0. We give the conditions for the 1−

sector in the end of this section because of the length of the expressions involved. Note also

for the 1− sector that one requires the two roots of ( 6.42 ) to be distinct in order to avoid

a dipole ghost. Hence, in each sector, the masses are distinct, and so one can apply ( 2.42 )

directly to obtain the massive no-ghost conditions:

0− :r2 < 0, (6.52)

0+ :(r1− r3 +2r4)(t3−λ )λν
2{24(t3−λ )λ

3 +12(r1− r3 +2r4)(t3−λ )λν

+
[
(r1− r3 +2r4) t3 + t3λ −λ

2]
ν

2}> 0, (6.53)

1+ :(2r3 + r5)> 0, (6.54)
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2− :r1 < 0, (6.55)

2+ :λ (2r1−2r3 + r4)(λ + t1)
[
(2r1−2r3 + r4) t1−λ

2−λ t1
]
< 0, (6.56)

where again we do not write out the condition for 1− because of its length, but instead give

the relevant expression in the end of this section.

The combined no-ghost-and-tachyon conditions for each sector other than 1− are then

0− : t2 > 0, r2 < 0 (6.57)

0+ : r1 +2r4 > r3, (t3−λ )λν [12λ (t3−λ )+ t3ν ]> 0 (6.58)

1+ : 2r3 + r5 > 0, t1t2(t1 + t2)< 0 (6.59)

2− : t1 > 0,r1 < 0 (6.60)

2+ : 2r1 + r4 > 2r3, λ t1(λ + t1)< 0. (6.61)

Note that, except for the 0+ and 1− sectors, the combined condition in each of the other

spin-parity sectors is exactly the same as originally found in [ 29 ] for PGT+.

For the 1− sector, to avoid tachyons and a dipole ghost, one requires the roots of ( 6.42 )

to be real and distinct, such that

{6c1t1 (t3−λ )+(r1 + r4 + r5) [12(t3−λ )(t1 +λ )+(t1 + t3)ν ]+6t1t3ξ}2

+3t1 (t1 + t3) [12(t3−λ )λ + t3ν ]
[
c2

1−8(r1 + r4 + r5)ξ
]
> 0. (6.62)

The no-tachyons conditions that both of the roots are positive then read

(t1 + t3)
[
c2

1−8(r1 + r4 + r5)ξ
]
{6c1t1 (t3−λ )+(r1 + r4 + r5) [12(t3−λ )(t1 +λ )

+(t1 + t3)ν ]+6t1t3ξ}> 0, (6.63)

t1 (t1 + t3) [12(t3−λ )λ + t3ν ]
[
c2

1−8(r1 + r4 + r5)ξ
]
< 0. (6.64)
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The no-ghost condition is

[
c2

1−8(r1 + r4 + r5)ξ
]{

3c1 (t1−2t3)(t3−λ )− (r1 + r4 + r5)
[
(t1 + t3)

2 +18(t3−λ )2
]

−3
(
t2
1 +2t2

3
)

ξ
}
< 0, (6.65)

(t1 + t3)
[
c2

1−8(r1 + r4 + r5)ξ
]{

9(t1 + t3)
{

2t1
(
7t2

3 −12t3λ +6λ
2)+ t2

1 (14t3−12λ +ν)

+2t3 [12(t3−λ )λ + t3ν ]}2 [c2
1−8(r1 + r4 + r5)ξ

]
−48t1 [12(t3−λ )λ + t3ν ][

−3c1 (t1−2t3)(t3−λ )+(r1 + r4 + r5)
[
(t1 + t3)

2 +18(t3−λ )2
]
+3t2

1 ξ +6t2
3 ξ

]
2

+16
{

2t1
(
7t2

3 −12t3λ +6λ
2)+ t2

1 (14t3−12λ +ν)+2t3 [12(t3−λ )λ + t3ν ]
}{

9c1t1 (−t3 +λ )+
3
2
(r1 + r4 + r5) [−12(t3−λ )(t1 +λ )− (t1 + t3)ν ]−9t1t3ξ

}
{

3c1 (t1−2t3)(t3−λ )− (r1 + r4 + r5)
[
(t1 + t3)

2 +18(t3−λ )2
]

−3
(
t2
1 +2t2

3
)

ξ
}}

< 0. (6.66)

Combining the requirements for no tachyons and no ghosts in the 1− sector, there exists

at least one parameter set satisfying all five conditions above, for example

c1 =−9,r1 =−1,r4 = 0,r5 = 0, t1 =
1
2
, t3 =−1,λ =−4,ν =−142,ξ =−18, (6.67)

where the other parameters may take arbitrary values provided they do not make the theory a

critical case.

Finally, if we consider all the no-tachyon and no-ghost conditions from all the massive

sectors, we find that they cannot be satisfied simultaneously. Thus, the root theory must

contain a massive ghost or tachyon.

6.3 Critical cases

If the parameters in the action satisfy certain “critical conditions”, the particle masses ( 6.46 )–

( 6.51 ) can become zero or infinite, and the resulting critical cases may possess additional
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gauge invariances, so one may have to re-evaluate the no-tachyon and no-ghost conditions

for both the massless and massive sectors.

6.3.1 Unitarity

In attempting to apply the method in Chapter  2 to obtain all the critical cases of the root

WGT+ theory, one finds that some of the coefficients in Equations (  6.41 ) and ( 6.42 ) cannot be

factorized into linear combinations of the parameters. Consequently, the method in Chapter  2 

cannot be applied straightforwardly to obtain all the critical cases, and one must check

carefully where it is applicable. For example, one of the factors in the coefficient of the k2

term in ( 6.41 ) is

12(t3−λ )λ + t3ν , (6.68)

which cannot be written as the product of factors that are linear in the Lagrangian parameters.

Indeed, for ( 6.68 ) to equal zero, one has the two solutions:

ν =−12(t3−λ )λ

t3
with t3 ̸= 0, (6.69)

t3 = λ = 0. (6.70)

It is therefore not as straightforward to apply the condition 12(t3−λ )λ + t3ν = 0 by sub-

stitution. Moreover, the second solution ( 6.70 ) requires one to eliminate two degrees of

freedom in the parameters simultaneously and thus breaks the hierarchy of the “tree” of

critical cases discussed in Chapter  2 .

In general, one finds that allowing any of the Lagrangian parameters ν , ξ , or c1 in

( 6.10 ) to be non-zero introduces similar problems. It requires further improvement of our

systematic method to accommodate such cases, and so here we set ν = ξ = c1 = 0 to avoid

these difficulties. Thus, for the remainder of this section, the “root theory” refers to ( 6.10 )

with ν = ξ = c1 = 0. As we will show below, however, one may nevertheless construct a

theory with ν ̸= 0 and/or ξ ̸= 0 from a theory with ν = ξ = 0, provided its a-matrices are

“non-mixing”.
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Starting from the “root” theory, we systematically identify 862 critical cases (excluding

the “vanishing” Lagrangian, for which all parameters are zero). Of these critical cases, we

find 168 are free of ghosts and tachyons, provided the parameters in each case satisfy some

additional conditions that preclude them from generating another critical case; this general

issue is discussed in detail in Appendix  6.A . The full set of results, displayed in an interactive

form, can be found at:  http://www.mrao.cam.ac.uk/projects/gtg/wgt/ .

6.3.2 Comparison with previous results

We now compare our results with the only other example of a unitary WGT+ theory of which

we are aware in the literature [ 99 ]. This has the Lagrangian

L=−λφ
2R+aR2− 1

4HµνHµν +
1
2D
∗
µφD∗µφ , (6.71)

which on adopting the Einstein gauge becomes

L=−λφ
2
0R+aR2− 1

4HµνHµν +
1
2φ

2
0 BµBµ . (6.72)

Thus, the B-field is decoupled from the other gauge fields and so the theory can be viewed as

the combination of PGT+ with L=−λφ 2
0R+aR2 and Proca theory LPr =−1

4HµνHµν +

1
2φ 2

0 BµBµ for a massive vector field. The Proca part is well-known to be unitary. Using

the Gauss–Bonnet identity, the PGT+ part may be shown to correspond to the critical case

r1 = r2 = 2r3− r4 = 2r3 + r5 = t1 + t2 = t1 + t3 = t1 + λ = 0,r3 ̸= 0,λ ̸= 0. This a type

C critical case of the root PGT+ theory with no massive mode and massless modes with

2 degrees of freedom; the no-ghost-and-tachyon condition is simply λ > 0. Therefore,

provided this condition is satisfied, the theory ( 6.71 ) is indeed unitary.

One should note that the presence of the kinetic terms for the B- and φ -fields means that

( 6.71 ) is not a critical case of our redefined WGT+ with ν = ξ = c1 = 0 in ( 6.10 ), but is

a critical case of the “full” WGT+ root theory without this constraint on the Lagrangian

parameters. In particular, ( 6.71 ) belongs to an extended set of theories with ν ̸= 0 and ξ ̸= 0

http://www.mrao.cam.ac.uk/projects/gtg/wgt/
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that can be separated into a PGT+ part and a dilaton part, which we discuss below in the

context of power-counting renormalisability. We note, however, that the PGT+ part of ( 6.71 )

is not listed in Chapter  5 because one cannot obtain non-mixing b-matrices by deleting rows

and columns from its a-matrices.

6.3.3 Power-counting renormalisability

In addition to possessing no ghosts or tachyons, a healthy physical theory should also be

renormalisable. The first step in assessing whether this is possible is to determine whether

the theory is power-counting renormalisable (PCR).

As discussed in Chapter  5 , the key quantity for determining whether a theory is PCR is

the propagator

D̂ = ∑
J,P,i, j

b−1
i j P̂(JP)i j. (6.73)

In particular, if the b-matrices are block diagonal, with each block containing only one of the

fields A, s, a and B, then there are no mixing terms in the (gauge-fixed) Lagrangian and it

is straightforward to obtain the propagators for these fields separately from D̂. Extending

the original PCR criterion used by Sezgin in [ 29 ] would require the propagator of the A- and

B-fields to decay at least as quickly as k−2 at high energy, and those of the s- and a-fields to

fall off at least as k−4. This can be shown by following the discussion in Section  5.1 . The

most general Lagrangian in the Einstein gauge with φ0 absorbed into the coefficients is

bLG ∼ b
(
λR+ rR2 + tT ∗2 +ξH2 + c1RH+νB2)

∼
(
1+ f + f 2 + ...

){
λ (1+ f )2 (

∂A+A2)+ r (1+ f )4 (
∂A+A2)2

+ t (1+ f )2 [
∂ ( f + f 2 + ...)+(1+ f + f 2 + ...)(A+B)

]2
+ξ (1+ f )4(∂B)2

c1(1+ f + f 2 + ...)
(
∂A+A2)

∂B+ν (1+ f )2 B2
}
, (6.74)

with [λ ]M = 2, [r]M = 0, [t]M = 2, [ξ ]M = 0, [c1]M = 0, [A]M = 1, [ f ]M = 0, and [B]M = 1.

Similarly, the PCR conditions for the WGT fields are lA ≥ 2, lh ≥ 4, and lB ≥ 2.
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By contrast, our alternative PCR criterion used in Chapter  5 also permits the presence

of non-propagating fields (for which the propagator decays no faster than ∼ k0), since these

should completely decouple from the rest of the theory. The ultimate consistency of these

two approaches in identifying particular theories as PCR is discussed at length in Chapter  5 ,

although the second approach is preferred since it identifies further critical cases that reduce

to those identified by Sezgin’s criterion after integrating out any non-propagating modes. We

therefore again adopt the latter method here, which is consistent with our previous work.

On performing this analysis, one finds that most of the critical cases identified as PCR

are identical to those listed in Tables  5.2 ,  5.4 and  5.6 , or are a PGT+ without any propagating

mode (which were not listed in Chapter  5 ) but with an additional propagating dilaton. One

may understand the reason for this by first expanding the T ∗2 terms in ( 6.10 ) to obtain

T ∗ABCT ∗ABC = TABCT ABC +4BATCA
C +6BABA, (6.75)

T ∗ABCT ∗BCA = TABCT BCA−2BATCA
C −3BABA, (6.76)

T ∗BBA T ∗C A
C = T B

BA T C A
C +6BATCA

C +9BABA. (6.77)

The BT terms are the only possible origin for mixing terms containing the B-field after

linearisation, and so there will be no mixing terms in the a-matrices if these terms vanish, for

which the condition on the Lagrangian parameters is

t3 = λ . (6.78)

Moreover, the same condition ensures that the B2 terms from T ∗2 also vanish. Hence, if

t3 = λ , theR+R2 +T ∗2 part of the WGT+ Lagrangian is identical to its PGT+ counterpart

with the replacement T ∗→T .

The PGT+ critical cases identified as PCR in Chapter  5 and having t3 = λ are:

1. PGT+ with 2 massless d.o.f. and a massive mode: Case 1, 3, 4, 6, and 7 in Table  5.2 .

2. PGT+ with only 2 massless d.o.f.: Case 9-13, 17, and 19 in Table  5.4 .
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3. PGT+ with only massive mode(s): Cases 26-28, 30-36, and 38-40, 55, and 58 in

Table  5.6 . These cases all have 1 massive mode, either 0− or 2−.

If the PGT+ part of a WGT+ satisfying t3 = λ has no propagating mode, then the

corresponding WGT+ can at most have a propagating B-field. There are 37 critical cases

of PGT+ satisfying t3 = λ and containing no propagating mode (these are not listed in

Chapters  4 and  5 ). Requiring ξ ̸= 0 in the corresponding WGT+ Lagrangian ( 6.10 ) ensures

that they contain a propagating dilaton. The dilaton part of WGT+ Lagrangians satisfying

t3 = λ is simply

LB = ξHABHAB, (6.79)

which is that of a massless 1− vector.

For all cases for which the a-matrices are non-mixing, there are no cross terms of B and

the other fields and so adding a mass term for B in the Lagrangian does not affect the other

fields. Hence, if one adds the term 1
2νD∗AφD∗Aφ to such a case, the only effect is either to

make an already propagating B-field massive, or to add a non-propagating B-field. In the

former (and more interesting) case, the corresponding dilaton Lagrangian is a Proca theory

in the Einstein gauge (φ0 = 1)

LB = ξHABHAB +
1
2νBµBµ , (6.80)

and the corresponding no-ghost-and-tachyon condition is ξ < 0 and ν > 0. With these

extensions, one can thus construct more tachyon and ghost free and PCR cases for WGT+

from the PGT+ cases with t3 = λ .

There are, however, some PCR critical cases of WGT+ that cannot be constructed directly

from PGT+ in the manner described above. These cases have non-mixing b-matrices, but

their a-matrices contain mixing terms. In particular, this occurs when there are mixing terms

∼ BA in the linearised Lagrangian. Since the B-field can be fixed using the additional gauge

invariance of the critical case, there are no BA terms in the b-matrices. We list these further

PCR critical cases in Tables  6.1 and  6.2 .
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Table 6.1 Parameter conditions for the PC renormalisable critical cases that are ghost and
tachyon free and cannot be constructed directly from PGT. The parameters listed in “Ad-
ditional conditions” must be non-zero to prevent the theory becoming a different critical
case.

# Critical condition Additional conditions No-ghost-and-tachyon condition

59 r1,
r3
2 − r4, t1,λ = 0 r2,r3,2r3 + r5,r3 +2r5, t2, t3 t2 > 0,r2 < 0,r3 (2r3 + r5)(r3 +2r5)< 0

60 r2,r1− r3,r4, t1, t2,λ = 0 r1,r1 + r5,2r1 + r5, t3 r1 (r1 + r5)(2r1 + r5)< 0

61 r1,r2,
r3
2 − r4, t1, t2,λ = 0 r3,2r3 + r5,r3 +2r5, t3 r3 (2r3 + r5)(r3 +2r5)< 0

62 r1,
r3
2 − r4, t1, t2,λ = 0 r2,r3,2r3 + r5,r3 +2r5, t3 r3 (2r3 + r5)(r3 +2r5)< 0

63 r1,r2,
r3
2 − r4, t1,λ = 0 r3,2r3 + r5,r3 +2r5, t2, t3 r3 (2r3 + r5)(r3 +2r5)< 0

64 r1,r3,r4,r5,λ = 0 r2, t1, t2, t1 + t2, t3 t2 > 0,r2 < 0

65 r1,r3,r4,r5, t1 + t2,λ = 0 r2, t1, t3 r2 < 0, t1 < 0

66 r2,r1− r3,r4,r1 + r5, t1 + t2,λ = 0 r1, t1, t3 t1 > 0,r1 < 0

67 r1,r3,r4,r5, t1,λ = 0 r2, t2, t3 t2 > 0,r2 < 0

68 r1,r3,r4, t1,λ = 0 r2,r5, t2, t3 t2 > 0,r2 < 0

69 r1− r3,r4,2r1 + r5, t1,λ = 0 r1,r2, t2, t3 t2 > 0,r2 < 0

70 r1,
r3
2 − r4,2r3 + r5, t1,λ = 0 r2,r3, t2, t3 t2 > 0,r2 < 0

71 r1,
r3
2 − r4,

r3
2 + r5, t1,λ = 0 r2,r3, t2, t3 t2 > 0,r2 < 0
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Table 6.2 Particle content of the PC renormalisable critical cases that are ghost and
tachyon free and cannot be constructed directly from PGT. The column “b-sectors” de-
scribes the diagonal elements in the b−1-matrix of each spin-parity sector in the sequence
{0−,0+,1−,1+,2−,2+}. Here it is notated as ϕn

v or ϕn
l , where ϕ is the field, −n is the power

of k in the element in the b−1-matrix when k goes to infinity, v means massive pole, and l
means massless pole. If n = ∞, it represents that the diagonal element is zero. If n≤ 0, the
field is not propagating. The “|” notation denotes the different form of the elements of the
b−1-matrices in different choices of gauge fixing, and the “&” connects the diagonal elements
in the same b−1-matrix. The superscript “N” represents that there is non-zero off-diagonal
term in the b−1-matrix.

#
Massless

mode d.o.f.

Massive

mode
b-sector

1 2 0−
{

A2
v,A

0|s2
l |B

0,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N |
(
A2

l &B0
l
)N

,
(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,×,A2
l

}
2 2 ×

{
×,A0|s2

l |B
0,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N |
(
A2

l &B0
l
)N

,A2
l ,A

2
l ,×

}
3 2 ×

{
×,A0|s2

l |B
0,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N |
(
A2

l &B0
l
)N

,A2
l ,×,A

2
l

}
4 2 ×

{
A2

l ,A
0|s2

l |B
0,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N |
(
A2

l &B0
l
)N

,A2
l ,×,A

2
l

}
5 2 ×

{
A0,A0|s2

l |B
0,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N |
(
A2

l &B0
l
)N

,
(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,×,A2
l

}
6 0 0−

{
A2

v,A
0|s2

l |B
0,
(
A0&A0)N |

(
A0&s2

l
)N |
(
A0&a2

l
)N |
(
A0&B0)N |

(
s2

l &B0)N |
(
a2

l &B0)N
,(

A0&A0)N |
(
A0&a2

l
)N

,A0,A0|s2
l

}
7 0 0−

{
A2

v,A
0|s2

l |B
0,
(
A0&A0)N |

(
A0&s2

l
)N |
(
A0&a2

l
)N |
(
A0&B0)N |

(
s2

l &B0)N |
(
a2

l &B0)N
,(

A∞&A0)N |
(
A∞&a2

l
)N

,A0,A0|s2
l

}
8 0 2−

{
A0,A0|s2

l |B
0,
(
A0&A0)N |

(
A0&s2

l
)N |
(
A0&a2

l
)N |
(
A0&B0)N |

(
s2

l &B0)N |
(
a2

l &B0)N
,(

A∞&A−2)N |
(
A∞&a0

l
)N

,A2
v,A

0|s2
l

}
9 0 0−

{
A2

v,A
0|s2

l |B
0,A0|s2

l |a
2
l |B

0,A0|a2
l ,×,×

}
10 0 0−

{
A2

v,A
0|s2

l |B
0,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N |
(
A2

l &B0
l
)N

,
(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,×,×
}

11 0 0−
{

A2
v,A

0|s2
l |B

0,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N |
(
A2

l &B0
l
)N

,A0|a2
l ,A

2
l ,×

}
12 0 0−

{
A2

v,A
0|s2

l |B
0,
(
A2

l &A0
l
)N |
(
A2

l &s2
l
)N |
(
A2

l &a2
l
)N |
(
A2

l &B0
l
)N

,A0|a2
l ,×,A

2
l

}
13 0 0−

{
A2

v,A
0|s2

l |B
0,A0|s2

l |a
2
l |B

0,
(
A2

l &A0
l
)N |
(
A2

l &a2
l
)N

,×,A2
l

}



6.4 Torsion-free WGT+ 145

6.4 Torsion-free WGT+

As well as the general case of WGT+, one may also consider the simpler cases with vanishing

torsion or curvature, respectively, which are not merely special cases of the general WGT+

action, because additional constraints are placed not only the coefficients, but also on the

fields. In this section we consider the case of vanishing torsion.

If one sets the torsion T ∗ρµν to zero, then one sees from ( 6.20 ) that the gauge fields

AAB
µ , h µ

a and Bµ are no longer independent. Indeed, ( 6.20 ) gives an explicit expression for

the A-field in terms of the B- and b-fields. On making this substitution in the Lagrangian, one

may then can apply the same method as in the previous section to investigate torsion-free

WGT+ and its critical cases. In this simpler theory, one need not set ν = ξ = c1 = 0, since

one does not encounter critical conditions that are non-linear in the Lagrangian parameters.

Hence, we do not adopt this restriction in this section.

6.4.1 The “root” theory

In this case, the a-matrices of the root theory ( 6.10 ) are

a(0+) =



s s B

s 8(r1− r3 +2r4)k4−4λk2 0 8i
√

3(r1− r3 +2r4)k3

s 0 0 0

B −8i
√

3(r1− r3 +2r4)k3 0 24k2 (r1− r3 +2r4)+12λ +ν

, (6.81)

a(1−) =



s a B

s 0 0 0

a 0 0 0

B 0 0 4k2 (c1 +2r1 +2r4 +2r5 +ξ )+12λ +ν

, (6.82)

a(1+) =
( a

a 0

)
, (6.83)
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a(2+) =
( s

s 4(2r1−2r3 + r4)k4 +2λk2

)
, (6.84)

where the SPOs are obtained from those listed in Appendix  2.A by simply deleting the rows

and columns corresponding to the A- and φ -fields. The a-matrices for 0− and 2− sectors

have no element, so we do not list them. One can fix the gauge simply by removing the rows

and columns whose elements are all zeros from the a-matrices, to obtain the corresponding

b-matrices. These may then be inverted to obtain the saturated propagator.

Considering first the massless sector, the nonzero eigenvalues of the Laurent series

coefficient matrix Q2 are
1
λ
,

1
2λ

. (6.85)

Thus, the theory has two massless d.o.f., and the no-ghost condition for the massless sector

is simply

λ > 0. (6.86)

Turning to the massive sector, the determinants of the b-matrices are

det
[
b
(
0+
)]

=8(r1− r3 +2r4)νk4−4λ (12λ +ν)k2, (6.87)

det
[
b
(
1−
)]

=4(c1 +2r1 +2r4 +2r5 +ξ )k2 +12λ +ν , (6.88)

det
[
b
(
2+
)]

=4(2r1−2r3 + r4)k4 +2λk2, (6.89)

from which one obtains the masses

m2 (0+)= λ (12λ +ν)

2(r1− r3 +2r4)ν
, (6.90)

m2 (1−)= −12λ −ν

4(c1 +2r1 +2r4 +2r5 +ξ )
, (6.91)

m2 (2+)=− λ

2(2r1−2r3 + r4)
. (6.92)
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The no-tachyon conditions m2(JP)> 0 may then be read off from the above expressions. In

each sector, the masses are distinct, and so one can again apply ( 2.42 ) directly to obtain the

massive no-ghost conditions

0+ :
1

4λ
+

6λ 2

(r1− r3 +2r4)ν2 +
3
ν
> 0, (6.93)

1− : c1 +2(r1 + r4 + r5)+ξ < 0, (6.94)

2+ : λ < 0. (6.95)

One thus finds that the combined no-ghost-and-tachyon conditions for the massive sector are

0+ : r1 +2r4 > r3,λν(12λ +ν)> 0, (6.96)

1− : 12λ +ν > 0,c1 +2(r1 + r4 + r5)+ξ < 0, (6.97)

2+ : 2r1 + r4 > 2r3,λ < 0. (6.98)

Since the conditions in the massive 2+ sector contradict the condition ( 6.86 ) in the

massless sector, the theory must have a ghost or tachyon.

6.4.2 Critical cases

We now consider the critical cases of torsion-free WGT+. As discussed in detail in Chapter  2 ,

one finds all conditions that cause a theory to be a critical case. While some conditions may

cause criticality in more than one way, one can still divide all the critical conditions into

three categories, which we called type A, B and C conditions, respectively.

Considering first the root theory, it becomes critical and thereby loses one d.o.f in the

Lagrangian parameter space if any of the following expressions vanishes:

Type B: λ ,12λ +ν , (6.99)

Type C: 2r1−2r3 + r4,r1− r3 +2r4,ν ,

c1 +ξ +2r1 +2r4 +2r5. (6.100)
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The two critical cases resulting from the type B conditions ( 6.99 ) of the root theory contain

ghosts or tachyons, but some of their descendant critical cases, all of which result from

type A or C conditions, are free from ghosts and tachyons. The critical cases resulting

from type A and type B conditions of torsion-free WGT+ are shown in Figure  6.1 , whereas

those arising from type C critical conditions are listed in Table  6.3 ; those cases that are

ghost-and-tachyon-free are indicated, as described in the captions. One sees that four cases

in Figure  6.1 are free from ghosts and tachyons, and nine critical cases in Table  6.3 share this

property. We also note that there are 15 critical cases of the root theory in total that result

from type C conditions, which correspond to self-consistent combinations of those in ( 6.100 ).

As is clear from ( 6.92 ), those critical cases resulting from type C conditions and for which

2r1−2r3 + r4 = 0 are free from ghosts and tachyons because the 2+ massive mode is not

propagating.

6.4.3 Comparison with previous results

The particle spectrum of a subset of torsion-free Weyl-invariant higher-curvature gravity theo-

ries has been studied previously by [ 100 ], both in (anti-)de Sitter and Minkowski backgrounds

(to our knowledge, this is the only other investigation of a torsionless WGT+ ground-state

in the literature). For n = 4 spacetime dimensions, the coefficients (α,β ,γ,ε,σ) in their

Lagrangian (see equations (1), (7) and (14) in [  100 ]) are related to those in our notation used

in ( 6.10 ) by

α =−1
2r1 + r3 =

1
4(r4− r5),

β = r4 + r5 =−1
2c1,

γ = 1
2r1,

ε = ξ − (r4 + r5 +2r1),

σ = λ , (6.101)

together with the conditions

r1 = r2, ν =−1. (6.102)
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Fig. 6.1 Critical cases of torsionless WGT+ resulting from type A or type B conditions.
Each node represents a critical case, except the top and bottom nodes, which represent
the root theory and the zero Lagrangian, respectively. Each arrow points from a node to
one of its critical cases. A solid arrow represents type A critical condition, and a dashed
arrow represents type B. The labels on the arrows are the critical parameters; for brevity, the
variables r′1 = r1−r3 and c′1 = c1+2r1+2r5+ξ have been defined. The critical condition of
a node can be obtained by setting all the critical parameters to zeros in the path from the root
theory to that node, and the conditions are path independent. In each node, the first line is in
the format “d.o.f. of massless mode or ‘dip.G’ if there are massless dipole ghosts/massive
mode”, and the second line is “number of child critical cases resulting form type C conditions
(number of no-ghost-and-tachyon cases among them)”, which are not shown but are listed in
Table  6.3 . The dashed/solid frames indicate those cases that contain any/no ghost or tachyon.
The thick frames indicate PCR cases, and the thin frames indicate those that are non-PCR
or have mixing b-matrices. The “M” under the number at the left of the nodes with mixing
b-matrices.
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Table 6.3 Critical cases of torsion-free WGT+ resulting from type C conditions. The first
numbers in the column “#” correspond to the numbers in Figure  6.1 , and the corresponding
nodes are the parent critical cases of the rows. The “Critical condition” column indicates the
critical condition with respect to the parent case. For example, “#1-3” is the third critical
case resulting from type C conditions of case #1. The symbols ‘◦’/‘×’ indicate whether the
theory is possible to be free of ghosts and tachyons. The “−” symbols denote that there is no
propagating mode, and the “M” symbols indicate the cases with mixing b-matrices.

# Critical condition Massive mode No-ghost-and-tachyon PCR

#1-1 ν 1−,2+ × M

#1-2 r′1 +2r4 1−,2+ × ×
#1-3 r′1 +2r4,ν 1−,2+ × ×
#1-4 c′1 +2r4 0+,2+ × M

#1-5 ν ,c′1 +2r4 2+ × M

#1-6 r′1 +2r4,c′1 +2r4 2+ × ×
#1-7 r′1 +2r4,ν ,c′1 +2r4 2+ × ×
#1-8 2r′1 + r4 0+,1− ◦ M

#1-9 2r′1 + r4,ν 1− ◦ M

#1-10 2r′1 + r4,r′1 +2r4 1− ◦ ×
#1-11 2r′1 + r4,r′1 +2r4,ν 1− ◦ ×
#1-12 2r′1 + r4,c′1 +2r4 0+ ◦ M

#1-13 2r′1 + r4,ν ,c′1 +2r4 × ◦ M

#1-14 2r′1 + r4,r′1 +2r4,c′1 +2r4 × ◦ ×
#1-15 2r′1 + r4,r′1 +2r4,ν ,c′1 +2r4 × ◦ ×
#2-1 c′1 +2r4 × × M

#3-1 2r′1 + r4 × × M

#4-1 c′1−4r′1 × − −
#5-1 c′1− r′1 × × ◦
#7-1 r′1 × ◦ ×
#8-1 2r′1 + r4 × ◦ M

#9-1 c′1 × − −
#13-1 r′1 × ◦ ×
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In particular, one should note that the Lagrangian in [ 100 ] is written in terms of the curvature

tensor R̃µνρσ . As discussed in Section  6.1 , this has even fewer symmetry properties than

the rotational gauge field strength tensor Rµνρσ used in ( 6.10 ). Consequently, there are

further quadratic combinations of R̃µνρσ that could appear in the Lagrangian in [ 100 ], but

only three such terms are included. Consequently, there are fewer degrees of freedom in the

parameters of their Lagrangian, as compared with our Lagrangian in (  6.10 ), as is evident from

the above parameter identifications. Moreover, since R̃µνρσ has many fewer symmetries

than the standard curvature tensor in Riemannian spacetime V4, the appropriate form of the

Gauss–Bonnet identity differs from the usual formula that is assumed in Eq. (34) of [ 100 ]

(see, for example [  28 ,  101 ]); fortunately most of the conclusions presented in [ 100 ] do not

depend on this expression.

The constraints on our parameters in (  6.101 )–( 6.102 ) do not coincide with any of the

critical conditions in any critical case, so the structure of our “criticality tree” of torsion-

free WGT+ is not affected. In [ 100 ], it is found that about a 4-dimensional Minkowski

background, the WGTs considered are unitary provided (in terms of our parameters)

2(r1− r3)+ r4 = 0, (6.103)

r1− r3 +2r4 = 0, (6.104)

λ > 0. (6.105)

Both equalities coincide with our type C critical conditions, and they eliminate 2+ and 0+

massive modes, leaving a 1− massive mode. The condition on λ also matches ours, so their

result is consistent with our critical case #1-10 of the root theory, listed in Table  6.3 .

It is concluded in [ 100 ], however, that the theory has a massless spin-2 field and a

massless spin-0 field, and so the massless sector has 3 d.o.f, whereas we find just 2. This

difference may result from the fact that they employ a gauge fixing condition D∗µBµ = 0

on the Bµ -field (their Aµ -field), described in their Eq. (30), but then treat this field as if it

is unconstrained when reading off the particle content from their Eq. (59). This situation

is analogous to that in Stueckelberg theory, as discussed in Appendix  5.A . If one fixes the
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gauge by setting ∂ ·B = 0, then the Lagrangian appears to describe a massive vector B and a

massless scalar φ without interaction. Conversely, if one instead sets φ = 0, the Lagrangian

contains only a massive vector without constraint. Thus, one should interpret the theory

as containing either a massive vector or a massive vector with a Stueckelberg ghost and a

Faddeev–Popov ghost.

Also, it is claimed in [ 100 ] that unitarity requires both ( 6.103 ) and ( 6.104 ) to hold,

whereas we require only the former condition, if no Type A or B critical condition is satisfied.

The condition ( 6.104 ) is necessary in [ 100 ] because they do not adopt the Einstein gauge,

and so require the higher-derivative Pais–Uhlenbeck term (□̄ΦL)
2 to vanish, where ΦL is

the linearised φ . By contrast, all the higher-order poles in our saturated propagator vanish

due to the source constraints, and so the condition ( 6.104 ) is not necessary in our case. This

difference may be worthy of further investigation.

6.4.4 Power-counting renormalisability

We determine whether each critical case is PCR using the same method as discussed in

Section  6.3.3 . The results are presented in Figure  6.1 and Table  6.3 . In particular, we find

three critical cases in Figure  6.1 that are both PCR and contain no ghost or tachyon; these

are indicated by nodes with thick, solid frames. We note that each of these theories can be

gauge fixed to contain only the B gauge field. It is also worth highlighting that, perhaps

as a consequence of this, there is no simultaneously unitary and PCR case in torsion-free

PGT+, and so these three theories may be worthy of further investigation. No critical case in

Table  6.3 is both PCR and unitary.

6.5 Curvature-free WGT+

In this section, we consider WGT+ with vanishing curvature. This is a more subtle condition

than the equivalent case in PGT+, which was discussed in Chapter  4 . As mentioned in

Section  6.1 , the geometric (Riemann) curvature tensor R̃ρ

σ µν in Weyl–Cartan spacetime

differs from the rotational gauge field strengthRρ

σ µν , so it is unclear which should be set to
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zero. Here we consider only the case in which the latter vanishes, since this may imposed in

the same way as in PGT by simply setting AABµ = 0, since the expression for the rotational

gauge field strength in terms of the rotational gauge field are identical in PGT and WGT. In

this simpler theory, one sees from ( 6.10 ) that one requires only the Lagrangian parameters ξ ,

ν , t1, t2 and t3, since one can set λ = 0 without loss of generality.

6.5.1 The “root” theory

In this case, the a-matrices of the root theory are

a
(
0+
)
=



s s B

s 4k2t3 0 4i
√

3kt3

s 0 0 0

B −4i
√

3kt3 0 12t3 +ν

, (6.106)

a
(
1−
)
=



s a B

s 2
3k2 (t1 + t3) −2

3k2 (t1 + t3) −2i
√

2kt3

a −2
3k2 (t1 + t3) 2

3k2 (t1 + t3) 2i
√

2kt3

B 2i
√

2kt3 −2i
√

2kt3 12t3 +ν +4k2ξ

, (6.107)

a
(
1+
)
=

( a

a 2
3k2 (t1 + t2)

)
, (6.108)

a
(
2+
)
=

( s

s 2k2t1

)
. (6.109)

As in the torsion-free theory, the SPOs are obtained from those listed in Appendix  2.A by

deleting the rows and columns corresponding to the A- and φ -fields, and the a-matrices

for the 0− and 2− sectors contain no elements. After fixing the gauge by deleting rows

and columns, one obtains the non-singular b-matrices, which may be inverted to obtain the

saturated propagator.
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Considering first the massless sector, one finds that the Laurent series coefficient matrix

Q4 is non-zero in this case, and the condition for it to vanish is

ν =− 12t1 (t1−2t2) t3
t2
1 −2t1t2 +4t1t3 + t2t3

. (6.110)

One further finds that the Laurent coefficient matrix Q2 cannot be positive definite and

contains eight nonzero eigenvalues, which are too complicated to be given here. Consequently,

the root theory must contain ghosts in the massless sector.

One can, however, continue to analyze the massive sector. The determinants of the

b-matrices are

det
[
b
(
0+
)]

= 4t3νk2, (6.111)

det
[
b
(
1−
)]

= 2
3 [t3ν + t1 (12t3 +ν)]k2 + 8

3 (t1 + t3)ξ k4, (6.112)

det
[
b
(
1+
)]

= 2
3 (t1 + t2)k2, (6.113)

det
[
b
(
2+
)]

= 2t1k2. (6.114)

Only the 1− sector contains a massive mode, with mass

m2 (1−)= −12t1t3− (t1 + t3)ν
4(t1 + t3)ξ

, (6.115)

and the no-tachyon condition is m2 (1−) > 0. Applying ( 2.42 ) directly, in this case the

no-ghost condition is

1− :(t1 + t3) [12t1t3 +(t1 + t3)ν ]ξ
{
(t1 + t3) [12t1t3 +(t1 + t3)ν ]−72t2

3 ξ
}
< 0. (6.116)

The combined no-ghost-and-tachyon conditions for the massive sector are thus

ξ < 0, ν >−12t1t3
t1 + t3

, (6.117)

but one should recall that the massless sector always contains a ghost.
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6.5.2 Critical cases

The critical cases of the root theory occur when any of the following expressions vanishes:

Type A: t1, t1 + t2, t3,ν , (6.118)

Type B: 12t1t3 + t1ν + t3ν , (6.119)

Type C: t1 + t3,ξ . (6.120)

However, since 12t1t3 + t1ν + t3ν cannot be factorized into a linear combination of the

parameters, one cannot apply our algorithm to find all the critical cases directly. We therefore

below consider the critical case ν = 0, which removes the kinetic term of the scalar field φ , as

the simplified root theory and instead find its critical cases. Before turning to these, we note

that the massless sector of this simplified root theory requires t1−2t2 = 0 to make its Laurent

series coefficient matrix Q4 vanish, and thus prevent the presence of dipole ghosts, but in any

case the matrix Q2 has seven nonzero eigenvalues and cannot be made be positive definite.

Therefore, the massless sector must contain a ghost. The conditions for the massive sector of

the simplified root theory to be ghost and tachyon free may be obtained from (  6.115 )–( 6.117 )

by setting ν = 0.

Turning now to the critical cases of the simplified root theory, the critical conditions

are given by ( 6.118 )–( 6.120 ) with ν = 0. One should note that this results in the simplified

root theory containing no type B critical condition, since the resulting condition that t1t3

should vanish is trivially factorised and the separate requirements that t1 or t3 should vanish

are already included in the type A critical conditions, and it turns out that there is no type

B critical condition in the descendants. The critical cases resulting from type A or type C

conditions are summarised in Figure  6.2 and Table  6.4 , respectively. Cases that are ghost-

and-tachyon-free are indicated, as described in the captions. In particular, we note that there

are nine critical cases in Figure  6.2 that are free from ghosts and tachyons, and three such

critical cases in Table  6.4 .
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Fig. 6.2 Critical cases resulting from type A critical conditions of curvature-free WGT+.
The notation follows that of Figure  6.2 .

Table 6.4 Critical cases resulting from type C critical conditions of curvature-free WGT+.
The notation follows that of Table  6.3 .

# Critical condition Massive mode No-ghost-and-tachyon PCR
#1-1 ξ × × M
#1-2 t1 + t3 × × M
#1-3 t1 + t3,ξ × × M
#3-1 ξ × ◦ M
#3-2 t1 + t3 × ◦ M
#3-3 t1 + t3,ξ × ◦ M
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6.5.3 Power-counting renormalisability

We determine whether each critical case is PCR using the same method as discussed in

Section  6.3.3 . The results are presented in Figure  6.2 and Table  6.4 . In particular, we find

that there is just a single critical case in Figure  6.2 , which is just the pure dilaton Lagrangian

L ∼H2, that is both PCR and unitary; this is indicated by the node with a thick, solid frame.

No such critical case is found in Table  6.4 .

6.6 Conclusions

We have used the systematic method in Chapter  2 to determine the no-ghost-and-tachyon

conditions for the most general WGT+ (the root theory), and found it must contain a ghost or

tachyon. For a subset of the theory, with the restriction ν = ξ = c1 = 0 on the parameters in

the Lagrangian ( 6.10 ), which removes the kinetic terms for the scalar field φ and dilational

gauge field B, respectively, and the only “cross term”RABHAB between gauge field strengths,

we found and categorised all 862 critical cases, and identified 168 that are free from ghosts

and tachyons. The full set of results displayed in an interactive form can be found at:

 http://www.mrao.cam.ac.uk/projects/gtg/wgt/ . We compared our findings with the only other

example of a unitary WGT+ of which we are aware in the literature [  99 ], and found the

results to be consistent. We further identified those critical cases of WGT+ that are also

PCR. Most of these are identical to those in PGT+ listed in Chapter  5 , or are a PGT+

without any propagating mode (which were not listed in Chapter  5 ). Nonetheless, we also

identified a further 13 PCR and ghost-and-tachyon-free critical cases of WGT+ that cannot

be constructed directly from PGT+.

We repeated our analysis for the simpler cases of torsion-free and curvature-free WGT+,

which are not merely special cases of the general WGT+ action, because additional con-

straints are placed not only the coefficients, but also on the fields. For the torsion-free case,

we found that the root theory (without any further conditions on the Lagrangian parameters)

must contain a ghost or tachyon. Nonetheless, we identify 13 critical cases that are free from

ghosts and tachyons. We also compare our results with the only other invesigation of the

http://www.mrao.cam.ac.uk/projects/gtg/wgt/
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ground-state of a torsionless WGT+ of which we are aware in the literature. We find our

results to be consistent, apart from a minor issue related to the number of propagating degrees

of freedom in the massless sector, most probably resulting from the different approaches

to gauge-fixing used in the two analyses. Of our 13 ghost-and-tachyon-free critical cases,

we further identified three that are also PCR, each of which can be gauge fixed to contain

only the B gauge field. This may explain the sharp contrast with torsion-free PGT+, for

which there is no unitary and PCR critical case, and suggests that these three theories may be

worthy of further investigation.

For curvature-free WGT+, we find that the massless sector of the root theory (again with

no further conditions on the Lagrangian parameters) must contain a ghost. For the simplified

root theory with ν = 0, which has no kinetic term for the scalar field φ in the Lagrangian

and is itself found to have a ghost in the massless sector, we find 13 critical cases that are

free from ghosts and tachyons, of which just a single case is found also to be PCR, which

corresponds to the pure dilaton Lagrangian L ∼H2.

All the restrictions on Lagrangian parameters mentioned above are necessary to avoid

critical conditions that cannot be written as the product of real linear terms, which is required

by the systematic method in Chapter  2 . We plan to improve our approach to accommodate

such cases in future work, and also apply the method to more general gauge theories, such as

metric affine gravities, whose unitarity was recently investigated by [ 102 ] using SPOs.



6.A Completeness of the critical cases 159

Appendix 6.A Completeness of the critical cases

In this appendix, we will review the completeness of the critical conditions and additional

conditions introduced in Chapter  2 . An “additional condition” is defined as the condition(s)

to prevent a theory from being critical. In Chapter  2 , the additional condition was the

requirement that the “sibling critical conditions” should not be satisfied, and we will call

this the “sibling additional condition”. For example, consider a theory that has the critical

conditions that the (linear) parameter combinations X , Y , and Z should vanish; we will call

X , Y and Z the “critical parameters” of the theory. In the case, the sibling critical parameters

for the critical case X = 0 are Y and Z. To prevent a theory from being critical, one can

require the “critical parameters” not equal to zeros. We will call this kind of condition a

“child additional condition”. In PGT+, as discussed in Chapter  2 , the “sibling additional

condition” is identical to the “child additional condition”, except for the root case. This

occurs because we add only one linear condition at a time for cases resulting from type

A or B critical conditions, but we attempt to use all possible combinations of conditions

simultaneously for type C critical parameters (which we term “combining” the conditions).

We then recursively find the child critical cases of cases resulting from type A and B critical

conditions (the “uncombined” cases), but stop doing that for those from type C critical

conditions (the “combined” cases). If type C critical conditions are treated in the same way

as type A and type B, then the statement is not valid for PGT+.

There are two situations in which the statement is invalid. The first is the occurence of

“hidden” critical parameters. Consider a theory with only a 1×1 b-matrix (XY +Zk2). The

theory has type B critical parameters, X and Y , and a type C one, Z. For the critical case

X = 0, the b-matrix becomes (Zk2), so there is only one critical parameter Z. To prevent the

theory being critical (“child additional condition”), one requires Z ̸= 0. However, its sibling

critical parameters are Y and Z, which are different. The critical parameter Y is hidden in this

case. If there are “hidden” parameters and one is requiring only child additional conditions,

then a point in the parameter space may belong to more than one critical case. For example,

the critical case X = 0,Z ̸= 0 and the case Y = 0,Z ̸= 0 has the overlap X = Y = 0,Z ̸= 0,

and they actually have the same b-matrix (Zk2) and represent the same theory. If we use
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the sibling additional condition instead, the two cases become X = 0,Y ̸= 0,Z ̸= 0 and

Y = 0,X ̸= 0,Z ̸= 0, and there is no overlap. “Hidden” parameters do not occur in PGT+ or

any of the critical cases discussed in this thesis, if we “combine” all the type C critical cases

as in Chapter  2 . While the overlapping and redundancy do no real harm to the correctness

of our results, it may be worth modifying our algorithm to accommodate the situation for

simplicity.

The second reason is the occurence of “emergent” critical parameters. Some critical

parameters appear after a b-matrix becomes singular and a new b-matrix forms, which may

happen in critical cases resulting from a type A critical parameter (it is worth noting that

critical parameters of the root theory are always “emergent” because it has no parent or

sibling critical cases). In PGT+ and torsion-free or simplified curvature-free WGT+, either

the new b-matrix is 0×0, or its critical parameters are already included in the sibling critical

parameters, and so there is no “emergent” critical parameter. However, in simplified full

WGT+, this is not the case. For example, the b(0+)-matrix of the simplified root WGT+ is


2
[
2k2 (r1− r3 +2r4)+ t3

]
−2i
√

2kt3 2
√

6(t3−λ )

2i
√

2kt3 4k2 (t3−λ ) 4i
√

3k (t3−λ )

2
√

6(t3−λ ) −4i
√

3k (t3−λ ) 12(t3−λ )

 , (6.121)

which has det [b(0+)] =−96(t3−λ )λ 2k2. Its critical case λ = 0 has

 2
[
2k2 (r1− r3 +2r4)+ t3

]
−2i
√

2kt3

2i
√

2kt3 4k2t3

 (6.122)

with det [b(0+)] = 16(r1− r3 +2r4) t3k4. The critical parameter (r1− r3 +2r4) is neither a

critical parameter of the root theory, nor among the sibling critical parameters of case λ = 0.

However, the “emergent” parameters will not affect our algorithm if we apply the “child

additional condition”, which already includes the “emergent” parameters.

In conclusion, as long as there is no “hidden” critical parameter in critical cases resulting

from type A and B critical parameters, and the cases resulting from type C critical parameters
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are “combined”, then we can apply the child additional conditions for the “uncombined”

cases and the sibling additional conditions for the “combined” cases as the “(extended)

additional condition”, respectively. 

5
 This is what the term “additional condition” actually

means in this thesis. Our algorithm then holds, and each parameter set corresponds to one

critical case. We have also checked that the all critical cases in Chapter  4 and Chapter  6 cover

the entire parameter space and the critical cases have no overlap.

5This is also equivalent to combining the sibling and child additional conditions as the additional condition
for all cases.





Chapter 7

Concluding remarks

Gauge theories are successful in providing a unified framework to describe fundamental

interactions. It is natural also to consider gravitation as a gauge theory. In this thesis, we

investigated the unitarity and renormalisability of Poincaré gauge theory (PGT) and Weyl

gauge theory (WGT) with a systematic method.

In Chapter  2 , we presented the systematic approach to investigate the no-ghost-and-

tachyon conditions for general gauge theories of gravitation. The systematic method first

linearises the free gravitational Lagrangian and then decomposes the Fourier transformed

linearised quadratic Lagrangian with the spin projection operators (SPOs). The Lagrangian

is then represented by matrices, and each matrix corresponds to a specific spin-parity JP.

After fixing gauges by deleting rows and columns in the singular matrices to make them non-

singular, we then obtain the saturated propagator by sandwiching the non-singular matrices

by source currents. The source currents should satisfy some constraints to maintain the gauge

invariance. The no-tachyon condition requires the masses to be real, and it can be obtained by

requiring the non-zero zeros of the determinants of the non-singular matrices to be positive.

The no-ghost condition requires the residues of the saturated propagator on the poles to

be positive definite. For the massive poles, the condition can be obtained by requiring the

residue of the trace of the non-singular matrices to be positive (or negative). However, it

requires more work to deal with the massless poles because the SPOs are not well-defined

when k2 = 0. We expand the source constraints into tensor components and express the

163
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components by some free variables. After expanding the saturated propagator into tensor

components and replacing the source current components with the free variables, the source

constraints are satisfied. We then require its residue to be positive definite. If the Lagrangian

parameters satisfy some critical conditions, the theory may change qualitatively. We classify

the critical conditions into three categories: those introducing any additional gauge invariance

(type A), those not type A and making any massive pole massless (type B), and those not type

A or B and removing any massive pole (type C). By applying one condition (one equation)

and removing one degree of freedom in the parameter space at a time, we can recursively

find all the critical cases if the critical conditions contain only linear combinations of the

Lagrangian parameters. The method was implemented with MATHEMATICA, and we have

shown some details of the implementation in Chapter  3 .

In Chapter  4 , we constructed PGT by gauging the Poincaré symmetry. The matter

Lagrangian is made invariant with the minimal coupling method, with the covariant derivative

constructed with gauge fields AAB
µ and h µ

A , and the free gravitational Lagrangian should be

constructed with the field strengths. We applied the method to investigate the 9-parameter

most general parity-preserving PGT with up to two derivatives, as well as all of the critical

cases. We found 450 critical cases that are free of ghosts and tachyons within the 1918

critical cases in total. The full set of results displayed in an interactive form can be found at:

 http://www.mrao.cam.ac.uk/projects/gtg/pgt/ . We also examined torsion-free and curvature-

free PGT+, which are not subsets of the critical cases of the full theory, in the same way. We

identified and compared our results with the literature for the (small) subset of critical cases

that have been analysed previously. We found that they are basically consistent, although

there are a few minor differences most probably due to typographical errors in previous works.

We also listed a subset of the source constraints in the critical cases carrying additional gauge

invariance.

In Chapter  5 , we reviewed the original criterion of PCR from the superficial degrees

of divergence argument. We then proposed the alternative PCR criterion, which allows

non-propagating modes. With the alternative PCR criterion, we found 58 critical cases of

PGT that are both PCR and free of ghosts and tachyons. Within these theories, seven have

http://www.mrao.cam.ac.uk/projects/gtg/pgt/
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two massless d.o.f. in propagating modes and a massive 0− or 2− mode, 12 have only

two massless d.o.f., and 39 have only massive mode(s). We have also clarified the role of

non-propagating modes in the PCR criterion. Appendix  5.A discussed this issue further by

applying the methods used in this chapter to the simpler cases of the Proca and Stueckelberg

theories.

In Chapter  6 we applied the systematic method to study the most general parity-preserving

WGT with up to two derivatives and with the compensator under the Einstein gauge. The root

theory contains 2 d.o.f. of propagating massless mode, which is the same as its counterpart

of PGT. It also contains one 0−, 0+, 1+, 2−, and 2+ massive mode, as well as two 1−

ones. However, the no-ghost-and-tachyon conditions for all spin-parity sectors cannot be

satisfied at the same time, and therefore there must be ghosts or tachyons. Because some

critical conditions are not linear in the Lagrangian parameters when applying the algorithm

to find all critical cases derived from the root theory, we simplify the root theory by setting

ν = ξ = c1 = 0 and investigate a subset of the original critical cases. Within the subset, we

found and categorised all 862 critical cases, and identified 168 that are free from ghosts

and tachyons. The full set of results displayed in an interactive form can be found at:

 http://www.mrao.cam.ac.uk/projects/gtg/wgt/ . We found that most of the critical cases that

are PCR and ghost-and-tachyon-free can be directly constructed from some PGT critical

cases. We listed a further 13 critical cases with both of the properties which cannot be directly

constructed from critical cases of PGT. We also analysed torsion-free and curvature-free

WGT+. For the torsion-free case, the root theory must contain a ghost or tachyon, but there

are 13 critical cases that are free from ghosts and tachyons. Three of them are also PCR,

but each of which can be gauge fixed to contain only the B gauge field. For curvature-free

WGT+, the root theory must contain a massless ghost. We investigated the critical cases of

the simplified root theory with ν = 0 because of the same reason as full WGT+. There are

13 critical cases free from ghosts and tachyons, and only one of them is also PCR, which

corresponds to the pure dilaton Lagrangian L ∼H2.

In future work, we plan to improve the shortcomings of our systematic method. Our

method can only determine whether dipole ghost exists, but it does not yield the number of

http://www.mrao.cam.ac.uk/projects/gtg/wgt/
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degrees of freedom nor the spin-parities of the massless particles if there are dipole ghosts.

Even if there is no dipole ghost, it only yields the total degrees of freedom of the massless

particles, but not their spins or parities. When finding all critical cases, the method requires all

the critical conditions are linear combinations of the Lagrangian parameters. If the restriction

is violated, then the degrees of freedom of parameter space eliminated by applying one

equation may be greater than one, and the hierarchy structure of the critical cases breaks

down.

Since our method linearises the Lagrangian, it cannot include non-linear effects. The au-

thors of [  49 ,  50 ,  83 ,  84 ] showed that linearizing a theory can change its structure qualitatively

and particle content. By performing a full non-linear analysis, one may further constrain the

valid cases listed in this thesis.

It is also worth investigating all the PCR and ghost-and-tachyon-free theories we found

in this thesis further, especially those containing massless propagating particles. There are

a few papers which examined some of the critical cases in Section  5.2 . Barker et al. [ 103 ]

systematically categorised 33 of the PGT critical cases we presented in Section  5.2 into 14

classes and investigated cosmological solutions of them. It turns out that Class 3C∗ of PGT in

their paper mimics the cosmology of GR and may ease the current Hubble constant tension

[ 104 ,  105 ] via an effective dark radiation period. Cases 14 and 16 in Section  5.2 , which may

contain massless 2+ particles, belong to the class. In their latest paper [ 106 ], they further

found Class 2A∗ of PGT not only reproduces ΛCDM cosmology, but also has dark radiation

and its own dark energy (the massive 0− particle). The authors also showed that Class 2A∗ is

an analogue to bi-scalar-tensor theories (or generalised bi-galileon theories [ 107 ], which are

multi-scalar versions of Horndeski theory [ 108 ]) described by a metric tensor and scalars,

which provides the broader community with a unified framework for future investigation.

We have always performed perturbation around the flat spacetime in this thesis, but this

is not the correct background space for our actual universe. It is possible that the particle

spectrum of a gauge theory changes qualitatively [ 109 ]. It may worth making our method

compatible with de Sitter or cosmological spacetime and find what change this causes.
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We also plan to apply the method to more general gauge theories. Lasenby and Hobson

[ 28 ] proposed the extended Weyl gauge theory (eWGT), which treats the Lorentz field

strength (R) and the translational field strength (T ) in a more balanced manner with regard

to transformation properties by “extending” the transformation rule for the A-field. It has

been shown that eWGT produces the same cosmology as PGT, up to a linear map of the

parameters [ 103 ]. The unitarity of the affine gauge theories was recently investigated by

Percacci and Sezgin [ 102 ] using the SPO framework, and our method may be applied to

perform a complete search. Overall the interest in gauge theories of gravity is increasing, and

we believe our methods are well placed to contribute to the study of their possible quantum

properties.
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