
JULY 2021 | VOL. 64 | NO. 7 | COMMUNICATIONS OF THE ACM 91

Deriving Equations from
Sensor Data Using Dimensional
Function Synthesis
By Vasileios Tsoutsouras, Sam Willis, and Phillip Stanley-Marbell

DOI:10.1145/3465216

Abstract
We present a new method for deriving functions that model
the relationship between multiple signals in a physical sys-
tem. The method, which we call dimensional function syn-
thesis, applies to data streams where the dimensions of
the signals (e.g., length, mass, etc.) are known. The method
comprises two phases: a compile-time synthesis phase and
a subsequent calibration using sensor data. We implement
dimensional function synthesis and use the implementa-
tion to demonstrate efficiently summarizing multimodal
sensor data for two physical systems using 90 laboratory
experiments and 10,000 synthetic idealized measurements.
The results show that our technique can generate models
in less than 300 ms on average across all the physical sys-
tems we evaluated. This is a marked improvement when
compared to an average of 16 s for training neural networks
of comparable accuracy on the same computing platform.
When calibrated with sensor data, our models outperform
traditional regression and neural network models in infer-
ence accuracy in all the cases we evaluated. In addition,
our models perform better in training latency (up to 1096×
improvement) and required arithmetic operations in infer-
ence (up to 34× improvement). These significant gains are
largely the result of exploiting information on the physics of
signals that has hitherto been ignored.

1. INTRODUCTION
Physical systems instrumented with sensors can generate
large volumes of data. These data are useful in understand-
ing previous behaviors of the systems that generate them
(e.g., monitoring properties of components in aircraft)
as well as in predicting future behaviors of those systems
(e.g., predicting failures of components in machinery).
Unlike data sources such as speech or text, data from sen-
sors of physical phenomena must obey the laws of phys-
ics. Existing methods for constructing predictive models
from sensor data however do not fully exploit prior knowl-
edge of the physical interpretation of sensor data. In this
work, we use information about physical dimensions of
sensor signals to synthesize compact predictive models
from sensor data. In keeping with the convention in phys-
ics, we use the term dimensions to refer to quantities such
as length or time and we use the term units to refer to a
value in a standardized system for quantifying values of a
given dimension, such as centimeters or miles for length
and Pascals or mmHg for pressure. The state of the art in
deriving models from such data streams is to apply some

The original version of this paper was published in
ACM Transactions on Embedded Computing Systems,
October 2019.

form of machine learning.11, 19 Blindly applying machine
learning to data from physical systems however ignores
important prior knowledge about the physical implica-
tions of the signals.

1.1. Contemporary methods ignore physics
Despite its use in programming languages for tasks such
as extending type systems with units of measure,1, 2, 3, 5, 8, 12, 10, 14,

17, 23 physical information in the form of dimensions (e.g.,
time, temperature, etc.) has seen limited use in building
models of physical systems from data. Physical constraints
can be viewed as a form of Bayesian prior.4 Kalman filters
incorporate information about the physical constraints of
systems but use this information primarily to guide their
state update equations. Today, no principled techniques
exist which learn models from sensor data by exploiting
the requirements of dimensional consistency of sensors
to learn more compact models.

1.2. Dimensional function synthesis
Dimensional function synthesis is a new method to effi-
ciently derive functions relating the values from multiple
streams of data from physical systems with known physi-
cal dimensions. The insight behind the method is that any
equation relating physical quantities must obey the princi-
ple of dimensional homogeneity from dimensional analysis6:
the two sides of an equation, an addition, or a subtraction,
must have the same physical dimensions.

Figure 1. Dimensional function synthesis uses information about
physical dimensions to generate a family of candidate equations. It
then uses sensor measurements to calibrate the set of candidate
equations.

Signal A

dimensions
(e.g., LMT-2)

Compile-time analysis

Signal N

dimensions
(e.g., L2)

A ∝ (B/C),

A ∝ (D/E),

signal A, signal B, ..., signal N

signal A, signal B, ..., signal N

Dimensional function synthesis

Run-time calibration

Multi-modal sensor data values1 2

http://dx.doi.org/10.1145/3465216

research highlights

92 COMMUNICATIONS OF THE ACM | JULY 2021 | VOL. 64 | NO. 7

force F applied to a mass m and its resulting acceleration,
a, we have Ssymbols = {F, m, a}, Qi = F, Q2 = m, and Q3 = a. The
dimensions of the members of Ssymbols are D(Q1) = MLT−2,
D (Q2) = M, and D (Q3) = LT−2. Table 1 shows additional exam-
ples of parameters and their dimensions for data from
sensors in physical systems that can be instrumented with
sensors to monitor their behavior. For example, the altim-
eter subsystem of a fitness tracker uses changes in atmo-
spheric pressure to estimate changes in elevation and
hence to estimate the number of flights of stairs climbed.

The key idea in the mathematical formulation of dimen-
sional analysis is that for a set Ssymbols such as in the example
above, we can often arrange the members Qi of Ssymbols into
groups of products where the dimensions of the symbols
in the product cancel out and as a result each monomial is
dimensionless.6, 7

Why finding dimensionless products is useful: Given
a set of parameters Ssymbols for a physical system, each of
the dimensionless products we can form from a subset
of Ssymbols directly gives us a dimensionally valid equation
between those parameters: we can equate the dimension-
less product to any dimensionless quantity to obtain a
dimensionally correct equation; if we then rearrange that
equation to move one of the parameters to be the only
term on one side of the equation, we have a dimension-
ally valid equation of that parameter in terms of the other
parameters in the dimensionless product.

Definition 1. Let i be an index over the set Ssymbols of symbols
in the description of a physical system, let n be the cardinality of
Ssymbols, and let m be an index such that m ≤ n. Let ki be a value
drawn from the set of rational numbers Q. A dimensionless
product Π of parameters Qi ∈ Ssymbols is a monomial of parameters
raised to powers such that D (Π) = 1, that is,

 (2)

For a physical system defined by a set of parameters Ssymbols,
we can define groups of one or more dimensionless products
based on Definition 1. Because of the form of Equation (2),
these groups of dimensionless products are often referred
to as ’ groups.6, 7

Example: for and the dimensionless product

we can equate the dimensionless product to a constant
to obtain

In a first offline analysis phase, dimensional func-
tion synthesis forms monomials of physical parameters
whose dimensions, when combined in a monomial, can-
cel out. Then, in a second run-time stage and using data
from sensors of the physical parameters in question, the
method calibrates dimensionally plausible equations
formed from those monomials to obtain a set of predic-
tive models.

Figure 1 shows a schematic view of the process. The
inputs to dimensional function synthesis are a list of sig-
nals with known dimensions relevant to the system under
study and a set of data values corresponding to instances
of those signals. The outcome is a model relating the
signals and predicting the expected physical system out-
put. We developed the method of dimensional function
synthesis with the objective of creating inference mod-
els that can fit within the memory, computation, and
energy constraints of low-power embedded systems. The
method may also apply to computing systems that are
not constrained by compute resources or by energy, but
which nonetheless need simple models defined over a
large parameter space.

2. MATHEMATICAL FOUNDATION
Dimensional analysis is often introduced in engineering
curricula as a simple method for checking the validity
of computations on physical quantities. It is frequently
used in engineering, fluid mechanics, and electrodynam-
ics in cases such as deflection of turbine blades in turbo
machine designs.20 The approach to dimensional analysis
familiar to most researchers in computing systems and
computer science involves taking some physical quan-
tity (e.g., acceleration) and expressing it in terms of basic
dimensions such as length (L) and time (T) to obtain
its dimensions (LT−2 for acceleration). Dimensional
analysis, however, has a well- developed mathematical
framework that combines a few basic principles from
physics with an analytic formulation based on linear alge-
bra and group theory.6, 9, 16 The remainder of Section 2 pro-
vides a brief overview of this mathematical formalization
of dimensional analysis.

2.1. Parameters in physical equations and
dimensionless products
Let i be an index over a set of symbols in a physical equation
and let Qi be one of those symbols in an equation describing
a physical system. Typically, these symbols will correspond
to parameters of some physical model and we will therefore
use the term parameter and symbol interchangeably. Let D (·) be
a function from symbols to some product of basic dimen-
sions. For any equation describing a physical system, we
introduce the set Ssymbols, where

 (1)

For the system described by Ssymbols to be physically plausi-
ble, each member Qi of Ssymbols can be rewritten in terms of a set
of basic dimensions (e.g., mass, length, time) or is otherwise
dimensionless. For the example equation F = m · a, relating a

Table 1. Examples of physical systems and their Ssymbols

Physical
system

Parameters,
Ssymbols Parameters Dimensions

Altimeter in a Ssymbols = {p, h} Pressure, p D (p) = ML−1 T−2

fitness tracker Elevation, h D (h) = L

Pendulum Ssymbols = {t, l, g} Period, t D (t) = T

Rod length, l D (l) = L
Gravity, g D (g) = LT−2

JULY 2021 | VOL. 64 | NO. 7 | COMMUNICATIONS OF THE ACM 93

We can then obtain an expression for any of the Qi ∈
Ssymbols. For example, for Q1,

This simple idea generalizes to a method for obtaining a
function relating all the parameters, Qi ∈ Ssymbols, relevant to
a system, in terms of one or more dimensionless products
that we can form from Ssymbols.

2.2. Groups of dimensionless products and the
Buckingham Π theorem
The primary insight exploited in many contemporary
applications of dimensional analysis18, 21 is that for any
physical system represented by a set of physical param-
eters Ssymbols, it is often possible to reparametrize the sys-
tem in terms of a smaller number of parameters. This
basic observation is often used in the engineering and
design of mechanical systems to reduce the number of
parameters needed in experimentation. The principle
behind the observation is what is commonly known as the
Buckingham Π theorem6:

Theorem 1. Let n be the number of parameters in a description
of a physical system, that is, n = |Ssymbols|. Let r be the number of
dimensions from some orthogonal dimensional bases that are
sufficient to express the dimensions of the parameters in Ssymbols.
Then, n − r dimensionless products Πi can be formed from the
parameters.

The n − r dimensionless products Πi are the roots of some
function Φ, that is,

 (3)

Let Φ′ be a function over the dimensionless products Πi.
It follows for the i-th product, Πi, that,

 (4)

when n − r equals 1, that is, when there is only one Π prod-
uct in the Π groups, then

 (5)

It follows that there exists some real-valued constant C
such that

 (6)

There are multiple possible Π groups: for the same
parameter set Ssymbols, of cardinality n, there are multiple possi-
ble groups of dimensionless products (i.e., multiple possible
Π groups).

3. DIMENSIONAL FUNCTION SYNTHESIS
From the set Ssymbols of parameters defining a physical system,
we can construct a matrix representation of the system, where
the columns are the parameters that are members of Ssymbols,
the rows are base dimensions such as length, mass, or time,
returned by the function D (Section 2.1), and the elements
in the matrix are the exponents of the base dimensions.

Dimensional function synthesis consists of a compile-
time step which automatically computes all the valid ’
products across all possible ’ groups. Then, a run-time step
calibrates the functional relationship between the derived
Π products. Similar to other data-driven techniques, it
uses sensor measurements as inputs and produces a
model that maps those measurements to an expected out-
put. Its advantage is the use of dimensional information
to learn a simpler model than would otherwise be possi-
ble. Because of the small size of the produced model and
the small amount of data required to calibrate it, dimen-
sional function synthesis is well suited for execution on
resource-constrained embedded systems. Figure 2 shows
the steps using the terminology introduced in this section
and a physical system comprising an unpowered flying
object (glider) as an example.

3.1. Deriving the dimensionless product groups
Let the set of base dimensions be Sbase dimensions. We assume
without loss of generality that Sbase dimensions = {I, Θ, T, L, M, J, N}
corresponding to the base S.I. dimensions for electric cur-
rent, thermodynamic temperature, time, length, mass,

Figure 2. A glider of mass m launched with initial velocity v0 moves through space with velocity v under gravitational acceleration g.
Dimensional function synthesis can derive a set of candidate equations relating its height h to time t. Next, using sensor data, it can calibrate
that set of candidate equations to obtain the model for height as a function of time and gravity.

()

h

dimensions
D(h) = L

Compile-time analysis

h1, v 1 ,

hn, v n

Dimensional function synthesis

Run-time calibration

Multi-modal
sensor data

values

Object, mass m

Height at a given time, h

velocity, v

v, v0

dimensions
D(v) = LT -1

m

dimensions
D(m) = M

g

dimensions
D(g) = LT -2

t

dimensions
D(t) = T

include "NewtonBaseSignals.nt"

tg
v0
,
h
tv0
,
v
v0

tg
v
,
h
tv
,
v
v0

hg
v2
,
h
tv
,
v
v0

hg
v20
,
h
tv0
,
v
v0

t2g
h
,
h
tv0
,
h
tv

(h/ v0*t , h/ v*t, t2*g) = 0

h = v
0
*t – 0.5(t2*g)

Glider: invarian t(t: time, h: distance, v0: speed, v: speed, m: mass, g: acceleration) = {
Empty invariant body. Our implementation of dimensional function synthesis on top
of Newton infers an expression for the body.

} 1

3 4

5 6

2

research highlights

94 COMMUNICATIONS OF THE ACM | JULY 2021 | VOL. 64 | NO. 7

luminous intensity, and amount of matter, respectively.
Let r be the cardinality of Sbase dimensions, let j be an index over
r, and let qj ∈ Sbase dimensions be one of the base dimensions. As
in Section 2.1 and Equation (1), let i be an index over the set
of parameters for a physical system and let Qi be one such
parameter. Let aij be an exponent of one of the base dimen-
sions of Qi as returned by the function D from Section 2.1.
We can express the dimensions of any Qi in terms of the base
dimensions qj:

 (7)

We can represent the system of n = |Ssymbols| equations,
one for each of the 1 < i ≤ n instances of Equation (7) with a
matrix called the dimensional matrix.7, 9, 13

Definition 2. Let n be the number of parameters in Ssymbols
and let r be the number of fundamental dimensions required to
express them. Let i be an index over the set of n parameters for a
physical system and let j be an index over r. Then we define the
dimensional matrix A, as

 (8)

The products Π from Definition 1 and Equation (2) will
be dimensionless (i.e., the dimensions in the monomial
will cancel out) if and only if Ak = 0, where the matrix k con-
tains the exponents of the base dimensions needed to yield
a dimensionless product. The solution of Ak = 0 is the null
space N(A).

Physical restrictions on solutions of N(A): because of
our objective of finding physically plausible dimensionless
groups that are efficiently computable, we restrict the solu-
tions to the null space computation to rational powers
of aji as opposed to permitting arbitrary real-valued expo-
nents. As a result of this insight, we compute the rational
null space of A which will by definition give us aji values that
are ratios of integers. To compute the rational null space of A,
we first use Gauss-Jordan elimination to reduce the matrices
to their reduced row-echelon form (RREF), where all pivots
equal one, with zeros below each pivot.22 Once the matrix is
in RREF, we find the special solutions to Ak = 0. If for a spe-
cific A, the only solution is the zero vector, then we conclude
that no nontrivial null space is available and as a result it is
not possible to form a dimensionless product with rational
exponents from the set of parameters in Ssymbols.

The number of linearly independent columns of the
dimensional matrix A is equal to rank(A). Thus, to find all
possible solutions to Ak = 0 and hence all possible groups
of dimensionless products, we can rearrange the n columns
of A in ways to yield different null space solutions.6, 13
Our final set of dimensionless product groups is the union
of all the unique dimensionless product groups resulting
from computing the null spaces.

3.2. Calibration: using sensor data to transform Π
groups to equational models
The dimensionless groups obtained by analyzing a descrip-
tion of the physical system in the form of the set Ssymbols give
proportionality relations between the parameters in Ssymbols.

In the general case where more than one of the dimension-
less products are not constant, then, from Equation (4),
there is a function Φ′ that relates the values of one of the
Π products to the rest of them. We can use a data-driven
approach to find the form of Φ′ and we call this step cali-
bration. In this case, we apply the generated Π products to
transform the data at calibration-time and achieve dimen-
sionality reduction. This allows simpler models to perform
better, allowing smaller models to be learned with less data
for a given prediction performance.

When a dimensionless product group contains a single
item, Equation (6) showed that we can equate the dimen-
sionless product to a constant and obtain a proportionality
relation between the symbols in the dimensionless prod-
uct. We still need to determine the value of the constant
of proportionality and we can do so given one or more val-
ues of the parameters in the dimensionless group. When
a dimensionless product group contains more than one
dimensionless product, we can still apply this method if
we can determine that all but one of the products in any of
the dimensionless groups are effectively constant for the
range of values of the parameters of interest.

Like any model construction method, dimensional func-
tion synthesis will produce incomplete results if the inputs
to the method do not fully describe the problem being mod-
eled: an incomplete Ssymbols can result in an empty set of
dimensionless products.

3.3. Implementation using Newton language
We implemented dimensional function synthesis by
extracting the set Ssymbols from the intermediate representa-
tion of descriptions of physical systems written in Newton,15
a domain-specific language for describing physical systems.
We use Newton solely as a convenient way to obtain the set
Ssymbols from a human-readable description.

Pendulum example: Figure 3a shows a pendulum
instrumented with a sensor that measures movement. By
measuring, for example, angular movement with a gyro-
scope or acceleration with an accelerometer, we can mea-
sure the period of oscillation t by computing the Fourier
transform of time series data from the sensor. Our goal is
to obtain a model relating t, the length of the rod l, and the
component g of the acceleration due to gravity in the plane
of rotation of the pendulum. The insights from this exam-
ple are applicable to many sensor-instrumented mechani-
cal systems such as ones where the period of oscillation

Figure 3. (a) A simple pendulum with mass m, rod of length l, period
of swing t, and with the component of the acceleration due to gravity
in its plane of motion being g. (b) Physical description for the ideal
pendulum written in Newton.

(a) Simple pendulum.

include "NewtonBaseSignals.nt"

Pendulum : invariant (l : distance,
g : acceleration,
m: mass,
t : time) =

{
Empty invariant body to force
Newton compiler to use only
units/dimensions of parameters

}

(b) Newton description.

mg mg

tl l

JULY 2021 | VOL. 64 | NO. 7 | COMMUNICATIONS OF THE ACM 95

 (9)

Given sensor measurements for different values of l, g,
and t, we can determine the value of the constant C.

4. MODEL EVALUATION
To demonstrate the potential of dimensional function
synthesis, we compare it against black-box data-driven
approaches for the characterization of a physical system.
The fundamental idea is that a scientist has assembled
a physical system and is able to measure a subset of its
parameters either by inspection (e.g., measuring the length
of a component) or by using sensors (e.g., accelerometers,
tachometers, etc.). Given that a complex physical system
requires effort and expertise to be analytically defined,
its data-driven characterization is a promising idea. The
designer can collect a large dataset of observations from
the physical system and then use regression and machine
learning to derive a model that fits the measured param-
eters to an expected output.

However, deriving an effective data driven model
requires good sampling of the physical system’s param-
eters and extensive exploration of the design space of
available data fitting models. In practice, both these
requirements are hard or impossible to meet, especially
in the case of complex, multiparametric systems. On the
contrary, the outcome of dimensional function synthesis
can either fully characterize the system or act as a starting
point for targeted data-driven analysis. In addition, simple
dimensional functions have significantly less computa-
tional requirements compared to the majority of data-
driven characterization techniques.

might be affected when lengths of system parts expand
or contract with temperature, or when the component of
gravitational acceleration affecting the system changes
due to the system being tilted at an angle. Figure 3b shows
a physical description for the ideal pendulum written in
Newton. Dimensional function synthesis, implemented
as a new backend for the Newton compiler, takes this
description as input and performs the following steps.

Step 1: Dimensional matrix construction. For the system
in Figure 3a, the parameter set is Ssymbols = {l, g, m, t}. The last
row of Table 2 shows the dimensions of the members of the
parameter set Ssymbols along with the dimensionless group
computed by the method described above in Section 3.1.
Following the formulation in Section 3.1, the dimensional
matrix A for the pendulum’s parameter set Ssymbols is

Step 2: Dimensional matrix column permutation and Π
group computation. The total number of parameters is n =
|Ssymbols| = 4. From Definition 1 (Section 2.2), the pendulum
system has n = 4 physical quantities and r = 3 base dimensions.
Consequently, n − r = 1 and there is a single unique Π product:

From Equation (6) (Section 2.2), it follows that we can
equate the corresponding monomial to some constant C:

Table 2. Examples of physical system descriptions (Ssymbols) and the dimensionless groups our technique generates for them. Our implementa-
tion generates the LATEX for the equations shown in the last column.

Physical system Input to our technique Dimensions

Example of one dimensionless
group generated by our automated
method

Vibrating string Ssymbols =

{t, L, µ, f, ρ, θ}

String tension, t

String length, L

String mass per unit length, µ

String vibration frequency, f

Thermal expansion coefficient, ρ

String temperature, θ

D (t) = MLT−2

D (L) = L

D (µ) = ML−1

D (f) = T−1

D (ρ) = Θ−1

D (θ) = Θ

Unpowered flying
object

Ssymbols =

{h, v0, v, m, g, t}

Object elevation, h

Object initial velocity, v0

Object velocity, v

Object mass, m

Acceleration due to gravity, g

Time, t

D (h) = L

D (v0) = LT−1

D (v) = LT−1

D (m) = M

D (g) = LT−2

D (t) = T
Pendulum Ssymbols =

{l, g, m, t}

Rod length l

Acceleration due to gravity, g

Mass, m

Oscillation period, t

D (l) = L

D (g) = LT−2

D (m) = M

D (t) = T

research highlights

96 COMMUNICATIONS OF THE ACM | JULY 2021 | VOL. 64 | NO. 7

4.1. Evaluation for synthetic data
We first compare dimensional function synthesis to regres-
sion and neural networks using synthetic idealized data.
We examine several neural network topologies from the
FitNet family of curve-fitting neural network architec-
tures, which are optimized for equation fitting. We target
an unpowered flying vehicle (glider) with initial velocity v0,
mass m, acceleration due to gravity g, and, trajectory height
h at time t, similar to the example of Figure 2. We exam-
ine the ability of our method to find the relation between
trajectory height and the rest of the physical parameters
of the glider. The parameters used to describe the glider
result in multiple Π groups, each of which includes mul-
tiple Π products. In this case, the form of the function Φ′
for combining the Π products into an equational model is
unknown and we must use a data-driven approach to find
its form. Dimensional function synthesis provides two
options for the calibration phase: (1) performing calibra-
tion on the target embedded system; and (2) performing
calibration offline on a computing system that is not con-
strained by resources. In both cases, the calibrated models
target the embedded platform, so final model complexity is
still a key restriction.

In contrast to Φ and Φ′, which are functions of dimen-
sionless products, let Ψ be a function directly relating the
parameters of a system. For the glider example, we compare
our approach to a data-driven approach for fitting the fea-
ture vector <v0, m, g, t> to a predicted height h through the
function Ψ:

 (10)

The ideal trajectory equation of a glider is h = v0 ⋅ t − 0.5 ⋅ (t2 ⋅ g).
Using the ideal trajectory equation, we synthesize a dataset
by uniformly sampling the initial velocity of the glider (v0) in
the range of 1 m/s to 10 m/s, with a step size of 0.5 m/s. We
considered acceleration due to gravity (g) from 6.0 m/s2 to 9.5
m/s2, with 0.5 m/s2 step size, and a time window for gliding (t)
ranging from 0.1 to 100 s, with a step of 0.1 s.

Using dimensional function synthesis, the chosen
description of the system leads to three Π groups, each
with two Π products, that is, Π group 0 = {Π1 = t ⋅ g/v0,
Π2 = h/t ⋅ v0}, , Π group
2 = {Π1 = t2 ⋅ g/h, Π2 = h/t ⋅ v0}. In Π group 0, h appears only

in Π2, thus according to Equation (4), we can express h as a
function Φ′ of Π1:

 (11)

In contrast to traditional methods that must learn
a function over a four-dimensional space 〈v0, m, g, t〉,
dimensional function synthesis only needs to use data to
learn the single-variable function Φ′ of Equation (11). This
simpler form is particularly valuable when our goal is to
perform the final calibration on a resource-constrained
embedded system. Figure 4 shows the comparative perfor-
mance of using linear regression to find the dimensionally
reduced Φ′, against linear, quadratic, and neural network-
based regression to find Ψ. Linear regression on Φ′ out-
performs the same technique on Ψ by more than 12%,
although having similar computational requirements.
Neural networks are capable of minimizing the prediction
error, at the expense of over 80× greater required compu-
tation. We quantify the computational requirements of
each network as the total number of floating-point oper-
ations (additions, multiplications) that it requires per
inference instance. Overall, the neural network models
require between 0.3 and 50 s training per model for 5-fold
cross-validation, with an average of 16 s. The total training
latency was approximately 240 minutes on an Intel Core
i7-7820X CPU at 3.60 GHz, with 32 GB RAM. This is 1096×
slower than our approach which requires 1.5 ms on aver-
age for the examined physical system running on the same
workstation. We have examined a total of 16 physical sys-
tems of increasing complexity and our method requires
less than 300 ms on average to generate the dimensional
functions, with a maximum of 3428.7 ms.

Figure 5 shows model approximation performed by neu-
ral networks trained against 20 data points, with (Figure 5b)
and without (Figure 5a) dimensionally reducing the num-
ber of input parameters by making use of dimensional
function synthesis. The most accurate neural network for

Figure 5. Prediction error versus computational requirements for
predicting the trajectory of a glider. Subfigure (a) corresponds to the
straightforward application of neural networks for fitting function
Ψ of Equation (10). Subfigure (b) corresponds to our approach
using a neural network for fitting function Φ′ of Equation (11). We
train all models against a set of 20 input data points. Our method
achieves prediction error of 0.17% via an approximately 2.5× less
computationally demanding model.

0 100 200 300 400

Computational requirements
(# floating point operations)

0

10

20

30

40

50

60

70

80

90

)
%(r

orr
e

n
oitci

d
er

P

NN-6-6-0
NN-9-2-0

NN-3-5-0

NN-3-4-1

NN-4-2-0

NN-2-3-0

NN-2-2-0

(a) Black box approach.

0 100 200 300 400

Computational requirements
(# floating point operations)

0

5

10

15

20

25

30

)
%(r

orr
e

n
oitci

d
er

P

NN-1-0-0
NN-1-2-0
NN-3-0-0

NN-2-5-0

(b) Our approach.

Figure 4. Prediction error versus computational requirements
for predicting the trajectory of a glider. Our model uses linear
regression for fitting function Φ′ of Equation (11) (denoted as “our
model” in the lower left corner). It Pareto-dominates all the neural
network variants (891 different network topologies), which are used
for fitting function Ψ of Equation (10).

0 100 200 300 400 500 600 700 800

Computational requirements (# floating point operations)

P
re

di
ct

io
n

er
ro

r
(%

)

0

2

4

6

8

Our model

NN-8-10-8NN-6-8-9NN-8-10-0NN-7-7-0NN-6-5-0NN-4-5-0
NN-3-5-0

NN-3-4-0

Linear regression: Error = 13.0%, Comp. req. = 9
Quadratic regression: Error = 12.7%, Comp. req. = 12

JULY 2021 | VOL. 64 | NO. 7 | COMMUNICATIONS OF THE ACM 97

windows of recorded data. Figure 6d shows the oscillation
period over the duration of one 1-minute experiment, esti-
mated using the DFT.

Figure 7 shows the ability of our method to generate
a model that accurately predicts the period of oscillation
of the variable-g pendulum. The calibration step of our
method takes as input the periods estimated from the
actual experiment. Our method requires minimal calibra-
tion data. For pendulum lengths greater than 20 cm, the
prediction error is always less than 15% even though each
prediction requires only four floating-point operations.

For pendulum lengths less than 20 cm, the error in the
model increases due to nonidealities, such as friction,
that are not captured by the form of the proportionality
relation generated by our technique. The accuracy of the
synthesized dimensional function is limited by the num-
ber of utilized parameters that describe the physical sys-
tem. A richer choice in the set of parameters (e.g., such as
the friction of the pivot and mass of the rod) is a possible
solution to derive more accurate dimensional functions.

We also applied the black-box data-driven techniques
on the assembled data of the pendulum experiment. Of
this dataset, 75% was randomly sampled to act as train-
ing data, whereas the rest was used as testing samples. We
used a 5-fold cross-validation policy to train the models.
Figure 8 summarizes the prediction error of the period of

fitting the function Φ′ over the four-dimensional space
〈v0, m, g, t〉 has prediction error of 0.17%. It consists of two
layers with 2 and 5 neurons, whereas the most accurate for
fitting function Ψ is composed of two layers of 6 neurons
each. This highlights dimensional function synthesis as
a tool for training models in situations where there are
insufficient data to train more complex models.

The simpler models and higher prediction accuracy
of dimensional function synthesis are the result of its
ability to use the physical information available. This
enables better training of simpler models with less data.
Most importantly, these reductions are not based on ad-
hoc assumptions or approximations, but are dictated by
physical laws. Models from dimensional function synthe-
sis are more efficient for resource-constrained embedded
systems as they require fewer computations during infer-
ence and less data for their training.

4.2. Evaluation on a physical pendulum
We evaluate our method in the presence of nonsynthetic
data where the underlying relationship is more complex
than a simple closed-form equation. We perform a series
of experiments in our laboratory using an apparatus
known as a variable-g pendulum (Figure 6a). This appa-
ratus uses a mass on a stiff rod swinging about a pivot
which is at an angle that is not perpendicular to the hori-
zon. We instrument this apparatus with a wireless sen-
sor containing a 3-axis accelerometer at the “bob” end
of the pendulum to provide a data stream from which we
automate measuring the period of oscillation, t. We run
90 physical experiments on this apparatus for different
values of the pendulum rod length l in the range of 3–33
cm in steps of 3 cm and for a range of effective gravi-
tational acceleration g resulting from pendulum pivot
angles of 0°–80°, in 10° increments.

Figure 6b shows an example of the sensor data over 1
minute of pendulum oscillation. We recorded a time series
of pendulum swing data such as that in Figure 6b for each of
the 90 experiments we performed. We then used these time
series data to calculate the oscillation period via its discrete
Fourier transform (DFT). Figure 6c shows the resulting DFT
output for one experiment, for four different processing

Figure 6. (a) Our experimental setup for the variable-g pendulum. (b) Data collected from the 3-axis accelerometer over time using the
wireless sensor on the pendulum. The largest component of oscillation is due to the motion of the pendulum. (c) Discrete Fourier Transform
(DFT) of 10 s windows of the sampled acceleration data. Despite the variation of signal properties over time, the dominating frequency
remains around 2 Hz. (d) The time period of the pendulum, calculated according to the dominating frequency in each time window of DFT,
exhibits a small variation of about 20 ms over a 1-minute interval.

0 20 40 60
Time(s)

−0.3

−0.2

−0.1

0.0

0.1
A

cc
el

er
at

io
n

x-axis
y-axis
z-axis

0 1 2 3 4 5
Frequency(Hz)

0.0

0.5

1.0

1.5

2.0

S
ig

na
l p

ow
er

T=0.0–10.0
T=14.4–24.0
T=28.8–39.0
T=43.2–53.0
T=57.6–68.0

0 20 40 60
Time(s)

1.11

1.12

1.13

1.14

M
ea

su
re

d
pe

rio
d

of
 o

sc
ill

at
io

n(
s)

(a) (b) (c) (d)

Pivot

Rod

Mass

Sensor

Angle adjustment

Figure 7. Percentage error of the predicted period of the variable-g
pendulum, t for a given length l and gravitational acceleration, g.
Subfigure (a) includes all experimental instances in a subset of
which the ideal pendulum model assumptions are violated leading to
high deviations. Subfigure (b) zooms in the region, where the error of
synthesized dimensional functions is minimized.

(a) All experimental data.

0.1
0.2pendulam length (m)

0.3 2
4 6

8 10

20
40
60
80

(b) Zoom for l > 20 cm.

g acceleratio
n (m

s–
2)

C
on

st
 E

rr
or

 %

0.25pendulam length (m)

0.30 2
4 6

8 10

5

10
15

g acceleratio
n (m

s–
2)

C
on

st
 E

rr
or

 %

research highlights

98 COMMUNICATIONS OF THE ACM | JULY 2021 | VOL. 64 | NO. 7

of Π groups. We have implemented a Verilog register trans-
fer level (RTL) synthesis backend in Newton, which uses
the information of the calculated Π groups of dimensional
function synthesis and generates the RTL description of
hardware modules, each of which computes a Π monomial
(Equation (2)) of a selected Π group. The hardware modules
take sensor signals as input and perform the pre-inference
processing of the calibrated predictive module that we
derive from dimensional function synthesis. An on-device
(in-sensor) inference engine will integrate the synthesized
dimensional circuits with the module that executes the
calibrated predictive model using, for example, a neural
network. This inference module can either be a custom RTL
component or a programmable core. Figure 9 shows an in-
sensor inference hardware system generated using dimen-
sional function synthesis and dimensional circuit synthesis.

We evaluated the hardware generated by the dimensional
circuit synthesis backend using a Lattice Semiconductor
iCE40 FPGA. The iCE40 is a low-power miniature FPGA in a
wafer-scale WLCSP package of 2.15 × 2.50 mm, which targets
sensor interfacing tasks and on-device machine learning.
We used a fully open-source FPGA design flow, comprising
the YoSys synthesis tool (version 0.8+456) for synthesis
and NextPNR (version git SHA1 5344bc3) for placing,
routing, and timing analysis.

We performed our measurements on an iCE40 Mobile
Development Kit (MDK) which includes a 1Ω current
sense resistor in series with each of the supply rails of
the FPGA (core, PLL, I/O banks). We measure the current
drawn by the FPGA core by measuring the voltage drop
across the FPGA core supply rail (1.2 V) resistor using a
Keithley DM7510, a laboratory-grade 7½ digital multime-
ter that can measure voltages down to 10 nV. Using these
voltage drop measurements, we computed the power dis-
sipated by the FPGA core for each configured RTL design.
We used a pseudorandom number generator to feed the
Π monomials computation circuit modules under evalu-
ation with random input data.

We evaluated dimensional circuit synthesis on seven
different physical systems described in Newton. Table 3
presents the total FPGA resource utilization for all the
generated Π product computation modules, expressed
in terms of the number of four-input lookup tables
(LUT4 cells) required for their synthesis. These resource
utilization values also include the required resources
for the synthesis of the fixed-point arithmetic modules,

pendulum oscillation averaged for all models in the case
of the testing dataset. Regression models have prediction
error comparable to our method, but our method outper-
forms regression models in the zoomed area of Figure 7b.
Neural networks exhibit a wide distribution of prediction
error, but simple networks are able to achieve very high
accuracy within the same range as our proposed model.
Because we train the black-box models against data points
derived from the entire range of the pendulum experi-
ments, they can effectively capture the nonideal charac-
teristics of the oscillation, thus achieving high accuracy.

5. SCOPE, LIMITATIONS, AND EXTENSIONS
Dimensional function synthesis uses information on the
physical dimensions and units of measure of the signals rele-
vant to a physical system to derive a set of candidate equations
relating those signals. Such as many existing approaches for
constructing models based on human-chosen parameters, it
depends on a valid set of parameters in the set Ssymbols (intro-
duced in Section 2.1) for describing the system to be mod-
eled. When provided with a set of parameters insufficient
to generate a model that captures a system’s behavior, the
method will unsurprisingly generate a model that is, at best,
only an approximation to the true behavior. Exciting areas
of further development include automating the process of
identifying parameters in Ssymbols rather than extracting them
from a human-written description and incorporating inte-
grals and derivatives in formulations for Φ functions.

For physical parameters that cannot be directly measured,
dimensional function synthesis faces the same challenges
faced by traditional modeling approaches. In practice, for
parameters that cannot be measured, designers measure
surrogates that correlate to the missing parameters, for
example, measuring acceleration and elapsed time instead
of velocity. In this case, dimensional function synthesis has
the net effect of exploiting information on the physical units
of the parameters in question, whereas traditional model-
ing techniques have no option but to attempt to fit data with
ever more complex nonlinear models. Dimensional func-
tion synthesis enables the combination of both approaches
in the case of multiple Π groups as examined in Section 4.1.

5.1. Dimensional circuit synthesis
Dimensional circuit synthesis is an extension of dimen-
sional function synthesis that provides a compile-time
method to generate digital logic circuits for the calculation

Figure 9. The hardware generated by dimensional circuit synthesis
preprocesses k sensor signals to calculate N < k dimensionless
products Π1… ΠN. A predictive model takes the calculated product
values as input and generates an inference output.

RTL HW
for 2

RTL HW
for N

Inference output

RTL HW
for 1

Sensor signal #1

1 2 N

Sensor signal #2

Sensor signal #k

In-sensor inference hardware
11010

01001

00010

01001 Predictive model (e.g., neural net)

Figure 8. Percentage error of the predicted period of the variable-g
pendulum, t for a given length l, and gravitational acceleration, g.
We predict using neural networks and regression models.

0 100 200 300 400 500 600 700 800

Computational requirements (# floating point operations)

0

5

10

15

20

25

P
re

di
ct

io
n

er
ro

r
(%

)

NN-4-0-0

NN-3-0-0

NN-2-0-0

Linear regression: Error = 17.05 %, Comp. req. = 4
Quadratic regression: Error = 15.13 %, Comp. req. = 6

JULY 2021 | VOL. 64 | NO. 7 | COMMUNICATIONS OF THE ACM 99

References
 1. Allen, E., Chase, D., Luchangco,

V., Maessen, J.-W., Steele, G.L.,
Jr. Object-oriented units of
measurement. In Proceedings of
the 19th Annual ACM SIGPLAN
Conference on Object-oriented
Programming, Systems, Languages,
and Applications, OOPSLA’04 (2004),
ACM, New York, NY, USA, 384–403.

 2. Antoniu, T., Steckler, P.A.,
Krishnamurthi, S., Neuwirth,
E., Felleisen, M. Validating the
unit correctness of spreadsheet
programs. In Proceedings of the 26th
International Conference on Software
Engineering, ICSE’04 (2004), IEEE
Computer Society, Washington, DC,
USA, 439–448.

 3. Babout, M., Sidhoum, H., Frecon, L.
Ampere: A programming language
for physics. European J. Phys. 11, 3
(1990):163.

 4. Barber, D. Bayesian Reasoning
and Machine Learning. Cambridge
University Press, Cambridge, 2012.

 5. Biggs, G., Macdonald, B.A. A
pragmatic approach to dimensional
analysis for mobile robotic
programming. Auton. Robots 25, 4
(Nov. 2008), 405–419.

 6. Buckingham, E. On physically similar
systems; Illustrations of the use of
dimensional equations. Phys. Rev. 4, 4
(1914), 345–376.

 7. Carlson, D.E. A mathematical theory
of physical units, dimensions, and
measures. Arch. Rational Mechanics
Anal. 70, 4 (1979), 289–305.

 8. Cmelik, R.F., Gehani, N.H. Dimensional
analysis with C++. IEEE Softw. 5, 3
(1988), 21–27.

 9. Carlson, D.E. On some new results in
dimensional analysis. Arch. Ration.
Mech. Anal. 68, 3 (1978), Springer,
191–210.

 10. Hilfinger, P.N. An ada package for
dimensional analysis. ACM Trans.
Program. Lang. Syst. 10, 2 (Apr. 1988),
189–203.

 11. Hills, D.J.A., Grütter, A.M., Hudson,
J.J. An algorithm for discovering
Lagrangians automatically from data.

PeerJ Comput. Sci. 1, (Nov. 2015), e31.
 12. Hills, M., Chen, F., Roşu, F. A rewriting

logic approach to static checking of
units of measurement in C. Electron.
Notes Theor. Comput. Sci. 290, (Dec.
2012), 51–67.

 13. Jonsson, D. Dimensional analysis:
A centenary update. arXiv preprint
arXiv:1411.2798 (2014).

 14. Kennedy, A. Dimension types. In
Proceedings of the 5th European
Symposium on Programming:
Programming Languages and
Systems, ESOP’94 (1994), Springer-
Verlag, London, UK, 348–362.

 15. Lim, J., Stanley-Marbell, P. Newton:
A language for describing physics.
CoRR, abs/1811.04626 (2018).

 16. Rayleigh, L. The principle of
similitude. Nature 95 (Dec. 1915),
66–68.

 17. Rittri, M. Dimension inference
under polymorphic recursion.
In Proceedings of the Seventh
International Conference on
Functional Programming Languages
and Computer Architecture, FPCA’95
(1995), ACM, New York, NY, USA,
147–159.

 18. Rudy, S.H., Brunton, S.L., Proctor, J.L.,
Kutz, J.N. Data-driven discovery of
partial differential equations. Sci. Adv.
3, 4 (2017), e1602614.

 19. Schmidt, M., Lipson, H. Distilling free-
form natural laws from experimental
data. Science 324, 5923 (2009),
81–85.

 20. Simon, V., Weigand, B., Gomaa, H.
Dimensional Analysis for Engineers.
Springer, Gewerbestrasse, Cham,
Switzerland, 2017.

 21. Sonin, A.A. A generalization of the
P-theorem and dimensional analysis.
Proc. Natl. Acad. Sci. 101, 23 (2004),
8525–8526.

 22. Strang, G. Introduction to Linear
Algebra, 5th edn. Wellesley-
Cambridge Press, Wellesley, MA,
2016.

 23. Umrigar, Z.D. Fully static dimensional
analysis with C++. SIGPLAN Not. 29,
9 (Sept. 1994), 135–139.

which we integrated in the computation module of each
Π product.

The execution latency column lists the required cycles
for completing the calculations of the critical path of each
of the generated RTL modules. We obtained the number
of cycles by simulating the execution of the RTL modules
for pseudorandom inputs generated by linear feedback
shift registers (LFSRs). In each RTL module, we parallelize
the calculation of different Π products but the required
operations per Π product are executed serially.

The last column of Table 3 shows the measured power dis-
sipation of each design configured in the iCE40 FPGA. In all
cases, the power dissipation is less than 6 mW and as low as
1 mW, demonstrating the suitability of our method for small-
form-factor, battery-operated on-device inference at the edge.

6. CONCLUSION
Existing methods for constructing retrospective or pre-
dictive models for data from physical systems do not fully
exploit information about the physics of the systems in
question. In this work, we present an automated method
for generating the family of functions from which to learn
a model, based on information about the physical dimen-
sions of the signals in the system. The method, which we call
dimensional function synthesis, applies to data streams where
the dimensions of the signals are known.

We implement dimensional function synthesis and
evaluate the execution cost and accuracy of the mod-
els our method generates compared against regression
models and neural networks. When calibrated with sen-
sor data, our models outperform traditional regression
and neural network models in inference accuracy in all
the cases we evaluated. In addition, our models perform
better in training latency (up to 1096× improvement) and
required arithmetic operations in inference (up to 34×
improvement). These significant gains are largely the
result of exploiting information on the physics of signals
that has hitherto been ignored.

Acknowledgments
This research is supported by an Alan Turing Institute award
TU/B/000096 under EPSRC grant EP/N510129/1, by Royal
Society grant RG170136, and by EPSRC grant EP/V004654/1.
Youchao Wang, Vlad-Mihai Mandric, and James Rhodes
contributed to the implementation of the linear-algebraic
methods within the Newton compiler.

Table 3. Experimental evaluation on iCE40 FPGA of dimensional circuit modules generated from descriptions of physical systems.

Name LUT4 cells
Maximum
frequency

Execution
latency

Avg. power
at 12 MHz

Avg. power
at 6 MHz

Beam 2958 16.88 Mhz 115 cycles 3.5 mW 1.8 mW
Pendulum, static 1402 17.07 Mhz 115 cycles 2.0 mW 1.1 mW
Fluid in pipe 4258 15.65 Mhz 188 cycles 5.8 mW 3.0 mW
Unpowered flight 1930 16.44 Mhz 81 cycles 2.3 mW 1.2 mW
Vibrating string 2183 16.67 Mhz 183 cycles 2.5 mW 1.3 mW
Warm vibrating string 3137 16.77 Mhz 269 cycles 1.9 mW 1.0 mW
Spring-mass system 1419 16.67 Mhz 115 cycles 3.4 mW 1.8 mW

Vasileios Tsoutsouras, Sam Willis,
and Phillip Stanley-Marbell
({vt298, sjw238, phillip.stanley-marbell}@
eng.cam.ac.uk), University of Cambridge,
Cambridge, U.K.

This work is licensed under a http://creativecommons.org/licenses/by/4.0/

