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Abstract
We present a new method for deriving functions that model 
the relationship between multiple signals in a physical sys-
tem. The method, which we call dimensional function syn-
thesis, applies to data streams where the dimensions of 
the signals (e.g., length, mass, etc.) are known. The method 
comprises two phases: a compile-time synthesis phase and 
a subsequent calibration using sensor data. We implement 
dimensional function synthesis and use the implementa-
tion to demonstrate efficiently summarizing multimodal 
sensor data for two physical systems using 90 laboratory 
experiments and 10,000 synthetic idealized measurements. 
The results show that our technique can generate models 
in less than 300 ms on average across all the physical sys-
tems we evaluated. This is a marked improvement when 
compared to an average of 16 s for training neural networks 
of comparable accuracy on the same computing platform. 
When calibrated with sensor data, our models outperform 
traditional regression and neural network models in infer-
ence accuracy in all the cases we evaluated. In addition, 
our models perform better in training latency (up to 1096× 
improvement) and required arithmetic operations in infer-
ence (up to 34× improvement). These significant gains are 
largely the result of exploiting information on the physics of 
signals that has hitherto been ignored.

1. INTRODUCTION
Physical systems instrumented with sensors can generate 
large volumes of data. These data are useful in understand-
ing previous behaviors of the systems that generate them 
(e.g., monitoring properties of components in aircraft) 
as well as in predicting future behaviors of those systems 
(e.g., predicting failures of components in machinery). 
Unlike data sources such as speech or text, data from sen-
sors of physical phenomena must obey the laws of phys-
ics. Existing methods for constructing predictive models 
from sensor data however do not fully exploit prior knowl-
edge of the physical interpretation of sensor data. In this 
work, we use information about physical dimensions of 
sensor signals to synthesize compact predictive models 
from sensor data. In keeping with the convention in phys-
ics, we use the term dimensions to refer to quantities such 
as length or time and we use the term units to refer to a 
value in a standardized system for quantifying values of a 
given dimension, such as centimeters or miles for length 
and Pascals or mmHg for pressure. The state of the art in 
deriving models from such data streams is to apply some 
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form of machine learning.11, 19 Blindly applying machine 
learning to data from physical systems however ignores 
important prior knowledge about the physical implica-
tions of the signals.

1.1. Contemporary methods ignore physics
Despite its use in programming languages for tasks such 
as extending type systems with units of measure,1, 2, 3, 5, 8, 12, 10, 14, 

17, 23 physical information in the form of dimensions (e.g., 
time, temperature, etc.) has seen limited use in building 
models of physical systems from data. Physical constraints 
can be viewed as a form of Bayesian prior.4 Kalman filters 
incorporate information about the physical constraints of 
systems but use this information primarily to guide their 
state update equations. Today, no principled techniques 
exist which learn models from sensor data by exploiting 
the requirements of dimensional consistency of sensors 
to learn more compact models.

1.2. Dimensional function synthesis
Dimensional function synthesis is a new method to effi-
ciently derive functions relating the values from multiple 
streams of data from physical systems with known physi-
cal dimensions. The insight behind the method is that any 
equation relating physical quantities must obey the princi-
ple of dimensional homogeneity from dimensional analysis6: 
the two sides of an equation, an addition, or a subtraction, 
must have the same physical dimensions.

Figure 1. Dimensional function synthesis uses information about 
physical dimensions to generate a family of candidate equations. It 
then uses sensor measurements to calibrate the set of candidate 
equations.
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force F applied to a mass m and its resulting acceleration, 
a, we have Ssymbols = {F, m, a}, Qi = F, Q2 = m, and Q3 = a. The 
dimensions of the members of Ssymbols are D(Q1) = MLT−2,  
D (Q2) = M, and D (Q3) = LT−2. Table 1 shows additional exam-
ples of parameters and their dimensions for data from 
sensors in physical systems that can be instrumented with 
sensors to monitor their behavior. For example, the altim-
eter subsystem of a fitness tracker uses changes in atmo-
spheric pressure to estimate changes in elevation and 
hence to estimate the number of flights of stairs climbed.

The key idea in the mathematical formulation of dimen-
sional analysis is that for a set Ssymbols such as in the example 
above, we can often arrange the members Qi of Ssymbols into 
groups of products where the dimensions of the symbols 
in the product cancel out and as a result each monomial is 
dimensionless.6, 7

Why finding dimensionless products is useful: Given 
a set of parameters Ssymbols for a physical system, each of 
the dimensionless products we can form from a subset 
of Ssymbols directly gives us a dimensionally valid equation 
between those parameters: we can equate the dimension-
less product to any dimensionless quantity to obtain a 
dimensionally correct equation; if we then rearrange that 
equation to move one of the parameters to be the only 
term on one side of the equation, we have a dimension-
ally valid equation of that parameter in terms of the other 
parameters in the dimensionless product.

Definition 1. Let i be an index over the set Ssymbols of symbols 
in the description of a physical system, let n be the cardinality of 
Ssymbols, and let m be an index such that m ≤ n. Let ki be a value 
drawn from the set of rational numbers Q. A dimensionless 
product Π of parameters Qi ∈ Ssymbols is a monomial of parameters 
raised to powers such that D (Π) = 1, that is,

 (2)

For a physical system defined by a set of parameters Ssymbols, 
we can define groups of one or more dimensionless products 
based on Definition 1. Because of the form of Equation (2), 
these groups of dimensionless products are often referred 
to as ’ groups.6, 7

Example: for  and the dimensionless product

we can equate the dimensionless product to a constant 
to obtain

In a first offline analysis phase, dimensional func-
tion synthesis forms monomials of physical parameters 
whose dimensions, when combined in a monomial, can-
cel out. Then, in a second run-time stage and using data 
from sensors of the physical parameters in question, the 
method calibrates dimensionally plausible equations 
formed from those monomials to obtain a set of predic-
tive models.

Figure 1 shows a schematic view of the process. The 
inputs to dimensional function synthesis are a list of sig-
nals with known dimensions relevant to the system under 
study and a set of data values corresponding to instances 
of those signals. The outcome is a model relating the 
signals and predicting the expected physical system out-
put. We developed the method of dimensional function 
synthesis with the objective of creating inference mod-
els that can fit within the memory, computation, and 
energy constraints of low-power embedded systems. The 
method may also apply to computing systems that are 
not constrained by compute resources or by energy, but 
which nonetheless need simple models defined over a 
large parameter space.

2. MATHEMATICAL FOUNDATION
Dimensional analysis is often introduced in engineering 
curricula as a simple method for checking the validity 
of computations on physical quantities. It is frequently 
used in engineering, fluid mechanics, and electrodynam-
ics in cases such as deflection of turbine blades in turbo 
machine designs.20 The approach to dimensional analysis 
familiar to most researchers in computing systems and 
computer science involves taking some physical quan-
tity (e.g., acceleration) and expressing it in terms of basic 
dimensions such as length (L) and time (T) to obtain 
its dimensions (LT−2 for acceleration). Dimensional 
analysis, however, has a well- developed mathematical 
framework that combines a few basic principles from 
physics with an analytic formulation based on linear alge-
bra and group theory.6, 9, 16 The remainder of Section 2 pro-
vides a brief overview of this mathematical formalization 
of dimensional analysis.

2.1. Parameters in physical equations and 
dimensionless products
Let i be an index over a set of symbols in a physical equation 
and let Qi be one of those symbols in an equation describing 
a physical system. Typically, these symbols will correspond 
to parameters of some physical model and we will therefore 
use the term parameter and symbol interchangeably. Let D (·) be 
a function from symbols to some product of basic dimen-
sions. For any equation describing a physical system, we 
introduce the set Ssymbols, where

 (1)

For the system described by Ssymbols to be physically plausi-
ble, each member Qi of Ssymbols can be rewritten in terms of a set 
of basic dimensions (e.g., mass, length, time) or is otherwise 
dimensionless. For the example equation F = m · a, relating a 

Table 1. Examples of physical systems and their Ssymbols

Physical  
system

Parameters, 
Ssymbols Parameters Dimensions

Altimeter in a Ssymbols = {p, h} Pressure, p D (p) = ML−1 T−2

fitness tracker Elevation, h D (h) = L

Pendulum Ssymbols = {t, l, g} Period, t D (t) = T

Rod length, l D (l) = L
Gravity, g D (g) = LT−2
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We can then obtain an expression for any of the Qi ∈ 
Ssymbols. For example, for Q1,

This simple idea generalizes to a method for obtaining a 
function relating all the parameters, Qi ∈ Ssymbols, relevant to 
a system, in terms of one or more dimensionless products 
that we can form from Ssymbols.

2.2. Groups of dimensionless products and the 
Buckingham Π theorem
The primary insight exploited in many contemporary 
applications of dimensional analysis18, 21 is that for any 
physical system represented by a set of physical param-
eters Ssymbols, it is often possible to reparametrize the sys-
tem in terms of a smaller number of parameters. This 
basic observation is often used in the engineering and 
design of mechanical systems to reduce the number of 
parameters needed in experimentation. The principle 
behind the observation is what is commonly known as the 
Buckingham Π theorem6:

Theorem 1. Let n be the number of parameters in a description 
of a physical system, that is, n = |Ssymbols|. Let r be the number of 
dimensions from some orthogonal dimensional bases that are 
sufficient to express the dimensions of the parameters in Ssymbols. 
Then, n − r dimensionless products Πi can be formed from the 
parameters.

The n − r dimensionless products Πi are the roots of some 
function Φ, that is,

 (3)

Let Φ′ be a function over the dimensionless products Πi. 
It follows for the i-th product, Πi, that,

 (4)

when n − r equals 1, that is, when there is only one Π prod-
uct in the Π groups, then

 (5)

It follows that there exists some real-valued constant C 
such that

 (6)

There are multiple possible Π groups: for the same 
parameter set  Ssymbols, of cardinality n, there are multiple possi-
ble groups of dimensionless products (i.e., multiple possible 
Π groups).

3. DIMENSIONAL FUNCTION SYNTHESIS
From the set Ssymbols of parameters defining a physical system,  
we can construct a matrix representation of the system, where 
the columns are the parameters that are members of Ssymbols, 
the rows are base dimensions such as length, mass, or time, 
returned by the function D  (Section 2.1), and the elements  
in the matrix are the exponents of the base dimensions.

Dimensional function synthesis consists of a compile-
time step which automatically computes all the valid ’ 
products across all possible ’ groups. Then, a run-time step 
calibrates the functional relationship between the derived 
Π products. Similar to other data-driven techniques, it 
uses sensor measurements as inputs and produces a 
model that maps those measurements to an expected out-
put. Its advantage is the use of dimensional information 
to learn a simpler model than would otherwise be possi-
ble. Because of the small size of the produced model and 
the small amount of data required to calibrate it, dimen-
sional function synthesis is well suited for execution on 
resource-constrained embedded systems. Figure 2 shows 
the steps using the terminology introduced in this section 
and a physical system comprising an unpowered flying 
object (glider) as an example.

3.1. Deriving the dimensionless product groups
Let the set of base dimensions be Sbase dimensions. We assume 
without loss of generality that Sbase dimensions = {I, Θ, T, L, M,  J, N}  
corresponding to the base S.I. dimensions for electric cur-
rent, thermodynamic temperature, time, length, mass, 

Figure 2. A glider of mass m launched with initial velocity v0 moves through space with velocity v under gravitational acceleration g. 
Dimensional function synthesis can derive a set of candidate equations relating its height h to time t. Next, using sensor data, it can calibrate 
that set of candidate equations to obtain the model for height as a function of time and gravity.
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luminous intensity, and amount of matter, respectively.
Let r be the cardinality of Sbase dimensions, let j be an index over 
r, and let qj ∈ Sbase dimensions be one of the base dimensions. As 
in Section 2.1 and Equation (1), let i be an index over the set 
of parameters for a physical system and let Qi be one such 
parameter. Let aij be an exponent of one of the base dimen-
sions of Qi as returned by the function D  from Section 2.1. 
We can express the dimensions of any Qi in terms of the base 
dimensions qj:

 (7)

We can represent the system of n = |Ssymbols| equations, 
one for each of the 1 < i ≤ n instances of Equation (7) with a 
matrix called the dimensional matrix.7, 9, 13

Definition 2. Let n be the number of parameters in Ssymbols 
and let r be the number of fundamental dimensions required to 
express them. Let i be an index over the set of n parameters for a 
physical system and let j be an index over r. Then we define the 
dimensional matrix A, as

 (8)

The products Π from Definition 1 and Equation (2) will 
be dimensionless (i.e., the dimensions in the monomial 
will cancel out) if and only if Ak = 0, where the matrix k con-
tains the exponents of the base dimensions needed to yield 
a dimensionless product. The solution of Ak = 0 is the null 
space N(A).

Physical restrictions on solutions of N(A): because of 
our objective of finding physically plausible dimensionless 
groups that are efficiently computable, we restrict the solu-
tions to the null space computation to rational powers 
of aji as opposed to permitting arbitrary real-valued expo-
nents. As a result of this insight, we compute the rational 
null space of A which will by definition give us aji values that 
are ratios of integers. To compute the rational null space of A, 
we first use Gauss-Jordan elimination to reduce the matrices 
to their reduced row-echelon form (RREF), where all pivots 
equal one, with zeros below each pivot.22 Once the matrix is 
in RREF, we find the special solutions to Ak = 0. If for a spe-
cific A, the only solution is the zero vector, then we conclude 
that no nontrivial null space is available and as a result it is 
not possible to form a dimensionless product with rational 
exponents from the set of parameters in Ssymbols.

The number of linearly independent columns of the 
dimensional matrix A is equal to rank(A). Thus, to find all 
possible solutions to Ak = 0 and hence all possible groups 
of dimensionless products, we can rearrange the n columns 
of A in  ways to yield different null space solutions.6, 13 
Our final set of dimensionless product groups is the union 
of all the unique dimensionless product groups resulting 
from computing the null spaces.

3.2. Calibration: using sensor data to transform Π 
groups to equational models
The dimensionless groups obtained by analyzing a descrip-
tion of the physical system in the form of the set Ssymbols give 
proportionality relations between the parameters in Ssymbols. 

In the general case where more than one of the dimension-
less products are not constant, then, from Equation (4), 
there is a function Φ′ that relates the values of one of the 
Π products to the rest of them. We can use a data-driven 
approach to find the form of Φ′ and we call this step cali-
bration. In this case, we apply the generated Π products to 
transform the data at calibration-time and achieve dimen-
sionality reduction. This allows simpler models to perform 
better, allowing smaller models to be learned with less data 
for a given prediction performance.

When a dimensionless product group contains a single 
item, Equation (6) showed that we can equate the dimen-
sionless product to a constant and obtain a proportionality 
relation between the symbols in the dimensionless prod-
uct. We still need to determine the value of the constant 
of proportionality and we can do so given one or more val-
ues of the parameters in the dimensionless group. When 
a dimensionless product group contains more than one 
dimensionless product, we can still apply this method if 
we can determine that all but one of the products in any of 
the dimensionless groups are effectively constant for the 
range of values of the parameters of interest.

Like any model construction method, dimensional func-
tion synthesis will produce incomplete results if the inputs 
to the method do not fully describe the problem being mod-
eled: an incomplete Ssymbols can result in an empty set of 
dimensionless products.

3.3. Implementation using Newton language
We implemented dimensional function synthesis by 
extracting the set Ssymbols from the intermediate representa-
tion of descriptions of physical systems written in Newton,15 
a domain-specific language for describing physical systems. 
We use Newton solely as a convenient way to obtain the set 
Ssymbols from a human-readable description.

Pendulum example: Figure 3a shows a pendulum 
instrumented with a sensor that measures movement. By 
measuring, for example, angular movement with a gyro-
scope or acceleration with an accelerometer, we can mea-
sure the period of oscillation t by computing the Fourier 
transform of time series data from the sensor. Our goal is 
to obtain a model relating t, the length of the rod l, and the 
component g of the acceleration due to gravity in the plane 
of rotation of the pendulum. The insights from this exam-
ple are applicable to many sensor-instrumented mechani-
cal systems such as ones where the period of oscillation 

Figure 3. (a) A simple pendulum with mass m, rod of length l, period 
of swing t, and with the component of the acceleration due to gravity 
in its plane of motion being g. (b) Physical description for the ideal 
pendulum written in Newton.

(a) Simple pendulum.

include  "NewtonBaseSignals.nt"

Pendulum : invariant ( l : distance, 
g : acceleration, 
m: mass, 
t : time) = 

{
# Empty invariant body to force 
# Newton compiler to use only 
# units/dimensions of parameters

}

(b) Newton description.

mg mg

tl l
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 (9)

Given sensor measurements for different values of l, g, 
and t, we can determine the value of the constant C.

4. MODEL EVALUATION
To demonstrate the potential of dimensional function 
synthesis, we compare it against black-box data-driven 
approaches for the characterization of a physical system. 
The fundamental idea is that a scientist has assembled 
a physical system and is able to measure a subset of its 
parameters either by inspection (e.g., measuring the length 
of a component) or by using sensors (e.g., accelerometers, 
tachometers, etc.). Given that a complex physical system 
requires effort and expertise to be analytically defined, 
its data-driven characterization is a promising idea. The 
designer can collect a large dataset of observations from 
the physical system and then use regression and machine 
learning to derive a model that fits the measured param-
eters to an expected output.

However, deriving an effective data driven model 
requires good sampling of the physical system’s param-
eters and extensive exploration of the design space of 
available data fitting models. In practice, both these 
requirements are hard or impossible to meet, especially 
in the case of complex, multiparametric systems. On the 
contrary, the outcome of dimensional function synthesis 
can either fully characterize the system or act as a starting 
point for targeted data-driven analysis. In addition, simple 
dimensional functions have significantly less computa-
tional requirements compared to the majority of data-
driven characterization techniques.

might be affected when lengths of system parts expand 
or contract with temperature, or when the component of 
gravitational acceleration affecting the system changes 
due to the system being tilted at an angle. Figure 3b shows 
a physical description for the ideal pendulum written in 
Newton. Dimensional function synthesis, implemented 
as a new backend for the Newton compiler, takes this 
description as input and performs the following steps.

Step 1: Dimensional matrix construction. For the system 
in Figure 3a, the parameter set is Ssymbols = {l, g, m, t}. The last 
row of Table 2 shows the dimensions of the members of the 
parameter set Ssymbols along with the dimensionless group 
computed by the method described above in Section 3.1. 
Following the formulation in Section 3.1, the dimensional 
matrix A for the pendulum’s parameter set Ssymbols is

Step 2: Dimensional matrix column permutation and Π 
group computation. The total number of parameters is n = 
|Ssymbols| = 4. From Definition 1 (Section 2.2), the pendulum 
system has n = 4 physical quantities and r = 3 base dimensions. 
Consequently, n − r = 1 and there is a single unique Π product:

From Equation (6) (Section 2.2), it follows that we can 
equate the corresponding monomial to some constant C:

Table 2. Examples of physical system descriptions (Ssymbols) and the dimensionless groups our technique generates for them. Our implementa-
tion generates the LATEX for the equations shown in the last column. 

Physical system Input to our technique Dimensions

Example of one dimensionless 
group generated by our automated 
method

Vibrating string Ssymbols =

{t, L, µ, f, ρ, θ}

String tension, t 

String length, L

String mass per unit length, µ

String vibration frequency, f

Thermal expansion coefficient, ρ

String temperature, θ

D  (t) = MLT−2 

D  (L) = L 

D  (µ) = ML−1 

D  (f) = T−1 

D  (ρ) = Θ−1 

D  (θ) = Θ

Unpowered flying 
object

Ssymbols = 

{h, v0, v, m, g, t}

Object elevation, h 

Object initial velocity, v0

Object velocity, v

Object mass, m

Acceleration due to gravity, g

Time, t

D  (h) = L

D  (v0) = LT−1

D  (v) = LT−1

D  (m) = M

D  (g) = LT−2

D  (t) = T
Pendulum Ssymbols = 

{l, g, m, t}

Rod length l 

Acceleration due to gravity, g

Mass, m

Oscillation period, t

D  (l) = L

D  (g) = LT−2

D  (m) = M

D  (t) = T
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4.1. Evaluation for synthetic data
We first compare dimensional function synthesis to regres-
sion and neural networks using synthetic idealized data. 
We examine several neural network topologies from the 
FitNet family of curve-fitting neural network architec-
tures, which are optimized for equation fitting. We target 
an unpowered flying vehicle (glider) with initial velocity v0, 
mass m, acceleration due to gravity g, and, trajectory height 
h at time t, similar to the example of Figure 2. We exam-
ine the ability of our method to find the relation between 
trajectory height and the rest of the physical parameters 
of the glider. The parameters used to describe the glider 
result in multiple Π groups, each of which includes mul-
tiple Π products. In this case, the form of the function Φ′ 
for combining the Π products into an equational model is 
unknown and we must use a data-driven approach to find 
its form. Dimensional function synthesis provides two 
options for the calibration phase: (1) performing calibra-
tion on the target embedded system; and (2) performing 
calibration offline on a computing system that is not con-
strained by resources. In both cases, the calibrated models 
target the embedded platform, so final model complexity is 
still a key restriction.

In contrast to Φ and Φ′, which are functions of dimen-
sionless products, let Ψ be a function directly relating the 
parameters of a system. For the glider example, we compare 
our approach to a data-driven approach for fitting the fea-
ture vector <v0, m, g, t> to a predicted height h through the 
function Ψ:

 (10)

The ideal trajectory equation of a glider is h = v0 ⋅ t − 0.5 ⋅ (t2 ⋅ g). 
Using the ideal trajectory equation, we synthesize a dataset 
by uniformly sampling the initial velocity of the glider (v0) in 
the range of 1 m/s to 10 m/s, with a step size of 0.5 m/s. We 
considered acceleration due to gravity (g) from 6.0 m/s2 to 9.5 
m/s2, with 0.5 m/s2 step size, and a time window for gliding (t) 
ranging from 0.1 to 100 s, with a step of 0.1 s.

Using dimensional function synthesis, the chosen 
description of the system leads to three Π groups, each  
with two Π products, that is, Π group 0 = {Π1 = t ⋅ g/v0,  
Π2 = h/t ⋅ v0}, , Π group 
2 = {Π1 = t2 ⋅ g/h, Π2 = h/t ⋅ v0}. In Π group 0, h appears only 

in Π2, thus according to Equation (4), we can express h as a 
function Φ′ of Π1:

 (11)

In contrast to traditional methods that must learn 
a function over a four-dimensional space 〈v0, m, g, t〉, 
dimensional function synthesis only needs to use data to 
learn the single-variable function Φ′ of Equation (11). This 
simpler form is particularly valuable when our goal is to 
perform the final calibration on a resource-constrained 
embedded system. Figure 4 shows the comparative perfor-
mance of using linear regression to find the dimensionally 
reduced Φ′, against linear, quadratic, and neural network-
based regression to find Ψ. Linear regression on Φ′ out-
performs the same technique on Ψ by more than 12%, 
although having similar computational requirements. 
Neural networks are capable of minimizing the prediction 
error, at the expense of over 80× greater required compu-
tation. We quantify the computational requirements of 
each network as the total number of floating-point oper-
ations (additions, multiplications) that it requires per 
inference instance. Overall, the neural network models 
require between 0.3 and 50 s training per model for 5-fold 
cross-validation, with an average of 16 s. The total training 
latency was approximately 240 minutes on an Intel Core 
i7-7820X CPU at 3.60 GHz, with 32 GB RAM. This is 1096× 
slower than our approach which requires 1.5 ms on aver-
age for the examined physical system running on the same 
workstation. We have examined a total of 16 physical sys-
tems of increasing complexity and our method requires 
less than 300 ms on average to generate the dimensional 
functions, with a maximum of 3428.7 ms.

Figure 5 shows model approximation performed by neu-
ral networks trained against 20 data points, with (Figure 5b) 
and without (Figure 5a) dimensionally reducing the num-
ber of input parameters by making use of dimensional 
function synthesis. The most accurate neural network for 

Figure 5. Prediction error versus computational requirements for 
predicting the trajectory of a glider. Subfigure (a) corresponds to the 
straightforward application of neural networks for fitting function 
Ψ of Equation (10). Subfigure (b) corresponds to our approach 
using a neural network for fitting function Φ′ of Equation (11). We 
train all models against a set of 20 input data points. Our method 
achieves prediction error of 0.17% via an approximately 2.5× less 
computationally demanding model.
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(a) Black box approach.
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Figure 4. Prediction error versus computational requirements 
for predicting the trajectory of a glider. Our model uses linear 
regression for fitting function Φ′ of Equation (11) (denoted as “our 
model” in the lower left corner). It Pareto-dominates all the neural 
network variants (891 different network topologies), which are used 
for fitting function Ψ of Equation (10).

0 100 200 300 400 500 600 700 800

Computational requirements (# floating point operations)

P
re

di
ct

io
n 

er
ro

r 
(%

)

0

2

4

6

8

Our model

NN-8-10-8NN-6-8-9NN-8-10-0NN-7-7-0NN-6-5-0NN-4-5-0
NN-3-5-0

NN-3-4-0

Linear regression: Error = 13.0%, Comp. req. = 9
Quadratic regression: Error = 12.7%, Comp. req. = 12



 

JULY 2021  |   VOL.  64  |   NO.  7   |   COMMUNICATIONS OF THE ACM     97

windows of recorded data. Figure 6d shows the oscillation 
period over the duration of one 1-minute experiment, esti-
mated using the DFT.

Figure 7 shows the ability of our method to generate 
a model that accurately predicts the period of oscillation 
of the variable-g pendulum. The calibration step of our 
method takes as input the periods estimated from the 
actual experiment. Our method requires minimal calibra-
tion data. For pendulum lengths greater than 20 cm, the 
prediction error is always less than 15% even though each 
prediction requires only four floating-point operations.

For pendulum lengths less than 20 cm, the error in the 
model increases due to nonidealities, such as friction, 
that are not captured by the form of the proportionality 
relation generated by our technique. The accuracy of the 
synthesized dimensional function is limited by the num-
ber of utilized parameters that describe the physical sys-
tem. A richer choice in the set of parameters (e.g., such as 
the friction of the pivot and mass of the rod) is a possible 
solution to derive more accurate dimensional functions.

We also applied the black-box data-driven techniques 
on the assembled data of the pendulum experiment. Of 
this dataset, 75% was randomly sampled to act as train-
ing data, whereas the rest was used as testing samples. We 
used a 5-fold cross-validation policy to train the models. 
Figure 8 summarizes the prediction error of the period of 

fitting the function Φ′ over the four-dimensional space  
〈v0, m, g, t〉 has prediction error of 0.17%. It consists of two 
layers with 2 and 5 neurons, whereas the most accurate for 
fitting function Ψ is composed of two layers of 6 neurons 
each. This highlights dimensional function synthesis as 
a tool for training models in situations where there are 
insufficient data to train more complex models.

The simpler models and higher prediction accuracy 
of dimensional function synthesis are the result of its 
ability to use the physical information available. This 
enables better training of simpler models with less data. 
Most importantly, these reductions are not based on ad-
hoc assumptions or approximations, but are dictated by 
physical laws. Models from dimensional function synthe-
sis are more efficient for resource-constrained embedded 
systems as they require fewer computations during infer-
ence and less data for their training.

4.2. Evaluation on a physical pendulum
We evaluate our method in the presence of nonsynthetic 
data where the underlying relationship is more complex 
than a simple closed-form equation. We perform a series 
of experiments in our laboratory using an apparatus 
known as a variable-g pendulum (Figure 6a). This appa-
ratus uses a mass on a stiff rod swinging about a pivot 
which is at an angle that is not perpendicular to the hori-
zon. We instrument this apparatus with a wireless sen-
sor containing a 3-axis accelerometer at the “bob” end 
of the pendulum to provide a data stream from which we 
automate measuring the period of oscillation, t. We run 
90 physical experiments on this apparatus for different 
values of the pendulum rod length l in the range of 3–33 
cm in steps of 3 cm and for a range of effective gravi-
tational acceleration g resulting from pendulum pivot 
angles of 0°–80°, in 10° increments.

Figure 6b shows an example of the sensor data over 1 
minute of pendulum oscillation. We recorded a time series 
of pendulum swing data such as that in Figure 6b for each of 
the 90 experiments we performed. We then used these time 
series data to calculate the oscillation period via its discrete 
Fourier transform (DFT). Figure 6c shows the resulting DFT 
output for one experiment, for four different processing 

Figure 6. (a) Our experimental setup for the variable-g pendulum. (b) Data collected from the 3-axis accelerometer over time using the 
wireless sensor on the pendulum. The largest component of oscillation is due to the motion of the pendulum. (c) Discrete Fourier Transform 
(DFT) of 10 s windows of the sampled acceleration data. Despite the variation of signal properties over time, the dominating frequency 
remains around 2 Hz. (d) The time period of the pendulum, calculated according to the dominating frequency in each time window of DFT, 
exhibits a small variation of about 20 ms over a 1-minute interval.
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of Π groups. We have implemented a Verilog register trans-
fer level (RTL) synthesis backend in Newton, which uses 
the information of the calculated Π groups of dimensional 
function synthesis and generates the RTL description of 
hardware modules, each of which computes a Π monomial 
(Equation (2)) of a selected Π group. The hardware modules 
take sensor signals as input and perform the pre-inference 
processing of the calibrated predictive module that we 
derive from dimensional function synthesis. An on-device 
(in-sensor) inference engine will integrate the synthesized 
dimensional circuits with the module that executes the 
calibrated predictive model using, for example, a neural 
network. This inference module can either be a custom RTL 
component or a programmable core. Figure 9 shows an in-
sensor inference hardware system generated using dimen-
sional function synthesis and dimensional circuit synthesis.

We evaluated the hardware generated by the dimensional 
circuit synthesis backend using a Lattice Semiconductor 
iCE40 FPGA. The iCE40 is a low-power miniature FPGA in a 
wafer-scale WLCSP package of 2.15 × 2.50 mm, which targets 
sensor interfacing tasks and on-device machine learning. 
We used a fully open-source FPGA design flow, comprising 
the YoSys synthesis tool (version 0.8+456) for synthesis 
and NextPNR (version git SHA1 5344bc3) for placing, 
routing, and timing analysis.

We performed our measurements on an iCE40 Mobile 
Development Kit (MDK) which includes a 1Ω current 
sense resistor in series with each of the supply rails of 
the FPGA (core, PLL, I/O banks). We measure the current 
drawn by the FPGA core by measuring the voltage drop 
across the FPGA core supply rail (1.2 V) resistor using a 
Keithley DM7510, a laboratory-grade 7½ digital multime-
ter that can measure voltages down to 10 nV. Using these 
voltage drop measurements, we computed the power dis-
sipated by the FPGA core for each configured RTL design. 
We used a pseudorandom number generator to feed the 
Π monomials computation circuit modules under evalu-
ation with random input data.

We evaluated dimensional circuit synthesis on seven 
different physical systems described in Newton. Table 3 
presents the total FPGA resource utilization for all the 
generated Π product computation modules, expressed 
in terms of the number of four-input lookup tables 
(LUT4 cells) required for their synthesis. These resource 
utilization values also include the required resources 
for the synthesis of the fixed-point arithmetic modules, 

pendulum oscillation averaged for all models in the case 
of the testing dataset. Regression models have prediction 
error comparable to our method, but our method outper-
forms regression models in the zoomed area of Figure 7b. 
Neural networks exhibit a wide distribution of prediction 
error, but simple networks are able to achieve very high 
accuracy within the same range as our proposed model. 
Because we train the black-box models against data points 
derived from the entire range of the pendulum experi-
ments, they can effectively capture the nonideal charac-
teristics of the oscillation, thus achieving high accuracy.

5. SCOPE, LIMITATIONS, AND EXTENSIONS
Dimensional function synthesis uses information on the 
physical dimensions and units of measure of the signals rele-
vant to a physical system to derive a set of candidate equations 
relating those signals. Such as many existing approaches for 
constructing models based on human-chosen parameters, it 
depends on a valid set of parameters in the set Ssymbols (intro-
duced in Section 2.1) for describing the system to be mod-
eled. When provided with a set of parameters insufficient 
to generate a model that captures a system’s behavior, the 
method will unsurprisingly generate a model that is, at best, 
only an approximation to the true behavior. Exciting areas 
of further development include automating the process of 
identifying parameters in Ssymbols rather than extracting them 
from a human-written description and incorporating inte-
grals and derivatives in formulations for Φ functions.

For physical parameters that cannot be directly measured, 
dimensional function synthesis faces the same challenges 
faced by traditional modeling approaches. In practice, for 
parameters that cannot be measured, designers measure 
surrogates that correlate to the missing parameters, for 
example, measuring acceleration and elapsed time instead 
of velocity. In this case, dimensional function synthesis has 
the net effect of exploiting information on the physical units 
of the parameters in question, whereas traditional model-
ing techniques have no option but to attempt to fit data with 
ever more complex nonlinear models. Dimensional func-
tion synthesis enables the combination of both approaches 
in the case of multiple Π groups as examined in Section 4.1.

5.1. Dimensional circuit synthesis
Dimensional circuit synthesis is an extension of dimen-
sional function synthesis that provides a compile-time 
method to generate digital logic circuits for the calculation 

Figure 9. The hardware generated by dimensional circuit synthesis 
preprocesses k sensor signals to calculate N < k dimensionless 
products Π1… ΠN. A predictive model takes the calculated product 
values as input and generates an inference output.
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which we integrated in the computation module of each 
Π product.

The execution latency column lists the required cycles 
for completing the calculations of the critical path of each 
of the generated RTL modules. We obtained the number 
of cycles by simulating the execution of the RTL modules 
for pseudorandom inputs generated by linear feedback 
shift registers (LFSRs). In each RTL module, we parallelize 
the calculation of different Π products but the required 
operations per Π product are executed serially. 

The last column of Table 3 shows the measured power dis-
sipation of each design configured in the iCE40 FPGA. In all 
cases, the power dissipation is less than 6 mW and as low as 
1 mW, demonstrating the suitability of our method for small-
form-factor, battery-operated on-device inference at the edge.

6. CONCLUSION
Existing methods for constructing retrospective or pre-
dictive models for data from physical systems do not fully 
exploit information about the physics of the systems in 
question. In this work, we present an automated method 
for generating the family of functions from which to learn 
a model, based on information about the physical dimen-
sions of the signals in the system. The method, which we call 
dimensional function synthesis, applies to data streams where 
the dimensions of the signals are known.

We implement dimensional function synthesis and 
evaluate the execution cost and accuracy of the mod-
els our method generates compared against regression 
models and neural networks. When calibrated with sen-
sor data, our models outperform traditional regression 
and neural network models in inference accuracy in all 
the cases we evaluated. In addition, our models perform 
better in training latency (up to 1096× improvement) and 
required arithmetic operations in inference (up to 34× 
improvement). These  significant gains are largely the 
result of exploiting information on the physics of signals 
that has hitherto been ignored.
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Table 3. Experimental evaluation on iCE40 FPGA of dimensional circuit modules generated from descriptions of physical systems.

Name LUT4 cells
Maximum  
frequency

Execution  
latency

Avg. power  
at 12 MHz

Avg. power  
at 6 MHz

Beam 2958 16.88 Mhz 115 cycles 3.5 mW 1.8 mW
Pendulum, static 1402 17.07 Mhz 115 cycles 2.0 mW 1.1 mW
Fluid in pipe 4258 15.65 Mhz 188 cycles 5.8 mW 3.0 mW
Unpowered flight 1930 16.44 Mhz 81 cycles 2.3 mW 1.2 mW
Vibrating string 2183 16.67 Mhz 183 cycles 2.5 mW 1.3 mW
Warm vibrating string 3137 16.77 Mhz 269 cycles 1.9 mW 1.0 mW
Spring-mass system 1419 16.67 Mhz 115 cycles 3.4 mW 1.8 mW
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