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Abstract

We derive and validate a novel and analytic method for estimating the probability that an

epidemic has been eliminated (i.e. that no future local cases will emerge) in real time.

When this probability crosses 0.95 an outbreak can be declared over with 95% confidence.

Our method is easy to compute, only requires knowledge of the incidence curve and the

serial interval distribution, and evaluates the statistical lifetime of the outbreak of interest.

Using this approach, we show how the time-varying under-reporting of infected cases will

artificially inflate the inferred probability of elimination, leading to premature (false-posi-

tive) end-of-epidemic declarations. Contrastingly, we prove that incorrectly identifying

imported cases as local will deceptively decrease this probability, resulting in delayed

(false-negative) declarations. Failing to sustain intensive surveillance during the later

phases of an epidemic can therefore substantially mislead policymakers on when it is safe

to remove travel bans or relax quarantine and social distancing advisories. World Health

Organisation guidelines recommend fixed (though disease-specific) waiting times for end-

of-epidemic declarations that cannot accommodate these variations. Consequently, there

is an unequivocal need for more active and specialised metrics for reliably identifying the

conclusion of an epidemic.

Author summary

Deciding on when to declare an infectious disease epidemic over is an important and

non-trivial problem. Early declarations can mean that interventions such as lockdowns,

social distancing advisories and travel bans are relaxed prematurely, elevating the risk of

additional waves of the disease. Late declarations can unnecessarily delay the re-opening

of key economic sectors, for example trade, tourism and agriculture, potentially resulting

in significant financial and livelihood losses. Here we develop and test a novel and exact

data-driven method for optimising the timing of end-of-epidemic declarations. Our

approach converts observations of infected cases up to any given time into a prediction of

the likelihood that the epidemic is over at that time. Using this method, we quantify the

reliability of end-of-epidemic declarations in real time, under ideal case surveillance,

showing that it can depend strongly on past infection numbers. We then prove that failing

to compensate for practical issues such as the time-varying under-reporting and import-

ing of cases necessarily results in premature and delayed declarations, respectively. These
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variations and biases cannot be accommodated by current worldwide declaration guide-

lines. Sustained and intensive surveillance coupled with more adaptive declaration metrics

are vital if informed end-of-epidemic declarations are to be made.

Introduction

The timing of an end-of-epidemic declaration can have significant economic and public health

consequences. Early or premature declarations can negate the benefits of prior control mea-

sures (e.g. quarantines or lockdown), leaving a population at an elevated risk to the resurgence

of the infectious disease. The Ebola virus epidemic in Liberia (2014–2016), for example, fea-

tured several declarations that were followed by additional waves of infections [1]. Late or

delayed declarations, however, can unnecessarily stifle commercial sectors such as agriculture,

trade and tourism, leading to notable financial and livelihood losses. One of the first studies

advocating the need for improved end-of-epidemic metrics suggested that the MERS-CoV epi-

demic in South Korea was declared over at least one week later than was necessary [2]. Balanc-

ing the health risk of a second wave of infections against the benefits of reopening the

economy earlier is a non-trivial problem and is currently of major global concern as many

countries prepare to meet the challenge of resurging COVID-19 caseloads.

World Health Organisation (WHO) guidelines adopt a time-triggered (i.e. decisions are

enacted after some fixed, deterministic time) approach to end-of-epidemic declarations, rec-

ommending that officials wait for some prescribed period after the last observed infected case

has recovered, before adjudging the outbreak over. The most common waiting time, which

applies to Ebola virus and MERS-CoV among others, involves twice the maximum incubation

period of the disease [3]. While having a fixed decision time is simple and actionable, it

neglects the stochastic variation that is inherently possible at the tail of an outbreak. Recent

studies have started to question this time-triggered heuristic and to investigate the factors that

could limit its practical reliability.

Initial advances in this direction were made in [2], where mathematical formulae for assess-

ing the end of an epidemic, in a data-driven manner, were derived. These formulae use the

time-series of new cases (incidence) across an epidemic together with estimates of its serial

interval distribution and basic reproduction number to compute the probability that the out-

break is over at any moment. The serial interval distribution describes the random inter-event

times between the onset of symptoms of an infector and infectee, while the basic reproduction

number is the average number of secondary infections per primary infection at the start of an

epidemic [4, 5]. The output of this method is an epidemiologically informed statistical measure

of confidence in an end-of-epidemic declaration.

This approach is important, but not perfect. It assumes that infected cases are reported

without any error and it depends on parameters that relate to the initial growth phase of the

epidemic. Moreover, to maintain simplicity, it adopts a mathematically conservative descrip-

tion of transmission, making its end-of-epidemic declaration time estimates likely to be late or

delayed [2]. More recent studies [6, 7] have applied forward simulation to investigate the tail

dynamics of an outbreak. These have revealed the impact of the constant under-reporting of

cases [6] and demonstrated the sensitivity of declarations to the effective reproduction number

[7], a parameter that generalises the basic reproduction number and that remains relevant

across all phases of the epidemic. The influence of different routes of transmission on declara-

tions has also been examined in [1] using the framework of [2].
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However, there is still much we do not know about the dynamics of an outbreak as it

approaches its end. Specifically, analytic and general insight into the sensitivity of end-of-

epidemic declarations to practical surveillance imperfections is needed. Real incidence data

are corrupted by time-varying trends in under-reporting, delays in case notification and influ-

enced by the interaction of imported and local cases [8–10]. Previous works have either

assumed perfect reporting [2] or treated constant under-reporting within some simulated sce-

narios [6, 7]. Here we attempt to expose the implications of more realistic types of data corrup-

tion, particularly time-varying case under-reporting and importation, by developing an exact

framework that provides broad and provable insights. Understanding how realistic surveil-

lance patterns can bias our perception of the epidemic end is the first step to engineering sensi-

ble and effective countermeasures against these biases.

We build on the renewal process transmission model from [11, 12], to derive and test a

novel and exact real-time method for estimating the probability of elimination; defined as the

probability that no future local cases will emerge conditioned on the past epidemic incidence.

We explain this model in Fig 1. Using this probability, we define an event-triggered [13, 14]

Fig 1. Transmission dynamics of an infectious disease. The renewal approach to infection propagation is outlined under a Poisson noise model in

panel A. Past, observed infected cases Is
1
, which form an incidence curve, seed new infections with probabilities proportional to wu defined by the

generation time distribution of the disease, which is approximated by the serial interval distribution. The total infectiousness Λs+1 sums the

contributions of past cases according to the set of {wu}. The effective reproduction number Rs determines how many effective infections are passed

on to the next time unit s + 1. It is common to group Rs values over a window τ(s) to improve estimation reliability. When all future incidence values

are zero we conclude that the epidemic is over or eliminated. Panel B shows how Rs acts as a reproductive parameter, controlling whether the

epidemic grows or dies out. This parameter is therefore essential to predicting the dynamics of an epidemic. Panel C provides a breakdown of more

realistic observation assumptions, where we might not be able to directly measure the local and complete incidence Is due to unreported Us or

imported (migrating) Ms cases. If we can only observe sampled cases, Ns, or the total number of cases, Cs, then our epidemic predictions will be

biased.

https://doi.org/10.1371/journal.pcbi.1008478.g001
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declaration metric that guarantees confidence in that declaration provided the assumptions of

the model hold. The trigger is the first time that this probability crosses a threshold e.g. we are

95% confident in our declaration if the threshold is 0.95. Event-triggered decision-making was

essentially proposed by [2], has proven effective in other fields [15–17] and belies the time-trig-

gered WHO approach, which fixes the time (elapsed since the last case1) but not the confi-

dence in declaration.

We benchmark our estimate against the true probability of elimination, i.e. the probability

if the statistics and effective reproduction number of the epidemic were known precisely, and

show consistency under the perfect conditions in [2] but with the caveat that we estimate effec-

tive reproduction numbers from the incidence curve in real time. We find that even the true

elimination probabilities strongly depend on the specific stochastic incidence curve observed,

confirming that time-triggered decision heuristics are unwarranted. Using our exact frame-

work we prove two key results about imperfect surveillance. First, any type of time-varying

under-reporting will lead to premature or false-positive event-triggers and hence declarations,

unless explicit knowledge of the under-reporting scheme is available. Second, a failure to iden-

tify and account for the differences between local and imported cases will result in delayed or

false-negative event-triggers, regardless of the dynamics of case importation.

Many infectious disease epidemics, including the ongoing COVID-19 pandemic, are

known to feature extensive time-varying under-reporting and repeated importations from dif-

ferent regions [18, 19]. As this pandemic progresses into a potential second wave in several

countries, public health authorities will need to decide when to relax and reapply intervention

measures such as lockdowns, social distancing policies or travel bans [20]. Our work suggests

that intensive surveillance, both of cases and their origin, must be sustained to make informed,

reliable and adaptive decisions about the threat posed by the virus in the waning stages of the

outbreak, even if reported case numbers remain at zero for consecutive days. We hope that

our method, which is available at https://github.com/kpzoo/End-of-epidemic-declarations,

will aid understanding and assessment of the tail kinetics of infectious epidemics.

Methods

Infectious disease transmission models

We can mathematically describe the transmission of an infection within a population over

time with a renewal process based on the Euler-Lotka equation from ecology and demography

[5]. This process models communicable pathogen spread from a primary (infected) case to sec-

ondary ones at some time s using two key variables: the effective reproduction number, Rs, and

the generation time distribution with probabilities {wu} for all times u. Here Rs defines the

number of secondary cases at time s + 1 one primary case at s infects on average, while wu is

the probability that it takes u time units for a primary case to infect a secondary one [5]. As

infection events are generally unobserved, we approximate the time of primary and secondary

infection with the corresponding times of symptom onset i.e. the serial interval. This amounts

to making the common assumption that the serial interval distribution, which can be observed,

is a good approximation to the generation time distribution [2, 12].

If Is counts the newly observed infected cases at s and a Poisson (Poiss) model is used to

represent the noise in these observations then the renewal model captures the reproductive

dynamics of infectious disease transmission with Is* Poiss(Rs−1 Λs) [4]. HereLs≔
Ps� 1

u¼1
Is� uwu

is the total infectiousness of the disease up to time s − 1 and summarises how previous cases

contribute to upcoming cases on day s. We use Is
1
≔ fI1; I2; . . . ; Isg to represent the incidence

curve from time 1 to s. A schematic of this approach to epidemic transmission is given in

Fig 1. Usually we are interested in estimating the Rs numbers in real time [21, 22] from the
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progressing Is
1
, assuming that the serial interval distribution is known (i.e. derived from some

other linelist data) [12].

This effective reproduction number is important for forecasting the kinetics of the epi-

demic. If Rs> 1 then we can expect the number of infections to increase monotonically with

time. However, if Rs< 1 is sustained then we can be confident that the epidemic is being con-

trolled and will, eventually, be eliminated [23]. In order to enhance the reliability of these esti-

mates we usually assume that the epidemic transmission properties are stable over a look-back

window of size k defined at time s as τ(s) ≔ {s, s − 1, . . ., s − k + 1} [12, 24]. We let the repro-

duction number over this window be Rτ(s) and apply a conjugate gamma (Gam) prior distribu-

tion assumption: Rτ(s) *Gam(a, 1/c) with a and c as shape-scale hyperparameters. This

formulation, together with the use of gamma prior distributions, is standard in current

renewal model frameworks [12, 21, 25].

The posterior distribution of Rτ(s) given the relevant window of the past incidence curve of

data i.e. ItðsÞ≔ Iss� kþ1
is also gamma distributed as follows [22]

RtðsÞ j ItðsÞ � Gam aþ itðsÞ;
1

cþ ltðsÞ

 !

; ð1Þ

with grouped sums iτ(s) ≔ ∑u2τ(s) Iu and λτ(s) ≔ ∑u2τ(s) Λu. If some variable y*Gam(α, β)

then PðyÞ ¼ ya� 1e� y=b=baGðaÞ and E½y� ¼ ab. As a result, Eq (1) yields the posterior mean esti-

mate of R̂tðsÞ ¼ atðsÞbtðsÞ with ατ(s) ≔ a + iτ(s), βτ(s) ≔ 1/c+λτ(s). Eq (1) allows us to infer the

grouped or averaged effective reproduction number over the window τ(s), which is considered

an approximation of the unknown Rs.
We can derive the posterior predictive distribution of the next incidence value (at time

s + 1) by marginalising over the domain of Rτ(s) as in [22]. If the space of possible predictions

at s + 1 is x|Iτ(s) and NB indicates a negative binomial distribution then we obtain

x j ItðsÞ � NB atðsÞ; ptðsÞ≔
Lsþ1btðsÞ

1þ Lsþ1btðsÞ

 !

: ð2Þ

Eq (2) completely describes the uncertainty surrounding one-step-ahead incidence predic-

tions and is causal because all of its terms (including Λs+1) only depend on the past observed

incidence curve Is
1

[22].

If a random variable y* NB(α, p) then PðyÞ≔ aþy� 1

y

� �
ð1 � pÞapy and E½y� ¼ pa=1� p. Hence

our posterior mean prediction is Î sþ1 ¼ E½x j ItðsÞ� ¼ Lsþ1R̂tðsÞ. The current estimate of Rτ(s)

influences our ability to predict upcoming incidence points. Thus, we expect that good estima-

tion of the effective reproduction number is necessary for projecting the future behaviour of

an infectious disease epidemic. In Results we rigorously extend and apply this insight to derive

an exact method for computing the probability that an epidemic is reliably over at some time s
i.e. that no future infections will occur from s + 1 onwards.

Under-reported and imported cases

The above formulation assumes perfect case reporting and that all cases, Is
1
, are local to the

region being monitored. We now relax these assumptions. First, we consider more realistic

scenarios where only some fraction of the local cases are reported or observed at any time. We

use Ns and Us for the number of sampled and unreported cases at time s. We consider a general

time-varying binomial (Bin) sampling model with 0� ρs� 1 as the probability that a true case
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is sampled at time s (hence 1 − ρs is the under-reporting probability). Then Ns* Bin(Is, ρs).
The smaller ρs is, the less representative the sampled curve Ns

1
is of the true Is

1
.

This is a standard model for under-reporting [8, 26] and implies the following statistical

relationship

Is ¼ Ns þ Us; Ns � PoissðrsRs� 1LsÞ: ð3Þ

Raikov’s theorem [27] states that if the sum of two independent variables is Poisson then

each variable is also Poisson. Consequently, Us is Poisson with mean (1−ρs)Rs−1Λs. Most stud-

ies assume that ρs = ρ for all s i.e. that constant under-reporting occurs. The persistence of the

Poisson relationship in Eq (3) means that we can directly apply the forecasting and estimation

results of the previous section to Ns. Practically, if we observe only Ns
1

then unless we have

independent knowledge of ρs (which can often be difficult to ascertain reliably [18, 26]) we can

only construct an approximation to ρsΛs as ~Ls ¼
Ps� 1

u¼1
wuNs� u with E½~LðsÞ� ¼ rsLs.

Second, we investigate when imported or migrating cases from other regions, denoted by

count Ms at time s, are introduced, resulting in the total number of observed cases being Cs.

Within this framework we ignore the under-reporting of cases and assume that Is is observed

to avoid confounding factors. We follow the approach of [9] and describe Ms as a Poisson

number with some mean at time s of �s. Using Raikov’s theorem we obtain

Cs ¼ Is þMs; Cs � PoissðRs� 1Ls þ �sÞ: ð4Þ

Eq (4) models how imported cases combine with existing local ones to propagate future

local infections.

While our work does not require assumptions on �s, for ease of comparison later on we

adopt the convention that the sum of imports and local cases drive the epidemic forward with

the same reproduction number and serial interval [28]. Consequently, Is � PoissðRs� 1
�LsÞ with

�Ls≔
Ps� 1

u¼1
wuCs� u. Practically, when surveillance is poor (i.e. local and imported cases cannot

be distinguished), it is common to assume that all observed cases are local and conform to the

approximate model Cs � PoissðRs� 1
�LsÞ [25]. The forecasting and estimation results of the pre-

vious section therefore also apply under these conditions.

In Results we examine the impact of imperfect (our null hypothesis H0) and ideal (the alter-

native H1) surveillance within the context of under-reporting and importation in turn. We

treat each problem individually to isolate the impact of each bias. Ideal surveillance then repre-

sents the ability to know either Us or Ms (depending on the problem of interest) and hence

account for their contributions. Imperfect surveillance refers to only having knowledge of Ns

or Cs and basing inferences on these curves under the strong assumption that they approxi-

mate the true incidence. This assumption is often made in the literature [2, 12, 21] for the pur-

poses of tractability and means Eqs (1) and (2) are valid. Fig 1C summarises the relationships

from Eqs (3) and (4).

Results

An exact method for declaring an outbreak over

We define an epidemic to be eliminated or over [23] at time s if no future, local or indigenous

infected cases are observed i.e. Is+1 = Is+2 = � � � = I1 = 0. We can define the estimated probabil-

ity of elimination, zs, as

zs≔Pð^1j¼s Ijþ1 ¼ 0 j Is
1
Þ; ð5Þ

with Is
1

as the incidence curve (data), observed until time s. We refer to zs as an estimated
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probability because we do not have perfect knowledge of the epidemic statistics e.g. we cannot

know Rs precisely. The importance of this distinction will become clear in the subsequent sec-

tion (see Eq (10)). However, we observe that if we could have this idealised knowledge then Eq

(5) would exactly define the probability of no future cases given Is
1
.

Declaring the end of an epidemic with confidence μ% translates into solving the optimal

stopping time problem

tm ¼ arg min zs
s
�

m

100
; ð6Þ

with t95, for example, signifying the first time that we are at least 95% sure that the epidemic

has ended. Note that zs is a function of Is
1

and practically characterises our uncertainty in the

outcome of the epidemic (i.e. if it is over or not). This uncertainty derives from the fact that a

range of possible epidemics with distinct future incidences I1sþ1
can possess the same Is

1
and Rs

1

values. Some uncertainty exists even if Rs
1

is known perfectly.

Eq (6) presents an event-triggered approach to declaring the end of an epidemic with the μ
threshold serving as an informative trigger. Event-triggered formulations have the advantage

of being robust to changes in the observed data [13, 14], a point visible from the dependence of

zs and hence tμ on Is
1
. While Eq (6) is written in absolute time, we may also clock time relative

to the last observed case, t0. Our waiting time until declaration is then Δtμ = tμ − t0, which is

more useful for comparing zs values from various realisations of Is
1

and for deriving confidence

intervals. Later, we consider differences in the Δtμ, denoted δtμ, proposed by comparable

methods.

Previous works on end-of-epidemic declarations have either approximated zs with a sim-

pler, more conservative probability [2] or used simulations to estimate a quantity similar to zs
that is averaged over those simulations [6] [7]. No study has yet (to our knowledge) included

real-time estimates of Rs, within its assessment of epidemic elimination, despite the impor-

tance of this parameter in foretelling transmission [23]. By taking the renewal process

approach to epidemic propagation (see Fig 1), we explicitly embed uncertainty about Rs esti-

mates to obtain an analytic and insightful expression for the probability that the outbreak is

over given past observed cases (Eq (5)).

We derive this by inferring Rs within a sequential Bayesian framework from Is
1
, using a

moving window of length k time units. We denote this estimate Rτ(s) with window τ(s) span-

ning Iss� kþ1
[12, 22]. Our main result is summarised as a theorem below (see Methods for fur-

ther details and notation). Fig 2 illustrates how our computed zs probability varies across the

lifetime of an example incidence curve, thus providing a real-time, causal and dynamically

updating view of our confidence in its end.

Theorem 1. If the posterior distribution of the grouped effective reproduction number,

Rτ(s), given the incidence curve Is
1

has form Gam(ατ(s), βτ(s)) then the estimated probability that

this epidemic has been eliminated at time s is zs ¼
Q1

j¼s 1þ
Î jþ1

atðjÞ

� �� atðjÞ
with Î jþ1 ¼ Ljþ1R̂tðjÞ

and R̂tðjÞ ¼ atðjÞbtðjÞ as the mean posterior incidence prediction and effective reproduction

number estimate at time j, respectively.

We outline the development of this theorem. First, we decompose Eq (5) into sequentially

predictive terms as:

zs ¼ PðIsþ1 ¼ 0 j Is
1
Þ
Q1

j¼sþ1
PðIjþ1 ¼ 0 j Ij1Þ: ð7Þ

For simplicity, we rewrite Eq (7) as zs ¼ q0

Q1
j¼1

qj. The factor qj conditions on Isþj1 , which

includes all the epidemic data, Is
1

and the sequence of assumed zeros beyond that i.e. Isþjsþ1 ¼ 0
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for j� 1. This sequence is treated as pseudo-data. Observe that q0 is simply a one-step-ahead

prediction of 0 from the available incidence curve.

We solve Eq (7) by making use of known renewal model results derived in [12, 22, 24] and

outlined in Methods. The renewal transmission model allows us to estimate the effective repro-

duction number Rs and hence compute zs in real time (see Fig 1). This estimate at time s, Rτ(s),

uses the look-back window τ(s) of k time units (e.g. days). The posterior over Rτ(s) is shape-

scale gamma distributed as Gam(ατ(s), βτ(s)) with ατ(s) ≔ a + iτ(s) and btðsÞ≔ 1

cþltðsÞ
(see Eq (1)).

Here (a, c) are hyperparameters of a gamma prior distribution placed on Rτ(s) and iτ(s) and λτ(s)

are grouped sums of the incidence Iu and total infectiousness Λu for u 2 τ(s). The total infec-

tiousness describes the cumulative impact of past cases and is defined in Methods.

Under this formulation, the posterior predictive distribution of the incidence at s + 1 is neg-

ative binomially distributed (NB) (see Eq (2)). The probability of Is+1 being zero from this dis-

tribution gives q0 ¼ ð1þ Lsþ1btðsÞÞ
� atðsÞ by substitution. The next term, q1, is computed

similarly because we condition on Is+1 = 0 as pseudo-data (i.e. the sequential terms in Eq (7))

and update Λs+2, βτ(s+1) and ατ(s+1) with this zero. Iterating for all terms yields

zs ¼
Q1

j¼s ð1þ Ljþ1btðjÞÞ
� atðjÞ ; ð8Þ

Fig 2. Elimination probabilities across the lifetime of an epidemic. We simulate a single incidence curve, Is (blue,

case counts on left y-axis), under the serial interval distribution for Ebola virus [29] and a true Rs profile that step

changes from 2 to 0.5 at s = 100 days. We compute the true and estimated elimination probabilities, z�s and zs,
conditional on all cases observed up to time s in grey and red respectively (right y-axis). The circle (black) indicates

when the outbreak can be declared over with 95% confidence. Observe how zs and z�s respond to the low Is at the

beginning of the epidemic before remaining 0 until we get to the tail of the outbreak, where a couple fluctuations occur

due to some final cases. An estimate of the WHO declaration time, tWHO [3], which is mostly insensitive to past case

profiles is in dark blue. The central question in this study is how few cases need to be observed in the recent past before

we can be confident that the epidemic has been eliminated.

https://doi.org/10.1371/journal.pcbi.1008478.g002
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which is an exact expression for zs. As a string of zero incidence values accumulate with time

Λj+1! 0 and hence qj! 1. Consequently, only a finite number of terms in Eq (8) need to be

computed and the initial ones are the most important for evaluating zs.
The posterior mean estimate of Rτ(s) is R̂tðsÞ ¼ E½RtðsÞ j Is1� ¼ E½RtðsÞ j ItðsÞ� ¼ atðsÞbtðsÞ with Iτ(s)

as the incidence values in the τ(s) window (the remaining Is� k
1

are assumed uninformative

[12]). This follows from the Gam distribution and implies a posterior mean incidence predic-

tion Î sþ1 ¼ E½Isþ1 j ItðsÞ� ¼ Lsþ1R̂tðsÞ from the NB posterior predictive distribution [22]. Substi-

tuting these into Eq (8) gives:

zs ¼
Q1

j¼s 1þ
Î jþ1 ¼ Ljþ1R̂tðjÞ

atðjÞ

 !� atðjÞ

: ð9Þ

This completes the derivation. Theorem 1, when combined with Eq (6), provides a new,

analytic and event-triggered approach to adjudging when an outbreak has ended. Eq (9) pro-

vides direct and quantifiable insight into what controls the elimination of an epidemic and can

be easily computed and updated in real time.

Understanding the probability of elimination

We dissect and verify the implications of Theorem 1, which provides an exact formula for esti-

mating the probability, zs, that any infectious disease epidemic has been eliminated by time s.
Eq (8) formalises the expectation that any decrease in case incidence increases zs. This results

because @qj/@ατ(j)
< 0 for all ατ(j), meaning that qj is monotonically decreasing in ατ(j) and hence

iτ(j). As zs is a product of qj and every qj is positive then zs is also monotonically decreasing in

all incidence window sums. Consequently, any process that reduces historical incidence surely

increases the probability of elimination, provided other variables are relatively fixed.

The main variable controlling zs is the average predicted incidence Î jþ1 (see Eq (9)). Reduc-

ing either Λj+1 or R̂tðjÞ therefore increases our confidence in a declaration made after a fixed

time (the time-triggered approach) or, decreases the time of declaration for a fixed confidence

(the event-triggered approach). This highlights the two known ways that sustained interven-

tions, e.g. vaccination, social-distancing or quarantine, can help drive an epidemic to extinc-

tion. First, such measures explicitly limit Rj and hence R̂tðjÞ, leading to an expected rise in zs
[23]. Second, they may also implicitly reduce the duration of the serial interval, resulting in

smaller Λj+1 [30].

Accordingly, under- or over-estimating R̂tðjÞ or using incorrectly smaller or larger Λj+1

sums induces spurious fluctuations in zs and promotes premature or delayed declarations,

respectively. This insight underlies later analyses, which investigate how surveillance imperfec-

tions can modulate the declaration time. Because we cannot reduce either reproduction num-

bers or serial intervals to arbitrary values of interest (e.g. certain diseases have intrinsically

wider serial interval distributions) some epidemics will be innately harder to control and elimi-

nate [31].

Interestingly, while zs is controlled by mean estimates and predictions, it appears insensitive

to the uncertainty around those means, despite its derivation from the posterior distributions

of Eqs (1) and (2). This follows from the inherent data shortage at the tail of an epidemic

(there are necessarily many zero incidence points), which likely precludes the inference of

higher order statistics [24]. Moreover, when the incidence is small stochastic fluctuations can

dominate epidemic dynamics. Consequently, to maximise the reliability of our zs estimates we

recommend using long windows (large k) for R̂tðjÞ. Short windows are more sensitive to recent
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fluctuations and are more prone to yielding uninformative estimates when many zero inci-

dence points occur [22, 32].

Last, we validate the correctness of our estimated zs by considering a hypothetical setting in

which the true reproduction number, {Rs: s� 0}, is known without error. This allows us to

derive the true (but unknowable) probability of elimination z�s at time s, given complete infor-

mation of the epidemic statistics. Under the renewal model PðIsþ1 ¼ 0 j Is
1
Þ ¼ e� RsLsþ1 . Repeat-

ing this process sequentially for future zero infected cases (akin to describing the likelihood of

that observation series) gives:

z�s ¼
Q1

j¼s e
� Ljþ1Rj ¼ e�

P1

j¼s
Ljþ1Rj

: ð10Þ

Clearly z�s depends on the serial interval distribution and past incidence (through Λj+1) and

the sequence of reproduction numbers Rj, which are the main factors underlying the transmis-

sion of the infectious disease.

The true declaration time with confidence μ% is then t�
m
¼ arg mins z�s �

m

100
(see Eq (6)).

We can verify our approach to end-of-epidemic declarations if we can prove that tμ sensibly

converges to t�
m
. At the limit of ατ(j)! iτ(j)!1, the estimated R̂tðjÞ tends to the true Rj because

under those conditions the posterior mean estimate coincides with the grouped maximum

likelihood estimate of Rj, which is unbiased. Applying this limit to qj in Eq (9) we find that as

R̂tðjÞ ! Rj:

lim
itðjÞ!1

1þ
Ljþ1R̂tðjÞ

itðjÞ

 !� itðjÞ

¼ e� Ljþ1Rj ; ð11Þ

implying that zs ! z�s , and consequently that tm ! t�
m
.

This asymptotic consistency suggests that zs and tμ indeed approximate the true but

unknowable probability of elimination z�s and declaration time t�
m
. Other end-of-epidemic met-

rics in the literature have not presented such theoretical justification. We illustrate zs and z�s
across a simulated and representative incidence curve in Fig 2. There we find a good corre-

spondence between these probabilities and observe their sensitivity to changes in incidence at

the beginning and end of this outbreak. Note that zs and z�s (and hence tμ and t�
m
) depend on Is

1

and are more precisely written as zs j Is1 and z�s j I
s
1
. The WHO declaration time, tWHO, which is

included for reference, is mostly independent of the shape of Is
1

[3], explaining why it provides

no confidence guarantee.

Practical comparisons and verification

We have only validated our approach at an asymptotic limit that is not realistic for elimination

i.e. the proof that zs and tμ converge to their true counterparts requires infinite incidence.

While this proof suggests our formulation is mathematically correct, it does not indicate its

performance on actual elimination problems. We now verify out method more practically. We

first use simulated data to show that Δtμ = tμ − t0 and Dt�
m
¼ t�

m
� t0 correspond well over sev-

eral end-of-epidemic problems, where we are far from this limit, and with t0 as the time of the

last observed case. We characterise this via histograms of the error dtm ¼ Dtm � Dt�m ¼ tm � t�
m
,

which are given in Fig 3A–3C. There we present 95% (μ = 0.95) declaration time errors calcu-

lated over 1000 simulated epidemics with serial interval distributions from the COVID-19
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pandemic [33], MERS-CoV in Saudi Arabia [25], Marburg virus in Angola [29] and Measles

in Germany [12].

We investigate true Rs profiles that describe rapidly controlled (Fig 3A), partially recovering

(Fig 3B) and exponentially rising and falling transmission (boom-bust, Fig 3C). For each pro-

file we use the renewal model to simulate conditionally independent Is
1

curves and compute

zs j Is1 and z�s j I
s
1

using Eqs (9) and (10). The declaration time errors then follow as above and

from Eq (6). Fig 3D plots these Rs profiles (top) and the serial interval distributions for each

Fig 3. True and estimated declaration times. We simulate 1000 independent incidence curves under various renewal models and provide

normalised histograms of the difference between the estimated and true declaration times i.e. dt95 ¼ Dt95 � Dt�95
¼ t95 � t�

95
. Panels A–C present

these histograms for various infectious diseases under Rs profiles indicating rapidly controlled, recovering and rising and then decaying

transmission (boom-bust). The top row of D plots the true Rs curves in absolute time, while the bottom row of D provides the serial interval

distributions of the infectious diseases examined. Generally we find that t95 � t�
95

to a reasonable degree. The quality of this approximation depends

on the variability of the serial interval distribution (see S1 Fig) and the level of fluctuation in transmission when incidence is small.

https://doi.org/10.1371/journal.pcbi.1008478.g003
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disease (bottom). Generally, we find that tμ is a good approximation to t�
m
, with some error nat-

urally emerging from the difficulty of estimating Rs in conditions where data are necessarily

scarce [32]. Our prior distribution over Rτ(j) is Gam(1, 5), which is both uninformative and has

a large mean of 5.

This error, δt95, is more prominent for diseases featuring wide serial interval distributions,

which are fundamentally more difficult to estimate, due to their dependence on much earlier

epidemic dynamics. These simulations also demonstrate why time-triggered approaches can

be misleading; they do not adapt to the shape of the specific instance of Is
1

observed. An exam-

ple of this is given in S1 Fig, where we find that the WHO declaration time ΔtWHO = tWHO − t0
is delayed relative to both the true (Dt�

95
) and estimated (Δt95) event-triggered declaration

times, for Ebola virus disease, which has a wide serial interval. Depending on the disease of

interest ΔtWHO could also be premature. The large variability among the possible Dt�
95

provides

a clear visualisation of the non-deterministic nature of epidemic end-points and the need for

adaptive metrics with stated confidence.

At present, we have only verified our method under ideal reporting conditions. Practical

surveillance is investigated in later sections. We now compare our method to the event-trig-

gered one of [2], which assumes ideal surveillance and models epidemic transmission with a

NB branching process that is strictly only valid at the beginning of the outbreak. This notably

differs from our renewal model approach and the elimination probabilities derived in [2] are a

mathematically conservative approximation to our zs. We compare both methods on MERS-

CoV data from South Korea, examined in [2], by running them on a set of bootstrapped inci-

dence curves generated from fitting the model of [2] to that data and compute 95% confidence

intervals on the probability of elimination.

Fig 4 presents our main results with time relative to the last observed case in each bootstrap

(Δs) and blue and red curves as the outputs of [2] and our method. While the median 95% rela-

tive declaration times (black circles) are close, the approach of [2] yields a delayed declaration.

This effect is reduced if we use the lower bound of the zs curves instead of their median. When

zs is small (which is not practical for defining end-of-epidemic declarations) we find that the

methods are less consistent. The WHO declaration time (dark blue) for this epidemic is over

one week later than the time proposed by both methods [2]. While our method shows wider

uncertainty, the similarity of these intervals suggests that our formulation is robust to moder-

ate model mismatch.

Under-reporting leads to premature declarations

Having verified zs and hence tμ as reliable and sensible means of assessing the conclusion of an

epidemic, we investigate the effect of model mismatch due to imperfect surveillance. We start

with case under-reporting, which affects all infectious disease outbreaks to some degree. While

previous works have drawn attention to how constant under-reporting can bias end-of-epi-

demic declarations [6] [7], no analytic results are available. Moreover, the impact of time-vary-

ing under-reporting, which models a wide range of more realistic surveillance scenarios [8,

34], remains unstudied. We provide mathematical background for our under-reporting mod-

els in Methods.

Fig 1C illustrates how under-reporting results in only a portion, Ns, of the total local cases,

Is being sampled or observed. We use Us = Is − Ns� 0 to denote the unreported cases. We

investigate two hypotheses or models about the incidence curve, a null one, H0, where we

assume that the observed cases Ns
1

represent all the infected individuals and an alternative

hypothesis H1, in which the unreported cases Us
1

(and hence Is
1
) are known and distinguished.
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The estimated elimination probabilities under both surveillance models are:

H0 : zs jNs
1
¼ Pð^1j¼s Njþ1 ¼ 0 jNs

1
Þ and

H1 : zs j Is1 ¼ Pð^1j¼s Ijþ1 ¼ 0 jNs
1
^ Us

1
Þ:

ð12Þ

Here H0 portrays a naive interpretation of the observed (Ns) incidence, while H1 indicates

ideal surveillance. Intensive and targeted population testing should interpolate between H0 and

H1. We compute zs jNs
1

by constructing the sampled total infectiousness ~Ls≔
Ps� 1

u¼1
wuNs� u and

then applying Theorem 1. This follows because Ns can also be described by a Poisson renewal

model (see Methods for details). We therefore find that zs jNs
1
¼
Q1

j¼s ð1þ
~L jþ1

~btðjÞÞ
� a� ntðjÞ with

nτ(j) and ~ltðjÞ as the sums of Nu and ~Lu within the τ(j) window and ~btðjÞ ¼
1=cþ~ltðjÞ

. We get zs j Is1
directly from Eq (8) since this is the perfect surveillance case.

This allows us to construct the ratio of zs jNs
1

to zs j Is1 as
Y1

j¼s
ð1þ �jÞ

aþitðjÞ ð1þ ~� jÞ
� a� ntðjÞ

with ϕj = Λj+1βτ(j) and ~� j ¼
~Ljþ1

~btðjÞ. Here ~�j approximates ϕj and both are small compared to

1 (for sensible window lengths). This combined with the fact that iτ(j) is bigger than nτ(j) means

the above ratio is greater than 1 (powers dominate the expression). This result may be violated

if ~� becomes large relative to ϕ and the unreported case count in the window, uτ(j) = iτ(j) − nτ(j),

is small. However, this is not possible since ~� and ϕ necessarily converge as uτ(j) tends to 0

Fig 4. Empirical method comparison. We compare 95% confidence intervals on the elimination probability from [2]

(blue) and zs from Eq (9) (red) on bootstrapped epidemics based on the MERS-CoV data from South Korea used in

[2]. Black circles define the median relative declaration time (Δt95) when each method deems the epidemic to be over

with 95% confidence (the event trigger). Time is relative to the last observed case in each epidemic bootstrap and the

WHO (time-triggered) declaration time (ΔtWHO) is in dark blue.

https://doi.org/10.1371/journal.pcbi.1008478.g004
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(i.e. perfect surveillance). Consequently, we obtain the inflation

zs jNs
1
� zs j Is1 ) tm jH0 � tm jH1: ð13Þ

At no point have we assumed any form for the under-reporting fraction, denoted ρs at time

s (see Methods). Our derivation only depends on under-reporting causing smaller (absolute)

historical incidence. If we know all Rj (which is unlikely) this result is also easily obtained from

(10) since Ljþ1 �
~Ljþ1.

Thus any under-reporting, whether constant (i.e. all ρs are the same) or time-varying will

engender premature or false-positive end-of-epidemic declarations provided Ns is randomly

sampled from Is (so Theorem 1 holds; see Eq (3)). We highlight this principle by examining a

random sampling scheme using empirical SARS 2003 data from Hong Kong [12]. We binomi-

ally sample the SARS incidence with random probability ρs* Beta(a, b). We set b = 40 and

compute a so that the mean sampling fraction E½rs� ¼ fr takes some desired (fixed) value. We

investigate various fρ and show that premature declarations are guaranteed in Fig 5A and 5B.

The impact of ρs is especially large when under-reporting leads to early but false sequences of 0

cases, which is additional to the bias from Eq (13). We present results in absolute time to show-

case this effect.

Importation results in late declarations

The influence of imported cases on end-of-epidemic declarations, to our knowledge, has not

been investigated in the literature. Repeated importations or migrations of infected cases are a

common means of seeding and re-seeding local infectious epidemics. Failing to ascertain

which cases are local or imported can significantly change our perception of transmission [9].

We assume that Is is the total count of local cases in our region of interest but that at time s
there are also Ms imported cases that have migrated from neighbouring regions. The total

number of infected cases observed is Cs = Is + Ms as displayed in Fig 1C. We provide mathe-

matical background on how importations are included within the renewal framework in

Methods. We consider two hypotheses about our observed incidence data that reflect real epi-

demic scenarios.

Under the null hypothesis, H0, we assume that all cases are local and so we cannot disaggre-

gate the components of Cs. The alternative, H1, assumes perfect surveillance. Imported cases

are distinguished from local ones under H1 and their differing impact considered. The relevant

elimination probabilities for each model are

H0 : zs jCs
1
¼ Pð^1j¼s Cjþ1 ¼ 0 jCs

1
Þ and

H1 : zs j Is1 ¼ Pð^1j¼s Ijþ1 ¼ 0 j Is
1
^Ms

1
Þ:

ð14Þ

Since H0 deems all cases local, it models Cs as a renewal process with total

infectiousness �Ls≔
Ps� 1

u¼1
Cs� uws. Thus we use Theorem 1 to obtain the jth factor of zs jCs

1
as

qj jCs
1
¼ ð1þ �L jþ1

�btðjÞÞ
� a� ctðjÞ with �btðjÞ ¼

1=cþ�ltðjÞ
. Here cτ(j) and �ltðjÞ are sums of Cu and �Lu

over window τ(j).

Under H1 the imported cases are distinguished but all cases still contribute to ongoing local

transmission [9, 28]. Consequently, Is still adheres to a renewal transmission process and The-

orem 1 yields the jth factor of zs j Is1 as qj j Is1 ¼ ð1þ �L jþ1
�btðjÞÞ

� a� itðjÞ . We compare qj j Is1 with
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qj jCs
1

directly to easily prove that

zs jCs
1
� zs j Is1 ) tm jH0 � tm jH1: ð15Þ

Not accounting for migrations shrinks the elimination probability leading to false-negative

or unnecessarily late declarations. This result makes no assumption on the dynamics for

importation other than it possesses Poisson noise (so Theorem 1 is valid for Cs) and so holds

quite generally (see Methods for further details).

Fig 5. Case under-reporting and importation lead to premature and delayed declarations respectively. In A and B we binomially sample an

empirical SARS 2003 incidence curve from Hong Kong with reporting probabilities drawn from a beta distribution with mean fρ. In A we plot the

elimination probability zs when surveillance is ideal i.e. there is no underreporting (red) versus when the under-reporting is unknown (blue). The

difference in the 95% declaration times, denoted δt95, from these curves is in B. As fρ decreases we are more likely to declare too early. In C and D

we consider an empirical MERS-CoV 2014-5 incidence curve from Saudi Arabia with local and imported cases. We increase the mean fraction of

imported cases to f� by adding Poisson imports with mean � and in C compute zs with (red) and without (blue) accounting for the difference

between imports and local cases. The change in t95 is given in D. As � and hence f� increase later declarations become more likely. We repeat our

sampling or importation procedure 1000 times to obtain confidence intervals in A–D. As f�! 0 or fρ! 1 we attain the ideal surveillance scenarios

of no unreported or imported cases.

https://doi.org/10.1371/journal.pcbi.1008478.g005
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We illustrate this phenomenon using empirical MERS-CoV data from Saudi Arabia [25] in

Fig 5C and 5D. Here repeated importations occur as zoonotic transmissions from camels to

humans. We show the increasing effect of importation by adding further (artificial) imports

via a Poisson noise variable with mean � (see Eq (4)). The mean fraction of imported to total

cases across the incidence curve is then f�. In Fig 5 we see that larger � promotes increasingly

later declaration times. Note that we do not add any imports beyond the time of the last local

case. If imports do come after this case, and seed no further local infections, which is likely for

epidemics with large heterogeneity, then the t0 assumed under H0 will be later, and further

exacerbate the bias from importation.

Discussion

Understanding and predicting the temporal dynamics of infectious disease transmission in

real time is crucial to controlling existing epidemics and to thwarting future resurgences of

those outbreaks, once controlled [21]. To achieve this understanding it is necessary to charac-

terise and study the infectious disease throughout its lifetime. While many works have

focussed on the growth, peak and controlled phases of epidemics (see Fig 2), relatively less

research has examined how the tail of the outbreak shapes the kinetics of its elimination. For

example, while much is known about how the basic and effective reproduction numbers influ-

ence the growth rate, peak size and controllability of an epidemic [5, 35], the relationship

between these numbers and the waiting time to epidemic elimination or extinction is still

largely unexplored.

However, this relationship has important implications for public health policy. Knowing

when and how to relax non-pharmaceutical interventions, such as travel bans or lockdowns,

can be essential to effectively managing and mitigating the financial and social disruption

caused by an outbreak as well as to safeguarding populations from the risk of future waves of

the disease [1, 2]. The ongoing COVID-19 pandemic for instance, which for some countries

such as New Zealand involved import-driven resurgence after an initial declaration of elimina-

tion [32], provides a current and important example where such questions might soon become

urgent.

Existing WHO guidance on deciding when an outbreak can be safely declared over takes a

time-triggered approach. This means a fixed waiting time from the last observed case, usually

based on the incubation period of the disease, is adopted [3]. While this approach is easy to fol-

low, it does not change informatively between outbreaks of the same disease, even if the pat-

terns of transmission are very different and cannot provide a measure of the reliability of this

suggested declaration time. The few existing studies that have investigated this waiting-time

problem [2, 6, 7] have all converged to what is known as an event-triggered solution in control

theory [13].

Event-triggered decision-making has been shown to be more effective than acting at deter-

ministic or fixed times for a range of problems including several involving the optimising of

waiting or stopping times [14–17]. Moreover, because it directly couples decision making to

observables of interest (in our case the incidence curve), it can better adapt or respond to

changes in dynamics. Here we have attempted to build upon these realisations to better char-

acterise the relationship between epidemic transmission and elimination. Specifically, we

focussed on computing the probability at time s, zs, that the total future incidence of the epi-

demic is zero.

This probability is directly responsible for determining how quickly an epidemic will end.

In fact, if an outbreak is defined as surviving if it can propagate at least 1 future infection then

1 − zs is precisely its survival function and is therefore rigorously linked to the future risk of
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cases. By taking a renewal process approach, we were able to derive an analytic and real-time

measure of zs that explicitly depends on up-to-date estimates of the effective reproduction

number (see Eq (9)). This result formed the main theorem of this paper and provided a clear

and easily-computed link between epidemic transmission and elimination. To our knowledge,

no previous work has directly obtained zs. Specifically, [2] computed a simpler and more con-

servative quantity while [6] and [7] approximated something similar via simulation, and so

cannot provide real-time formulae. The event-trigger for declaring an outbreak over with μ%

confidence is then the first time that zs crosses a threshold of m

100
.

To validate the correctness of our approach we considered several comparisons. We proved

mathematically that our formulae recover the true elimination probability and event trigger

given perfect knowledge of the epidemic. This provided theoretical justification for our

approach (Eq (11)). We verified practical performance by benchmarking our method against

the known (true) declaration times from simulated outbreaks of several infectious diseases

(Fig 3) and on empirical data by directly comparing to the approach in [2] (Fig 4). We found

that our method generated sensible and reasonably accurate estimates, given the fundamental

difficulties of inferring Rs at low incidence. Integrating our method with newly developing

approaches that improve on Rs estimates in these low data conditions [32], should further

enhance performance and forms part of our future work.

Figs 3 and 4 and S1 Fig also explained why time-triggered methods, such as the existing

WHO guidelines, can be unreliable or deceptive. Replicate epidemics driven by the same time-

series of reproduction numbers can engender significantly different relative declaration times

Δt95. This variability exists even if Rs is known perfectly (i.e. when we have Dt�
95

). As no single,

fixed time can reasonably approximate this distribution, time-triggered approaches are neces-

sarily performance limited. Moreover, we can never guarantee the confidence in such a decla-

ration because zs and z�s also vary considerably for epidemics of the same disease even under

identical transmission dynamics. These issues will only worsen with the additional noise deriv-

ing from non-ideal surveillance.

Exploring non-ideal surveillance noise and rigorously assessing its impact on the tail

dynamics of epidemics was the main motivation for developing our method. Consequently,

we investigated two prevalent and potentially dominant sources of noise in surveillance—

unreported and imported cases [9, 26]. While both [6] and [7] looked at the effect of constant

under-reporting on declarations, general insight into the more realistic time-varying case is

lacking. Further, the influence of importation on the epidemic tail has, to our knowledge, not

yet been examined. By adapting zs to various surveillance hypotheses we proved two key results

and developed a flexible framework for incorporating and analysing the influence of other

related noise sources.

First, we showed that any type of random under-reporting will precipitate early declara-

tions, which worsen as the fraction of unreported cases increases (Eq (13)). Second, we found

that any random importation process will lead to late declarations that become more delayed

as the fraction of imports increase (Eq (15)). Moreover, under-reporting and importation pro-

cesses can respectively, cause falsely early and late starts (i.e. t0 in our notation) to the sequence

of zero incidence days that are used to determine declaration times, thus exacerbating the bias

from each noise source. We illustrated the biases of both unreported and imported cases using

empirical data (Fig 5), clarifying how the epidemic tail is sensitive to these imperfections in the

collection or reporting of incidence data.

The theoretical framework we employed to reveal these biases can also help generate insight

into other noise sources and surveillance hypotheses. It provides a scheme for investigating case

misidentification, asymptomatic transmission and reporting delays, among others. The first
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occurs when cases of a co-circulating diseases are misattributed to the disease of interest due to

overlapping symptoms and is common among influenza-like illnesses [8]. The disease of interest

is then effectively over-reported, which may be modelled as a false importation process with Ms

as the over-reported cases in Eq (4), but past Ms counts do not contribute to Is (and so are not in

its total infectiousness term). It then follows that declaration times will likely be delayed.

Asymptomatic transmission and reporting delays are effectively types of under-reporting.

In the first, the cases observed at any time represent only the symptomatic fraction of actual

infections. Consequently, a formulation similar to Eq (3) applies, with variations depending

on whether the asymptomatic proportion has the same or a different serial interval distribution

[36]. The result is that end-of-epidemic declarations that do not account for asymptomatic

transmission will potentially be early. Reporting delays act as time-varying under-reporting

fractions, which especially degrade the more recent case days [10]. While the model required is

more involved than Eq (3), since the declaration times largely depend on cumulative case

counts, they are also likely to be premature.

While our method presents a clean framework for estimating the lifetime of an epidemic

and investigating surveillance noise sources, it has several limitations. It commonly assumes

that the serial interval distribution is known [12]. However, if surveillance is poor and changes

to the serial interval (e.g. contractions due to interventions [30]) are not measured or included

in computing zs then declaration times might be biased. Moreover, we neglect transmission

heterogeneity, are necessarily hindered by the difficulty of estimating reproduction numbers

at low incidence and do not consider interactions among noise sources. While these factors

could limit the accuracy of our predicted declaration times, many can be accommodated as

future extensions. We can incorporate heterogeneity by using negative binomial renewal mod-

els [1], improve on low incidence estimates by capitalising on specialised methods [32] and

extend the models in Fig 1 to examine mixed noise types.

A key contribution of this work has been clarifying and highlighting how realistic imperfec-

tions in the collection or reporting of incidence data can significantly influence and bias the

tail dynamics of an epidemic. Heightened surveillance should therefore be sustained even in

periods of negligible incidence. Intensive testing and tracing is especially essential as it pro-

vides a means of measuring and compensating for case under-reporting, which we found to be

among the strongest sources of bias. Maintaining good quality screening and geodata is also

important since having accurate case origins can prevent misidentification, which is a main

cause of unknown or unrecognised imports. These sentiments echo many issues currently

being faced across the COVID-19 pandemic [19, 37].

Real-time assessments of epidemic dynamics are crucial for understanding and aptly

responding to unfolding epidemics [21]. We hope that the analytic approach developed here

will serve as a useful tool for gaining ongoing insight into the tail dynamics of an outbreak,

motivate the adoption of more event-triggered decision making and provide clear impetus for

improving and sustaining surveillance across all phases of an epidemic. Our method is avail-

able (in R and Matlab) at https://github.com/kpzoo/End-of-epidemic-declarations. Our future

work aims to develop this tool from its current form as a passive means of understanding and

uncovering biases to an approach that can actively infuse additional data streams (e.g. case

ascertainment ratios) to compensate for these biases in end-of-epidemic declarations.

Supporting information

S1 Fig. Event and time-triggered declarations. We compare 95% event-triggered declaration

times to the WHO time-triggered equivalent for Ebola virus disease over 1000 simulated epi-

demics. Left panels show the true (Dt�
95

) and estimated (Δt95) declaration times (based on Eqs
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(10) and (9)) relative to the time of the last observed case. The significant variability in both,

which reflects the different shapes of possible epidemic curves with the same reproduction

number profile (Rs) indicates why time-triggered approaches such as the WHO one [3]

(ΔtWHO, which is based on 42 days plus the time to recovery) can be insufficient. The error

between the true and estimated times (δt95) and the serial interval and reproduction number

profile used are shown in the right panels.

(EPS)

1Strictly, it is the time elapsed since the last case has recovered or died. However, as this addi-

tionally delay is not informative, it does not invalidate or alter any of the results or state-

ments in this paper and so we speak in terms of the last case time for simplicity.) but not

the confidence in declaration.
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