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1 Introduction

The U.S. Presidential election of 2016 caught many by surprise. Most models and polls
predicted a victory for the Democratic candidate, Hillary Clinton. She lost to Donald
Trump, the Republican candidate, who won an overwhelming majority of electoral votes
(304 out of 538) despite coming short on popular votes by around 2.9 million votes. Not
only did many come to realize the inherent unpredictability of elections, it revealed that
investigating the drivers of election cycles remains an open and important area of research.

The 2016 election highlighted one important reason why popular and electoral vote
outcomes may not align — namely voter heterogeneity resulting from increased regional
political polarization. In U.S. elections since 1828, there have been only four (out of forty
eight) election cycles where the popular votes did not align with the electoral college out-
comes. These were: 1876 (Rutherford versus Tilden), 1888 (Harrison versus Cleveland),
2000 (Bush versus Gore), 2016 (Trump versus Clinton).! The 1876 and 1888 elections
occurred soon after the American Civil War when the country was still highly divided
politically. It is particularly interesting that two out of four non-aligned election out-
comes have occurred during the past five election cycles, partly reflecting the heightened
divisions in the U.S. political landscape in the 21st century.

In the presence of growing political polarization, incorporating heterogeneity in presi-
dential election models becomes even more necessary than ever for better understanding
regional disparities in election outcomes, and for more reliable forecasting. This paper
studies the determinants of election outcomes and their predictive content at the level of
U.S. counties in a model which admits such heterogeneity. We rely on high-dimensional
statistical modeling and consider many socioeconomic and demographic indicators at na-
tional, state and county levels, and in particular do not make use of polling data that are
likely to be volatile and subject to sudden change. We build upon the earlier work of Fair
[1978], and more recent developments of Zandi et al. [2020], also referred to as Moody’s
election model. While an advantage of the polling approach is that it theoretically elicits
current electoral preferences directly, it is subject to a variety of sampling issues with
survey outcomes contributing to significant total survey error (Kou and Sobel [2004],
Biemer [2010], Shirani-Mehr et al. [2018], Graefe [2018]). In the presence of increased po-
litical polarization, polling approaches may become even less reliable due increased voter
heterogeneity and the added difficulties of eliciting true voter intentions due to “socially

desirable responding”. Hence, forecasting performance based on polls has been mixed.

11960 (Kennedy versus Nixon) was very close but did not produce conflicting outcomes. In all four
cases the Republican candidate lost the popular vote but won the electoral college vote.



Most statistical /econometric models of U.S. Presidential elections rely on relatively
long time series data and primarily use aggregate socioeconomic and demographic in-
dicators as potential predictors. However, time series models estimated over long time
periods are generally subject to structural breaks. Certainly the factors influencing voting
behavior and the make-up of the voting body changed since the 1950’s and continues to
evolve. We focus on more recent election cycles and consider the five completed election
cycles since 2000. To compensate for lack of time series variations we use county level
data and rely on cross-sectional variation to identify the key determinants of voter turnout
and election outcomes. Variation at the level of U.S. counties admits an additional novel
feature — it allows for modeling regional heterogeneity. If factors influencing voting be-
havior differ geographically across the U.S., then heterogeneity will capture this crucial
feature of the data. Surprisingly, regional heterogeneity has received limited attention in
the literature. Zandi et al. [2020] does allow for fixed effects in a state-level model, but
assumes that all time-varying determinants of election outcomes have equal effects across
states. The implicit assumption of such pooled models is that over time, voters across the
U.S. are similarly affected by socioeconomic and political factors. Recent history suggests
that this assumption could be too restrictive.

In view of the above considerations, our model allows for heterogeneity in the effects
of socioeconomic and demographic factors on voter turnout and election outcomes across
the eight U.S. regions, as defined by the Bureau of Economic Analysis (BEA). With
county-level data we could have allowed for a greater degree of heterogeneity, allowing
the socioeconomic indicators to have differential effects even at the individual state level.
But such a fully heterogeneous approach is subject to its own drawbacks. First, some
states do not have enough counties to consistently estimate state-specific models. To
compensate, one could increase the time dimension by collecting historical data on states
with a small number of counties, but this would increase the risk of structural breaks,
and require county-level data to be available further back in time, which is not so in the
case of many socioeconomic factors. Second, counties across state borders tend to share
similar features, and pooling their data into regions is likely to result in more efficient
estimates.

In addition to allowing for heterogeneity, we also address the issue of simultaneous
determination of voter turnout and election outcomes, by modeling them together at the
level of counties. A large and growing literature on voter turnout tends to study the
phenomenon separately to voting, despite the intimate link that exists between the two

choices. Zandi et al. [2020] cites that ignoring unexpected voter turnout was a key con-



tributor to their incorrect 2016 election prediction. We adopt a recursive approach to deal
with this simultaneity by first modeling voter turnout, and then condition the election
outcomes on the fitted (predicted) values of voter turnout. We allow for regional hetero-
geneity by estimating separate county-level panel regressions for the eight BEA regions,
and compare the results to the estimates and predictions we obtain from pooled homoge-
neous models. We also apply high-dimensional variable selection algorithms to guide our
selection and estimation procedure over a large set of potential covariates. We consider
both penalized regression and high-dimensional variable selection techniques, and use the
‘Least Absolute Shrinkage and Selection Operator’ (Lasso, Tibshirani [1996]) as an exam-
ple of the former, and ‘One Covariate at a time Multiple Testing’ (OCMT, Chudik et al.
[2018]) as an example of the latter. Our collection of socioeconomic and demographic
data across states and counties is largely motivated by the literature on election model-
ing. We consider economic variables such as local unemployment, income, house prices,
government employment and healthcare expenditures. We also consider demographic and
geographic indicators such as population density, urban-rural classification, poverty rates,
education and religiosity. Inspired by recent evidence from Autor et al. [2016] and Jensen
et al. [2017], we also test the effects of being economically ‘left behind” and international
competition on voting outcomes. In addition, our model is sufficiently flexible to allow
for interactions intended to capture presidential and party incumbency effects on voter
turnout and election outcomes.

We show that the relationship between many economic variables and voting outcomes
are not uniform across U.S. regions. First using only data available prior to the 2016
Presidential election, we estimate a model allowing for such regional heterogeneity and
show that it forecasts correctly the unexpected 2016 Republican candidate victory. By
contrast, we find that a standard model which pools information across counties at the
national level would have predicted a presidential victory for the Democratic candidate
— in line with a majority of 2016 presidential forecasts leading up to the election. The
two regional models we estimated using Lasso and OCMT, respectively, forecast 308 and
307 electoral votes for the Republican candidate, compared to the actual 304 won by
Donald Trump in 2016. These results support the view that political polarization across
regions contributed to the surprise 2016 presidential election (Sides et al. [2017], Gelman
and Azari [2017]). Moreover, models incorporating regional heterogeneity and variable
selection vastly improves electoral predictions among key swing states which drive the
resulting Republican victory in 2016. Meanwhile, models which pool all of the data more

accurately predicted overall popular vote outcomes, which the Democratic party won in



2016.

We then further investigate regional heterogeneity in the determinants of election cy-
cles by estimating the recursive model over the full sample from 2000 to 2016. Our analysis
corroborates the usefulness of several variables identified in the literature as important in
explaining voting outcomes. At the same time, we highlight the extent of geographical
variation in the estimates and their importance for our forecasting analysis. Important
factors explaining voting behavior include voter turnout, local economic performance,
unemployment, poverty rates, education, house price changes, urban-rural scores. Our
results also corroborate evidence supporting incumbency effects and evidence of ‘short-
memory’ among voters: economic fluctuations realized a few months prior to the election
are indeed more powerful predictors of voting outcomes as compared to their longer-run
analogues.

Based on available data at the time of forecasting (early September 2020) we have
also updated the 2016 model specification to generate predictions for the 2020 U.S. Pres-
idential election under different regional model specifications. Our predictions suggest
the outcomes to be very close. The Lasso-regional model forecasts Republicans winning
260 electoral votes, while the OCMT-regional model forecasts Republicans winning 290
electoral votes, recalling that 270 electoral votes are need for a win. Averaging the county-
level predictions of these two models we predict 269 electoral votes for the Republican
candidate. All models point to a popular vote favoring the Democratic candidate.

The rest of this paper is organized as follows: Section 2 presents our modeling ap-
proach and its relation to the literature. Section 3 characterizes our two-stage model of
voter turnouts and election outcomes. Section 4 discusses our identification procedure to
consistently estimate the model. Section 5 goes over the data used in the analysis. Section
6 discusses how we consolidate the data into ‘active sets’ prior to estimation and Section
7 covers variable selection techniques applied during estimation. Section 8 describes the
U.S. Electoral College process from which we generate election forecasts using county level
predictions. Section 9 evaluates the 2016 U.S. presidential election outcome under our
framework, generating 2016 election forecasts only using data available prior to the elec-
tion. Then Section 10 more broadly investigates key determinants of U.S. election cycles
using data over the full sample from 2000 to 2016. Section 11 provides and discusses the

forecasts for the 2020 U.S. Presidential election. Section 12 concludes.



2 Our Modeling Approach and its Relation to the

Literature

Generally speaking, two approaches are considered in modeling and predicting U.S. presi-
dential elections: statistical (econometric/machine learning) and polling, or a combination
of the two (Leigh and Wolfers [2006]). Political opinion polls exclusively rely on survey
responses and aim to elicit the voting intentions of respondents (Wang et al. [2015]).
Opinion polls provide timely information on possible election outcomes, but have a num-
ber of well known shortcomings, including sample selection bias which tends to become
accentuated due to voter heterogeneity, and the phenomenon known as socially desirable
responding, which is believed to have biased the polling outcomes in favor of Hillary Clin-
ton during the 2016 election.? See, for example, Kou and Sobel [2004], Biemer [2010],
Shirani-Mehr et al. [2018], Graefe [2018].> The statistical approach primarily relies on
demographic and socioeconomic indicators to predict election outcomes believing that
voting intentions are formed largely by voters’ personal experiences and their counter-
factual evaluation of socioeconomic outcomes under alternative candidates. Among the
statistical approach, time-series models have historically dominated, starting from the
seminal work of Kramer [1971], Fair [1978], Fair [1996], and Arcelus and Meltzer [1975].
More recently, Kahane [2009], Hummel and Rothschild [2014]. Zandi et al. [2020] ex-
tend time-series models using panel data, estimating state-level models for U.S. elections.
Zandi et al. [2020] employs fixed effects panel regressions which allow for some state-level
heterogeneity through the intercepts, but otherwise all time-varying determinants of elec-
tion outcomes are assumed to have homogenous effects across all states. The aggregate
time series and the state-level panel data models both rely on time series dimension of the
panel, T, to be sufficiently large to obtain reasonably precise estimates of the relationship
between socioeconomic variables and the election outcomes. This in turn requires model
stability which is unlikely to hold over long time spans, particularly considering that the
socioeconomic determinants of election cycles in the 1950’s are unlikely to apply in the
21st century.

To deal with the heterogeneity and possible model instability, we exploit variations
across 3,107 mainland U.S. counties and consider only the last five election cycles starting

with 2000 (Bush-Gore election) to avoid possible model instability. In principle, we could

2Stratified sampling is required for reliable polling which could be quite costly to implement properly,
especially in a vast country with sizeable political heterogeneity such as the U.S..

3Opinion polls are to be distinguished from exit polls that are a kind of "nowcasting” and are not of
concern in this paper.



allow for the effects of socioeconomic factors to differ across all the 48 mainland states.*
However, some states have only a few counties, and with the time dimension being quite
small (with 7" = 4, noting the data for the 2000 election must be used for construction
of lagged values), the state level estimates are unlikely to be reliable and could introduce
unexpectedly large sampling errors into the analysis. Furthermore, counties across state
borders often share similar features such that estimation could be made more efficient by
pooling information from such neighboring states. We address these challenges by group-
ing the states into eight regions defined by the Bureau of Economic Analysis (BEA),
and estimate eight separate regional panel regressions. In this way we hope to strike
a balance between allowing for heterogeneity and achieving reasonable estimation preci-
sion. A pre-determined regional classification ensures against data mining and provides a
level of heterogeneity suitable for the data.® We can, therefore, capture possible regional
differences in voting preferences and, more generally, differences in demographic, social,
and economic heterogeneity across the United States. Our modeling framework allows
for intercept and slope heterogeneity across regions, while assuming homogeneity within
regions. Our model generates predictions for 3,107 counties for a given election year. We
further aggregate these predictions to generate state level and national level popular vote
predictions, as well as electoral college vote predictions.

Several recent papers have studied the geographical determinants of election outcomes,
focusing on cross-county variation. Economic performance linked to international com-
petitiveness has been shown to influence county-level voting preferences in Autor et al.
[2016] and Jensen et al. [2017]. Scala and Johnson [2017] identify large differences in
voting preferences across the rural-urban spectrum in elections from 2000 to 2016. In a
cross-sectional study, Kahane [2020] shows that the rural-urban spectrum, poverty rates,
education, among several other demographic factors, shaped 2012 and 2016 election out-
comes. Like these studies, we investigate U.S. election cycles, specifically exploiting vari-
ation at the U.S. county level while also allowing for regional heterogeneity. However, the
scope of our work not only allows for ex-post evaluation, it can also be used for forecasting
election outcomes, as we show by reporting predictions for the 2020 U.S. Presidential Elec-
tion. Moreover, we rely on recent advances in high-dimensional data analytic techniques

to guide our analysis both for selecting important determinants of voting outcomes and

4We do not model turnout and election outcomes for Alaska and Hawaii, and with some justification
assume that the election results for these states in 2012 carry over to the 2016 and 2020 elections.

5We do not follow the alternative statistical grouping strategy whereby the number and the member-
ship of the groups are determined by machine learning techniques. This could be the subject of future
research.



also for evaluating elections. Modeling elections is a high dimensional, mixed-frequency
problem. Many potential economic and demographic explanatory variables have been doc-
umented in the literature. These variables are observed at different frequencies, and their
long-term versus short-term impact on voting outcomes is not necessarily the same. We
consider both penalized regression and variable selection adjusting for multiple testing.
Specifically, we apply Lasso (Tibshirani [1996]) and the One, One-Covariate-at-a-time-
Multiple-Testing (OCMT) procedure proposed in Chudik et al. [2018], respectively.

3 Modeling Turnout and Election Outcomes

3.1 Voter turnout

One novel departure of our modeling strategy from the prevailing literature is the joint
consideration of voter turnout and election outcomes. Voter turnout and election out-
comes have traditionally been studied separately. Zandi et al. [2020] discusses election
scenarios based on low, medium and high turnouts, but does not explicitly model the
turnout process.® By contrast, we impose a recursive strategy to consistently model the
simultaneous voter turnout and election outcomes.

Understanding voter turnout, like voting behavior itself, is a topic of interest among
many political scientists and economists. Despite its importance, there is no consensus
on what best explains, causes, and/or predicts turnout. As a result, researchers have
approached the question from several different angles. Early research on understanding
voter turnout can be traced back to Powell [1986] and Jackman [1987]. Both studies
look at cross-country voting patterns and uncover a similar theme where countries with
greater institutional quality also have higher voter turnouts.” More recent research, how-
ever, argues that the role of institutional quality is much less clear-cut (see Blais [2006]),
highlighting the challenges faced by researchers attempting to understand voter turnout.

Given its long and active history, a wide variety of theories and research approaches
have led to many interesting findings. For example, survey-based approaches - where
survey-takers are simply asked whether they will vote - have been used for predicting voter
turnout. Despite their drawbacks (e.g. Social Desirability Bias) survey data used directly

or fed into a statistical model have both been shown to predict turnouts with mixed results

6Zandi et al. [2020] find that their predictions errors for 2016 are largely explained by unexpected
turnout, and their 2020 election prediction crucially depends on which scenario is adopted for turnout.

"These qualities include: competitive districts, electoral disproportionality, multipartyism, unicamer-
alism, and compulsory voting.



(Rogers and Aida [2014], Keeter et al. [2016]). Alternatively, several empirical studies
show significant associations between voter turnout and socioeconomic factors, including
campaign spending, voting history, contact with campaign workers, sector of employment,
marital status, education, gender, age and income. See, for example, (Wolfinger and
Rosenstone [1980], Matsusaka [1995], Rogers and Aida [2014]).® The likelihood of voting
has even been linked to genetics. See (Fowler and Dawes [2008] and Fowler et al. [2008]).

Cancela and Geys [2016] conduct a meta-analysis of 185 articles focused on voter
turnout in the U.S., finding that campaign expenditures, election closeness and regis-
tration requirements have more explanatory power in national elections, whereas popu-
lation size and composition, concurrent elections, and the electoral system play a more
important role for explaining turnout at subnational elections. More recently, machine
learning methods, trained on individual-level socio-demographic data have been applied
by campaigns to micro-target potential voters (Rusch et al. [2013]). A recent research
on voter turnout which is particularly relevant to our analysis is the paper by Biesiada
[2018],who analyzes county-level voter turnout and finds that inequality, education, past
voter turnout, gender proportion and median age are significantly associated with turnout
at the county-level. We shall make use of these insights in arriving at the set of potential

covariates that we will be using for our regional models of voter turnout.

3.2 Log-odds ratio of Republican to Democrat votes

Consider county ¢ located in region r for the election years t = 2000, 2004, 2008, 2012, 2016,
and denote the log-odds ratio of Republican to Democrat votes for this county by LRO.,,.

Rcrt chrt
L =ln({—)=In|—— 1
00 = 1o (Dcm) ) (1 - chf) ’ @

where R..; and D,,; denote Republican and Democratic votes, respectively, and Vg, =
Rert/ (Rert + Dery) is the Republican vote share in year ¢.” The BEA regional classifica-

Specifically, let

tion groups the 48 mainland states and the District of Columbia into eight regions: New
England, Mideast, Southeast, Great Lakes, Plains, Rocky Mountain, Southwest, and Far
West.

8In contrast, Matsusaka and Palda [1999] show that, despite statistical significance, explanatory power
for predictive purposes is not much better than if one were to guess randomly.

9The use of LRO as a measure of election outcome assumes that the effect of third party independent
candidate(s) on the two-party race outcome is negligible. This assumption seems reasonable for the
election cycles 2016 and 2020 that are the focus of this paper.



While the literature tends to study the two-party vote share, V,;, we have chosen to
consider the log-odds ratio variable, LRO,,;. Our preference for the log-odds ratio is its
wider range of variations (—oo, +00) as compared to (0, 1) for V,;;, and the fact that its use
as the dependent variable universally provides better in-sample fits as compared to using
ch'lo The use of LRO,,; is also more likely to support the linearity assumption made in
the panel regressions specified below. We further consider the difference transformation

of the log-odd ratio (from one election cycle to the next), and consider

DLROcr,t+4 = LROcr,t+4 - LROcr,t;

where DLRO,, ;44 is the change in the log-odds ratio from the election in year ¢ to year
t + 4 for county c in region r. We refer to DLRO,,++4 as the voting/election outcome.

For each region r = 1,2, ..., 8 we consider the following separate panel regressions

/ /
DLROcr,t+4 = GDLRO,r + ¢7~ZDLRO,CT + /BTVTCT,t+4 + VrXDLRO,cr,t+3 + Eert+4, (2)

where aprro, is the region-specific fixed effects, time-invariant county-specific covari-
ates are represented by zZprro.r, and state or county level time-varying covariates from
the year preceding the election are included in Xprro.cri+3. In our application, t €
{2000, 2004,2012,2016} and therefore ¢ + 4 denotes the upcoming election (four years
after the year t election, and ¢ + 3 denotes the year preceding the upcoming election. The
voting outcome is also a function of the voter turnout variable, V1, ;4.

We define voter turnout of county c in region r in election year ¢ as

Rcr,t + Dcr,t
VAP, )

which is equal to the total two-party votes as a proportion of the voting age population

VTcr,t =

(VAP,.,) of county ¢ in region r for election year ¢t. VAP is considered time-invariant
due to its persistent, slow-moving nature. Specifically, our measure of VAP is reported
as a H-year average. Due to data availability, we use 2012-2016 VAP estimates for 2016,
2008-2012 estimates for 2012, and 2005-2009 estimates for 2008 and 2004 elections.

In the year of the election, VI, 14, voter turnout, like DLRO,, 144, is determined by

10We empirically validate our choice of the functional form by comparing model fit across both de-
pendent variables: the log-odds ratio and the traditional vote share measure. We find that the log-odds
ratio indeed improves the model fit over the vote share. Details can be found in Section S2 of the Online
Supplement.



a variety of demographic and economic factors:

VTcr,t+4 = a'VT,r + 7707/»ZVT,07" + )\TVTcr,t + 57’DLROCT,H—4 + QZ«XVT,CT,t—&-Sy + Ucr,t+4> (4)

such that turnout is a function of time-invariant and time-varying variables, along with the
turnout from the previous election, and also the change in the log-odds ratio, DLRO.; ;44.
We allow the innovations to the DLRO. 144 and VT, ;.4 equations to be correlated,
cov(Eer 14, Vertya) # 0, which reflects the simultaneity of the decision to vote and for
which candidate to cast one’s vote.

In both voter and turnout equations, time-invariant factors can include slow-moving
socioeconomic and demographic factors like education, migration, religiosity, and urban-
rural classification. Time-varying factors include local unemployment rate, poverty rate,
household median income, changes in house prices, government and private employment,
among others.

Notice that Equations 2 and 4 represent a system of simultaneous equations. Voting
is a function of voter turnout (one can only vote if one shows up), and voter turnout is (in
general) a function of the voting outcome. This introduces endogeneity into the voting
process and biases the least squares estimates of 3, and ¢, when €44 and v 444 are
correlated. Non-zero correlations between e..;44 and v 14 could arise due to common
beliefs about the election outcomes. For example, strongly held beliefs about the election
outcome in a given state might adversely impact the decision to vote, whilst the decision
to vote clearly does affect election outcomes no matter which way the voter decides to

cast his/her vote.

4 Recursive Identification

The estimation of DLRO,, 44 and VT, ;14 equations clearly encounters an identification
problem very much akin to the identification of demand and supply shocks in standard
supply-demand models in economics. However, if one is concerned with prediction, a re-
duced form model of DLRO,, ;4 can be used where the turnout variable V1, ;.4 is solved
out and DLRQO,, ;44 is defined only in terms of the union of predetermined variables in-
cluded in the two equations. Such an approach ignores the possible contemporaneous
effect of voter turnout on election outcomes and could lead to inefficient predictions. In

this paper we follow the alternative structural approach, and identify the model by im-

10



posing a triangular restriction on the contemporaneous dependence between DLRO,; 114
and VT, 14, namely by setting 6, = 0. The intuition behind this restriction is that the
individual decision to vote is not affected by his/her expected state-level collective out-
come. This type of restriction is inspired by the pioneering work of Wold [1960], and is
known as recursive causal ordering and often adopted in empirical macroeconomic anal-
ysis of simultaneous equation systems. But note that we do allow for contemporaneous
dependence between the innovations to the voter turnout and the election outcome. In
this sense the identification scheme adopted can be viewed causal with VT causing DL RO
and not vice versa.

We believe the recursive ordering, with V71, ;.4 included first, is a plausible a priori
restriction, especially in the U.S. context where presidential elections are held simultane-
ously with other local and state-level elections, covering the election for the Senate and
all the House seats. These additional elections influence turnout regardless of expected
presidential ballot outcome. Second, the data and the literature suggest that turnout is
highly persistent. Moreover, the existence of ‘blue’ states and ‘red’ states — states which
consistently and predictably vote for one of two parties — suggests that turnout does not
collapse when collectively there are strong expectations for a particular party to win the
state.

Subject to the identifying restriction, §, = 0, consistent estimation of the remaining
parameters of the V1, ;14 and DLRO,, 14 equations can be carried out recursively using
a two-stage estimation procedure. In the first step the turnout equation (V7 ;14) is esti-
mated by least squares, and then the fitted values of voter turnout (denoted by ﬁcr,t+4)
is used as a regressor in the election outcome equation (DLROCWH).H The estimating

equations can now be written as

Py ~ 2 E A
VTcr,t+4 = ayr, + wrZVT,cr + )\TVTcr,t + HTXVT,cr,t+37 (5)
and
DLRO,ys1a = d 3 3VT 3/ 6
ert+d = ApLROsr + OrZDLROer + BV et + Y XDLRO cr 143 (6)

We allow for regional heterogeneity in both equations — all coefficients are specific to
region r. In addition to the eight region-specific panel regressions, we also consider a
pooled model for comparison purposes. The pooled model is a restricted version of the

heterogeneous model such that all coefficients in the turnout and voting equations are

A formal proof of consistency is provided in Section S4 of the Online Supplement.

11



restricted to be the same across all the regions, namely

aro, = aro, \r = A\, ApLrOs = GpLRO, Br = 3, and so on.

The regional and pooled models are estimated by least squares, subject to the variable

selection problem that will be addressed below.

5 Electoral and Socioeconomic Data and Their Sources

We use data from county-level presidential votes and turnouts for five U.S. elections:
2000, 2004, 2008, 2012, and 2016. Because we model the change in the log-odds ratio of
Republican vote, our regression estimates are based on four election cycles: 2000-2004,
2004-2008, 2008-2012, and 2012-2016. Our data set is composed of a total of 3,107 counties
over the mainland 48 states plus Washington D.C. for a total of 12,428 county-election
cycles.'? Each state, and therefore each county, falls into to one of the eight BEA regions.
The list of states included in these regions is given in Table 1 below, and depicted in
Figure S.1 of the Online Supplement. Figures 11 and 12 show the histograms of the voter
turnout variable, VT, and the change in Republican log-odds ratio, DLRQO, respectively,
both for the mainland US, as well as for the eight BEA regions. These histograms provide
a visual account of the degree of regional heterogeneity in V1" and DL RO variables which,
as we shall see, play an important role in understanding and predicting U.S. presidential
election outcomes.

Table 1: Bureau of Economic Analysis regional classification with Swing States designated
in bold

BEA Region States
1 New England ME, NH, VM, MA, RI, CT
2 Mideast NY, NJ, PA, DE, MD, DC
3 Southeast VA, NC, SC, GA, FL, KY, TN, AL, MS, AR, LA, WV
4 Great Lakes MI, OH, IN, IL, WI
5 Plains MN, MO, KS, NE, IA, SD, ND
6 Rocky Mountains MT, ID, WY, UT, CO
7 Southwest TX, OK, NM, AZ
8 Far West CA, NV, WA, OR, AK, HI

As predictors of voter turnout and election outcomes we consider two categories of

12The number and composition of some of the counties have undergone some changes over the past two
decades. The procedure we followed to deal with these changes is explained in the Online Supplement.
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covariates: time-invariant and time-varying. Data on time-invariant covariates tend to be
collected at low frequencies and either do not vary or show very little variation over the
four election cycles that we are considering - we treat all such variables as time-invariant
and use their time averages if needed. These include measures on county demographics,
education, religiosity, migration, population density, urban-rural classification scores, and
vote-by-mail policy of the state. Time-varying measures vary at state or county levels.
These include economic data on unemployment rates, house prices, poverty rates, and
median incomes. Moreover, we consider data on export-weighted real exchange rates by
U.S. state (as a proxy for international competition) , government size, healthcare costs,
inflation, and Midterm elections, that vary across states but do not vary across counties
within a given state.

The choice of the covariates is guided by the literature. But we also include a new
covariate that measures relative economic performance to gauge the degree a county has
been ‘left-behind’. This is measured as county ¢’s annual real GDP growth relative to the
national and/or the regional average real GDP growth. We find that being economically
left behind over the past several years is significantly correlated with changes in the
Republican vote share, and we therefore incorporate this novel measure as a covariate to
explore its implications further. Detail of how the ‘left-behind’ measure is constructed is
provided in the Online Supplement.

To capture spatial effects, we compute and incorporate local average measures of
several county-level covariates. The local variables corresponding to county ¢ are the
average of individual county measures of all counties within 100 miles of county c¢.'* We
consider both individual and local measures for many county-level variables including
migration and education, while unemployment and house prices are computed as local
measures only. Local variables are denoted with a ‘*’. Hence, “edu2000” and “edu2000*”
correspond to individual and local education rates, respectively. County house prices and
unemployment rates are always local averages.

The dynamic nature of election cycles admits additional complexity into the prediction
problem. Dynamics matter, and voters may place differential weight on determinants of
their vote depending on not just what was realized, but when it was realized relative
to the election. The literature, for example, documents a strong short-lived memory
among voters, who typically consider only the past year’s economic performance when

evaluating the incumbent party’s overall performance. To embed these features in our

13Between-county distances are taken from the NBER database, specifically these are great-circle dis-
tances calculated using the Haversine formula based on internal points in the geographic area.
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model, we take a mixed-frequency approach and include both short-term and longer-term
measures of our time-varying covariates. For example, we include annual average house
price changes as well as house price changes three months prior to the election. We do
similarly for unemployment rates, to capture both shorter-term and longer-term effects of
economic conditions on the voting behavior. 1-year and 3-month average unemployment
rates will be denoted by “ump_L1” and “ump_M3”, respectively.

Finally, to capture the incumbency effects on voter turnout and election outcome we
consider two types of indicators, and distinguish between presidential and party incum-
bency indicators. The “incumbent party indicator” takes the value of 1 if on the election
day the president in power is Republican and -1 if he/she is a Democrat. The “incumbent
president indicator” takes the value of 1 if the president who is running for re-election is
a Republican, takes the value of -1 if he/she is a Democrat, and takes the value of 0 if
neither of the two candidates is incumbent. These indicators are considered on their own,
as well as interacted with a number of other covariates. In this way we allow for a wide
variety of incumbency effects (positive or negative) discussed in the literature, without
biasing the results in favor of or against the incumbent president or party.

Additional information on data sources, the transformations used to construct the
covariates and data cleaning carried out to deal with changes in county boundaries and

other variable definitions, are provided in Section S1 of the Online Supplement.

6 Active Sets for V1" and DLRO Panel Regressions

As is clear from the above account, there are many covariates that can be considered as
potential predictors of VT and DLRO variables, and some variable selection is required
to avoid over-fitting. Variables for the voter turnout regression, zyr. and Xyr e 43,
are taken from a set of covariates designated to turnout. Similarly, covariates for the
voting odds ratio regression, Zprro.r and Xprro.cri+3, are selected from a different set
designated to the voting equation. We refer to these sets as ‘Active Sets’ for VT and
DLRO, respectively.

First, we construct a single data set which includes many individual and local mea-
sures, temporal lags, incumbency indicators and their interactions. The result is a large
set of potential predictors which reflect changes in social, economic, or demographic condi-
tions across both space and time. Many of these variables are highly correlated with each
other. Therefore, to discipline our estimation procedure, active sets contain exclusively

the set of covariates to be considered by the regression model. The choice of potential
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covariates is largely inspired by the literature. We also account for the temporal effects,
again inspired by the literature, documenting a strong short-memory among voters such
that they tend to disproportionately overweight economic progress or deterioration made
within the several months preceding the election (and ignore longer-lived developments

over the entire 4-year election cycle) .

Table 2: Summary statistics for the covariates in the active set for V'T" panel regressions

over the period 2000-2016

Covariate Description Mean  St. Dev. Regional Coverage
r_incu_pa indicator taking 1 if incumbent party is Republican, 0.000 1.000 National
-1 if incumbent party is Democrat
r_incu_pr indicator taking 1 if Republican re-election, 0.000 0.707 National
-1 if Democratic re-election, 0 if no re-election

VT_L1 voter turnout proportion 0.564 0.097 County
VT_L1 x r_incu_pa. Lagged VT interacted with incumbency indicator 0.015 0.583 County
hlt_L1 change in log healthcare expenditures, year preceding election 0.046 0.016 State
gov_L1 change in log government employment, year preceding election —0.012 0.015 State
ump_L1 unemployment rate avg., year preceding election 0.061 0.020 County
hpret_L1 change in log house prices avg., year preceding election 0.022 0.043 County
rp_L1 change in log rental expenditure, year preceding election 0.032 0.012 State
religion religiosity rate 0.511 0.170 County
religion x r_incu_pa. religion interacted with incumbency indicator 0.000 0.539 County
migrate net migration (time-invariant) 0.005 0.009 County
migrate x r_incu_pa. migrate interacted with incumbency indicator 0.000 0.010 County
edu2000 proportion with bachelor’s degree or higher (time-invariant) 0.165 0.078 County
edu2000 x rincu_pa.  edu2000 interacted with incumbency indicator 0.000 0.183 County
In(m.inc) log median household income 10.633 0.254 County
In(m.inc) x riincu_pa. In(m.inc) interacted with incumbency dummy —0.075  10.636 County
povr poverty rate 0.155 0.062 County
pOVT X r_incu_pa. povr interacted with incumbency dummy —0.013 0.167 County
rural urban-rural score (-4 to 4, time-invariant) 0.111 2.680 County
rural x r_incu_pa. rural interacted with incumbency dummy 0.111 2.680 County
vmail_d indicator whether state mandates mail-in voting (1), —0.301 0.564 State

optional (0), no mail-in voting (-1)

Among time-varying factors (Xprro.crt+s and , Xyret43) we include both short-run

(3-months before the election) and medium-term (1-year preceding the election) changes
in those measures which are observed at high frequency, like house price changes and local
unemployment rates. This allows economic changes which occur just prior to an election to
have a different, potentially more powerful, impact on voting behavior compared to longer
term changes in economic conditions. Time-invariant covariates (zyr. and zprro.cr)
include slow-evolving socioeconomic and demographic factors like migration, urban-rural
score, education and religiosity.

Table 2 lists and describes the active set for the voter turnout (V1) variable. The

active set contains a variety of national, county, and state-varying covariates. Voter
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turnout is a highly persistent process, and as such lagged turnout is also included in
the active set. To account for covariates having effects which are party-agnostic, and
rather go in favor or against incumbent parties, we interact several variables with an
incumbent party indicator which indicates whether the current president is Democratic

or Republican.

Table 3: Summary statistics for the covariates in the active set for DL RO panel regressions
over the period 2000-2016

Covariate Description Mean  St. Dev. Regional Coverage
r_incu_pa indicator taking 1 if incumbent party is Republican, 0.000 1.000 National
-1 if incumbent party is Democrat

dLRO _hous change in log Republican odds from preceding House election 0.087 0.346 State
VT voter turnout proportion from the first-stage VT regression 0.576 0.090 County
VT x rincu_pa. VT interacted with incumbency indicator 0.015 0.583 County
LBCG_L1 county ’Left-Behind’ measure, year preceding election —0.005 0.087 County
LBCG_L1 x riincu_pa. LBCG_L1 interacted with incumbency indicator —0.002 0.087 County
hlt L1 change in log healthcare expenditures, year preceding election 0.046 0.016 State
gov_L1 change in log government employment, year preceding election —0.012 0.015 State
rusd_L1 change in log real effective USD, year preceding election 0.009 0.055 State
rusd_L1 x r_incu_pa. rusd_L1 interacted with incumbency indicator —0.047 0.031 State
rusd_M3 Change in log real effective USD, 3 months preceding election —0.012 0.114 State
rusd_M3 x r_incu_pa. rusd_M3 interacted with incumbency indicator 0.046 0.105 State
ump_L1 unemployment rate avg., year preceding election 0.061 0.020 County
ump_L1 x r_incu_pa. ump_L1 interacted with incumbency indicator —0.007 0.064 County
ump-M3 unemployment rate avg., 3 months preceding election 0.060 0.019 County
ump_M3 x r_incu_pa. ump_M3 interacted with incumbency indicator —0.004 0.063 County
hpret_L1 change in log house prices avg., year preceding election 0.022 0.043 County
hpret_L1 x riincu_pa.  hpret_L1 interacted with incumbency indicator 0.001 0.048 County
hpret_M3 change in log house prices avg., 3 months preceding election 0.025 0.055 County
hpret_M3 x r_incu_pa.  hpret_M3 interacted with incumbency indicator —0.007 0.060 County
rp L1 change in log rental expenditure, year preceding election 0.032 0.012 State
inf L1 inflation, year preceding election 0.021 0.022 State
migrate net migration (time-invariant) 0.005 0.009 County
migrate* local net migration (time-invariant) 0.010 0.006 County
edu2000 proportion with bachelor’s degree or higher (time-invariant) 0.165 0.078 County
edu2000* local proportion with bachelor’s degree or higher (time-invariant) 0.165 0.040 County
In(popdens) log population density (time-invariant) 3.727  1.668 County
In(m.inc) log median household income 10.633 0.254 County
In(m.inc) x riincupa.  In(m.inc) interacted with incumbency indicator —0.075  10.636 County
povr poverty rate 0.155 0.062 County
rural urban-rural score (-4 to 4, time-invariant) 0.111 2.680 County

Mean and standard deviation for actual, not model-fitted voter turnout “VT” reported. In actual model
estimation the active set for DLRO contains VT, the fitted value of VT' obtained from estimating
Equation 5. Because VT is model-specific, the mean and standard deviation of the fitted voter turnout
VT differs from actual VT and also varies across models.

Table 3 lists and describes the active set for the change in log-odds (DLRO) variable.
As with the model for voter turnout, this active set contains national, state, and county-
level covariates. The number of regressors in the active set exceeds 30. Time-invariant
active set regressors include population density, rural-urban score, education rates and

migration rates. Covariates which vary over time include house election results, economic
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‘left-behind’ variable (not included in the voter turnout regressions), healthcare costs,
government employment share, export-weighted state-level real exchange rate changes,
local unemployment, house price changes, rent costs and inflation. Notice also that this
active set includes the fitted values of voter turnout variable, ﬁ, which is obtained from
the application of variable selection algorithms to the V'T" panel regressions. As a result
the particular fitted values, ﬁ, included in the active set for the DLRO variable will
depend on the outcome of the variable selection algorithm applied to the panel regressions
for the VT variable (which mimic the recursive nature of our identification scheme). In
a sense high-dimensional variable selection algorithms are applied twice, but recursively.
With this in mind the summary statistics given for the V'T" variable in Table 3 refer to
the realized voter turnout values, and not the fitted ones used for variable selection in the
case of DL RO regressions.

Finally, in the case of the regional models, we exclude state-level covariates (that do
not vary across counties within a given state) listed in the active set because they do not
provide sufficient variation and become collinear. The national or pooled model includes

state-level covariates listed in the active sets as well.

7 Estimation and Variable Selection Algorithms

Given the high-dimensional nature of the problem, we consider two estimation/selection
algorithms that address the over-fitting problem, namely cross-validated Least Absolute
Shrinkage and Selection Operator (Lasso) originally introduced by Tibshirani [1996]),
and the One Covariate at a Time (OCMT) recently proposed by Chudik et al. [2018].
We estimate both nationally pooled and regional models, the latter allowing for hetero-
geneity across BEA regions.'* At the regional level, Lasso and OCMT is applied to the
region-specific covariates, by pooling the observations over the four election cycles under
consideration. The main difference between Lasso and OCMT is in the way they deal
with the over-fitting problem. Lasso introduces a penalty term in the minimand used for
estimation, and calibrates the extent of penalization by cross-validation (typically 10-fold
cross-validation). The use of cross-validation is supported by Monte Carlo evidence for
standard models with homoscedastic and cross-sectionally independent errors. But both
of these assumptions are likely to be violated in the case of the panel regressions on U.S.
counties.

By contrast, OCMT is a multi-step algorithm which allows for multiple testing in

4For robustness we also considered standard OLS estimation along with Adaptive Lasso (Zou [2006]).
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variable selection. In the first stage, OCMT runs univariate regressions, one at a time,
selecting significant covariates after adjusting the critical value of for multiple testing. In
subsequent stages, OCMT includes all selected variables in the first stage in a multiple
regression, and then re-tests those covariates which were not selected in the first stage, and
so on. The critical values adjusted for multiple-testing given by c,(k,d) = @' (1 — £5) ,
where ®~! (.) is the inverse of the cumulative distribution function of the standard normal,
p is the nominal size of the individual tests (not allowing for multiple testing), k is the
number of covariates in the active set,  captures the degree to which the critical values are
adjusted for multiple testing. Extensive Monte Carlo experiments carried out by Chudik
et al. [2018], suggest setting 6 = 1 in the first stage of OCMT and § = 2 in subsequent
stages. We set p = 0.05 and note that the results are reasonably robust to setting p = 0.01
or 0.10.

We also adjust the standard errors of the individual tests used in the OCMT procedure
for possible error variance heterogeneity and spatial dependence across counties, assuming
that equation errors within the same state are correlated due to political boundaries
and the state-level governing nature of the U.S., but rule out residual serial correlation.
Accordingly, we base our computation of individual t-tests using standard errors clustered
by state-year. This yields a reasonably large number of 196 clusters (49 states x 4 years).!®

Details of the selection and estimation procedures for Lasso and OCMT are provided

in Section S3 of the Online Supplement.

8 U.S. Electoral College

U.S. elections are determined by the number of Electoral College votes obtained. The
Electoral College consists of 538 electors and an absolute majority of 270 electoral votes
is required to win the election. Each state is assigned a fraction of total delegates for the
electoral vote. For example, the share of California in 2016 was 55/538. This share is to

be compared to the share of popular votes by state, given by:

Rst + Dst
R, + Dy

where R, is the number of Republican votes in state s, and R; is the total number of

Wst =

Republican votes across all states (including DC): R, = Zilzl R,;. Similarly, for D, and
Dy. Let Vi = Ry /(Rst + D) and V, = Ry /(Ry + D;), denote state-specific and national

15Similar results are obtained if clustering is done at the state level only.
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level shares of Republican votes, respectively. Then V; = Zi’lzl wgt Vi, where wy; is defined

above.

We can distinguish between an aggregate predictor of V; and then declare the Repub-
lican candidate as the winner if V; > 0.5. But if we follow the US Electoral College rule,

we can only declare the Republican candidate as the winner if:

51

> w(d,)1(Vy — 0.5) > 0.5 (7)

s=1
where 1 (a) = 1 if @ > 0, and zero otherwise, and w(ds) = ds/d, with ds the number
of delegates allocated to state s, and d = 538 is the total number of delegates. Clearly
S w(d,) = 1. Hence the aggregate (popular) and delegate outcomes need not coincide.

Note that V; > 0.5 can also be written equivalently as

51

Zwst‘/;t > 0.5. (8)

s=1
Clearly, (8) does not necessarily imply (7). The key assumption here is that all electoral
votes go towards the party that wins the state’s popular vote. Looking at recent history,
this holds generally as many states have implicit commitments to allocate electoral votes
to the candidate who wins the state by the popular vote. In 2016, all but seven electors

followed this rule.'®

8.1 Forecasting turnout and election outcomes

From the previous section it is clear that we require state level Republican (Democratic)

vote shares to predict the overall outcome of the election. To this end we first note that

Rcr,t+4 + Dcr,t+4
)
VAPcr,t+4

VTcr,t+4 -

where VAP, ;14 is the eligible voting population in county c of region r in the election
year t + 4. Also recall that

16Tn Maine, the popular vote was won by the Democratic candidate. Three of the four electoral votes
were given to the Democratic candidate, while one electoral vote was cast for the Republican candidate.
In Washington State, four out of eight electoral votes were cast in favor of candidates other than the
popular vote winner (which was the Democratic candidate). In Texas, despite the popular vote favoring
Republicans, two electoral votes were cast for non-Republican candidates.
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LROCT,t+4 = DLROcr,t+4 + LROcr,t;

and

Rcr t+4
In({ —— | =LRO. 4.
n ( Dcr,t+4 ) o

Suppose that we have forecasts for V1, ;14 and LRO,, 4, and using the above identities
note that

VAPcr,t+4VTcr,t+4
1+ exp(—LRO;114)

Rcr,t+4 -

exp (LRO,,
=VAP, 144V T 44 < b c+4) > . (9)

1+ exp(LRO¢t14)

Similarly

1
Dcr = VAPCT VTCT . 0
Rav A4 A4 (1 + exp (LROcr,t+4)) 1o

These county-specific votes can now be aggregated to the state level. Let Cs; denote the

set of all counties in state s. Then state popular votes are computed as

Rs,t+4 = Z Rcr,t+4a and Ds,t+4 = Z Dcr,t+47 (11)

creCs creCs

with R4 and D444 given by (9) and (10), respectively. Hence the Republican vote

share for state s is given by

exp(LROcr t44)
v > ree, Rertra > erec, VAPeriraV e iia <1+emp(LROCT,t+4) (12)
s,t+4 — = .
ZCT‘ECS (RCT7t+4 + DCT,t+4> ZCT’EC.S VAPCT7t+4VTCT,t+4

With state-level Republican vote shares in hand, state-level popular vote outcomes, Elec-

toral College vote outcomes, and national popular vote outcomes can be predicted.

9 2016 Presidential Election: Prediction and evalua-
tion

We first generate ez ante forecasts of the 2016 Presidential Election using the active sets
tabulated above, and the Lasso and OCMT selection algorithms. Using data from 2000
through 2012 only, we recursively estimate the panel regressions (4) and (2) subject to

the identifying restrictions, 9, = 0 and after variable selection. These selected regressions
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are then used to generate out-of-sample 2016 election forecasts at the county level. We
consider both a national pooled model and a model which allows for heterogeneity across
BEA regions. We refer to these as pooled and regional model/forecasts, respectively. Im-
portantly, we only model the 48 U.S. mainland states plus the District of Columbia. We
do not model Hawaii or Alaska. There are multiple reasons for this. The first reason is
because the two states are not in close geographical proximity to other states, hence they
are likely to be comprised of relatively unique characteristics such that a regional model
would be inadequate. Moreover, the two states cannot be modeled individually because
of the relatively small number of counties within each state. Hawaii has five counties and
Alaska has 19 boroughs. That Alaska is composed of boroughs rather than counties fur-
ther complicates modeling county-level voting outcomes for the state. Fortunately, both
Alaska and Hawaii are non-swing states, historically voting Republican and Democrat,
respectively. Therefore, in our electoral and national predictions we assume Alaska votes
Republican and Hawaii votes Democrat.

Comparing predicted state and national popular vote and electoral votes with actual
outcomes is a natural way to evaluate the forecasting performance of our models. Alter-
natively, we also provide evaluations of state and overall predictions based on traditional
statistical measures. We compute state-specific and national level root mean squared
forecast errors (RMSFE). State-specific RMSFE are defined by

_— 2
RMSFE, = [ we, (DLROCT,t+4 - DLROMH) , (13)

creCs

where west = (Restia + Destra) | (Rsiya + Dsya), with Rgyq and Dgtyq computed as

in (11). The national RMSFE measure is given by

49
RMSFE = | > w,,RMSFE?, (14)

s=1

where w; = (Rysea + Dyyia) / (Risa + Disa), with Ry = 300 Ryypa, and Dyyy =

Ziil Ds,t+4-
Our out-of-sample forecast and corresponding evaluations correspond to the 2016 elec-

tion.
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9.1 Pooled and regional forecasts

To produce 2016 out-of-sample forecasts, we use data from 2000 up to but preceding the
November election of 2016. The contenders were Democratic candidate Hillary Clinton
and Republican candidate Donald Trump. Forecast results are provided for: state-level
popular votes, electoral votes, and the overall national popular votes. Tables with electoral
outcomes for a subset of notable swing states are also included.

State level forecast results for 2016 are reported in Tables 6 and 7. These include state
election outcomes and forecasts for the Republican vote share, V; s = 1,2,...,49, along
with the forecasts of Electoral College votes for the Republican candidate. Both tables
report the pooled and regional forecasts, with Table 6 giving the results using Lasso and
Table 7 giving the results for OCMT.

Figure 1: Absolute Prediction Errors for changes in 2016 Log Republican Odds
(DLRO,2016) across Counties using the Lasso Estimation Algorithm
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Absolute prediction errors for changes in log Republican odds by county, computed as |DLRO,; 2016 —
DLRO.; 2016] (See Equation 13).

It is clear that, irrespective of which algorithm is used for variable selection, the
primary difference between the forecasts is whether we allow for regional heterogeneity or
not. Pooled forecasts predict a Democratic victory whilst the regional forecasts correctly
predict a Republican victory. For example, the pooled model using Lasso algorithm
predicts Republican winning 253 electoral college votes, whilst if we allow for regional

heterogeneity the number of electoral votes won by the Republican candidate is predicted
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Figure 2: Absolute Prediction Errors for changes in 2016 Log Republican Odds
(DLRO,r2016) across Counties using the OCMT Estimation Algorithm
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Absolute prediction errors for changes in log Republican odds by county, computed as |[DLRO., 2016 —
DLROC,«72016| (See Equation 13)

to be 308. Based on the realized vote shares, Trump would have won 305 electoral college
votes - although as it turned out he received 304 electoral votes since some electors did not
follow the state level popular vote outcomes.'” A very similar conclusion emerges if we use
OCMT algorithm. Pooled OCMT would have predicted 265 electoral votes for Trump,
as compared to 307 electoral votes under if we allow for regional heterogeneity. These
results clearly highlight the importance of heterogeneity and could explain the failure of
many professional forecasters to correctly predict the outcome of the 2016 election.
Statistical forecast comparisons based on county-level forecasts provide a similar pic-
ture. Figures 1 and 2 present the spatial distribution of absolute prediction errors
across mainland U.S. counties for the change in the Republican log-odds ratio, namely
|DLROy 2016 — lﬁR\Ocr’zouj’. Clearly, some counties, regions and states were more diffi-
cult to forecast than others. The Midwest exhibits particularly high prediction errors as
seen by its generally darker shade. However, the reduction in forecast errors is noticeable
when comparing the pooled forecasts against the regional forecasts. On average across
counties, absolute prediction errors are about 10 percent lower under the regional model

for both Lasso and OCMT. It is worth noting, however, that some county predictions fare

17See https://en.wikipedia.org/wiki/2016_United_States_presidential election
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better under the pooled model, specifically those located in the southwestern part of the
U.S.

9.2 Swing state forecasts

U.S. presidential elections usually come down to the results from key swing states. There-
fore a model that predicts the swing states well is likely to go a long way in correctly
forecasting the election. We consider the following 12 states as key swing states: Col-
orado, Florida, Iowa, Michigan, Minnesota, Nevada, New Hampshire, North Carolina,
Ohio, Pennsylvania, Virginia, and Wisconsin. Figures 3 and 4 focus on the county-level
prediction errors for these swing states. Both Lasso and OCMT regional models im-
prove upon Lasso and OCMT pooled predictions across swing states broadly noted by

the visually apparent reduction in absolute prediction errors.

Figure 3: Absolute Prediction Errors for changes in 2016 Log Republican Odds
(DLRO,9016) across Counties in Swing States using the Lasso Estimation Algorithm

LASSO Pooled Model LASSO Regional Model

Absolute prediction errors for changes in log Republican odds by county, computed as |[DLRO.y 2016 —
DLROC7-72016| (See Equation 13)

The improvement in county-level predictions also have important implications for the
national outcomes. Table 4 shows the realized and predicted electoral college votes among
the key swing states. The Republican candidate won 114 electoral votes from the swing
states in 2016 out of the possible number of 156. Comparing the pooled and regional

models, the regional models markedly outperform the pooled models in terms of swing
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Figure 4: Absolute Prediction Errors for changes in 2016 Log Republican Odds
(DLRO,r2016) across Counties in Swing States using the OCMT Estimation Algorithm

OCMT Pooled Model OCMT Regional Model

Absolute prediction errors for changes in log Republican odds by county, computed as |[DLRO., 2016 —
DLROCT,2016| (See Equation 13)

state forecasts. The Lasso-regional and OCMT-regional models predicted the Republi-
can candidate winning 117 and 109 electoral votes in the swing states, respectively. By
contrast, the pooled Lasso and OCMT models predicted 62 and 74 Republican electoral
votes, respectively, which resulted the pooled models to forecast an overall presidential
victory for the Democratic candidate in 2016.

Figure 5 compares swing state predicted Republican vote shares (V;) obtained using
the Lasso algorithm. The Lasso-regional model correctly predicted 9 of the 12 swing states
outcomes, namely Florida, Iowa, Nevada, New Hampshire, North Carolina, Ohio, Penn-
sylvania, Virginia and Wisconsin. The OCMT-regional model also correctly predicted 9
of 12 swing states, namely Florida, lowa, Michigan, Minnesota, New Hampshire, North
Carolina, Ohio, Virginia, Wisconsin (see Figure 6).

One swing state mis-predicted by both Lasso and OCMT regional models but cor-
rectly predicted by both pooled models was Colorado. Meanwhile the most noticeable
improvement from using the regional models over pooled models can be seen with Wis-
consin, a Midwest swing state. The state voted Republican in 2016, allocating 10 electoral
votes to the Republican candidate. Both the Lasso and OCMT pooled models predicted

a Democratic winner in Wisconsin. By contrast, both regional Lasso and OCMT models
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Table 4: 2016 Swing State Pooled and Regional Republican Electoral College Vote Fore-
casts

Pooled Forecasts Regional Forecasts
State ds Realized Lasso OCMT Lasso OCMT
CO 9 0 0 0 9 9
FL 29 29 29 29 29 29
TA 6 6 0 6 6 6
MI 16 16 0 0 0 16
MN 10 0 0 0 10 0
NC 15 15 15 15 15 15
NH 4 0 0 0 0 0
NV 6 0 0 6 0 6
OH 18 18 18 18 18 18
PA 20 20 0 0 20 0
VA 13 0 0 0 0 0
WI 10 10 0 0 10 10
All Swing Votes 156 114 62 74 117 109

Column dg refers to total number of electoral votes per state (Equation 7). Forecasts are the model
implied number of Republican electoral college votes. Regional forecasts are generated using the eight
separate panel regressions for the eight BEA regions.

Figure 5: Swing State Forecasts and Realized Republican Vote Share (V) for 2016 using
the Lasso Estimation Algorithm
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predicted a Republican win in Wisconsin.

The pooled models also failed to correctly predict Pennsylvania, a major swing state
with 20 electoral votes. The Lasso-regional model correctly predicted the Republican win
in Pennsylvania. The Republican victory in Michigan was also mis-predicted under both

pooled model specifications, but correctly predicted by the OCMT-regional model.
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Figure 6: Swing State Forecasts and Realized Republican Vote Share (V) for 2016 using
the OCMT Estimation Algorithm
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9.3 U.S. Mainland Popular Vote Forecasts

The U.S. mainland popular Republican vote share forecasts (V) are reported in Table 10.
It is interesting that the pooled forecasts do better than the regional forecasts at predicting
the aggregate outcomes, irrespective of whether the OCMT or the Lasso algorithm is used.
The RMSFE of pooled forecasts using Lasso (OCMT) is 0.078 (0.077) as compared to 0.090
(0.102) for the regional models. Also the pooled models predicted a Republican vote share
of 0.494 (0.499) which is closer to the realized value of 0.489, as compared to 0.510 (0.514)
predicted using the regional Lasso (OCMT) model. The main advantage of the regional
models lies in their ability to deliver better popular forecasts at state level which matters
for correctly predicting presidential election outcomes. Once again the failure of the pooled
models to accurately forecast the outcome of U.S. presidential elections points toward the
essential heterogeneity that exists across US states and regions which is responsible for
the misalignment of the popular and electoral vote outcomes that occurs, albeit rarely.
Our results suggest that political polarization is not evenly distributed across the U.S.
Rather, voter preferences vary systematically across regions. For example, California
may have the largest population, and on average voters within the state share similar
preferences, reflecting its historical favor towards Democratic candidates. By contrast, in
the Midwest, voters share similar preferences, but those preferences may contrast starkly
with those of voters in California, and may change more rapidly at the same time. It is not
surprising that voter heterogeneity varies across regions given that industry composition,
social values, and demographics are also shown to vary across regions. Taken along with

the disproportional electoral vote allocation of some states relative to their population,
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regional heterogeneity can drive deviations between popular and electoral presidential
vote outcomes.

To summarize, allowing for parameter heterogeneity across regions considerably im-
proves 2016 out-of-sample forecasts of both state popular and electoral outcomes when
compared to pooling approaches. These results are consistent with regional heterogeneity
being an important feature of the U.S. electoral landscape. Homogeneity within regions
but heterogeneity across regions can arise when people with similar preferences geograph-
ically cluster despite the presence of considerable diversity at the national level. Our
findings are consistent with that idea, as our regional model’s implicit assumption is that
parameters vary across U.S. geographical regions, but are constant within regions. While
the regional models help forecast the electoral college victory of the Republican party in
2016, the pooled models are better at forecasting the overall popular vote. Political polar-
ization across regions coupled with disproportionate allocation of electoral votes relative
to state populations may be one reason for such deviations. For robustness, we report 2016
forecasts under a Lasso and OCMT averaged model in the Online Supplement Section S4.
The averaged model takes Lasso and OCMT county-level predictions of Republican and
Democratic votes and averages them together before aggregating to state-level results.

The 2016 forecasts remain largely unchanged under this averaging approach.

10 Key Determinants of U.S. Presidential Elections
Over the Period 2000-2016

In the previous section, to evaluate the 2016 U.S. Presidential Election we used data up
to 2012 to estimate the panel regressions (4) and (2) subject to the recursive order re-
striction, 3, = 0, and then generated out-of-sample forecasts for 2016. In this section, we
present estimates of the same model based on the full 2000-2016 sample and, to further
understand the key factors behind regional heterogeneity, we present both pooled and
regional estimates. We begin with pooled estimates. The estimates for voter turnout
and the Republican log-odds ratio equations are summarized in Tables 12 and 15.'® Sev-
eral time-invariant covariates are statistically significant, regardless of whether estimated
using OCMT or Lasso algorithms. These include rural-urban score, migration, and the
education covariates. Time-varying covariates are also important. Specifically, short-

run economic variables exhibit the strongest overall explanatory power relative to their

18We also report estimates for the pooled models under Adaptive Lasso for completeness although this
primarily serves as a robustness check.
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longer term counterparts. This evidence is consistent with voters having ‘short memories’.
Specifically, changes in the real effective USD exchange rate (a barometer for international
competition), unemployment rates, and house prices over the three months preceding the
election are significantly associated with voting outcomes, and their inclusion renders
l-year changes in these variables mostly insignificant. While 3-month house price ap-
preciation unambiguously favors the Republican candidate, higher unemployment rates
preceding the election somewhat surprisingly favor the incumbent party. By contrast, real
export-weighted USD appreciation 3-months preceding the election significantly punishes
the incumbent party. In case of the pooled model we also find that being economically
‘left behind’ is significantly associated with voting against the incumbent party in the
upcoming election.

We now consider estimates that allow for regional differences and discuss the differences
in selected covariates and their estimates across the eight BEA regions. Tables 13 and 14
summarize the estimates for voter turnout V71 under the Lasso and OCMT estimation
algorithms, respectively. Similarly, Tables 16 and 17 report estimates for DL RO using the
Lasso and OCMT algorithms. As can be seen, the variation in both the selected covariates
and the magnitude of the estimates vary substantially across the BEA regions, and suggest
pooling might result in mis-leading inference. The estimates also show how heterogeneous
U.S. regions can be. Consider Table 16, the Lasso-regional estimates for DLRO. The
education variable (edu2000) was selected for 8 out of 8 regions, hence this variable was
identified as informative on a national scale. Moreover, coefficient estimates are negative in
all regions suggesting that more educated counties tend to favor the Democratic candidate,
regardless of the region in which the county is located. However, the estimates of this
variable differ quite a bit regionally: a one percentage point increase in the education rate
in the Mideast region (Southwest region) is associated with a change in the Republican
odds ratio of -0.246 (-0.845) percent.. Short-run house price appreciation (3 months
preceding the election, denoted by hpret_M3) is never associated with greater Democrat
vote share — across any BEA region (coefficients are either zero or positive across regional
panel regressions).

Most covariates from the active set are not selected across every region. Again, this
points to the existence of substantial cross-regional differences in the U.S. Larger voter
turnout is associated with votes towards Democrats in 5 of the 8 regions (ﬁ) By
contrast, Zandi et al. [2020] pools information nationally, which implicitly assumes that
greater turnout is unambiguously associated with lower Republican vote share. Being

economically left behind tends to punish the incumbent party in 5 of the 8 regions (the
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covariate LBCG_L1x r_incu_pa). Higher local short-run unemployment favors Democrats
in 4 of the 8 regions, has no effect on voting in 3 regions, and favors the Republican

candidate in the Plains region.

11 Forecasts of 2020 U.S. Presidential Election

With models estimated over 2000-2016 and using data available through July 2020, our
framework can also generate forecasts for the upcoming (at the time of writing) 2020
U.S. election. Under our approach and as relevant data continues to be released up until
November, the 2020 election predictions can be updated — generating a series of nowcasts
— until just prior to election day on November 3rd. We report predicted state forecasts
for Republican vote share V; and corresponding electoral college outcomes in Tables 8
and 9 for estimates under the Lasso and OCMT algorithms, respectively. U.S. Mainland
popular vote predictions are reported in Table 11. Figures 7 and 8 chart forecasts of U.S.

electoral college outcomes by state.

Figure 7: 2020 State Electoral College Forecast under the Lasso-Regional Model

Red indicates Republican electoral victory. Blue indicates Democratic electoral victory.

All pooled models forecast an electoral victory for the Democratic candidate, but we

saw in our evaluation of the 2016 election that pooled models ignore crucial regional

30



Figure 8: 2020 State Electoral College Forecasts under the OCMT-Regional Model

Red indicates Republican electoral victory. Blue indicates Democratic electoral victory.

heterogeneity and could lead to inaccurate forecasts. By contrast, forecasts from the
regional models imply a very close electoral college outcome. The Lasso-regional model
forecasts a Democratic victory — the Republican candidate is expected to win 260 electoral
college votes (recall that 270 is needed to win). Meanwhile, the OCMT-regional model
forecasts a Republican candidate victory — the Republican candidate is predicted to win
290 electoral college votes.

Perhaps it is worth noting that the inherent nonlinearity of election outcomes due to
the design of the electoral college. Namely, a swing in just one or two state outcomes
could swing the entire election. This point re-emphasizes why the aptly named swing
states are such crucial political battlegrounds.

Specifically looking towards swing states explains the divergence between the Lasso-
regional and OCMT-regional model forecasts (Table 5). The Lasso-regional model fore-
casts that Republicans take 54 out of 156 electoral votes available across the 12 swing
states. Meanwhile, the OCMT-regional model forecasts that the Republican candidate
will win 99 electoral votes in the swing states. Both Lasso-regional and OCMT-regional
models forecast Iowa, Michigan, New Hampshire, Ohio, and Wisconsin to vote Republi-

can in the electoral college, for a total of 54 Republican electoral votes. In fact, in every
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Figure 9: 2020 Popular Vote Forecasts by County, Lasso-regional

Red indicates Republican electoral victory. Blue indicates Democratic popular victory.
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Table 5: 2020 Swing State Pooled and Regional Republican Electoral College Vote Fore-
casts

Pooled Forecasts Regional Forecasts

State d, Lasso OCMT Lasso OCMT
CO 9 0 0 0 0
FL 29 0 0 0 0
TA 6 6 6 6 6
MI 16 0 0 16 16
MN 10 0 0 0 10
NC 15 0 0 0 15
NH 4 0 0 4 4
NV 6 0 6 0 0
OH 18 18 18 18 18
PA 20 0 0 0 20
VA 13 0 0 0 0
WI 10 0 0 10 10
All Swing Votes 156 24 30 54 99

Column dg refers to total number of electoral votes per state (Equation 7). Forecasts are the model
implied number of Republican electoral college votes. Regional forecasts are generated using the eight
separate panel regressions for the eight BEA regions.

swing state that the Lasso-regional model forecasts a Republican victory the OCMT-
regional model does also. In addition to those swing states, the OCMT-regional model
also forecasts a Republican electoral win in Minnesota, North Carolina, and Pennsylvania.

Moreover, the electoral college maps show how winning many states does not imply
victory in terms of electoral college votes. This becomes even more apparent at the county
level as shown in Figure 9 and Figure 10. In 2016, a majority of counties voted for the
Republican candidate, yet the Democratic candidate won the popular election. Both
models forecast that most counties will vote for the Republican candidate in 2020, yet all
four models (Lasso-pooled, OCMT-pooled, Lasso-regional and OCMT-regional) predict
the Democratic candidate will win the popular vote. See Table 11.

For robustness, we also report 2020 predictions under a Lasso and OCMT averaged
model in Section S4 of the Online Supplement. The average model takes Lasso and
OCMT county-level predictions of Republican and Democratic votes and averages them
together before aggregating to state-level results. For 2020, the averaged model predicts
269 Republican electoral votes — one shy from winning the presidential election. For
comparison, as of September 2020 the Zandi et al. [2020] model is forecasting a Republican

victory with the candidate winning between 298 to 351 electoral votes.
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Figure 10: 2020 Popular vote Forecasts by County, OCMT-regional

Red indicates Republican electoral victory. Blue indicates Democratic popular victory.
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12 Concluding Remarks

An increasingly divided political landscape means that regional heterogeneity is crucial
for understanding recent voting behavior and presidential election outcomes. We develop
a joint model of voter turnout and voting outcomes and exploit county-level variation and
regional heterogeneity to identify factors which explain county-level voting outcomes of
the 2016 U.S. Presidential Election. While many forecasts failed to predict the outcome
of 2016, our out-of-sample forecasts that allow for regional heterogeneity would have
correctly predicted the unexpected Republican victory.

It is worth noting that many of the forecasts that were predicting a Democratic 2016
victory were based on polls. However, in a world of increased political division, the biases
inherent in poll-based forecasts may become magnified, requiring highly stratified sam-
pling techniques that are very expensive to implement to ensure such poll-based forecasts
are sufficiently reliable. In contrast, we show that the statistical approach using funda-
mental socioeconomic and demographic data can take us far in understanding presidential
election cycle dynamics. We point out that regional heterogeneity is particularly impor-
tant for modeling swing states. Variable selection techniques, such as Lasso and OCMT,
further improve model performance

Incorporating regional heterogeneity reveals that the extent to which several socioe-
conomic determinants help explain voter turnout and election outcomes which vary sub-
stantially across regions. Significant indicators which help explain voting behavior at the
county level include: which party is the incumbent, a county’s relative economic perfor-
mance, local short-run unemployment rate, house price changes, education, poverty rate,
among others. Some determinants exhibit consistently robust associations with turnout or
voting across regions. For example, house price appreciation generally favors the Repub-
lican candidate while counties with higher rates of poverty and educational attainment
help the Democratic candidate. The influence of most other variables on turnout and
voting outcomes, however, is far from uniform, substantially varying across regions.

Our framework can also be applied to forecasting. At the time of writing, we use data
available through July 2020 to develop forecasts for the 2020 Presidential Election. The
regional models, which predicted a Republican victory in 2016, predict a close electoral
college outcome for 2020. The predictions are split: the Lasso-regional model forecasts
a Democratic electoral victory (260 electoral votes for the Republican candidate) while
the OCMT-regional model forecasts a Republican victory (290 electoral votes for the
Republican candidate). All models point towards the Democratic candidate winning the

popular vote. We emphasize, however, that the non-linear nature of the U.S. voting
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process makes these forecasts fragile and subject to a high degree of uncertainty. In
addition, unforeseeable events which cannot be modeled using historical data (e.g. nation-
wide protests, pandemics) which have been prevalent in 2020 cast additional uncertainty

over our forecasts.
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Figure 11: Histogram of Voter Turnout (V1) over the period 2004-2016 at Mainland U.S.
and Regional Levels
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Figure 12: Histogram of changes in Log Republican Odds Ratio (DLRO) over 2004-2016
at Mainland U.S. and Regional Levels
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Table 6: State Level Forecasts and Realized Republican Vote Shares (V) and Electoral
Votes using Lasso Algorithm for 2016 Elections

Pooled Forecasts Regional Forecasts
State ds Realized V, RMSFE EC Votes Ve,  RMSFE EC Votes
AK 3 - - - 3 - - 3
AL 9 0.64 0.63 0.16 9 0.65 0.15 9
AR 6 0.64 0.65 0.20 6 0.68 0.21 6
AZ 11 0.52 0.56 0.28 11 0.54 0.43 11
CA 55 0.34 0.39 0.27 0 0.40 0.29 0
CO 9 0.47 0.47 0.14 0 0.54 0.32 9
cT 7 0.43 0.40 0.19 0 0.44 0.22 0
DC 3 0.04 0.08 0.25 0 0.08 0.12 0
DE 3 0.44 0.39 0.33 0 0.43 0.34 0
FL 29 0.51 0.52 0.12 29 0.52 0.12 29
GA 16 0.53 0.56 0.23 16 057  0.26 16
HI 4 - - - 0 - - 0
IA 6 0.55 0.50 0.38 0 0.51 0.38 6
ID 4 0.68 0.69 0.28 4 0.73 0.23 4
IL 20 0.41 0.43 0.41 0 0.45 0.42 0
IN 11 0.60 0.58 0.41 11 0.59 0.39 11
KS 6 0.61 0.62 0.21 6 0.66 0.29 6
KY 8 0.66 0.64 0.25 8 0.67  0.20 8
LA 8 0.60 0.60 0.11 8 0.62 0.13 8
MA 11 0.35 0.36 0.37 0 0.43 0.26 0
MD 10 0.36 0.36 0.19 0 0.40 0.20 0
ME 4 0.49 0.43 0.14 0 0.43 0.18 0
MI 16 0.50 0.47 0.22 0 0.49 0.19 0
MN 10 0.49 0.48 0.26 0 0.51 0.29 10
MO 10 0.62 0.58 0.21 10 0.62 0.19 10
MS 6 0.59 0.58 0.47 6 0.59 0.46 6
MT 3 0.61 0.58 0.22 3 0.63 0.18 3
NC 15 0.52 0.53 0.30 15 0.54 0.37 15
ND 3 0.70 0.64 0.17 3 0.63 0.17 3
NE 5 0.64 0.64 0.30 5 0.65 0.21 5
NH 4 0.50 0.47 0.13 0 0.50 0.17 0
NJ 14 0.43 0.40 0.17 0 0.45 0.18 0
NM 5 0.45 0.45 0.11 0 0.44 0.21 0
NV 6 0.49 0.50 0.11 0 0.49 0.14 0
NY 29 0.38 0.34 0.45 0 0.37  0.53 0
OH 18 0.54 0.51 0.28 18 0.54 0.24 18
OK 7 0.69 0.69 0.21 7 0.68 0.21 7
OR 7 0.44 0.46 0.20 0 0.46 0.21 0
PA 20 0.50 0.48 0.22 0 0.52 0.22 20
RI 4 0.42 0.35 0.31 0 0.39 0.13 0
SC 9 0.57 0.58 0.10 9 0.59 0.12 9
SD 3 0.66 0.62 0.23 3 0.64 0.20 3
TN 11 0.64 0.62 0.22 11 0.66 0.24 11
X 38 0.55 0.60 0.26 38 0.56 0.14 38
UT 6 0.62 0.75 0.68 6 0.80 0.99 6
VA 13 0.47 0.48 0.23 0 0.48 0.35 0
VT 3 0.35 0.32 0.16 0 0.29 0.28 0
WA 12 0.41 0.44 0.21 0 0.45 0.25 0
WI 10 0.50 0.48 0.36 0 0.50 0.36 10
wv 5 0.72 0.67  0.28 5 0.68 0.22 5
WY 3 0.76 0.73 0.25 3 0.76 0.20 3
All Votes 538 253 308

Republican vote shares are calculated as in Equation 12. Column ds refers to the total number of electoral votes per state
(Equation 7). Root mean square forecast error (RMSFE) is calculated as in Equation 13. EC Votes refer to the predicted
number of Republican electoral college votes. All Votes accumulates U.S. Mainland electoral college votes, and assumes
Hawaii casts her electoral votes for the Democratic candidate and Alaska casts her electoral votes for the Republican
candidate. Regional forecasts are generated using the eight separate panel regressions for the eight BEA regions.
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Table 7: State Level Forecasts and Realized Republican Vote Shares (V) and Electoral
Votes using OCMT Algorithm for 2016 Elections

Pooled Forecasts Regional Forecasts
State ds Realized V, RMSFE EC Votes Ve,  RMSFE EC Votes
AK 3 - - - 3 - - 3
AL 9 0.64 0.64 0.17 9 0.64 0.14 9
AR 6 0.64 0.65 0.20 6 0.66 0.22 6
AZ 11 0.52 0.56 0.27 11 0.54 0.44 11
CA 55 0.34 0.39 0.26 0 0.42 0.41 0
CO 9 0.47 0.48 0.15 0 0.52 0.25 9
cT 7 0.43 0.41 0.18 0 0.43 0.19 0
DC 3 0.04 0.07 0.18 0 0.08 0.18 0
DE 3 0.44 0.41 0.29 0 0.41 0.32 0
FL 29 0.51 0.51 0.11 29 0.51 0.11 29
GA 16 0.53 0.56 0.26 16 057  0.26 16
HI 4 - - - 0 - - 0
IA 6 0.55 0.51 0.37 6 0.51 0.40 6
ID 4 0.68 0.70 0.28 4 0.71 0.25 4
IL 20 0.41 0.44 0.39 0 0.48 0.30 0
IN 11 0.60 0.58 0.39 11 0.62 0.30 11
KS 6 0.61 0.63 0.22 6 0.67  0.30 6
KY 8 0.66 0.65 0.24 8 0.66 0.18 8
LA 8 0.60 0.61 0.11 8 0.61 0.11 8
MA 11 0.35 0.38 0.32 0 0.42 0.29 0
MD 10 0.36 0.38 0.20 0 037  0.22 0
ME 4 0.49 0.44 0.15 0 0.44 0.20 0
MI 16 0.50 0.48 0.21 0 0.53 0.24 16
MN 10 0.49 0.49 0.27 0 0.49 0.27 0
MO 10 0.62 0.59 0.20 10 0.62 0.20 10
MS 6 0.59 0.58 0.46 6 0.58 0.47 6
MT 3 0.61 0.59 0.18 3 0.63 0.17 3
NC 15 0.52 0.53 0.28 15 0.52 0.42 15
ND 3 0.70 0.63 0.15 3 0.62 0.20 3
NE 5 0.64 0.65 0.29 5 0.66 0.21 5
NH 4 0.50 0.49 0.13 0 0.49 0.16 0
NJ 14 0.43 0.41 0.17 0 0.41 0.23 0
NM 5 0.45 0.45 0.12 0 0.44 0.20 0
NV 6 0.49 0.50 0.11 6 0.53 0.08 6
NY 29 0.38 0.35 0.48 0 0.35 0.62 0
OH 18 0.54 0.51 0.27 18 0.57  0.26 18
OK 7 0.69 0.69 0.21 7 0.68 0.19 7
OR 7 0.44 0.46 0.21 0 0.51 0.36 7
PA 20 0.50 0.49 0.21 0 0.49 0.22 0
RI 4 0.42 0.36 0.27 0 0.39 0.15 0
SC 9 0.57 0.58 0.11 9 0.58 0.11 9
SD 3 0.66 0.63 0.21 3 0.64 0.20 3
TN 11 0.64 0.63 0.23 11 0.65 0.22 11
X 38 0.55 0.60 0.28 38 0.57  0.15 38
UT 6 0.62 0.76 0.76 6 0.78 0.89 6
VA 13 0.47 0.50 0.24 0 047  0.36 0
VT 3 0.35 0.33 0.17 0 0.32 0.20 0
WA 12 0.41 0.44 0.21 0 0.50 0.41 0
WI 10 0.50 0.50 0.37 0 0.53 0.29 10
wv 5 0.72 0.66 0.24 5 0.68 0.23 5
WY 3 0.76 0.74 0.24 3 0.75 0.22 3
All Votes 538 265 307

Republican vote shares are calculated as in Equation 12. Column ds refers to the total number of electoral votes per state
(Equation 7). Root mean square forecast error (RMSFE) is calculated as in Equation 13. EC Votes refer to the predicted
number of Republican electoral college votes. All Votes accumulates U.S. Mainland electoral college votes, and assumes
Hawaii casts her electoral votes for the Democratic candidate and Alaska casts her electoral votes for the Republican
candidate. Regional forecasts are generated using the eight separate panel regressions for the eight BEA regions.
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Table 8: State Level Forecasts of Republican Vote Shares (V;) and Electoral Votes using
Lasso Algorithm for 2020 Elections

Pooled Forecasts Regional Forecasts
State ds V.  EC Votes Vs EC Votes
AK 3 - 3 - 3
AL 9 0.62 9 0.63 9
AR 6 0.62 6 0.65 6
AZ 11 0.47 0 0.55 11
CA 55 0.29 0 0.31 0
CO 9 0.40 0 0.41 0
CT 7 0.36 0 0.50 7
DC 3 0.03 0 0.04 0
DE 3 0.39 0 0.42 0
FL 29 0.46 0 0.46 0
GA 16 0.49 0 0.50 16
HI 4 - 0 - 0
1A 6 0.52 6 0.57 6
ID 4 0.66 4 0.65 4
1L 20 0.37 0 0.43 0
IN 11 0.58 11 0.58 11
KS 6 0.57 6 0.58 6
KY 8 0.63 8 0.64 8
LA 8 0.57 8 0.58 8
MA 11 0.29 0 0.43 0
MD 10 0.32 0 0.34 0
ME 4 0.44 0 0.53 4
MI 16 0.46 0 0.54 16
MN 10 0.44 0 0.47 0
MO 10 0.58 10 0.63 10
MS 6 0.57 6 0.58 6
MT 3 0.56 3 0.57 3
NC 15 0.48 0 0.48 0
ND 3 0.66 3 0.70 3
NE 5 0.60 5 0.64 5
NH 4 0.44 0 0.55 4
NJ 14 0.36 0 0.42 0
NM 5 0.40 0 0.47 0
NV 6 0.45 0 0.46 0
NY 29 0.35 0 0.35 0
OH 18 0.51 18 0.56 18
OK 7 0.65 7 0.68 7
OR 7 0.40 0 0.41 0
PA 20 0.46 0 0.50 0
RI 4 0.36 0 0.51 4
SC 9 0.54 9 0.55 9
SD 3 0.63 3 0.64 3
TN 11 0.62 11 0.63 11
X 38 0.49 0 0.51 38
UT 6 0.59 6 0.60 6
VA 13 0.42 0 0.41 0
vT 3 0.31 0 0.39 0
WA 12 0.37 0 0.39 0
WI 10 0.47 0 0.52 10
WV 5 0.70 5 0.71 5
WY 3 0.71 3 0.73 3
All Votes 538 150 260

Republican vote shares are calculated as in Equation 12. Column ds refers to the total number of electoral votes per state
(Equation 7). EC Votes refer to the predicted number of Republican electoral college votes. All Votes accumulates U.S.
Mainland electoral college votes, and assumes Hawaii casts her electoral votes for the Democratic candidate and Alaska
casts her electoral votes for the Republican candidate. Regional forecasts are generated using the eight separate panel
regressions for the eight BEA regions.
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Table 9: State Level Forecasts of Republican Vote Shares (V;) and Electoral Votes using
OCMT Algorithm for 2020 Elections

Pooled Forecasts Regional Forecasts
State ds Ve  EC Votes Vs EC Votes
AK 3 - 3 - 3
AL 9 0.64 9 0.65 9
AR 6 0.64 6 0.67 6
AZ 11 0.50 11 0.57 11
CA 55 0.33 0 0.34 0
CO 9 0.42 0 0.42 0
CT 7 0.39 0 0.49 0
DC 3 0.03 0 0.04 0
DE 3 0.41 0 0.48 0
FL 29 0.48 0 0.48 0
GA 16 0.51 16 0.52 16
HI 4 - 0 - 0
1A 6 0.53 6 0.61 6
ID 4 0.68 4 0.65 4
1L 20 0.39 0 0.43 0
IN 11 0.60 11 0.59 11
KS 6 0.57 6 0.60 6
KY 8 0.65 8 0.67 8
LA 8 0.59 8 0.61 8
MA 11 0.32 0 0.41 0
MD 10 0.33 0 0.38 0
ME 4 0.46 0 0.50 0
MI 16 0.50 0 0.52 16
MN 10 0.46 0 0.52 10
MO 10 0.60 10 0.66 10
MS 6 0.60 6 0.61 6
MT 3 0.59 3 0.57 3
NC 15 0.50 0 0.51 15
ND 3 0.68 3 0.75 3
NE 5 0.60 5 0.70 5
NH 4 0.47 0 0.51 4
NJ 14 0.40 0 0.46 0
NM 5 0.42 0 0.48 0
NV 6 0.50 6 0.47 0
NY 29 0.36 0 0.35 0
OH 18 0.54 18 0.55 18
OK 7 0.68 7 0.70 7
OR 7 0.42 0 0.43 0
PA 20 0.49 0 0.56 20
RI 4 0.38 0 0.48 0
SC 9 0.57 9 0.58 9
SD 3 0.64 3 0.66 3
TN 11 0.64 11 0.65 11
X 38 0.52 38 0.54 38
UT 6 0.61 6 0.60 6
VA 13 0.43 0 0.44 0
vT 3 0.33 0 0.37 0
WA 12 0.40 0 0.42 0
WI 10 0.49 0 0.51 10
WV 5 0.73 5 0.74 5
WY 3 0.74 3 0.74 3
All Votes 538 221 290

Republican vote shares are calculated as in Equation 12. Column ds refers to the total number of electoral votes per state
(Equation 7). EC Votes refer to the predicted number of Republican electoral college votes. All Votes accumulates U.S.
Mainland electoral college votes, and assumes Hawaii casts her electoral votes for the Democratic candidate and Alaska
casts her electoral votes for the Republican candidate. Regional forecasts are generated using the eight separate panel
regressions for the eight BEA regions.
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Table 10: 2016 U.S. Mainland Republican Vote Share Forecasts

Model Realized Pooled Pooled RMSFFE Regional Regional RMSFFE

OCMT  0.489 0.499 0.077 0.514 0.102
Lasso  0.489 0.494 0.078 0.510 0.090

To produce popular vote share forecasts, Equation 12 is applied to the sum of predicted Republican
and Democrat votes across U.S. mainland states plus Washington D.C. RMSFE calculations based on
Equation 14. Regional forecasts are generated using the eight separate panel regressions for the eight
BEA regions.

Table 11: 2020 US. Mainland Republican Vote Share Forecasts

Model Pooled Regional

OCMT 0471 0.498
Lasso 0.445 0.477
To produce popular vote share forecasts, Equation 12 is applied to the sum of predicted Republican and

Democrat votes across U.S. mainland states plus Washington D.C. Regional forecasts are generated using
the eight separate panel regressions for the eight BEA regions.
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Table 13: Regional Panel Regressions with Dependent Variable as Voter Turnout (V'7T)
over the 2000-2016 Election Cycles using Lasso Algorithm

Southeast Southwest Far West Rocky Mountain New England Mideast Great Lakes Plains

(Intercept) 0.063 0.169 0.454 0.201 0.278 0.277 0.121  0.203
r_incu_pa 0.000 0.000 0.000 0.000 0.021 0.000 0.000  0.000
r_incu_pr 0.010 0.030 0.023 0.002 0.000 0.021 0.028  0.020

VT_L1 0.796 0.714 0.708 0.677 0.606 0.654 0.761  0.676

VT_L1 x r_incu_pa 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000
ump_L1 0.000 0.100 0.000 0.269 0.000 -1.081 0.667  0.630

hpret_L1 0.000 0.000 0.000 0.000 0.090 0.000 0.163  0.268

religion 0.000 -0.005 -0.041 -0.026 0.000 0.034 0.000  0.000

religion x r_incu_pa 0.000 0.000 0.000 0.007 0.000 0.000 0.000  0.000
migrate 0.000 -0.175 -0.056 0.000 0.000 0.000 0.000  0.000

migrate x r_incu_pa 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000
edu2000 0.062 0.116 0.103 0.120 0.019 0.069 0.113  0.008

edu2000 x r_incu_pa 0.093 0.061 0.077 0.069 0.000 0.011 0.075  0.075
log(m.inc) 0.008 0.000 -0.021 0.000 0.000 0.000 0.000  0.000
log(m.inc) x r_incu_pa 0.001 0.000 0.000 0.001 0.000 0.000 0.000  0.000
povr -0.125 -0.214 -0.345 -0.167 -0.218 -0.327 -0.269 -0.301

povr X r_incu_pa 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000
rural 0.000 0.000 0.000 0.000 0.000 -0.001 0.000  0.000

rural x r_incu_pa -0.001 -0.001 0.000 0.000 0.000 0.000 -0.001  -0.000

Estimates from recursive voter turnout and voting outcome model. First, Equation 5 is estimated, then
VT is used in the active set for estimation of Equation 6. Estimates presented here are for the voter
turnout equation, Equation 5. The list of variables in the active set for VT is given in Table 2.

Table 14: Regional Panel Regressions with Dependent Variable as Voter Turnout (V1))
Estimated over the 2000-2016 Election Cycles using OCMT Algorithm

Southeast Southwest Far West Rocky Mountain New England Mideast Great Lakes Plains

(Intercept) -0.254 -0.037 0.166 1.069 0.071 0.980 0.903  0.195
r_incu_pa -0.380 -0.208 0.963 -0.315 0.842 0.000 0.002 -0.023
rincu_pr 0.020 0.047 0.000 0.003 0.011 0.000 0.026  0.032

VT_L1 0.857 0.775 0.739 0.704 0.887 0.629 0.805 0.739

VT_L1 x r_incu_pa -0.024 0.041 -0.114 -0.026 -0.083 0.000 -0.089 -0.152
ump_L1 0.163 0.482 0.000 0.000 0.000  -1.975 0.000  0.000

hpret_L1 0.063 -0.157 0.000 0.000 0.117 0.000 0.000  0.000

religion 0.000 -0.022 0.000 0.000 0.000 0.056 0.000  0.000

religion x r_incu_pa -0.007 -0.023 -0.001 0.013 0.000 0.000 -0.014  0.005
migrate 0.000 -0.484 -1.060 0.000 0.000 0.000 -0.498  0.000

migrate x r_incu_pa -0.181 -0.015 -0.367 0.000 0.000 0.000 -0.107 -0.157
edu2000 0.047 0.132 0.166 0.227 0.000 0.150 0.216  0.000

edu2000 x r_incu_pa 0.073 0.113 0.195 0.062 0.068 0.000 0.129  0.093
log(m.inc) 0.033 0.016 0.000 -0.082 0.000  -0.059 -0.071  0.000
log(m.inc) x r_incu_pa 0.038 0.017 -0.078 0.031 -0.067 0.000 0.006  0.011
povr -0.070 -0.193 -0.306 -0.412 0.000  -0.569 -0.428  -0.250

povr x r_incu_pa 0.050 0.089 -0.464 0.000 -0.435  -0.013 -0.143  -0.063
rural 0.000 0.001 0.000 0.000 0.000  -0.002 0.000  0.000

rural X r_incu_pa -0.001 -0.002 0.000 0.000 0.000 0.000 0.000 -0.001

Estimates from recursive voter turnout and voting outcome model. First, Equation 5 is estimated, then
VT is used in the active set for estimation of Equation 6. Estimates presented here are for the voter
turnout equation, Equation 5. The list of variables in the active set for VT is given in Table 2.
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Table 16: Regional Panel Regressions with Dependent Variable as Changes in Log Re-
publican Odds (DLRO) over the 2000-2016 Election Cycles using Lasso Algorithm

Southeast Southwest Far West Rocky Mountain New England Mideast Great Lakes Plains

(Intercept) 1.222 3.831 0.454 0.401 -0.272 0.911 0.788  0.436

rincu_pa -0.043 -0.020 -0.902 -0.124 -0.524 -0.332 -0.428 -0.108

VT -0.597 0.312 0.116 -0.318 -0.120 -0.607 0.000 -0.002

VT x r_incu_pa 0.000 0.000 -0.189 -0.147 0.000 0.215 0.190 -0.087
LBCG_L1 0.008 -0.012 -0.051 0.000 -0.309 0.000 -0.166  -0.025

LBCG_L1 x r_incu_pa -0.089 0.000 -0.011 -0.154 0.526 -0.243 0.001 -0.086
ump_L1 -1.770 2.100 3.666 0.000 -0.890 -1.649 2.253 -1.061

ump_L1 x rincu_pa 0.001 0.263 -2.168 0.000 0.000 1.613 3.893  0.380
ump_M3 -0.499 -1.536 -4.135 0.000 0.000 0.000 -1.047  4.108

ump_-M3 x r_incu_pa 0.187 0.000 3.290 0.000 7.901 0.000 -1.917  0.000
hpret_L1 -0.976 -0.104 0.000 0.000 -2.261 0.500 2.071  4.000

hpret_L1 x r_incu_pa -0.716 -0.696 0.175 0.000 0.000 -1.306 -2.235  -2.995
hpret_M3 1.689 0.561 0.682 0.128 0.000 2.062 1.271  0.000

hpret_M3 x r_incu_pa 0.301 0.717 -0.223 0.921 3.176 0.000 1.807  1.055
migrate -1.335 -3.022 0.994 0.000 -0.043 -3.364 -0.008 -0.998

migrate* 1.078 0.000 -0.878 0.000 0.169 0.000 3.976  0.000

edu2000 -0.606 -0.845 -0.646 -0.586 -0.729 -0.295 -0.854  -0.753

edu2000* -2.301 -0.489 0.000 0.000 0.204  -0.246 -0.928  -0.442
log(popdens) -0.010 0.008 -0.009 -0.005 -0.003 0.014 -0.004  0.000
log(m.inc) 0.000 -0.322 -0.032 0.000 0.055 -0.028 -0.045 -0.025

log(m.inc) x r_incu_pa -0.004 -0.008 0.079 0.000 0.000 0.000 0.000  0.000
povr -0.943 -1.656 -0.392 -0.239 0.000 -0.599 -0.339  -0.592

rural 0.009 0.008 -0.001 0.000 -0.014 0.000 -0.001  0.000

Estimates from recursive voter turnout and voting outcome model. First, Equation 5 is estimated, then VT is used in the
active set for estimation of Equation 6. Estimates presented here are for the log Republican odds equation, Equation 6.

The list of variables in the active set for DLRO is given in Table 3.

Table 17: Regional Panel Regressions with Dependent Variable as Changes in Log Re-
publican Odds (DLRO) Estimated over the 2000-2016 Election Cycles using OCMT Al-

gorithm
Southeast Southwest Far West Rocky Mountain New England Mideast Great Lakes Plains
(Intercept) -2.354 0.438 0.128 0.533 0.507 0.346 0.543 -0.267
rincu_pa 0.000 0.000 -2.545 -1.534 -3.680 -1.494 -1.539 -1.022
VT -0.588 0.000 0.115 -0.383 -0.566  -0.308 -0.033  0.453
VT x rincu_pa 0.000 0.000 -0.285 -0.207 -0.209 0.417 0.223  -0.004
LBCG_L1 0.000 -0.078 0.000 0.000 0.000 0.000 0.000  0.000
LBCG_L1 x r_incu_pa 0.000 0.000 0.000 0.000 0.055 -0.277 0.000  0.000
ump_L1 0.000 0.000 3.932 0.000 0.000 0.000 0.000  0.000
ump_L1 x riincu_pa 0.000 0.000 -1.845 3.958 14.579 0.000 9.201  1.094
ump_M3 0.000 0.000 -4.152 0.000 0.000 0.000 0.000 4.141
ump-M3 x r_incu_pa 0.000 0.000 3.432 -3.961 -10.078 5.528 -7.281 2592
hpret_L1 -0.866 0.000 -0.069 0.000 0.000 0.850 0.410  4.060
hpret_L1 x r_incu_pa -1.227 0.000 0.000 0.000 0.000 0.000 0.000 -4.248
hpret_M3 2.595 0.000 0.727 0.748 0.000 1.264 2.140 -0.026
hpret_M3 x r_incu_pa 0.000 0.000 0.000 0.000 0.000 0.000 0.000  2.708
migrate -1.620 -3.549 1.359 -0.812 0.000 -4.107 0.333  -0.807
migrate* 0.000 0.000 -1.001 0.000 0.000 2.808 0.000  0.000
edu2000 -0.828 -1.023 -0.683 -0.666 -0.295  -0.331 -0.964 -0.809
edu2000* -1.698 0.000 0.041 -0.010 0.000  -0.669 -1.467 -0.144
log(popdens) -0.006 0.009 -0.011 -0.015 0.000 0.015 0.000  0.000
log(m.inc) 0.299 0.000 0.000 0.000 0.000 0.000 0.000  0.000
log(m.inc) x r_incu_pa 0.000 0.000 0.234 0.136 0.316 0.075 0.100  0.065
povr 0.000 -0.902 -0.440 -0.669 0.000 0.000 -0.331  0.000
rural 0.013 0.020 -0.001 -0.000 0.000 -0.001 -0.000 -0.001

Estimates from recursive voter turnout and voting outcome model. First, Equation 5 is estimated, then VT is used in the
active set for estimation of Equation 6. Estimates presented here are for the log Republican odds equation, Equation 6.

The list of variables in the active set for DLRO is given in Table 3.
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This Online Supplement is organized in four sections. Section S1 provides detail
on relevant data and sources. Section S2 describes selecting the functional form of the
election outcome variable. Section S3 gives an account of Lasso and OCMT forecasting

algorithms. S4 reports additional results.

S1 Data

Descriptions, Frequency, Sources

Data has been cleaned and merged from several different publicly available sources.
County-level voting outcomes are taken from the MIT Election Data and Science Lab.
County GDP measures are obtained from the Bureau of Economic Analysis. Education,
population, migration, and urban-rural county classifications are from the USDA. Annual
median household income and poverty estimates are from the U.S. Census. Information
on religiosity across counties comes from the 2010 survey provided by the Association
of Religion Data Archives. Data on voting age population (VAP) are from the Ameri-
can Community 5-year surveys. County-level unemployment rates are provided by the
BLS and county-level house price indices are taken from Zillow. State-level inflation is
computed from indices reported by the Bureau of Economic Analysis (BEA). State level
export-weighted real exchange rates are from the Federal Reserve Bank of Dallas. Gov-
ernment employment growth, healthcare expenditures and rent expenditures at the state
level are taken from the BEA. In total, we analyze 3,107 counties from 48 of the U.S.
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Mainland states plus Washington D.C. The number of counties by state is found in Table
S.2.

County classifications change over time, and different data sets rely on different vin-
tage classifications. For these reasons, cleaning and merging the data required manual
adjustments for some of the observations. We describe data series and cleaning procedures

in more detail below.

County FIPS Changes: Some counties changed FIPS codes over the period 2000-
2016. For these counties, we made adjustments to ensure different data sets can be
merged properly. County 08014 (Colorado) did not exist until 2001 (it was created from
4 other Colorado counties). We add 08014’s post-2000 election votes to county 08059,
Jefferson County, the largest of the counties which contributed to 08014’s creation. The
state of Virginia decided to merge County 51515 (“Bedford”) into county 51019 (“Bedford
County”) in 2013, therefore County 51515 no longer existed afterward. 2013. To account
for this we allocate votes of County 51515 from 2004, 2008 and 2012 to those of county
51019, effectively combining the two counties over the entire sample. County 46113 (South
Dakota) was renamed to Oglala Lakota county in 2015 and given a new FIPs code: 46102.

County U.S. Presidential Votes, every 4 years: Data from the MIT election lab
provides election results at the county level for years 2000, 2004, 2008, 2012, and 2016.
We focus on two-party vote share, hence rely on Republican and Democrat vote statistics
across counties. We also focus on the 48 mainland states, excluding Alaska and Hawaii

from our analysis.

Annual County GDP, annual: Data from the U.S. Bureau of Economic Analysis
covers annual real (chained 2012 U.S. Dollars) GDP across over 3,000 counties from 2001
to 2018. This yields annual growth rates from 2002 to 2018. We interpolate 1999-2000
and 2000-2001 GDP growth rates with the 2001-2002 growth rate, for all counties.

Virginia County GDP, annual: For the State of Virginia, the BEA consolidates
real GDP data for 52 of the smaller counties into 23 groups of two to three counties each.
In order to match GDP to voting data, these consolidated GDP measures need to be
matched back to individual counties. To do so, for aggregated GDP assigned to a given
group of counties, we assign all counties within that group the GDP values given to the

group. Therefore, we assume counties within a group have the same real GDP growth rate.
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Voter Turnout, every 4 years: We estimate voter turnout (V1) as the total votes
(Republican and Democrat) divided by the VAP, voting age population, which we take
from the 5-year ACS. To compute VT, we rely on the 90% upper confidence interval of the
VAP estimate. The VAP measure is an estimate over a 5-year period while the number
of votes is a single snapshot in time. We use 2012-2016 VAP estimates to compute 2016
voter turnout, 2008-2012 estimates for 2012 voter turnout, and 2005-2009 estimates for
2008 voter turnout. Because we do not have VAP estimates earlier than 2008, we back-
fill 2004 turnout values using 2008 turnouts. Four county-year observations (from over
12,000) report VT values of greater than 1, likely because of measurement error. For these
cases, we use the average VT of adjacent counties® For counties with a VAP /population
ratio larger than 1, we replace VAP for these counties with the product of the county
population with the average of VAP /population ratio of surrounding counties (within 100

miles) which have VAP /population ratios less than 1.

Midterm Elections, every 2 years: We collect data on U.S. house votes for bi-
ennuial elections by state from MIT election lab. Because the House votes every two
years, it may be a useful indicator for political momentum running up to the presidential
election, which occurs every four years. For the state of Vermont, where Bernard Sanders
(an independent) has received consistent and significant vote share, we consolidate his
political affiliation with those of Democrats in order to remain consistent with the two-
party framework of this study. In order to merge with the remaining data, we impute vote
results of Maryland into Washington DC because the latter does not have voting rights
during these elections. We use this data to compute Republican vote share variables using

House election data, analogous to county presidential Republican vote share data.

Religiosity, time-invariant: Data is from the Association of Religion Data Archives.
Religiosity measures the proportion of county population adhering to a religion. Rates of
religious adherence can exceed 1 for some counties because survey participants can report
adherence to multiple religions or denominations. While this does not pose any serious
issues, in order to keep the rate variable bounded between 0 and 1, for counties with
greater than 100 percent religiosity rate, we replace county i’s religiosity rate with the lo-

cal religiosity rate, taken as the average religiosity rate of all counties within 100 miles of ¢.

SIThe observations are: Harding County, NM 2004,/2008/2012, and Hanson County, SD 2012.
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County House Prices, monthly: We take monthly house price indices at the county
level from Zillow. These go back to the 90’s, but not for every county or every year-month.
We therefore estimate local county house price returns based on the average of counties
within 100 miles of county i, inclusive of county ¢. For counties with no data available, we
impute values using the cross-section average of all available local returns over the same
time period. For the year 2016, logged annual house price changes are computed as the
average monthly change from July 2015 to June 2016. This is then annualized. For each
election year, the annualized return is computed similarly. This guarantees that the data

used are always available prior to the election.

State-level Rent Expenditures, annual: We compute annual log growth rates in
state-level rents using per capita personal consumption expenditures on housing and util-
ities. These data are taken from the BEA and are typically updated with the preceding

year’s data every October.

Unemployment Rates, monthly: We take monthly unemployment rates at the
county level from the BLS. we also estimate local averages using all counties within 100
miles of county i. For the year 2016, we calculate annual average unemployment based on
July 2015 to June 2016. For each election year, the annual average unemployment rate is
computed over July of year t — 1 to June of year t. This guarantees that the data used

are available prior to the actual year t election.

State-level Inflation, quarterly: From the BEA, we take quarterly real GDP and
nominal GDP by state to compute a state-level annual GDP deflator as
Nominal GDP

DP Defl = 100.
G eflator Roal GDD x 100

Inflation is calculated as the logged change form the previous quarter’s GDP Deflator,

by state. The data for a given year are released annually the subsequent year in October.
Because Elections are held every November, we use state-level inflation rate from year Q3
2015 - Q2 2016 for 2016, and so on to guarantee data availability prior to each election.
These data are taken from the BEA and updated with a 2-quarter lag.

State-level USD Real Effective Exchange Rates, monthly: USD state-level
real exchange rates are taken from the Federal Reserve Bank of Dallas. Monthly state-

level exchange rates are computed using a trade-weighted average of USD exchange rates
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via the primary export partners of the state. We compute logged monthly changes using
monthly REERs over July of year ¢ — 1 to June of year ¢, averaging monthly changes to

compute a monthly average over the year, which is then annualized.

State-level Healthcare Expenditures, annual: We compute annual log growth
rates in state-level cost of healthcare using per capita personal consumption expenditures
on healthcare by state. These data are taken from the BEA and are typically updated
with the preceding year’s data every October.

State-level Government Employment, annual: We compute annual growth rates
in the size of local government by state, by computing the share of the state’s labor force
allocated to the local and state government sector. Annual Growth rates are computed
using log changes. These data are taken from the BEA and are typically updated every
September.

Population Density, time-invariant: We compute county population densities us-
ing 2000 and 2010 population estimates, divided by the total land area (based on 2000)
of the county.

State Mail-in Vote Policies, time-invariant: We also collect data at the state
level measuring the ease with which one can cast a vote by mail. Policies vary at the
state level. In fact, some states, namely Oregon, Utah, Colorado and Hawaii only accept
votes by mail. We construct a state-level time-invariant indicator variable which takes
values of (1,0,-1) depending on whether mail-in voting is: 1: The default voting method,
0: Optional but open to everyone or -1: An excuse is required to cast a mail-in vote.
Underlying source for these data is FiveThirtyEight.com and The National Conference of
State Legislatures.

Incumbent Party and Incumbent President indicators, every 4 years: To
capture the incumbency effects on voter turnout and election outcome we consider two
incumbency indicators, and distinguish between presidential and party incumbency in-
dicators. The “incumbent party indicator” takes the value of 1 if on election day the
president in power is Republican, and -1 if he/she is a Democrat. The “incumbent pres-
ident indicator” takes the value of 1 if the president who is running for re-election is a

Republican, takes the value of -1 if he/she is a Democrat, and takes the value of 0 if
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neither of the two candidates is incumbent. These indicators are considered on their own,
as well as interacted with a number of other covariates. In this way we allow for a wide
variety of incumbency effects (positive or negative) discussed in the literature, without

biasing the results in favor or against the incumbent president or party.

Being Economically ’Left-Behind’

We take real GDP levels and compute annual log growth rates, denoted by

Yo,
AYerr = In v ot , (S.1)

crt—1
where Y,,; is the real GDP of county c in region r during year ¢. County-level real GDP
growth is the main source of data used to construct a new measure representing the degree
to which resident of a particular county are, on average, economically ‘left behind’ (LB).
Consider an individual outcome variable of interest, in our case, real GDP Y,,; for county

¢ in year t and its “local” (or “regional”) counterpart, defined by:

N
YZ;,t = Z We,e' Xelr ity (82)
=1

where N denotes the number of counties in the country as a whole, w.» > 0, and
2521 we = 1. Note that Y, is inclusive of ¢, but we can also compute Y, exclu-
sive of ¢ by setting w.. = 0. In practice, w. could be the neighborhood weights, within
a given radius around the cth location.

To consider a measure of “Left Behind”, an obvious reference measure is to compare
Yoy or Y, to is the national (“global”) measure where w.s = ws V i. In practice
the national measure could be based on population weights. In what follows we denote

national (global) reference measure by Y;, the local/regional measure by Y}, and the

cryt)
individual county measure by Y., ;.

The extent to which county c is left behind relative to the nation, Y;, also depends
on the time horizon over which the individual/local measure is compared to the reference
(national) group. For example, county ¢ can be left behind either individually, or locally,
relative to the national group over a period of h years. Accordingly, we consider the
change from In(Y,.;—/Y;—s) to In(Y,,:/Y;), for a given horizon h. The extent to which ¢

is individually ”left behind” is measured by
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1 1 1
Gor(h) = A0 (Yors/Ye) = 3 Ann(Yrs) = - A In(¥i) = (S.3)

In(Yers) —In(Yere—n)  In(¥:) —In(Yisn)
h h

if G¢ri(h) < 0. County c is not left behind if G,.(h) > 0. A measure of being left behind

locally can be similarly defined as

1
GZr,t(h) = EAh hl(Yci,t/Yt)' (8-4)

It is clear that ¢ can be left behind relative to the country as a whole, but not at the local
level and wvice versa. Moreover, ¢ could be left behind relative to local as well as national
measures.

To study the degree of left-behindedness at a relatively disaggregated level, we con-
sider annual real economic output across U.S. counties (excluding counties in Alaska and

Hawaii) as our outcome variable, Y., ;. Our national measure Y; is simply the aggregate

t.SQ

To compute local measures Y ,, we consider a radius of 100

national U.S. real outpu cryt)

miles around each county ¢ (R = 100). In measuring Y. ,, all counties outside of 100 miles

cr,t?

receive a weight of 0, while the real output measures of all counties within 100 miles are

equally weighted, specifically

NL, if ¢ is within 100 miles of ¢
We,er = f

)

0, otherwise

where the number of counties within 100 miles of ¢, inclusive of ¢, is Ng.5

S2 Functional Form of the Outcome Variable

The standard two-party voting outcome in the literature is given by party vote share

Rcr,t

Vort = 5——7—
)
7 Rcr,t + Dcr,t

(S.5)

S2We do not compute Y;; rather we take the data directly from the BEA.
S3Between-county distances are taken from the NBER database, specifically these are great-circle dis-
tances calculated using the Haversine formula based on internal points in the geographic area.
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where R,,; is the number of Republican votes by county c of region r in election year ¢, and
D,,, is the number of Democratic votes. The outcome V.., is equal to the Republican
share of the two-party vote. However, despite V.., being the target variable, whether
better predictions are produced using V., or a transformation of V., ; (which is ultimately
re-transformed back) is an issue that needs to be addressed prior to forecasting. In this
context, we evaluate three different functional forms of the outcome variable summarized

by V! .:

cr,t”

Ver
CI,Tt = {%,Tt; hl(‘/cﬂ“t)u In (1_—7‘/;1’15) } ) (86)

where the latter term is the main dependent variable we chose to use in our analysis —

the Republican log-odds of the two-party vote:

chrt Rc Tt
L =1 — 0 | =1 — . .
RO, =In (1 — th) n (Dcﬁ) (S.7)

Despite using LRO,,; in the regression, the target variable we wish to forecast re-
mains the Republican vote share over an election cycle, V., ;. If we rely on a model with
a transformed dependent variable, then its predictions must be re-transformed to match
the units of the actual target. While the adjusted R? across models may suggest which
specification best explains the dependent variable, this accounts for re-transforming the
prediction back to the target variable. Therefore, to appropriately compare models un-
der transformed dependent variables, regression standard errors must be adjusted to be
comparable across specifications. We follow the likelihood approach discussed in Section
11.7 of Pesaran (2015).

The conventional dependent variable in the political science literature is the (change
in) Republican vote share, V., ;, or the dependent variable corresponding to column 2 of
Table S.1. To select the best functional form for the dependent variable, standard errors
from the active set regression on, say, changes in the standard dependent variable V., can
be compared to the adjusted standard errors from the active set regressions under other

functional forms (columns 1 and 3). Adjustment factors must be applied for comparison.

Vcr,t
17Vc'r,t

For the column 1 dependent variable, Ay < ), we have the following log adjust-

ment factor:

| LN | LN
Inz; = ——— InVet — —= n(l— V), .8
R 5) STCHRNE 55 STI DR RS

t=1 i=1 t=1 i=1

and for the column 3, with AsInV,,;, the log adjustment factor is:
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| TN
Inzg = ——— In V. S.9
e3> 5

t=1 i=1

The “Adjusted SE” in Table S.1 compares post-adjustment regression SEs. The results
show that regression performance under the traditional functional form using simple vote
shares (column 2) may be improved by using instead the change in log odds ratio variable
(column 1). The former has a regression standard error of 0.037, compared to the adjusted
standard error of 0.036 under the model where we transform the vote share into a log-
odds ratio, Ayln <1Y§/it> The log vote share, AyInV,,, has the largest adjusted SEs.
Motivated by these results, we use changes in log-odds ratios as our dependent variable.

S3 Forecasting Algorithms

OCMT

One set of forecasts implement the OCMT algorithm presented in Chudik et al. (2018).
We apply OCMT on both the pooled sample and on regional sub-samples, in both turnout
and voting regressions on their respective active sets. OCMT selects variables based on
multiple-testing corrected statistical significance. We define the critical value threshold

as

cp(k,8) = & <1 . %) ,

where k is the number of covariate in the active set, ®1(.) is the inverse of the cumulative
distribution of the standard normal variate, p is the nominal; size of the test, and d
measures the degree to which multiple testing is taken into account. We set § = 1 in
the first stage, and 6* = 2 in subsequent stages, and a p-value p = 0.05. Under the
pooled model, the p-values are derived from state-year clustered standard errors. For the
regional model, p-values are derived from state-clustered standard errors. This approach
is taken for both regressions of turnout and voting. We refer to the original paper for

further technical details.

Lasso

Our second set of forecasts are generated using the Lasso algorithm. Because we rely

on cross-validation to calibrate the trade-off between fit and parsimony, it is important

S9



to set the numeric seed before running simulations - this ensures our results from Lasso
algorithm are replicable When running the program, we always set our seed equal to
“123”. All covariates are standardized to mean zero and unit standard deviation prior
to estimation. In n-fold cross-validation, we set n = 10 and our loss criteria is based on
mean-squared error. The model we select is that which has the smallest regularization
penalty parameter yet which still falls within 1-standard deviation of the model yielding
the minimum MSE. As a robustness check, we also estimate models under the Adaptive-
Lasso procedure with similar parameter settings. The Online Supplement of Chudik et
al. (2020) contains further technical details providing computer codes for implementation

of OCMT, Lasso and Adaptive-Lasso algorithms used in this paper.

S4 Additional Results

S4.1 Consistency proof of the two-stage estimation

Here we establish consistency of the two-stage estimation of the recursive model, which

we write compactly as

yi = X8 +uy,
Y2 = 7y1+ X8, + uy,

where X; and X, are T'x ky and 1" X ko matrices of exogenous variables, coefficients 3, and
B, are k1 x 1 and ks x 1 vectors, and u; and uy are 7" x 1 vectors of errors. For instance,
let y; and ys represent voter turnout and the log odds ratio, respectively (y; = VT and
y2 = DLRO). Notice that our recursive structure imposes that y, does not enter the y;

equation. We assume that X; and X, are weakly exogenous such that
X p Xiu p o Xjw o Xjuz p
— 0 —0
T ’ T T ’ T
It then follows that (3, is consistently estimated by 8, = (X;X;) 'X}y;. Using this

estimate, we obtained the fitted values, y; = Xl,Bl which can be used in the second stage

to consistently estimate @ = (1, 35)" by

0= (22)"2yy, Z=(31,Xs).

To establish consistency of 6, we note that
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yo = vy1+ X8+ uw +y(y1 — 1)

J

-~

3
Yy = Ze+£7

such that 8 = (Z'Z)"2/(Z0 + £). Hence

But,
71 7/ 71!
I3 B Z'u, Z'e;
T~ T TV
er=yi—y1 = y1— XX X)) X}y,
= Mlyl, M1 = I — X1 (X’le)_lX’I,
and

Z/el . yiel /T
T Xbe /T )

Also, it readily follows that yie; = B;X’l [M1y1] =0, since X{M; = 0. Then, we have

T-'Xher = T'X,Mi(Xi8, 4+ w),
= T 'X,Mu,
Xpu  X5Xy (X’le)l X' wy
T T T T
20

Therefore, Z;?l 20. Also,

and
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Hence, overall we have T:1Z/€ % 0, and hence 05 0.

S4.2 Additional panel regression results

As a robustness test, we average county-level Republican and Democrat predicted votes
across OCMT and Lasso approaches to produce model averaged predictions. Table S.3
reports 2016 vote share and electoral college forecasts under the OCMT + Lasso averaging
approach. Table S.4 similarly reports 2020 vote share and electoral predictions across
states. For 2016, the predicted outcomes largely coincide with outcomes produced from
individual models. Averaging the regional models also predicts a Republican victory
in 2016. The regional-average prediction of Republican electoral votes was higher than
individual models: 330 (2016 actual was 304). By contrast, individual regional models
predicted 308 (Lasso) and 307 (OCMT), for 2016 respectively. The higher vote count of
the average model is driven by switched electoral votes for some swing states. For example,
OCMT-regional predicted 0 republican electoral votes for Minnesota, 7 from Oregon, and
0 from Pennsylvania. The regional-averaged model flipped these predictions (10 from
Minnesota, 0 from Oregon, 20 from Pennsylvania). Hence a difference of 13 electoral
votes between the OCMT-regional prediction and the regional-average prediction. For
2020, the regional-averaged model predicts a Democratic electoral victory by a single
vote. This reflects the different forecasts under the individual OCMT-regional (which
predicts Republican) and Lasso-regional (which predicts Democrat) models.

We provide pooled panel regression results under OCMT and Lasso algorithms in

Tables 12 and 15, for voter turnout and log Republican odds, respectively.
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Figure S.1: Bureau of Economic Analysis Regions
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Table S.1: Functional Form of Voting Outcome Variable Regressed on Active Set

Dependent variable:

Agln 222t AV,  AglnV,

Vc'r,t
(1) (2) (3)
Adjusted SE 0.036 0.037 0.042
Observations 12,428 12,428 12,428
Adjusted R? 0.537 0.530 0.492

County Republican vote share, V,, ; is defined as in Equation S.5. Regression fits under different depen-
dent variable transformations are compared using adjusted regression standard errors reported in the row
named Adjusted SE. Adjustments made based on different functional forms are described in Section S2.
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Table S.2: State and County Sample

State Counties

1 AK -
2 AL 67
3 AR 75
4 AZ 15
5 CA 58
6 CO 63
7 CT 8
8 DC 1
9 DE 3
10 FL 67
11 GA 159
12 HI -
13 IA 99
14 ID 44
15 IL 102
16 IN 92
17  KS 105
18 KY 120
19 LA 64
20 MA 14
21 MD 24
22 ME 16
23 MI 83
24  MN 87
25 MO 115
26 MS 82
27  MT 56
28 NC 100
29 ND 53
30 NE 93
31 NH 10
32 NJ 21
33 NM 33
34 NV 17
35 NY 62
36 OH 88
37 OK 7
38 OR 36
39 PA 67
40 RI 5
41  SC 46
42 SD 66
43 TN 95
44 TX 254
45 UT 29
46 VA 133
47 VT 14
48 WA 39
49  WI 72
50 WV 55
51 WY 23
Total 3107

We do not consider Alaska and Hawaii, non U.S. mainland states, in our sample. “DC” refers to Wash-
ington D.C.
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Table S.3: State Level Forecasts and Realized Republican Vote Shares (V;) and Electoral
Votes using Lasso-OCMT Average for 2016 Elections

Pooled Forecasts Regional Forecasts
State ds Realized V, EC Votes Vs EC Votes
AK 3 - - 3 - 3
AL 9 0.64 0.63 9 0.65 9
AR 6 0.64 0.65 6 0.67 6
AZ 11 0.52 0.56 11 0.54 11
CA 55 0.34 0.39 0 0.41 0
CO 9 0.47 0.48 0 0.53 9
CT 7 0.43 0.41 0 0.44 0
DC 3 0.04 0.07 0 0.08 0
DE 3 0.44 0.40 0 0.42 0
FL 29 0.51 0.51 29 0.52 29
GA 16 0.53 0.56 16 0.57 16
HI 4 - - 0 - 0
TA 6 0.55 0.50 6 0.51 6
ID 4 0.68 0.69 4 0.72 4
L 20 0.41 0.43 0 0.47 0
IN 11 0.60 0.58 11 0.61 11
KS 6 0.61 0.63 6 0.66 6
KY 8 0.66 0.64 8 0.66 8
LA 8 0.60 0.61 8 0.62 8
MA 11 0.35 0.37 0 0.42 0
MD 10 0.36 0.37 0 0.38 0
ME 4 0.49 0.44 0 0.43 0
MI 16 0.50 0.47 0 0.51 16
MN 10 0.49 0.49 0 0.50 10
MO 10 0.62 0.59 10 0.62 10
MS 6 0.59 0.58 6 0.59 6
MT 3 0.61 0.59 3 0.63 3
NC 15 0.52 0.53 15 0.53 15
ND 3 0.70 0.64 3 0.63 3
NE 5 0.64 0.64 5 0.65 5
NH 4 0.50 0.48 0 0.50 0
NJ 14 0.43 0.41 0 0.43 0
NM 5 0.45 0.45 0 0.44 0
NV 6 0.49 0.50 0 0.51 6
NY 29 0.38 0.34 0 0.36 0
OH 18 0.54 0.51 18 0.55 18
OK 7 0.69 0.69 7 0.68 7
OR 7 0.44 0.46 0 0.48 0
PA 20 0.50 0.48 0 0.51 20
RI 4 0.42 0.35 0 0.39 0
SC 9 0.57 0.58 9 0.58 9
SD 3 0.66 0.62 3 0.64 3
TN 11 0.64 0.63 11 0.66 11
X 38 0.55 0.60 38 0.57 38
uT 6 0.62 0.76 6 0.79 6
VA 13 0.47 0.49 0 0.47 0
VT 3 0.35 0.33 0 0.30 0
WA 12 0.41 0.44 0 0.47 0
WI 10 0.50 0.49 0 0.51 10
WV 5 0.72 0.66 5 0.68 5
WY 3 0.76 0.73 3 0.75 3
All Votes 538 259 330

The average forecast takes the predicted number of Democrat and Republican votes under OCMT and Lasso for each county
and averages them. Republican vote shares are calculated as in Equation 12. Column ds refers to the total number of
electoral votes per state (Equation 7). EC Votes refer to the predicted number of Republican electoral college votes. All
Votes accumulates U.S. Mainland electoral college votes, and assumes Hawalii casts her electoral votes for the Democratic
candidate and Alaska casts her electoral votes for the Republican candidate. Regional forecasts are generated using the
eight separate panel regressions for the eight BEA regions.
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Table S.4: State Level Forecasts of Republican Vote Shares (V) and Electoral Votes using

Lasso-OCMT Average for 2020 Elections

Pooled Forecasts

Regional Forecasts

State ds Ve  EC Votes Vs EC Votes
AK 3 - 3 - 3
AL 9 0.63 9 0.64 9
AR 6 0.63 6 0.66 6
AZ 11 0.49 0 0.56 11
CA 55 0.31 0 0.32 0
CO 9 0.41 0 0.41 0
CcT 7 0.37 0 0.49 0
DC 3 0.03 0 0.04 0
DE 3 0.40 0 0.45 0
FL 29 0.47 0 0.47 0
GA 16 0.50 0 0.51 16
HI 3 - 0 - 0
1A 6 0.52 6 0.59 6
1D 4 0.67 4 0.65 4
1L 20 0.38 0 0.43 0
IN 11 0.59 11 0.59 11
KS 6 0.57 6 0.59 6
KY 8 0.64 8 0.66 8
LA 8 0.58 8 0.59 8
MA 11 0.30 0 0.42 0
MD 10 0.32 0 0.36 0
ME 4 0.45 0 0.51 4
MI 16 0.48 0 0.53 16
MN 10 0.45 0 0.50 0
MO 10 0.59 10 0.65 10
MS 6 0.58 6 0.59 6
MT 3 0.58 3 0.57 3
NC 15 0.49 0 0.50 0
ND 3 0.67 3 0.72 3
NE 5 0.60 5 0.67 5
NH 4 0.45 0 0.53 4
NJ 14 0.38 0 0.44 0
NM 5 0.41 0 0.47 0
NV 6 0.48 0 0.47 0
NY 29 0.35 0 0.35 0
OH 18 0.52 18 0.55 18
OK 7 0.67 7 0.69 7
OR 7 0.41 0 0.42 0
PA 20 0.48 0 0.53 20
RI 4 0.37 0 0.50 0
SC 9 0.56 9 0.57 9
SD 3 0.64 3 0.65 3
TN 11 0.63 11 0.64 11
X 38 0.51 38 0.53 38
uT 6 0.60 6 0.60 6
VA 13 0.43 0 0.43 0
VT 3 0.32 0 0.38 0
WA 12 0.38 0 0.40 0
WI 10 0.48 0 0.52 10
WV 5 0.72 5 0.73 5
WY 3 0.73 3 0.73 3

All Votes 538 188 269

The average forecast takes the predicted number of Democrat and Republican votes under OCMT and Lasso for each county
and averages them. Republican vote shares are calculated as in Equation 12. Column ds refers to the total number of
electoral votes per state (Equation 7). EC Votes refer to the predicted number of Republican electoral college votes. All
Votes accumulates U.S. Mainland electoral college votes, and assumes Hawalii casts her electoral votes for the Democratic
candidate and Alaska casts her electoral votes for the Republican candidate. Regional forecasts are generated using the
eight separate panel regressions for the eight BEA regions.
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