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We develop a new framework that can be used to analyse interactions between solar and wind 

generation using a Mean-Variance Portfolio Theory (MPT) framework. We use this framework to 

understand the role of electricity transmission integrating a high share of Variable Renewable Energy 

(VRE) and investigate the optimal generation mix consisting of wind and solar for Australia’s National 

Electricity Market (NEM). For the same level of risk, we find that the average capacity factor of VRE 

could be 7% higher if transmission constraints are alleviated. Our results show that in order to 

minimise the risks of a VRE-dominated generation portfolio, transmission capacity and efficient access 

will become very important – at a high level of VRE penetration in NEM, a marginal increase in 

transmission capacity reduces system risks associated with wind and solar uncertainties by ca. 0.25 p.p. 

Lack of transmission capacity therefore implies potentially greater risks to VRE generators and hence 

higher energy costs at high levels of VRE penetration. Using our proposed approach (residual demand 

minimisation), which accounts for the dynamics of electricity generation associated with wind and 

solar as well as with demand, we find investment in solar generation is rewarded more than when using 

an output maximisation approach that ignores patterns of demand. For example, on average, solar share 

reaches 15.4% under the residual demand minimisation approach versus 12.5% under output 
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1. Introduction 

In responding to the enormity of the challenge of climate change, there are numerous approaches to 

decarbonisation that might be adopted. Making decisions on the combination and timing of deploying 

these options is a daunting prospect for many decision-makers.  Even if there is agreement that a 

combination of approaches will be required, there is a need to establish the basis on which such a 

portfolio approach might be pursued. 

The power sector can act as a linchpin in decarbonisation since, aside from existing end uses, a low-

carbon electricity sector is an essential first step in decarbonising passenger transport and even 

domestic and industrial heat.  In order to achieve the 1.5 °C aim established in the Paris Agreement, 

annual CO2 emission from the energy sector needs to be reduced by over 70% from 34 Gt CO2 today to 

9.8 Gt CO2 in 2050, of which three-quarters of the reduction can be achieved via the electrification of 

heating and transport as well as switching to renewable energy sources, RES, (IRENA 2019). 

Moreover, electrification continues to outpace growth in energy overall. In 2018, global electricity 

demand rose by 4% (900 TWh), almost twice as fast as overall energy demand. While low-carbon 

sources (RES and nuclear) met over half (54%) of this growth, the remaining 46% of the gap was filled 

by coal and gas, resulting in a 2.5% increase in power sector emissions. Although RES has been 

growing steadily since 2003 by around 7% annually (Ritchie and Roser, 2020), only 26% of the 26.7 

PWh of total electricity generated globally in 2018 came from RES, of which 7% came from the 

variable renewable energy (VRE) sources wind and solar, and 19% from hydro and other controllable 

renewables, 64% of the electricity still came from burning fossil fuels and the remaining 10% from 

nuclear energy (IEA 2019). 

The challenge for the power sector is not simply adding some renewables to the system to raise the 

share from, say, 10% to 30%, but to fundamentally shift towards one dominated by VRE.  There are 

many ultra-low carbon systems that are almost completely reliant on traditional renewable sources such 

as hydroelectric power (e.g., Norway, Iceland, Quebec, Tasmania) or nuclear power (e.g., France), but 

expansion of hydropower is location-specific and nuclear power is not viable on social or economic 

grounds in many locations.  So, for many countries, the main prospect for establishing a low-carbon 

power grid will require dramatically increasing the share of VRE onto a system that has traditionally 

relied on fossil fuels.  

One country that has seen rapid growth in VRE in recent years has been Australia, where RES hit a 

record high of 21.3% of the total electricity generation in 2018, up from 14.9% in 2013 (Clean Energy 

Council 2019). While hydro remains the largest single RES in Australia, accounting for 35.2% of 

renewable generation in 2018, it made up over half (55%) of renewable generation as recently as 2013. 

The main new entrants are variable renewables, onshore wind and in particular solar (of all scales), 

which saw their shares increasing from 27% and 11% respectively in 2013 to 33.5% and 24.2% in 

2018. Nevertheless, this transition towards VRE is not uniform across the country and the picture 

differs massively from state to state, due to the vastly different geography and climate across Australia 

as well as financial and regulatory support at the state level. For instance, South Australia is the 

national leader in VRE with 50.5% of total electricity generation coming from wind and solar in 2018, 

but in Queensland this figure is merely 5.6%.   

Although Australia is set to surpass its large-scale federal Renewable Energy Target of 33 TWh (ca. 

23.5% of total generation) by 2020, electricity generation remains the biggest source of greenhouse gas 
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emissions in Australia, responsible for 178.5MtCO2-e or 33.1% of total emissions, although this was 

down from 182.4MtCO2-e the year before (DEE 2019). Under the Paris Agreement, the federal 

government in Australia committed to reducing GHG emissions by 26-28% relative to 2005 levels by 

2030 (441MtCO2-e) (UNFCCC, 2015).  The  states and territories have moved even more aggressively 

– all have assumed net zero greenhouse gas emissions targets by 2050 and all have also set aggressive 

renewable targets (e.g., net 100% renewable generation in South Australia by the 2030s and 50% 

renewables by 2030 in Victoria and Queensland, although the latter is not binding) (Climate Council, 

2019). 

As Australia shifts increasingly towards clean energy, finding an optimal generation mix consisting of 

non-dispatchable and highly volatile VRE is not the only challenge. The transmission network also 

needs to be able to keep pace with the changing patterns of electricity flow induced by VRE. For 

example, South Australia has a high penetration of variable renewables with 50.5% of electricity 

already coming from wind and solar;  in the third quarter of 2018, total curtailment of non-synchronous 

generation in South Australia, which (comprises of large-scale wind and solar farms) reached a record 

high of 150 GWh, which is equivalent to 10% of the state’s total non-synchronous generation in that 

period when curtailment occurred 26% of the time (AEMO 2018). The cause of this massive 

curtailment was primarily that there were insufficient synchronous generators available to meet the 

system strength requirements. In order to make the most of growing VRE penetration, such 

transmission bottlenecks must be avoided. Thus, our primary objective here is to understand the role of 

electricity transmission in integrating a high share of VRE in Australia’s National Electricity Market1 

(NEM) using a Mean-Variance Portfolio Theory (MPT) approach. The rest of this paper is organised as 

follows: the next section tries to put the MPT approach in the context of the wider literature on long-

term energy investment planning; in §3, we present the mathematical formulations of the different 

objectives and §4 presents scenarios and sensitivity analyses we plan to conduct. The results and 

optimal solutions for each case are then presented in §5, where their implications are also analysed. We 

finally conclude in §6 and summarise the value of the current transmission constraints for each case. 

 

2. Mean-Variance Portfolio Theory and Energy Investment Planning 
Electric utility resource planning is a complex optimisation problem which requires economic, 

engineering and environmental insights. Since such decisions involve significant investments with far-

reaching impacts, a range of optimisation methods have been developed over the years to address 

different attributes of the problem, from generation cost to system reliability and environmental 

externalities. Following the liberalisation of many electricity markets and the expansion of VRE, 

optimisation models are becoming increasingly complex and sophisticated in response to the growing 

uncertainty. 

Hobbs (1995) reviewed some of the early endeavours to solve the optimal scheduling of additional 

generation capacity combined with demand side management in a decentralised electricity market 

using mixed integer linear programming (MILP), or dynamic programming (DP) when uncertainty was 

incorporated into the model. More recently, various approaches have been proposed to tackle 

specifically the uncertainty brought by the deployment of wind power, an intermittent and non-

 

1 The NEM, the largest power system in Australia, covers the eastern states of Queensland, New South Wales, and Victoria, 

as well as South Australia, the island state of Tasmania and the Australian Capital Territory (ACT). The NEM has a total 

generation capacity of over 54 GW and supplies approximately 200 TWh of electricity every year to 9 million business and 

residential household customers through 40,000 km of transmission and distribution lines (AEMO, 2018). 
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dispatchable energy source. For a comprehensive review of recent studies of generation capacity 

expansion problems see e.g., Koltsaklis et al. (2018) and with a particular focus on high VRE 

penetration, see Dagoumas et al. (2019). 

As VRE output fluctuates greatly, most existing networks will have insufficient transmission capacity 

to utilise VRE in large quantities and hence transmission and interconnections across large distances 

could be valuable in accommodating more VRE. For example, van der Weijde and Hobbs (2012) 

emphasised the importance of uncertainty in transmission planning with high share of VRE and 

introduced a two-stage stochastic optimisation model formulated as a MILP to capture the multi-stage 

nature of transmission planning under uncertainty, which could yield more robust and adaptive 

expansion solutions than conventional, one-period deterministic planning methods. Following a similar 

research framework, Munoz et al. (2013) developed this two-stage stochastic optimisation framework 

further by explicitly including Kirchhoff’s voltage law in their problem formulation. The resulting 

model was applied to a 240-bus system representing the Western Electricity Coordinating Council in 

the United States. They concluded that heuristic- and deterministic-based transmission scenario 

planning could be suboptimal compared to a stochastic two-stage optimisation model. Other relevant 

studies on transmission planning under uncertainty include Park and Baldick (2013) and Konstantelos 

and Strbac (2014) as well as work on co-optimisation of transmission and generation capacity 

expansion by O’Neill et al. (2013), Grimm et al., (2016), Spyrou et al. (2017), Chao and Wilson 

(2020).  For a comprehensive literature review on the topic of transmission and generation expansion 

see e.g., work by Lumbreras and Ramos (2016), and by Krishnan et al. (2016). 

Despite many advantages of these frameworks, such as detailed representation of the electricity sector, 

these frameworks treat uncertainty as another dependent variable or parameter in the model rather than 

an objective. Mean-variance portfolio theory (MPT) is a well-established analytical approach that can 

treat both risk and cost of the VRE deployment simultaneously on equal footing in the optimisation. 

Pioneered by Markowitz (1952), MPT was originally designed to solve the optimal investment 

portfolio problem for risk-averse investors. It provides a mathematical framework to construct optimal 

portfolios of assets which offer the highest expected return at given levels of risk; together these 

optimal portfolios make up the “efficient frontier”. The theory also establishes a rigorous formalisation 

of investment diversification and risk hedging, and it shows that higher risk is an intrinsic aspect of 

higher return. Since its publication in 1952, the powerful framework has found many applications 

outside finance, including in the energy sector, where it was first adopted by Bar-Lev and Katz (1976) 

to carry out a cost-risk analysis for different mixes of fossil fuels. 

MPT is now a widely adopted method to solve energy planning investment problems, covering many 

different scenarios and generation technologies under a range of different objectives. An extensive 

review of the literature on energy planning using MPT can be found in (deLlano-Paz et al. 2017); past 

studies fall broadly into two main categories depending on whether the objectives are based on 

economic or electricity production criteria. 

Within the wider context of economic criteria, one may still tackle the problem either from a cost 

minimisation or return maximisation perspective. Doherty et al. (2005; 2006), applied the cost-risk 

approach to analyse the optimal future generation portfolios in Ireland, considering the capital, 

operation and maintenance costs as well as fuel costs. In addition, Doherty et al. (2005) argued that, 

following Stirling (1994), since long-term fuel price dynamics follow no clear pattern, diversification is 

really a response to ignorance rather than to any quantifiable risk. Thus, the authors considered also the 

maximisation of the diversity as measured by the Shannon-Wiener index, alongside the conventional 

risk minimisation objective where the risk is represented by the standard deviation of the cost of 

electricity produced. 
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Awerbuch and Yang (2007) carried out a cost-risk analysis of electricity generating portfolios in the 

EU with the focus on uncertain CO2 prices. Krey and Zweifel (2008) applied seemingly unrelated 

regression estimation (SURE) to filter out any common shocks in the costs before conducting cost-risk 

analysis for the US and Switzerland. 

There are also multiple methods to evaluate the returns; one way is to treat the returns as the inverse of 

generation cost, which was the view taken in Humphreys and McClain (1998), and later in Awerbuch 

and Berger (2003) where RES was first included. As for the corresponding risk, Awerbuch and Berger 

(2003) characterised RES (except biomass) as risk-free assets in the portfolio since they incur no fuel 

cost or emission levy and are therefore free from any commodity price volatility. Arnesano et al. 

(2012), however, associated the economic risk of RES with the availability of wind or solar radiation 

“fuel’. Alternatively, returns could be evaluated based on the net present value (NPV) of each 

generation asset as in Roques et al. (2008) and Westner and Madlener (2010), or the internal rate of 

return (IRR) as in Muñoz et al. (2009). Liu and Wu (2007) opted to define the rate of return to be 

simply the difference between the spot price and generation cost divided by the generation cost itself, 

which was adopted by Gökgöz and Atmaca (2012; 2017) in their studies of the Turkish market. 

The application of MPT to energy planning from the perspective of generation output was first 

introduced in Roques et al. (2010), where the optimal wind power deployment in five European 

countries was analysed and the effect of geographical diversification on smoothing out the fluctuations 

in the overall output was investigated by taking advantage of the weak or negative correlation in the 

weather pattern between different locations spread across large distances. Their objectives were to 

maximise the wind generation output per unit of installed capacity (capacity factor) and to minimise the 

associated uncertainty from the variation in the output. Subsequently, Rombauts et al. (2011) adopted 

the same idea but refined the calculation for the risk so that the effect of cross-border transmission 

capacity constraints could be considered more explicitly as an objective and not merely treated as 

constraints. 

Thus, we can see that the application of the MPT approach to long-term energy planning has 

proliferated.  Moreover, we should note that, in fact, the MPT approach is closely associated with 

multicriteria optimisation framework and that competing objectives in transmission and generation 

investment planning could be treated explicitly in the multicriteria analysis (see e.g., review by 

Lumbreras and Ramos (2016)). In this regard, the application of the MPT approach to long-term energy 

investment planning and the resulting “efficient frontiers” sits well within the general modelling 

literature on multicriteria energy investment planning. 

In this paper, we apply the MPT framework to investigate the optimal wind and solar deployment in the 

NEM. We contribute to the MPT energy planning literature in several ways. First, we incorporate solar 

into the optimal portfolios on top of wind; thus, we will be examining technological diversification as 

well as geographical diversification. The potential benefit of technological diversification can already 

be seen from the heatmap in Figure 1. For example, we can see from the heatmap that building wind 

generation in three regions (SWQ, NNS and CQ) seems to be a no-regrets decision to hedge against 

uncertainties of potential massive rollout of solar generation in all 16 NEM zones, provided there is 

transmission capacity available. Including solar in the MPT approach has interesting methodological 

challenges including how best to model the trade-off between technological diversification, the 

relatively low average capacity factor (zero output at night), and the mismatch between peak load and 

peak solar generation hours, which we discuss in the next section. Our second contribution is on the 

empirical side: as far as we are aware, there have been limited applications of the MPT approach to the 

Australian context for both wind and solar generation. Thirdly, it is a timely intervention that could 

potentially contribute to the energy policy debate in Australia, in particular, shedding light on the value 
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of geographical and technological diversification in the context of Australia’s coordinated generation 

and transmission planning market re-design policy process (see e.g., Australia’s Energy Security Board 

review of Post 2025 Market Design for the National Electricity Market (COAG Energy Council, 2019). 

 
Figure 1: Heatmap summarising the correlations between different zone-tech pairs during daytime. 
Notes: The blue coloured zone-tech pairs are negatively correlated and are therefore preferable in reducing the overall risk 

(variability) of the portfolio.  

 

3. Mathematical formulation 

In this section we first present a formulation that maximises energy output from wind and solar as our 

starting point and then we move to describe our proposed approach that models solar generation in the 

MPT approach robustly. 

As the NEM is made up of 16 zones across five market regions (Figure 2), labelled by 𝑧= 1, …, 16, 

there are 32 zone-techs in our portfolios, labelled by 𝑖. Unless otherwise stated, the indices 1-16 are 

assigned to wind (𝑤) and 17-32 to solar (𝑠) for each zone-tech  𝑖. The time series data we need to carry 

out our analysis are the generation output for each zone-tech 𝑝𝑖,𝑡 and the demand for each zone 𝑑𝑧,𝑡, 

where 𝑡 labels time in hourly step. In addition, we need the export limit for each zone to calculate the 

upper bounds for the constrained scenario (see §4 for more details). Limited by data availability, we 

use 19 years of estimated wind and solar generation data as well as 9.5 years of demand data in this 
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paper. The sources of raw data as well as the methodology for processing them are discussed in detail 

in Appendix A. All our analysis is carried out with dimensionless quantities. For instance, the output 

from each generation source is expressed in terms of its capacity factor rather than the absolute power 

as measured in Watts or megawatts. This allows us to scale up to any total (or partial) installed capacity 

required in NEM. Therefore, for the output maximisation approach (see this and the next section, §3.1), 

all our results are reported in terms of average capacity factors (averaged both over time and between 

wind and solar) that could be optimally achieved for every level of portfolio risk we consider. For the 

residual demand minimisation approach, all results are reported in terms of the minimum cost of 

meeting NEM demand that could be achieved for every level of portfolio risk we consider (for more 

details see §3.2). 

 
Figure 2: NEM zones and transmission network 

Before we move on, let us reflect on the definition of risk. Risk in energy planning arises from 

uncertainty. For intermittent wind and solar power output, there are two sources of uncertainty: 

variability and unpredictability. For example, Roques et al. (2010) presented two different objectives: 

the first was to maximise the average wind power output for the entire year, and the second was to 
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maximise the contribution of wind power to system reliability by considering the average for only the 

top 10% of peak demand hours. The measure of risk also differed for the two objectives. For the 

average output, it was taken to be the standard deviation of the first difference in the output time series, 

whereas for the top 10% peak hours output, it was the standard deviation of the output samples. 

Clearly, the latter is a measure of the average variability of the output, and the former can be 

interpreted as the average unpredictability of the output if we treat wind generation as a stationary 

autoregressive process of order 1 (AR(1)). For long-term renewable generation investment, we believe 

that it is the variability that matters most; whereas for other tasks such as day-ahead scheduling and 

unit commitment decisions, unpredictability is more relevant. Hence, we will be focussing on the 

variability risk in this paper, but we provide sensitivity analysis for the case when risk is treated as 

unpredictability. 

Following the Roques et al. (2010) framework for output maximisation, the objectives of output 

maximisation and minimisation of the associated risk can be written as: 

max
𝑋𝑃

𝑖
𝐸𝑝(𝑝) ∶=  ∑ 𝑋𝑝

𝑖 𝐸(𝑝𝑖)

𝑁

𝑖=1

 

(1) 

min
𝑋𝑃

𝑖
𝜎𝑃

2 (𝑝) ∶=  ∑ 𝑋𝑃
𝑖 𝑋𝑝

𝑗
𝑝𝑖𝑗𝜎𝑖

𝑁

𝑖,𝑗=1

𝜎𝑗 =  ∑ 𝑋𝑃
𝑖 𝑋𝑝

𝑗
𝐶𝑜𝑣(𝑝𝑖

𝑁

𝑖,𝑗=1

, 𝑝𝑗) 

(2) 

Subject to  

∑ 𝑋𝑝
𝑖 = 1, 0 ≤ 𝑋𝑃

𝑖 ≤ 1 

𝑁

𝑖=1

 

(3) 

where 𝑁 = 16 here, the subscript 𝑃 denotes the portfolio 𝑃, 𝐸(𝑝𝑖) is the expected wind power output of 

zone 𝑖 which is the time average of the time series {𝑝𝑖,𝑡}, 𝜎𝑖 is the corresponding risk, and 𝑋𝑃
𝑖  is the 

decision variable which is the optimal share of wind installed capacity of zone 𝑖 in portfolio 𝑃. Since 

𝑋𝑃
𝑖  is a weight, 𝑋𝑃

𝑖  must be between 0 and 1 and the 𝑋𝑃
𝑖 ’s must sum to unity. One may think of a 

portfolio 𝑃 as defined by the set {𝑋𝑃
𝑖 }. As we are taking the variability as the risk, we simply have 𝜎𝑖 =

𝜎(𝑝𝑖) = 𝑠𝑡𝑑({𝑝𝑖,𝑡}). 

Since solar only generates electricity during the day, in general, it has a lower average output per unit 

of installed capacity, making it less favourable in the output maximisation objective compared to wind. 

However, solar generation could potentially contribute by supplementing wind when wind is not 

generating (technological diversification). To better reflect these trade-offs, we propose two separate 

refinements to the MPT framework. 

The first modification is to split the problem into day and night and treat them independently, with both 

wind and solar available during the day and wind only at night. This leads to the absence of cross terms 

involving solar and night-wind in the risk objective, analogous to the zero cross-border transmission 

case in Rombauts et al. (2011) where there are no cross terms between different countries. The second 

proposal is to look at the minimisation of the residual demand rather than maximising the output. 

Minimising the residual demand will better reflect the potential interplay between VRE output and 

electricity load; for example, due to the potential coincidence of solar generation with system peak hour 
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demand (on a hot day electricity demand might be high because of cooling load but so is solar 

generation). We discuss those two refinements in turn below. 

 

3.1. Incorporating solar 

A row indexed by time step 𝑡 in the time series data table is classified as “night” if the solar output in 

all 16 zones are zero, and “day” otherwise. However, as the number of solar PV panels and wind 

turbines cannot change from day to night, the decision variables 𝑋𝑖 must be same regardless of the time 

of the day, so both problems must share the common 𝑋𝑖. The average output in this case is therefore the 

weighted mean of the day and night outputs 

𝐸𝑝(𝑝) = 𝛼𝑑𝐸𝑃
𝑑(𝑝) + 𝛼𝑛𝐸𝑃

𝑛(𝑝) (4) 

𝐸𝑝(𝑝) = 𝛼𝑑 ∑ 𝑋𝑃
𝑖

𝑖∈𝑤,𝑠

𝐸(𝑝𝑖
𝑑) + 𝛼𝑛 ∑ 𝑋𝑃

𝑖 𝐸(𝑝𝑖
𝑛)

𝑖∈𝑤

 
(5) 

where the superscripts 𝑑 and 𝑛 denote day and night respectively, 𝛼𝑑 and 𝛼𝑛 are the proportions of day 

and night observations which sum to one, and the expectation values 𝐸𝑃
𝑑(𝑝) and 𝐸𝑃

𝑛(𝑝) are defined by 

eq. (1) accordingly, with 𝐸𝑃
𝑑(𝑝) summing over all wind and solar generations and 𝐸𝑃

𝑛(𝑝) summing over 

wind generations only. It is easy to see that eq. (5) reduces exactly to the same expression in eq. (1) 

except now 𝑁 = 32, hence there is no need for computational purposes to separate day and night, and 

the output maximisation objective is just the same as in eq. (1) before. Note that due to the common 

𝑋𝑃
𝑖 ’s, we have the linear 𝑚𝑎𝑥(𝐸𝑃(𝑝)) = 𝛼𝑑𝑚𝑎𝑥 (𝐸𝑃

𝑑(𝑝)) + 𝛼𝑛𝑚𝑎𝑥(𝐸𝑃
𝑛(𝑝)), thus in practice there is 

no difference between maximising 𝐸𝑃(𝑝) and maximising 𝐸𝑃
𝑑(𝑝) and 𝐸𝑃

𝑛(𝑝) separately under the 

constraint 𝑋𝑃
𝑖 𝑑

= 𝑋𝑃
𝑖 𝑛

= 𝑋𝑃
𝑖  and then taking the weighted sum, therefore the day and night problems 

can still be seen as separate problems. 

 

By treating the expected output as the weighted mean of day and night outputs eq. (4), the portfolio risk 

is then the weighted covariance of the day and night samples, namely 

𝜎𝑃
2 =  𝛼𝑑𝜎𝑃

𝑑2 + 𝛼𝑛𝜎𝑃
𝑛2 (6) 

𝜎𝑃
2 =  𝛼𝑑 ∑ 𝑋𝑃

𝑖

𝑖,𝑗∈𝑤,𝑠

𝑋𝑃
𝑗
𝑝𝑖𝑗

𝑑 𝜎𝑖
𝑑𝜎𝑗

𝑑 + 𝛼𝑛 ∑ 𝑋𝑃
𝑘

𝑘,𝑙∈𝑤

𝑋𝑃
𝑙 𝑝𝑘𝑙

𝑛 𝜎𝑘
𝑛𝜎𝑙

𝑛 
(7) 

𝜎𝑃
2 =  ∑ 𝑋𝑃

𝑖 𝑋𝑃
𝑗
(𝛼𝑑𝑝𝑖𝑗

𝑑 𝜎𝑖
𝑑𝜎𝑗

𝑑 + 𝛼𝑛(𝑝𝑛

𝑖,𝑗∈𝑤,𝑠

⊕ 0)𝑖𝑗𝜎𝑖
𝑛𝜎𝑗

𝑛 
(8) 

where 𝜎𝑖
𝑑 and 𝜎𝑖

𝑛 are the standard deviations of the day and night outputs for zone-tech 𝑖. The 

factorisation in the last equality is just for computational convenience, with ⊕ denoting algebraic 

direct sum and 0 denoting the 16 × 16 0-matrix and 𝜎𝑖
𝑛 = 0∀𝑖 ∈ 𝑠 by construction. There is no cross 

term between solar and wind at night. Note that this is not the same as regarding the day and night 
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output as independent random variables, in which case 𝛼𝑑 and 𝛼𝑛 should also be squared in the risk 

objective eq. (8). Taking the linear weight ensures that, when the portfolio consists of only one wind 

zone-tech, we estimate the portfolio risk as the standard deviation of the output of that zone-tech. 

Taking the squared weight on the other hand would result in a smaller portfolio risk in such case. 

3.2. Minimising residual demand 

Since we are working dimensionlessly for the ease of up-scaling, in order to compute the residual 

demand, we need to first convert the total NEM demand into a dimensionless quantity analogous to the 

capacity factor. This can be done by dividing the hourly demand by the highest value it assumes, which 

we shall call “demand factor” 𝑑𝑡 (without the 𝑧 label, this refers to the total NEM demand summed 

over all 16 zones). The residual demand for zone-tech 𝑖 at any time 𝑡 is then defined to be 

𝑟𝑖,𝑡 = 𝑑𝑡 − 𝑝𝑖,𝑡 (9) 

By taking the difference directly between the demand factor and the capacity factor, we are implicitly 

making the assumption that they share the same base. In other words, we are assuming that the 

installed capacity is equal to the absolute peak demand (in MW). This is not a bad assumption as the 

residual demand 𝑟𝑖,𝑡 would then tell us exactly how closely the output of zone-tech 𝑖 matches with the 

demand in the time series, as if all of the NEM demand could be supplied solely by 𝑖. Thus, if there 

were a magic technology 𝐼 whose output matches the demand exactly i.e. 𝑟𝐼,𝑡 = 0∀𝑡, then the optimal 

solution would just be 100% investment in 𝐼. 𝑟𝑖,𝑡 is negative when the output of 𝑖 is greater than the 

demand. Since storage is not included in our model, we interpret negative residual demand as 

curtailment. Although not as costly as backup generation to fill residual demand, curtailment still incurs 

a cost as lost investment and should therefore be suppressed in the objective too. In order to penalise 

positive and negative deviations from the demand with different weights, we define a mismatch cost or 

deviation cost 𝑟̃𝑖,𝑡 as a function of the residual 𝑟𝑖,𝑡 by 

𝑟̃𝑖,𝑡 ≔ 𝜃(𝑟𝑖,𝑡) + 𝛼 ∙ 𝜃(−𝑟𝑖,𝑡) (10) 

where 𝜃 is the Heaviside step function and 𝛼 < 1 is the cost of curtailment relative to the cost of peak 

generation. In Australia, open cycle gas turbines (OCGT) are the most commonly used flexible 

generation technology to support the increasing penetration of VRE. According to Graham et al. 

(2018), the levelised cost of electricity (LCOE) for OCGT is estimated to be A$175/MWh, versus 

A$55/MWh for wind and solar; this means 𝛼 = 55 175⁄ . As 𝑟̃𝑖,𝑡 is again unitless and strictly between 0 

and 1 by definition, it really represents a normalised cost. The linear objective is then the minimisation 

of the expected cost of not matching the demand, i.e., 

𝑚𝑖𝑛
𝑋𝑃

𝑖
𝐸𝑃(𝑟̃) ≔ ∑ 𝑋𝑃

𝑖 𝐸(𝑟̃𝑖)

𝑁

𝑖=1

 

(11) 

where 𝐸(𝑟̃𝑖): = (1 𝑇⁄ ) ∑ 𝑟̃𝑖,𝑡
𝑇
𝑡=1  is just the time average of the deviation cost. 

 

On the other hand, generation pairs with negatively correlated residuals should be favoured as they can 

complement each other to bring down the overall residual. This is rewarded in the quadratic objective 
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𝑚𝑖𝑛
𝑋𝑃

𝑖
𝜎𝑝

2(𝑟) ≔ ∑ 𝑋𝑃
𝑖 𝑋𝑃

𝑗
𝐶𝑜𝑣(𝑟𝑖 , 𝑟𝑗)

𝑁

𝑖,𝑗=1

 

(12) 

= ∑ 𝑋𝑃
𝑖 𝑋𝑃

𝑗
𝑝𝑖𝑗𝜎𝑖𝜎𝑗

𝑁

𝑖,𝑗=1

 

(13) 

Note that this is computed from the residual 𝑟 rather than the mismatch cost 𝑟̃. Both objectives eq. (11) 

and eq. (13) are subject to the usual unity constraint as described in eq. (3). In order to see that 𝜎𝑖 =
𝑠𝑡𝑑(𝑟𝑖) can be interpreted as risk, recall that here we are essentially using wind and solar as non-

dispatchable generation and OCGT for the remaining load. Thus, the variation in the residual demand 

from wind and solar poses an uncertainty on determining how much OCGT capacity is needed. 

3.3. Solution algorithm 

We can find the efficient frontier for each case by following the same procedure: first we find the 

extremal points on the efficient frontier corresponding to the solutions of the linear and quadratic 

objectives separately, and then we solve for the sample points in between by solving the quadratic 

objective while holding the values of the linear objective fixed. More explicitly, using the output 

maximisation objective as an example, the efficient frontier is plotted by performing algorithm 1. 

Algorithm 1: Finding the efficient frontier 

Step 1: Find the minimum attainable risk portfolio 𝑷 

min
𝑋𝑃

𝑖
𝜎𝑃

2 = ∑ 𝑋𝑃
𝑖 𝑋𝑃

𝑗
𝑝𝑖𝑗𝜎𝑖𝜎𝑗

𝑁

𝑖,𝑗=1

 

   subject to ∑ 𝑋𝑃
𝑖 = 1𝑁

𝑖  

   return 𝑋𝑃
𝑖 , 𝐸𝑃(𝑝), 𝜎𝑃 

Step 2: Find the maximum attainable output portfolio 𝑷 

max
𝑋𝑃

𝑖
𝐸𝑃̅(𝑝) ≔ ∑ 𝑋𝑃̅

𝑖 𝐸(𝑝𝑖)

𝑁

𝑖=1

 

   subject to ∑ 𝑋
𝑃
𝑖  𝑁

𝑖 = 1 

   return 𝑋𝑃̅
𝑖 , 𝐸𝑃(𝑝), 𝜎𝑃 

Step 3: Plot the efficient frontier with M samples 

  for 𝐸𝑃(𝑝) < 𝐸𝑚(𝑝) < 𝐸𝑃(𝑝), 𝑚 ∈ {1, … , 𝑀} 𝒅𝒐 

  min
𝑋𝑚

𝑖
𝜎𝑚

2 ≔ ∑ 𝑋𝑚
𝑖 𝑋𝑚

𝑗
𝑝𝑖𝑗𝜎𝑖𝜎𝑗

𝑁
𝑖,𝑗=1  

  subject to  ∑ 𝑋𝑚
𝑖 = 1𝑁

𝑖  

    ∑ 𝑋𝑚
𝑖 𝐸(𝑝𝑖) = 𝐸𝑚

𝑁
𝑖=1 (𝑝) 

  return 𝑋𝑚
𝑖 , 𝐸𝑚 , 𝜎𝑚  

 end for 
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Step 2 is just a straightforward linear maximisation problem. Steps 1 and 3 on the other hand are 

quadratic programming problems; since only equality constraints are involved, they may also be 

expressed as a Lagrangian. For example, step 3 can be written as minimising the Lagrangian 

ℒ(Xm
i , λI, λP, λi)

= ∑  

N

i,j=1

Xm
i Xm

j
Covi,j + λI (∑ Xm

i

N

i

− 1) + λP (∑ Xm
i  E(pi)

N

i=1

− Em(p))

+ ∑ λi

N

i

Xm
i  

(14) 

and solved using the Euler-Lagrange method. However, since the matrix 𝜌 need not be positive 

definite, they are not convex optimisations in general. 

 

4. Sensitivity analysis 

This section provides a summary of our sensitivity analysis. We first look at the impact of putting 

transmission constraints on efficient frontiers of wind and solar generation portfolios in the NEM 

regions. The inherent problem with MPT approach applied to the electricity capacity planning is the 

peak hour representation – MPT averages the whole time series of analysis thus smoothing out all 

peaks and troughs. To see the importance of peak hour dynamics we look at only top 10% of peak 

hours load. Lastly, we test sensitivity of results with respect to the definition of risk. 

In §3.2, we considered a hypothetical situation where an ideal energy source would receive all 

investment to serve all demand in the market. In fact, it is easy to see that the solution to eq. (1) is just 

𝑋𝑃
𝐼 = 1 and 𝑋𝑃

𝑖≠𝐼 = 0 for the single (assuming there is no degeneracy) zone-tech 𝐼 whose average 

output 𝐸(𝑝𝐼) is the highest. This solution is just one of the endpoints of the efficient frontier. However, 

even if putting all the eggs in one basket can be mathematically justified, technically it is impossible to 

realise, because the transmission network has limited capacity. Therefore, to be realistic, we impose 

upper bounds on the 𝑋𝑃
𝑖 ’s so that the total wind and solar share of each zone in the portfolio cannot 

exceed the maximum level at which it can consume and export, which can be expressed by 

𝑋𝑃
𝑧𝑤 + 𝑋𝑃

𝑧𝑠 ≤ 𝑋𝑧 : =
𝑚𝑎𝑥 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝑧 (𝑀𝑊) +  𝑒𝑥𝑝𝑜𝑟𝑡 𝑙𝑖𝑚𝑖𝑡 𝑖𝑛 𝑧 (𝑀𝑊)

𝑚𝑎𝑥 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝑁𝐸𝑀 (𝑀𝑊)
 

(15) 

∀𝑧 ∈ {zones}. Using this definition, the maximum portfolio share for each of the 16 zones is 

summarised in Table A. 1, Appendix A. 

While the peak demand can be found straightforwardly from the data, we are not aware of any sources 

for the export limits. We therefore estimate them from the network edge and electrical property data in 

Xenophon and Hill (2018). Details of the calculation are given in Appendix A. 

As noted above, to test the sensitivity of results with respect to potential smoothing out of time series, 

we follow the same procedure as described in Roques et al. (2010) and take the top 10% of NEM 
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demand samples from the time series. We repeat the approach adopted in §3.1 and §3.2 with these top 

10% samples and compare the results. 

Lastly, although we argued that the risk should be measured by the variability of the linear objective in 

the context of the optimal VRE generation mix, for completeness we also compare the results of §3.1 

and §3.2 with when the risk is taken to represent the unpredictability. This definition of risk, i.e. 𝜎𝑖 =

𝜎(𝛥𝑝𝑖) = 𝑠𝑡𝑑({𝑝𝑖,𝑡 − 𝑝𝑖,𝑡−1}), was also studied in Holttinen (2005) and Holttinen et al. (2008), where 

its effect on system operation and the planning for operational reserve was investigated. Only wind 

power has been considered along this line in the literature; however whereas wind power can be treated 

as a stationary AR(1) process, solar output is highly periodic due to the rotation of the earth, hence the 

non-stationary modularity must be subtracted away first and the hourly difference is then taken from 

the stationary residuals. 

Table 1 summarises the five different cases we investigate in this study, for the three different 

objectives. Both the transmission capacity constrained (applying eq. 15) and unconstrained scenarios 

(neglecting eq. 15) are analysed in all cases. 19 years (2000-2018) of wind and solar output data are 

used for the first two objectives/scenarios; however, the analysis on the residual demand uses only 9.5 

years of data because demand data was only available for that period (Jul 2009-Dec 2018). 

Table 1:Scenarios considered in this paper 

 objective base case top 10% peak load unpredictability 

1. wind output 1 - - 

2. wind + solar output 2 - - 

3. residual demand 3 4 5 

For our analysis, we are interested in: 

1. Comparing results from cases 1 and 2 to quantify the impact of including solar in our portfolio 

analysis. 

2. Comparing cases 2 and 3 to test how sensitive our results are with respect to the formulation of 

objectives functions; in particular, how minimising the residual demand might impact optimal 

share of solar compared to when we looked at purely output maximisation. 

3. Comparing cases 3 and 4 to test how sensitive our results are if we analyse only peak hours. 

4. Comparing cases 3 and 5 to test how sensitive our results are to different definition of risks. 

In the next section we report our main results and discuss them. 

 

5. Analysis and results 

5.1. Quantifying the value of technological diversification of solar 

One of the key objectives of this research was to quantify the impacts of adding solar to the portfolio of 

wind and how this might further increase the share of wind for the same level of risk, for example; that 

is, what are technological synergies between solar and wind resources across large distances of the 

NEM? This section discusses findings in relation to this question. 
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Figure 3 shows the effect of incorporating solar in the absence of transmission constraints. It clearly 

shows that technological diversification helps further reduce the risk by lowering the average 

variability in the aggregate output.  

 
Figure 3: Comparison of the efficient frontiers for wind plus solar generation versus wind generation 

only 

 

The minimum risk can be reduced by a further 22% by incorporating solar generation into the portfolio. 

Alternatively, for the same level of risk (e.g., at 13%) including solar could increase combined average 

capacity factor by 7 p.p.. We should note that as SESA wind remains the zone-tech with the highest 

average output, both efficient frontiers also converge towards 100% SESA wind. Figure 4 shows the 

optimal composition of wind and solar for portfolios along the efficient frontier. Because, on average, 

solar outputs only about half of what wind does, solar generation is not favoured in the output 

maximisation objective. This explains the low shares of solar in Figure 4. In fact, solar generation is not 

present in the optimal solutions beyond a risk level of around 0.15 (portfolios with capacity factors 

higher than 0.440). Despite their importance in further risk hedging, solar generation retains a low 

share in all the efficient portfolios, and they are not even included in the high output and risk solutions, 

because the low average output is not favourable in the output maximisation objective. Thus, by 

including solar the average capacity factor across all 27 portfolios2 is reduced by 1 p.p. while the 

average risks of those 27 portfolios is reduced by 1.7 p.p. 

 

2 We have chosen 27 portfolios for the purposes of obtaining relatively smooth efficient frontier curves. We could have 

chosen even more portfolios, which would result in even smoother efficient frontier curves than reported here or fewer 

portfolios, which would result in the efficient frontier curves being less granular and more like step functions. 

Risk reduced by 

22% 
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Figure 4: Efficient portfolios for wind and solar (transmission capacity is unlimited) 
 

So far, we have assumed no transmission constraints between the Australia’s NEM regions, rather, the 

value of geographical diversification depends on existing transmission capacity. For example, 

Tasmania’s solar resources are negatively correlated with North Queensland’s wind resources and so to 

monetise this geographical diversity we need transmission capacity. One way to quantify the benefits 

of having “unlimited” transmission capacity is to compare the above results with the one where we 

impose existing transmission constraints. The resulting efficient frontier is shown in blue in Figure 5 

and the optimal portfolios are shown in Figure 6.  
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Figure 5: The efficient frontiers (wind and solar) for constrained and unconstrained transmission 

capacity cases 

 
Figure 6: Efficient portfolios for wind and solar (with existing transmission capacity) 

 

For the same level of 

risk, average capacity 
factor could be 

improved by 7% 
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First, transmission constraints affect mostly the solutions towards the riskier end of the frontier curve. 

For example, we can see that for the same level of risk (at the higher end of the efficient frontier 

curves), average capacity factor could be improved by 3.3 p.p., or 7% higher if there was unlimited 

access to transmission capacity for the 16 NEM zones. The principal reason for this is that 

technological diversification between solar and wind is first achieved within each region (see Figure 1) 

before any transmission constraints become binding and then only between regions where transmission 

constraints limits the potential for further diversification.  Secondly, it seems that existing transmission 

limits do limit the potential for aggressive wind and solar penetration in NEM – on average (for all 27 

portfolios), transmission constraints reduce capacity factor of wind and solar by 2.1 p.p. and risks by 2 

p.p. while the maximum achievable capacity factor reduces to 47% compared to an average of 50% 

across 7 highest portfolios3 under unconstrained case. Lastly, comparing Figure 4 with Figure 6 we can 

see that, without transmission limits, investments in wind and solar are more concentrated in fewer 

regions while, with transmission constraints, investments are much more geographically spread out 

across NEM’s regions. For example, under the lowest risk portfolio, investments in wind and solar are 

made in 28 zone-techs for the constrained case compared to 20 zone-techs under the unconstrained 

case. 

All in all, we can see that solar and wind resources in Australia’s NEM complement each other and that 

to facilitate their further integration we might need more transmission capacity between NEM’s 

regions. For example, Figure 7 shows the marginal impact of transmission boundaries on the portfolio 

risk under the transmission constrained case. This is derived by looking at “shadow price” of each of 16 

transmission constraints (eq. 15). First, one can see that not all boundaries are binding and only 7 

boundaries seem to contribute to limiting risk diversification. For example, relieving the constraint in 

SESA (by marginally increasing its capacity relative to NEM peak hour demand) could reduce the 

average risk by 0.15 p.p. or by up to 0.47 p.p. for a very risky portfolio (Figure 7: “high risk 

portfolio”). 

 

3 Ignoring the last portfolio (N27), which consists of 100% wind investment in SESA alone 
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Figure 7: Marginal impact of transmission constraints on the risk of 26 portfolios4 

Secondly, the reason that the transmission capacity of these 7 regions binds is: 

(a) wind generation in these 7 zones are all negatively correlated with solar generation in all 16 

NEM solar zones (as can be seen the heatmap in Figure 1); 

(b) the relative peak hour load (i.e., relative to the average NEM peak hour) in these 7 regions is 

relatively small (roughly 2% or less of NEM’s peak hour load) except for the ADE region 

where the peak hour load amounts to 8% of the NEM peak hour load. This means that although 

there is high negative correlation between the wind resource base in these 7 zones with solar 

generation across the entire NEM, transmission capacity is very important for these 7 zones. If 

we were to invest more in wind in these 7 zones it would have two benefits – wind capacity 

factors are higher than those for solar but importantly it hedges against potentially aggressive 

solar penetration in the rest of NEM. That is, if the rest of NEM had a high share of solar in the 

energy mix then the wind resource base in these 7 regions would become even more important 

to reduce the average risk of NEM’s VRE portfolios, provided transmission capacity is 

sufficient in those 7 zones. 

If we look again at the heatmap in Figure 1 we can see that the SWQ wind resource exhibits the highest 

negative correlation with all 16 solar NEM zones (on average) but the capacity constraint is not binding 

 

4 Ignoring the last portfolio (N27), which consists of 100% wind investment in SESA alone 
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for SWQ simply because the zone (according to our calculations – see Appendix B) has a large 

transmission export capacity – ca. 6.3 GW or 17.5% of NEM’s peak hour load. 

Another interesting observation is that NNS wind also exhibits relatively high negative correlation with 

all solar generation zones in NEM (in fact, it has the third highest negative correlation after SWQ wind 

and CQ wind).  However, the transmission constraint for NNS is also not binding – the total export 

capacity out of NNS is around 13% of NEM peak demand but half of that export capacity goes to SWQ 

and being close neighbours means that wind to wind correlation is highly positive (no hedging value).  

By contrast, while there is some hedging value between SWQ solar and NNS wind once again because 

solar has on average lower capacity factor, the MPT output maximisation approach does not favour 

significant solar investment. 

There are other three regions where wind resource is negatively correlated with solar – SEQ, NCEN 

and SWNSW. Transmission capacity is not binding for SEQ and NCEN simply because these two 

regions have very high demand: SEQ peak demand is 20% of NEM and NCEN – 33%. This means that 

any wind and solar being invested in these two regions will be consumed in those regions first and only 

then exported outside for hedging purposes. In all our optimal portfolios both SEQ and NCEN obtain a 

very low share of investment in wind and solar (even for the unconstrained transmission capacity case) 

simply because these two regions have a very low wind resource base (they are both amongst the 

lowest 6 regions out 16); the average wind capacity factor is only 31% in SEQ and 39% in NCEN, 

which can be compared to the much higher capacity factors for wind in SESA (52%), ADE (50%), and 

MEL (47%). Lastly, the SWNSW transmission capacity is not binding because its rather modest wind 

resource base (not in the top 5 regions) means that optimal portfolios involving SWNSW wind and 

solar are just high enough to cover its demand and will use existing transmission capacity to export 

surplus of energy (if any).  

So far, we used output maximisation objective and therefore the interaction between solar generation 

and demand might not be well represented in this objective. The next Section present results using an 

alternative objective function formulation – minimisation of residual demand.  

5.2. Minimising residual demand 

For the residual demand minimisation approach, solar plays an increased role in the optimal mixes 

compared to the output-maximising portfolios (compare results in columns A and B in Table A1, 

Appendix A). One can see that there is no difference in the results from the two different formulations 

for the first nine portfolios (with lower risks). As we look at portfolios with higher risks minimisation 

of residual demand rewards solar more compared to the output maximisation framework. Also, it is 

worth noting that the solar share is positive in 16 portfolios under the output maximisation framework 

whereas under the residual demand minimisation approach the solar share is positive in 21 portfolios. 

This is because the 𝜎(𝑟𝑖𝑠
) are lower than the 𝜎(𝑟𝑖𝑤

) and the solar generation values are negatively 

correlated with most wind generation, making solar energy more favourable in the risk minimisation 

objective. Thus, on average (across all 27 portfolios) solar share reaches 15.4% under the residual 

demand minimisation approach versus 12.5% under output maximisation. 

The efficient frontier for the two transmission capacity cases are plotted in Figure 8. In this case, the 

two efficient frontiers are much closer to each other and transmission constraints seem to have rather 

marginal impact – on average (across all 27 portfolios) transmission constraints increase average 

residual demand by 1 p.p. – in other words, OCGTs are operated more when we have transmission 

constraints than when we do not have transmission constraints.  
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Figure 8: Efficient frontiers for constrained and unconstrained transmission capacity cases 

In terms of share of wind and solar in NEM, transmission constraints have marginal impact except for 

the middle risk portfolio cases (portfolios 7-14, columns B in Table A1, Appendix A). It is interesting 

to note that when transmission constraints are imposed in the optimisation, we see a slight increase in 

the share of solar at the expense of wind. Again, as we noted before, this is because solar and wind are 

negatively correlated within each region and hence when we have transmission constraints for each 

region the model chooses relatively more solar to spread the risks. 

We should also note that generation pairs which deviate from the demand in opposing directions are 

good complements to each other for an optimal generation mix because they help to minimise the cost 

of meeting the overall residual demand. However, this diversification potential is not fully reflected in 

objective (eq. 11); in fact, since we only take time-averaged statistics in our objectives, it is not 

possible to obtain an accurate measure on how well certain combinations of generations match with the 

demand as all temporal information is lost in taking the time average before the optimisation. Hence, 

we undertake a sensitivity analysis in the next section which addresses this issue (§5.3.1). 

 

5.3. Sensitivity analysis 

This section discusses the main insights from our sensitivity analysis. We have already discussed the 

role of transmission constraints, so this section will focus on the top 10% peak load (average over the 

entire time series vs averages only for the top 10% of peak load hours) and the definition of risk 

(variability vs unpredictability). 

For the same level of risk, cost 

of meeting demand is reduced 

by 4.7% 
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5.3.1. Top 10% peak load hours 

The main rationale for examining this sensitivity is to understand the role of wind and solar resources 

in contributing to system demand peak hours in NEM, in particular, the relative role of wind and solar 

in meeting system peaks. Our results suggest that, unlike the output maximisation case, the peak load 

scenario does not increase the share of solar in the efficient portfolios (compare columns B and D in 

Table A1, Appendix A). This is because solar generation potentially only contributes to the morning 

demand peak while the evening peak (which is on average larger than the morning peak) needs to be 

covered by wind as there is no or little solar generation in the evening (Figure 9). Thus, solar does not 

contribute much to the peak hours demand and hence by just looking at those peak hours our residual 

demand minimisation framework favours solar less than in case where we look at the entire time series. 

 
Figure 9: wind, solar and demand profile in NEM. 

Note: the shaded areas represent +/- one std. dev. 

 

The resulting efficient frontiers for both the unconstrained and constrained cases are presented in 

Figure 10. Here, the results do not change dramatically from those presented in Figure 8 where we used 

whole time series – we see that transmission constraints affect portfolios which are riskier, similar to 

what see in Figure 8.  
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Figure 10: Constrained and unconstrained deviation cost and risk minimising efficient frontiers for the 

top 10% of peak load hours. 

Thus, focusing on peak load instead of whole time series changed our results with respect to solar share 

in optimal portfolios but the impact of transmission constraints appears quite similar. In the next 

section, we discuss how sensitive our results are with respect to risk definition. 

5.3.2. Unpredictability 

For this sensitivity analysis, we simply replace the risk definition that we have used (i.e., replace the 

standard deviation of time series with the standard deviation of their first differences) and repeat our 

analysis as presented in §5.2. The optimal solutions on the efficient frontier for both the unconstrained 

and constrained cases are shown in Figure 11. Unlike in §5.2 where the noise around the solar output 

fluctuates much less than the wind output, which was modelled as pure noise, here with the demand 

also taken into account, solar loses this advantage over wind and so it does not get a boost in its share 

in the optimal portfolios (compare columns B and E in Table A1, Appendix A). On average, the share 

of solar reduces by a factor of two from ca. 15% down to 7.5%. Thus, it seems that the solar generation 

share in optimal portfolios is much more sensitive to the definition of risk than to a particular time 

series used to calculate mean and risks (§5.3.1). 

 

For the same level of risk, cost 

of meeting peak demand is 

reduced by5.5% 
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Figure 11: Efficient frontiers for constrained and unconstrained cases (risk treated as unpredictability) 

5.3.3. Transmission constraints 

Finally, we can calculate the value of the transmission constraints by looking at how much the 

unconstrained efficient frontier deviates from the constrained one in each case (as we have discussed 

some of findings already above). Table 2 summarises the value of transmission for different cases as a 

percentage increase in the expected output or decrease in the expected mismatch cost (residual demand 

minimisation) with the removal of transmission constraints at low, medium and high levels of risk. The 

first thing to note is that moving from a low-risk to a high-risk portfolio the value of transmission 

constraints rises. Definitions of risk and peak hour sensitivities do not seem to change the value of 

transmission much in the low- and medium-risk portfolios whereas in the high-risk portfolio, the value 

of transmission capacity is marginally reduced using the output maximisation framework but 

significantly increased in the residual demand minimisation framework. The main reason for this 

divergence seems to be that output maximisation framework penalises solar generation in the peak hour 

and unpredictability sensitivities (see above sections) and so wind is favoured, which enhances the 

value of geographical diversification but only when transmission capacity is large enough. As we 

noted, the value of technological diversification of solar mainly arises from hedging wind risks in the 

same region (hence there is less of a need for transmission capacity) and less so across regions. In this 

regard, solar generation’s technological diversification reduces the need for more transmission capacity 

while transmission capacity complements wind generation. 

 

 

 

 

For the same level of risk, cost 

of meeting peak demand is 

reduced by 0.9 p.p. 
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Table 2: The value of transmission constraints*  

 Objective base case top 10% peak load unpredictability 

Low Risk wind output +0.7 - - 

 wind + solar output +0.3 +0.9 +0.9 

 residual demand -0.5 -0.5 -0.4 

Medium Risk wind output + 2.3 - - 

 wind + solar output +2.5 +2.5 +2.7 

 residual demand -1.7 -1.2 -1.8 

High Risk wind output +4.8 - - 

 wind + solar output +6.9 +5.3 +6.4 

 residual demand -1.9 -4.3 -3.2 

Note: * Value is measured by the percentage change in the expectation value of the (linear) objective when transmission 

constraints are removed 
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6. Conclusion and policy implications 

This paper introduced a new method (residual demand minimisation) that can be used to analyse 

interactions between solar and wind generation in the MPT framework. We used this framework to 

investigate the optimal generation mix consisting of wind and solar at different levels of risk for 

Australia’s National Electricity Market. We focused on the risk (uncertainty) arising from the 

variability rather than the unpredictability because for long term energy planning it is the overall 

variation around the expectation value of the linear objective that is relevant.  

We first looked at the optimal generation mix that maximised the generation output with wind energy 

only and confirmed the risk hedging benefit of geographical diversification. We then included solar 

into the portfolio and showed that technological diversification further reduces the risk. Since the 

output maximisation framework might lose some dynamic interactions between wind and solar 

generation and demand, we then shifted our attention to the alternative objective of minimising the 

deviation of the generation output from the demand (i.e., residual demand minimisation). We defined a 

mismatch cost to account for the fact that the cost of backup generation (e.g., OCGT) is higher than the 

investment loss from the curtailment of wind or solar. Under the new objective, solar became much 

more favourable in the optimisation than when the objective was output maximisation, and therefore 

the share of solar in the optimal portfolios in NEM increased significantly. Nevertheless, the 

disadvantage of solar only being able to generate during the day remained and wind still dominated in 

the solutions. Furthermore, our sensitivity analyses suggest that the way we treat risks and the way we 

choose our sample of our time series (top 10% of peak load hours vs whole time series) could 

dramatically alter the optimal share of solar in optimal generation portfolios. 

From a policy point of view, our findings suggest a number of recommendations for different 

stakeholder groups. To incentivise investors to integrate their generation portfolio across NEM a finer 

wholesale electricity price signal might be required that would then be used to link with renewable 

support schemes. For example, instead of the five reference price points currently in the NEM, there 

could be a move to a more granular locational (e.g., nodal) pricing system, at least for generators. Thus, 

linking revenue streams of a wind (or solar) farm to nodal wholesale electricity market prices would 

incentivise merchant investors to hedge locational risks and take advantage of geographical 

diversification. A move to finer-grained wholesale electricity prices is in line with the current 

discussion by Australia’s Energy Security Board (COAG Energy Council, 2019), which has put 

forward a series of market reforms including nodal pricing, marginal loss factors applied to individual 

generators.  Other proposed reforms include differentiating between different renewable zones and 

access regimes to networks5 giving a finer-grained approach to coordinated investments in renewables 

and transmission assets. In this regard, even though our 16 regions only provide a crude estimation, our 

findings about the locational value of existing transmission boundaries, wind and solar resources base 

and their correlations for hedging purposes can contribute to the policy discussion around potential 

market redesign to minimise total system cost for the NEM as it moves towards very high shares of 

wind and solar.  

Secondly, adopting an integrated investment planning approach where generation and transmission 

planning is viewed holistically could minimise system cost in the NEM – this would take advantage of 

our finding that wind generation and transmission capacity expansion are complements (higher wind 

penetration always requires more transmission so that to minimise the balancing cost of wind, or in the 

MPT framework, minimises risk at a chosen level of wind output) while solar generation complements 

 

5 For example, greenfield with shared access to transmission via a dedicated asset or access via shared transmission network 

vs brownfield with shared access to transmission via a dedicated asset or access via shared transmission network 
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wind generation at closer proximity (within the same zone). This also means that solar generation 

competes with transmission capacity expansion at low levels of solar penetration. But overall, with a 

very high wind and solar penetration in NEM, transmission capacity will be needed to minimise system 

risks associated with wind and solar uncertainties. Thus, while generation investment in the NEM is 

largely on a merchant basis and transmission investment is regulated, a careful integrated planning 

process that would minimise risks for generation investment is required – in this regard, our results 

show that in order to minimise risks of a VRE dominant generation portfolio, transmission capacity and 

efficient access will become very important. The lack of transmission capacity therefore implies higher 

risks and hence higher returns and thus potentially higher energy prices at high levels of VRE 

penetration.  

That said, our proposed research framework does not value exactly how much transmission capacity 

would be optimal at every level of risk associated with each generation portfolio. Secondly, while our 

proposed approach looks at wind and solar (and implicitly at backup generation like OCGT and 

curtailment of VRE), including other emerging technologies like battery storage or even traditional 

generation technologies like hydro run-of-river, hydro pumped storage or combined-cycle gas turbines 

(CCGTs) would add value to both policy discussion around optimal transition pathways for Australia’s 

NEM to more renewables. Modelling those technologies explicitly in the MPT approach would alter 

the efficient frontier and might reward solar generation more than what we currently show in our 

results (i.e., solar coupled with storage would make the technology almost dispatchable and hence 

lower its uncertainties). Adding storage might also alter our findings with regard to the extent to which 

existing transmission capacity is influenced by the wind resource base and its negative correlation with 

solar. Furthermore, our proposed approach could be applied to other jurisdictions with potentially large 

VRE potential but also where benefits of geographical diversity could be high (e.g,, Europe, North 

America, China).  

Finally, our results appear quite sensitive to the choice of time series (e.g, whole time series vs sample 

of peak-hours only). This finding comes simply from the fact that only time-averaged statistical 

parameters are considered under the current conventional MPT approach; therefore, all temporal 

information was lost and it failed to identify generation mixes which could complement each other to 

reduce the deviation from the demand on an hour by hour basis. In other words, it collapses two rather 

distinctive stages – investment in capacity and chronological hourly dispatch – into a single framework. 

And so, although the MPT approach in this traditional form is versatile, it has limitations when we 

apply it to a large-scale power system with high VRE penetration. Thus, an integrated approach which 

can handle both power [MW] and energy [MWh] is required for a full analysis (see e.g., Delarue et al., 

2011). Another improvement that relates to this integrated approach that would shed further light on the 

potential market re-design in the NEM would be to develop a DC-Optimal Power Flow network and 

unit commitment model of the NEM that co-optimises both dispatch and investment decisions.  Using 

such an integrated model, it would be possible to develop efficient frontiers and explore the value of 

co-optimisation of renewables investment with investment in transmission assets (whether on a 

merchant or socialised basis). We leave all these questions and suggestions for future research.  
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Appendix A: Detailed sensitivity results 

Portfolio 

N 

A B C D E 

wind 

share  

solar 

share 

wind 

share  

solar 

share 

wind 

share  

solar 

share 

wind 

share  

solar 

share 

wind 

share  

solar 

share 

1 0.68  0.32  0.68  0.32  0.69  0.31  0.73  0.27  0.85  0.15  

2 0.69  0.31  0.68  0.32  0.69  0.31  0.73  0.27  0.85  0.15  

3 0.69  0.31  0.69  0.31  0.69  0.31  0.73  0.27  0.85  0.15  

4 0.70  0.30  0.69  0.31  0.69  0.31  0.74  0.26  0.85  0.15  

5 0.71  0.29  0.70  0.30  0.70  0.30  0.74  0.26  0.86  0.14  

6 0.72  0.28  0.71  0.29  0.70  0.30  0.75  0.25  0.86  0.14  

7 0.73  0.27  0.72  0.28  0.70  0.30  0.75  0.25  0.86  0.14  

8 0.74  0.26  0.73  0.27  0.71  0.29  0.76  0.24  0.86  0.14  

9 0.77  0.23  0.75  0.25  0.73  0.27  0.77  0.23  0.86  0.14  

10 0.80  0.20  0.77  0.23  0.74  0.26  0.78  0.22  0.87  0.13  

11 0.83  0.17  0.79  0.21  0.76  0.24  0.80  0.20  0.87  0.13  

12 0.86  0.14  0.81  0.19  0.79  0.21  0.81  0.19  0.88  0.12  

13 0.89  0.11  0.82  0.18  0.81  0.19  0.83  0.17  0.89  0.11  

14 0.92  0.08  0.84  0.16  0.83  0.17  0.86  0.14  0.91  0.09  

15 0.95  0.05  0.86  0.14  0.85  0.15  0.90  0.10  0.93  0.07  

16 0.98  0.02  0.88  0.12  0.87  0.13  0.94  0.06  0.94  0.06  

17 1.00  -    0.90  0.10  0.90  0.10  0.99  0.01  0.96  0.04  

18 1.00  -    0.92  0.08  0.92  0.08  1.00  -    0.98  0.02  

19 1.00  -    0.94  0.06  0.94  0.06  1.00  -    0.99  0.01  

20 1.00  -    0.96  0.04  0.96  0.04  1.00  -    1.00  -    

21 1.00  -    0.98  0.02  0.99  0.01  1.00  -    1.00  -    

22 1.00  -    1.00  -    1.00  -    1.00  -    1.00  -    

23 1.00  -    1.00  -    1.00  -    1.00  -    1.00  -    

24 1.00  -    1.00  -    1.00  -    1.00  -    1.00  -    

25 1.00  -    1.00  -    1.00  -    1.00  -    1.00  -    

26 1.00  -    1.00  -    1.00  -    1.00  -    1.00  -    

27 1.00  -    1.00  -    1.00  -    1.00  -    1.00  -    

average 0.87  0.13  0.85  0.15  0.84  0.16  0.88  0.12  0.92  0.08  

Notes: A – output maximisation methodology (see §3.1); B – residual demand minimisation methodology (see §3.2); C – residual demand 

minimisation with existing transmission constraints (see §4); D – residual demand minimisation with the top 10% of peak load hours and 

unlimited transmission capacity (see §4); E – residual demand minimisation with risk as unpredictability and unlimited transmission 

capacity (see §4).  
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Appendix B: Data sources and calculations 

The mean and variance of the wind and solar capacity factors for the 16 NEM zones are calculated 

using 19 years (2000-2018) of processed data obtained from Pfenninger and Staffell (2016) and  

Staffell and Pfenninger (2016), which converts weather data from the NASA MERRA reanalysis 

(Rienecker et. al 2011) into wind and solar power output. It uses the Virtual Wind Farm model (Staffell 

and Pfenninger 2016) to compute the wind output from the wind speeds and the Global Solar Energy 

Estimator (Pfenninger and Staffell 2016) to compute the solar output from the solar irradiance data. In 

obtaining the output data, the (approximate) geographical centre of each zone is taken to be the 

representative point of the zone, the coordinates of the representative points can be found in Table A. 1. 

We also assume that all wind turbines are the Siemens Gamesa SG 4.5 145 model with hub height 

100m, and all solar PV are installed at 30 degrees tilt and 180 degree azimuth, with zero system loss 

and without tracking. In practice however, there will, of course, be different wind turbine technologies 

and vintages and solar PV with different efficiencies and some might have tracking systems thereby 

enabling higher capacity factors. We leave these potential improvements for future research. 

Table A. 1: Coordinates of the representative points (geographical centroids) of the NEM zones. 

NEM 

zone Latitude Longitude 

NEM 

zone Latitude Longitude 

NSA -30 135 NCEN -33 147.5 

ADE -36 139 SWNSW -35 144.5 

SESA -37.5 140 CAN -35.5 149 

NQ -18 143 CVIC -36.5 142.5 

CQ -24 144 NVIC -37 147.5 

SWQ -27 146 MEL -37.5 144 

SEQ -27 152 LV -37.5 147 

NNS -30 148 TAS -42.5 147 

The demand data from July 2009 to the end of 2018 are taken from the P5MIN_REGIONSOLUTION 

dataset published on the AEMO Market Data site (AEMO, 2019). We take the 

‘DEMAND_AND_NONSCHEDGEN’ column in the data set as the gross demand and 

‘TOTALDEMAND’ as the operational demand. The raw data captured from AEMO are recorded state 

by state; to disaggregate the state demand into zone demand we use the population proportion method 

illustrated in (Xenophon and Hill 2018). The current transmission limits between zones are also 

estimated using the data from (Xenophon and Hill 2018)). 

From Xenophon and Hill (2018) we can obtain the following information: the end points (nodes) of the 

transmission lines, the line length 𝑙 [km], line voltage 𝑉 [kV], resistance 𝑅 [𝛺/km], inductance 

reactance 𝑋𝐿 [𝛺/km], and the line-neutral capacitance 𝐶 [𝑛𝐹/km]. The AC frequency in Australia is 50 

Hz. In the absence of other information, we use the surge impedance loading (SIL) [MW] to estimate 

the transmission limit in MW, where 

𝑆𝐼𝐿 =
𝑉2

𝑍𝑐 ∨
 

with the characteristic impedance [𝛺] 
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𝑍𝑐 = √
𝑅 + 𝑗𝑋𝐿

𝑗2𝜋𝑓𝐶
, 

and the transmission limit [MW] is obtained by multiplying the SIL with the loadability, which is 

empirically found to be (as calculated graphically from the empirical curve given in Gutman, 

Marchenko, and Dunlop (1979) 

𝑙𝑜𝑎𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = {
3 𝑙 < 80

58.091𝑙−0.661 80 ≤ 𝑙 ≤ 1000
0.5 𝑙 > 1000

. 

Hence, according to this methodology to model the transmission constraint, the shorter the line, the 

higher the limit according to the empirical loadability curve. We have not included other equipment 

such as transformers in the model because we do not have enough information. 

Using the definition in eq. (14) in Section 3.3, the transmission limits between the 16 operational zones 

in NEM were calculated (Table A.2) and the maximum portfolio share for each of the 16 zones is 

summarised in Table A.4. 

Table A.3:Derived transmission limits between NEM’s operational transmission zones  

FRO

M TO 

TRANSFER 

LIMIT, MW  TYPE FROM TO 

TRANSFER 

LIMIT, 

MW TYPE 

NNS SWQ      1,700.86  

['EDGE', 'AC 

INTERCONNECTO

R'] CAN NCEN      5,217.25  ['EDGE'] 

NNS SEQ         315.67  

['EDGE', 'AC 

INTERCONNECTO

R'] CAN 

SWNS

W      1,139.83  ['EDGE'] 

NNS NCEN      1,560.15  ['EDGE'] ADE SESA         757.19  ['EDGE'] 

CQ SWQ         508.86  ['EDGE'] ADE NSA      2,202.13  ['EDGE'] 

CQ SEQ      1,289.24  ['EDGE'] NCEN NNS      1,560.15  ['EDGE'] 

CQ NQ      1,798.93  ['EDGE'] NCEN CAN      5,217.25  ['EDGE'] 

NVIC 

SWNS

W      1,273.06  

['EDGE', 'AC 

INTERCONNECTO

R'] SEQ SWQ      3,537.06  ['EDGE'] 

NVIC CVIC         375.92  ['EDGE'] SEQ NNS         418.67  

['EDGE', 'AC 

INTERCONNECTO

R'] 

NVIC MEL      1,253.82  ['EDGE'] SEQ CQ      1,289.24  ['EDGE'] 

NVIC CAN      1,407.09  ['EDGE'] SWQ NNS      2,178.86  

['EDGE', 'AC 

INTERCONNECTO

R'] 

CVIC NVIC         375.92  ['EDGE'] SWQ CQ         508.86  ['EDGE'] 

CVIC MEL         756.13  ['EDGE'] SWQ SEQ      3,537.06  ['EDGE'] 

CVIC 

SWNS

W         585.73  

['EDGE', 'AC 

INTERCONNECTO

R'] 

SWNS

W NVIC      1,203.70  

['EDGE', 'AC 

INTERCONNECTO

R'] 

CVIC NSA         220.00  ['HVDC'] 

SWNS

W CVIC         554.90  

['EDGE', 'AC 

INTERCONNECTO

R'] 
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LV MEL      7,396.29  ['EDGE'] 

SWNS

W CAN      1,139.83  ['EDGE'] 

LV TAS         478.00  ['HVDC'] SESA MEL      1,658.46  

['EDGE', 'AC 

INTERCONNECTO

R'] 

MEL NVIC      1,253.82  ['EDGE'] SESA ADE         757.19  ['EDGE'] 

MEL SESA      1,758.46  

['EDGE', 'AC 

INTERCONNECTO

R'] NQ CQ      1,798.93  ['EDGE'] 

MEL CVIC         756.13  ['EDGE'] NSA ADE      2,202.13  ['EDGE'] 

MEL LV      7,396.29  ['EDGE'] NSA CVIC         200.00  ['HVDC'] 

CAN NVIC      1,407.09  ['EDGE'] TAS LV         594.00  ['HVDC'] 

 

Table A.4: Maximum portfolio weight for each zone   

Zone 𝑋𝑧 

NSA 0.082 

ADE 0.159 

SESA 0.072 

NQ 0.093 

CQ 0.115 

SWQ 0.194 

SEQ 0.348 

NNS 0.132 

NCEN 0.512 

SWNSW 0.098 

CAN 0.253 

CVIC 0.070 

NVIC 0.132 

MEL 0.565 

LV 0.229 

TAS 0.067 

 


	CWPE2077 Coversheet
	2022-Abstract
	200805_NEM_paper_Final
	Abstract
	1. Introduction
	2. Mean-Variance Portfolio Theory and Energy Investment Planning
	3. Mathematical formulation
	3.1. Incorporating solar
	3.2. Minimising residual demand
	3.3. Solution algorithm

	4. Sensitivity analysis
	5. Analysis and results
	5.1. Quantifying the value of technological diversification of solar
	5.2. Minimising residual demand
	5.3. Sensitivity analysis
	5.3.1. Top 10% peak load hours
	5.3.2. Unpredictability
	5.3.3. Transmission constraints


	6. Conclusion and policy implications
	References
	Appendix A: Detailed sensitivity results
	Appendix B: Data sources and calculations


