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Abstract

We propose a new estimator, the quadratic form estimator, of the Kronecker product model
for covariance matrices. We show that this estimator has good properties in the large
dimensional case (i.e., the cross-sectional dimension n is large relative to the sample size T').
In particular, the quadratic form estimator is consistent in a relative Frobenius norm sense
provided log® n/T — 0. We obtain the limiting distributions of Lagrange multiplier (LM)
and Wald tests under both the null and local alternatives concerning the mean vector p.
Testing linear restrictions of y is also investigated. Finally, our methodology performs well
in the finite-sample situations both when the Kronecker product model is true, and when it
is not true.

Some key words: Covariance matrix; Kronecker product; Quadratic form; Lagrange multi-
plier test; Wald test

1 Introduction

Covariance matrices are of great importance in many fields. In finance, they are a key element
in portfolio choice and risk management (Markowitz (1952)). In psychology, scholars have long
assumed that some observed variables are related to certain latent traits through a factor model,
and then use the covariance matrix of the observed variables to deduce properties of the latent
traits. In econometrics, covariance matrices often appear in test statistics representing the
sampling variability of a vector of parameter estimates. Anderson (1984) is a classic statistical
reference that studies estimation of and hypothesis testing about covariance matrices in the low
dimensional case (i.e., the dimension of the covariance matrix, n, is small compared with the
sample size T).

There are many new methodological approaches to covariance and precision matrix estima-
tion in the large dimensional case (i.e., n is large compared with T);! see, e.g., Ledoit and Wolf
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!Some studies have made a distinction between the large dimensional case and the high dimensional case
(Hafner, Linton, and Tang (2019)). We no longer make this distinction in this article. As long as n is large
relative to T, regardless of n exceeding T', we call it the large dimensional case.



(2003), Bickel and Levina (2008), Fan, Fan, and Lv (2008), Ledoit and Wolf (2012), Fan, Liao,
and Mincheva (2013), and Ledoit and Wolf (2015). Fan, Liao, and Liu (2016) gave an excel-
lent account of the recent developments in theory and practice of estimating large dimensional
covariance matrices. The usual approaches include: to impose some sparsity on the covariance
matrix, meaning that many elements of the covariance matrix are assumed to be zero or small,
thereby reducing the number of parameters to be estimated; or at least to ”shrink” towards
a sparse matrix, or to use a factor model which reduces the dimensionality of the parameter
space. Most of this literature assumes i.i.d. data.

We consider the problem of estimating a large covariance matrix . We impose a model
structure that reduces the effective dimensionality. In particular, we consider the Kronecker

product model. Let n = ny X --- x n,, where n; € Z and n; > 2 for j = 1,...,v. We suppose
that

Y=0?XT1® - ®%,, (1.1)
where ¥; is an n; x n; unknown covariance matrix satisfying tr(X;) =n; for j =1,...,v, and

0 < 0% < o0 is a scalar parameter.

Kronecker product models arise naturally from multiway data (c.f. Kroonenberg (2008)).
Multiway data are a generalization of two-way or three-way data that are widely encountered
in social science. For example, the scores on 3 subjects (mathematics, English and music) of 50
students observed over 10 years are three-way data, the ”ways” being subjects, students and
years. Let w; j; denote the score of subject ¢ of student j in year ¢. To model w; j¢, one could
use an interactive effects model similar to Bai (2009):

wi,j,tzﬂi,j+,yi,tfj,ta i:152733 jzla'”aSOv t:]-aalo

where p; ; is the subject-student specific mean, while ~;; and f;; are the subject-time specific
and student-time specific effects, respectively. Stacking all the observations {w; ;.} of year ¢
into a 150 x 1 column vector y;, we have y; = p + v ® fi, where p is the 150 x 1 mean vector

containing stacked {pi;}, v = (v, 72,6,73,.)7, and fr = (fi,6,- -, f50,)T. Suppose that v, is a
random vector independent of f;, and that both are mean-zero and stationary in time. Then,

El(ye — 1) (ye — 11)7] = E[vev{] @ E[fe f]].

In this case the covariance matrix of 1; is a Kronecker product of two sub-matrices, which
describe the subject specific and individual specific dependencies.

Extending the idea to multiway data, one might think of a typical equity portfolio con-
structed by intersections of 5 size quintiles, 5 book-to-market ratio quintiles, and 10 industries,
in the spirit of Fama and French (1993), over a number of years, as four-way data: sizes x
B/P ratios x industries x years. Situations in which higher-way data are collected are also
on the increase. For example, electroencephalography (EEG), a non-invasive way of detecting
structural abnormalities such as brain tumours, also provide multiway data, such as EEG bands
X patients x leads x doses x time X task conditions (Estienne, Matthijs, Massart, Ricoux,
and Leibovici (2001)).

Consider (v+ 1)-way data w;, ... i, ¢, Wherei; =1,... n;forj=1,...,vandt=1,...,T.
We use subscript ¢ to denote the (v 4+ 1)th way of the data in the hope to broadly interpret
the (v + 1)th way as ”time”, T as the sample size, all other ways as the ”cross-section”, and
n := ny X --- X n, as the cross-sectional dimension. In other words, the (v + 1)th way of
the data need not correspond to the time dimension, should the multiway data contain such a
dimension. In the rest of the article, we shall no longer stress this distinction. Suppose that
Wiy g, ivt = it g siv +5211’t6122’t . -52}7“ where i; =1,...,njforj=1,...,v,andt=1,...,T.
Equivalently, in the stacked form

- _ 1 2 v
Yt = (wl,l,...,l,ta s ,wnl,nz,...,nv,t)T = + on ® & X ® Ets



where 1 is the stacked mean vector, ] := (g7 ,,... ,531], ¢)7 is an n; x 1 mean-zero random vector
’ k)

with covariance matrix E[e/elT] for all ¢ for j = 1,...,v. If e}, ... ! are mutually independent
for all ¢, then
1 2
El(ye — 1) (ye — 1)7] = Eleje, | @ Elefe; "] ® - @ Elefe}].

We hence see that the covariance matrix of y; is a Kronecker product of v sub-matrices.

Recent work of Kronecker product models on multiway data include Hoff (2011), Hoff (2015),
Hoff (2016) etc. Kronecker product models have also been considered in the psychometric lit-
erature (Campbell and O’Connell (1967), Swain (1975), Cudeck (1988), Verhees and Wansbeek
(1990) etc). In the spatial literature, there are a number of studies that consider Kronecker
product models for the correlation matrix of a random field (Loh and Lam (2000)). Robinson
(1998) and Hidalgo and Schafgans (2017) exploited separable error covariance matrix structures
to develop inference methods without the need for smoothing.

These literatures have all focussed on the low dimensional case. Hafner et al. (2019) were the
first to study Kronecker product models in the large dimensional case. The proper framework
for studying the large dimensional case is the joint limit setting developed by Phillips and Moon
(1999) in which n and T tend to infinity simultaneously.? Since n tends to infinity, there are
two main cases when considering (1.1): (a) {n;};_; are all fixed while v — o0; (b) n; — oo for
at least some j while v is fixed. Case (a) corresponds to practical situations where the data
have a large number of ways but in each way the number of entities is small; case (b) often
corresponds to, say, three-way or four-way data in which at least one way has a large number
of entities. The methodologies developed in Hafner et al. (2019) and this article are perfectly
geared for case (a) in the sense that (1.1) is correctly specified for the data.

We do not analyse case (b) theoretically, but our estimation and inference procedures can
in principle be applied to case (b) also, but the theory will require more work and stronger
restrictions on the relationship between n and T. For example, if v = 2 and ny = nas = /n,
then the sub-matrices ¥, 39 each contain order n unknown quantities. If n/7T" — 0 fast enough,
then we may show some consistency of our estimators of the sub-matrices 31, >5. On the other
hand, if this rate condition is not satisfied, one could combine the separable structure (i.e., the
Kronecker product) with sparsity restrictions on the sub-matrices. This has been investigated
in the literature. Other approaches have been considered in Akdemir and Gupta (2011), Hoff
(2011), and Hoff (2015). Henceforth when we say the Kronecker product model (1.1), we
implicitly mean case (a).

The Kronecker product model leads to substantial dimension reduction even though it need
not be sparse in the sense of (2.1) of Fan et al. (2016). Hafner et al. (2019) showed that the ma-
trix logarithm of a Kronecker product covariance or correlation matrix is a sparse matrix (with
O(logn) unknown quantities) and the logarithmic operator converts the multiplicative Kro-
necker product structure into an additive one. Therefore, the logarithm of a Kronecker product
covariance or correlation matrix is a linear function of a much ”smaller” vector of unknown
quantities. They used this to develop a closed-form estimator; they established its consistency
and provided a central limit theorem (CLT). However, their results require strong, albeit suf-
ficient but not necessary, conditions; in particular they obtained Frobenius norm consistency
of the estimator under a condition that at least n/T — 0, which is very restrictive. On the
contrary, other methodologies typically achieve average Frobenius norm consistency provided

2Peter Phillips has made some fundamental contributions to the large dimensional analysis. Phillips and
Moon (1999) provided three asymptotic frameworks for analysing double-index (n,T') processes: sequential limit
framework (e.g., n — oo followed by T — o0), diagonal path limit framework (i.e., both n and T pass to
infinity along some specific diagonal in the two dimensional array), and joint limit framework (i.e., n,7 — oo
simultaneously). In particular, they provided a central limit theorem in joint limit framework for double-index
processes (Theorem 2 of Phillips and Moon (1999)). However, the Lindeberg condition of the theorem is perhaps
difficult to verify in practice. In Section B, we provide a variant (Theorem B.1), which relies on a Lyapounov’s
condition. Moreover, the variant allows the central limit theorem to kick in from either the cross-sectional or
time dimension.



slogn/T — 0, where s is some sparsity index (e.g., see Bickel and Levina (2008) Theorem 2
with ¢ = 0).?

In this article, we relax the rate restriction on n imposed by Hafner et al. (2019) and
allow n to be possibly larger than 7. We propose a new covariance matrix estimator called
the quadratic form estimator based on the Kronecker product model. Our estimator averages
elements of the sample covariance matrix, so we obtain a rate improvement by averaging. In
particular, under a cross-sectional weak dependence condition, the quadratic form estimator
achieves relative Frobenius norm consistency provided log® n/T — 0. Moreover, this method
automatically produces a symmetric and positive definite covariance matrix estimator, unlike
some of the sparsifying methods considered by Fan et al. (2016).

We apply our methodology to a concrete testing problem; we consider the null hypothesis
Hy : u = po, where p is the mean of the large dimensional data y; and pg is some known
vector. One practical example would be that 1; corresponds to differences between treated and
controlled groups and we want to test whether these cross-sectional differences are different
from zero. We define Lagrange multiplier (LM) and Wald test statistics based on our estimated
precision matrix and establish their asymptotic distributions under both null and local alterna-
tives of the form Hy : u = po + 0/v/T for some vector §. We also provide two results regarding
testing linear restrictions of p.

We compare our estimation and testing methods with Ledoit and Wolf (2004)’s linear shrink-
age estimator and Ledoit and Wolf (2017)’s direct nonlinear shrinkage estimator in Monte Carlo
simulations. Our methods perform very well in moderate-sized samples. In fact, they work well
even in situations where a Kronecker product model is misspecified for a covariance matrix.

The rest of the article is structured as follows. In Section 2 we discuss the model and
identification while in Section 3 we propose the quadratic form estimator. Section 4 gives the
rate of convergence for the quadratic form estimator. In Section 5 we define LM and Wald test
statistics and establish their asymptotic distributions under both null and local alternatives.
We also consider testing linear restrictions of u. Section 6 conducts Monte Carlo simulations
comparing our approach with Ledoit and Wolf estimators. Section 7 concludes. All the major
proofs are put in Appendix while auxiliary lemmas and theorems are in Section B.

1.1 Notation

Let A be an m x n matrix. Let vec A denote the vector obtained by stacking the columns of
A one underneath the other. The commutation matriz K, , is an mn x mn orthogonal matrix
which translates vec A to vec(AT), i.e., vec(AT) = K,y » vec(A). If A is a symmetric n xn matrix,
its n(n—1)/2 supradiagonal elements are redundant in the sense that they can be deduced from
symmetry. If we eliminate these redundant elements from vec A, we obtain a new n(n+1)/2x 1
vector, denoted vech A. They are related by the full-column-rank, n? x n(n + 1)/2 duplication
matriz D,: vec A = D,, vech A. Conversely, vech A = D, vec A, where D is n(n +1)/2 x n?
and the Moore-Penrose generalized inverse of D,,. In particular, D;} = (D} D,)~'D}, because
D,, is full-column-rank.

For z € R", let ||z|j2 := /> j 2? and ||z|l = maxi<i<n |2;| denote the Euclidean (¢2)
norm and the element-wise maximum (f,) norm, respectively. Let Apax(-) and Apin(-) denote
the maximum and minimum eigenvalues of some real symmetric matrix, respectively. For

any real m X n matrix A = (ai;)i<i<m,1<j<n, let ||A||r = [tr(ATA)]1/2 = [tr(AAT)]l/2 =
vee Alls, AL == S0 S ol Al = maxps Azl = /A ATA), [Aley =
maxi<j<n i @i, and [|Alle, = maxi<i<m )i, |a;;| denote the Frobenius (¢3) norm, ¢

norm, and spectral norm (¢3-operator norm), maximum column sum matrix norm (¢;-operator

3 Average Frobenius norm means dividing a Frobenius norm by /n, while relative Frobenius norm means
dividing a Frobenius norm by the Frobenius norm of a target matrix, say, the unknown covariance matrix. These
two concepts are similar, but not exactly the same.



norm), and maximum row sum matrix norm (¢-operator norm) of A, respectively. Note that
| - [lo can also be applied to matrix A, i.e., ||Allcc = Mmaxi<i<m,i<j<n |@i;|; however || - |/ is
not a matrix norm so it does not have the submultiplicative property of a matrix norm.

Landau (order) notation in this article, unless otherwise stated, should be interpreted in
the sense that n,T — oo simultaneously. An absolute positive constant refers to a constant
independent of anything which is a function of n and/or T. We write a < b if there exist
absolute constants 0 < ¢y < ¢o such that ¢;b < a < cob. For real numbers a, b let a V b denote
max(a, b).

2 The Model and Identification

We now directly work with the high-level n-dimensional random vector y; with p := Ey; and
Y = E[(yt — p)(ye — p)7] for every t. In particular, ¥ takes the form of (1.1). For each j, ¥;
contains nj(n;+1)/2—1 (unrestricted) parameters. In total, model (1.1) contains % n;(n; +
1)/2 — (v — 1) unknown parameters. This model is the same as considered in Hafner et al.
(2019) except that we make a different identifying restriction. The implied form for ¥ 7! is also
Kronecker, i.e., 71 =072 x 21_1 @ ®3, L

We show that model (1.1) is indeed identified. First, the parameter o is identified because

tr(X) =2 xtr(1 ® - @ %,) = 0% x tr(L1) X -+ x tr(%,) = o’n,

whence we have o2 = tr(X)/n. We next consider identification of the remaining parameters
based on the partial trace operator (Filipiak, Klein, and Vojtkova (2018)). Suppose that an
n X n matrix A can be written in terms of ny x ny blocks of n_; X n_; dimensional matrices
A_1; 5, where n_y :=n/ny; that is,

A1aa - A_vran
A= : (2.1)

A—lml,m
Then the partial trace operator PTR,,, : R"*"— R™*" ig defined as follows:

tr(A—i11) - tr(A_1im,)
PTR,, (A) = ' '

tr(A—lmlﬂ’Ll )

Consider model (1.1), and let ¥_1 := Y3 ® --- ® ¥,. Define the n; x n; matrix dV) .=
PTR,, (%) = ¢%tr(X_1) x ¥1. Then 1 = dV/(tr(dV)/ny). According to Definition 1.1(ii) of
Filipiak et al. (2018), PTR,,, (X) = >, (In, ®e£n_l)2([m ®ern_,), where eg, | isthen_q x1
elementary vector with one in position ¢ and zero elsewhere. In this sense, dV) is a quadratic
form of X.

We next consider the remaining components 3, h = 2,...,v. Write

5 . Eh+1®---®27j®21®--~®2h,1 fOI‘hZQ,...,U—l
Ty @@, for h=v

Note that ¥_j is n_p x n_j, dimensional, where n_j := n/nj. Recalling the identity B ® A =
Kpm(A® B)Ky,p for A (m xm) and B (p x p) (Magnus and Neudecker (1986) Lemma 4), we
write

E(h) .

= Knh><~~~><n1,,n1><~--xnh_12Kn1><~~~><nh_1,nh><--~><nv
_ 2
= Knhx-~~><nv,n1><~~-><nh,1 (U XY1®---® Zv)KnlX---th,l,nhxmxnv

= XYL 1 QL AN ® - Q1 =02 X T @ By, (2.2)



Define the nj, x nj, matrix d® = PTR,, (E(h)) = 0?tr(X_p) x B5. Then

dh)
S, =
tr(d™) /ny,

3 Estimation

We observe an n-dimensional weakly stationary time series vector {yt}le with mean p and
covariance matrix Y. Define the sample covariance matrix

T
1 i i
Mr = 2> (= 9w — 9",
t=1

where § 1= 1 Zle ys. Define dV) := PTR,,, (M7). Then let & := d® /(tr(d)/n,). Likewise
define the ”permuted” sample covariance matrix

M’Z("h) = Knhx-nxnv,nl><-~~><nh_1MTKn1><-~~><nh_1,nh><~--><nv7 (31)
for h =2,...,v. Define d" := PTRnh(M:(Fh)) for h=2,...,v. Then

) )
Shoim (3.2)
tr(d™)/ny,

forh=1,...,v.
The quadratic form estimator X for ¥ is

P=62XxT1Q @,

52— M) (3.3)

By Lemma 2.4 of Filipiak et al. (2018), if My is symmetric and positive semidefinite, then so
are {SJ };’:1 and hence 3. Moreover, simulations show that even for positive semidefinite My,
{f]j};-’zl and hence Y will be positive definite. As a result, the quadratic form estimator ¥~
for Bl is X =62 x 27 @ - @ We stress that ! exists even if n > T. The quadratic
form estimator is closely related to the quasi-maximum likelihood estimation (QMLE), but has
the particular advantage in large dimensions in the sense that it is in closed form.*

In general we expect each element of My to be v/T-consistent, but here we are averaging
over a large number of such elements. Under a cross-sectional weak dependence condition, like
Assumption 4.3, we should have a rate improvement for the quadratic form estimator. We
formally establish this in Section 4.

4 The Rate of Convergence

In this section, we shall derive the rate of convergence for the quadratic form estimator. We
make the following assumptions:

Assumption 4.1.

(i) The sample {y:}I_, are independent over t.

4In the previous version of this article, we introduced a variant of the quadratic form estimator, which was
derived by replacing the partial trace operator with a partial sum operator. Because of inferiority of that variant,
we no longer include it in the current version.



(i)
1

T
|m m _
1I£zaanT;E‘yt’l| <A™ m=2,3,...,

for some absolute positive constant A.

(i1i) Consider a normal random vector z; which has the same mean vector and covariance
matriz as those of y;. The n® x n? kurtosis matriz of y; satisfies

var ((yt — 1) @ (yr — ,u)) < Cvar ((zt — ) ® (2 — H)) ,

for some absolute positive constant C for every t, where < is to be interpreted componen-
twise.

Assumption 4.1(i) facilitates our technical analysis, but is perhaps not necessary. Assump-
tion 4.1(ii) assumes the existence of an infinite number of moments of y;, which allows one to
invoke a concentration inequality such as the Bernstein’s inequality. Normal random vectors or
random vectors that exhibit some exponential-type tail probability (e.g., subgaussianity, subex-
ponentiality, semiexponentiality etc) satisfy this condition. Assumption 4.1(iii) supposes that
the kurtosis matrix of y; is of the same order of magnitude as if it were a normal random vector.
We impose this restriction on the kurtosis matrix of y; because not much research has touched
on unrestricted kurtosis matrices in the large dimensional case.

Assumption 4.2.

(1) maxi<j<,nj is an absolute positive constant.
(1t) minj<j<y, Amin(2;) is bounded away from zero by an absolute positive constant.

Assumption 4.2(i) requires that the dimensions of the sub-matrices be fixed while the number
of sub-matrices tends to infinity. Note that Assumption 4.2(ii) does not necessarily imply
that Apin(X) is bounded away from zero by an absolute positive constant. This is because
Amin(2) = 02 x H§:1 Amin(2;) and v — oo.

Lemma 4.1. Suppose Assumption 4.2(i) hold. We have
(i) v=0(logn).
(it) maxi<j<y Amax(X;) is bounded from the above by an absolute positive constant.

Note that Lemma 4.1(ii) does not necessarily imply that Apax(2) is bounded from the above
by an absolute positive constant. This is because Apax(X) = 02 x [Tj=1 Amax(E;) and v — co.

Assumption 4.3. Let 0 < g < 2.

. 1 2 ot T 2
Tim L)% = tm 7 <H I5503) = w < oo,
]:

Assumption 4.3 characterises the cross-sectional dependence of {y;}Z_;. According to Propo-
sition 1 of Chudik and Pesaran (2013), {y;}._; is said to be cross-sectionally weakly dependent.
The smaller 7 is, the less cross-sectional dependence of {yt}thl is allowed and the stronger As-
sumption 4.3 is. When 1 = 2, Assumption 4.3 is slack as we are not restricting cross-sectional
dependence of {y:}7_; at all (|£]|% = O(n?) in general). On the one hand, we would like to
assume 1 as close to 2 as possible to make Assumption 4.3 as weak as possible. On the other
hand, the smaller 3; is, the weaker cross-sectional dependence {yt}thl exhibits, and the faster
rate of convergence the quadratic form estimator will be able to achieve. There is a trade off.



One important case is f; = 1. In this case one sufficient condition for Assumption 4.3
is that ¥ has bounded maximum column sum matrix norm (i.e., ||X||;;, = O(1)) or bounded
maximum row sum matrix norm (i.e., ||X||,, = O(1)). To see this

1 1 1
2% < ZnllZ|?2 = =272 = 0(1).
nH IIF_nnll Iz, nnll e, (1)

Note that for symmetric ¥, bounded maximum column sum matrix norm or bounded maximum
row sum matrix norm implies that the maximum eigenvalue of ¥ is bounded from the above
by an absolute positive constant and the minimum eigenvalue of ¥~! is bounded away from
zero by an absolute positive constant: 1/(Amin(X71)) = Amax(Z) = [|Zlle, < 126y = IZ]ee, =
O(1). The assumption of bounded maximum column/row sum matrix norm has been used by
Fan, Liao, and Yao (2015) (their Assumption 4.1(i)) and Pesaran and Yamagata (2012) (their
Assumption 3).

Theorem 4.1. Suppose Assumptions 4.1, 4.2 and 4.3 hold. If log® n/T — 0 as n,T — oo,
then we have

(1)

Hi”;‘iHF _o, ( ;g%;:;) +0, <10gTQn> .
iy =0 ([5) von(457).
BT oo, () o, (2£0).
S o ([E5) rou ()

The reason that we divide the Frobenius norm of estimation error, say, ||i — X||r, by the
Frobenius norm of the target, i.e., ||X||F, is to define a proper notion of ”consistency”. This
is necessary because the cross-sectional dimension n is growing to infinity. In this case, even
if every element of a matrix-valued estimator is converging in probability to the corresponding
element of its target matrix, there is no guarantee that its overall estimation error will converge
to zero in probability when n,T — oco. The rescaling of the Frobenius norm of estimation
error is standard in the large dimensional case, but in the literature scholars tend to divide
the Frobenius norm of estimation error by y/n (e.g., see Bickel and Levina (2008) Theorem 2,

(i)

(iii)

(iv)

(v)

(vi)




Fan, Liao, and Mincheva (2011) p3330, Ledoit and Wolf (2004) Definition 1 etc). The same
reasoning applies to the ¢; and the spectral norm of the estimation error.

Note that there are two terms on the right side. The term O, (log2 n/T ) exists because we
need to estimate the unknown p. If we knew g, this term would not be present.” The rate

of convergence, (log3 n/(n?=" T))l/ 2, contains an additional, non-standard item vn2-51 in the
denominator. This non-standard item exists because of the cross-sectional weak dependence
condition (Assumption 4.3). If 51 = 2 (i.e., we are not restricting cross-sectional dependence
of {y:}1, at all), this term vanishes. The rate of convergence of the quadratic form estimator
then becomes (log3n/T)'/2, which is comparable to the convergence rates of other existent
estimators in the large dimensional case.

Take part (i) of the theorem as an illustration. If f; = 2 and we knew p, we have
Hf] - EHF =0, (||E\|F(log3 n/T)l/Q). A typical threshold estimator Sipres has ||Senres — S| 7 =
O, ((snlogn/T)1/?), where $! is some sparse truth and s is its sparsity index (see Bickel and
Levina (2008) Theorem 2 with ¢ = 0). According to Bickel and Levina (2008), s is the upper
bound of non-zero elements for every row, so |2z = O(y/sn) under the sparsity model. If
one assumes ||| p = v/sn, one can write ||Sipes — | = O, (\|ETHF(logn/T)1/2). Then the
two rates of convergence only differ by a logarithmic factor.

Because of the cross-sectional weak dependence condition (Assumption 4.3), the quadratic
form estimator is able to achieve a faster rate of convergence than a typical estimator does.

5 Test Statistics

We apply our methodology to the testing issue. We consider the problem of testing the null
hypothesis Hy : u = po against the alternative Hy : u # pyo.

The classical Wald test statistic (based on the sample covariance matrix M) is not defined
when n > T there is a large literature that proposes alternative test statistics. Bai and
Saranadasa (1996) proposed a statistic based on ||7|3, thereby avoiding the inversion of the large
sample covariance matrix, and established its asymptotic normality. Pesaran and Yamagata
(2012) extended this approach to the Capital Asset Pricing Model (CAPM) regression setting
and proposed several test statistics. Ome of the test statistics is based on ||||3, where t is
a vector of individual ¢-statistics; Pesaran and Yamagata (2012) derived the limiting normal
distribution of the centred and scaled version of this under cross-sectional weak dependence
conditions. Fan et al. (2015) considered a Wald test statistic for testing the CAPM restrictions
inside a linear regression in the large dimensional case. They regularized the estimated error
covariance matrix by imposing a sparsity assumption, and used that to form a quadratic form.
They established the null limiting distribution of their test statistic (they also proposed a novel
power enhancement procedure, which we do not study here).

We now define the Lagrange multiplier (LM) test statistic

LMy =T(§ — 10) S, (5§ — po), (5.1)

where iuo is the quadratic form estimator assuming that we know pu = pg. The Wald test
statistic is

Wn,T = T(ﬂ - MO)Ti_l(g - MU)? (52)

which is the Hotelling T?-statistic based on the quadratic form estimator. We next present
the large sample properties of the binity LM,  and W,, 7. We make one more cross-sectional
dependence assumption.

SIf we knew p, the estimation procedure in Section 3 applies to M2 := T} Zle(yt — p)(ys — )T instead of
Mr.



Assumption 5.1. Let 0 < By < 2.
lim —— |51y = lim — ﬁnzflu — W < oo
n—oo nBQ 1 n—oo n620'2 1 J 1 )
]:

The bigger Bs is, the weaker Assumption 5.1 is. This is because it is putting less restriction
on the cross-sectional dependence of ¥~'. When Sy = 2, Assumption 5.1 is slack as in essence
we are not restricting anything. On the one hand, we wish to assume S as close to 2 as possible
to make Assumption 5.1 as weak as possible. On the other hand, we wish to assume that S5 is
as small as possible so that our methodology could accommodate an n as large as possible.

One important case is S2 = 1. In this case, a sufficient condition for Assumption 5.1 is
that ¥~ has bounded maximum column sum matrix norm (i.e., |71, = O(1)) or bounded

maximum row sum matrix norm (i.e., ||X7!||,.. = O(1)). To see this
< max Y [(E7)ig| =17 e = 127 e = O(1).

1 1 n n
-1 -1
L= A S <

i=1 j=1 j=1

n

Note that for symmetric ¥~!, bounded maximum column sum matrix norm or bounded max-
imum row sum matrix norm implies that the maximum eigenvalue of £¥~! is bounded from
the above by an absolute positive constant and the minimum eigenvalue of ¥ is bounded away
from zero by an absolute positive constant: 1/(Amin(X)) = Amax(Z7H) = |27 e, < 127y, =
[X71le.. = O(1). The assumption of bounded maximum column/row sum matrix norm has
been used by Fan et al. (2015) (their Assumption 4.1(i)) and Pesaran and Yamagata (2012)
(their Assumption 3).

Theorem 5.1. Suppose Assumptions 4.1, 4.2, 4.8, and 5.1 hold. We make the following
assumptions:

(a)

n2B2+p1-3 10g5 n
T =o0(1).

(b) Consider the Cholesky decomposition of ¥, i.e., ¥ = LLT, where L is a nonsingular lower
triangular matriz L with positive diagonal elements. Assume that x; = L™ (y; — p) is
cross-sectionally independent for any t, and for some § > 0

lim sup max max E‘xt7,~’4+26 < 00
nT—o0 1<i<n 1<t<T
Then under Hy : pp = pg, as n,T — oo,
LM, 1 —
ST T N(0, ).
V2n
If one additionally assumes
B2—3 3
n”?72 -log°n
=o(1 5.3
- ), (53)
then under Hy : pu = pg, as n,T — 00,
W o —
DT 71 4 (o, 1). (5.4)

V2n
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For the LM test, if we want to allow the interesting case of n/T" — oo, then assumption (a)
necessarily implies that 28y + 81 < 4, which restricts both 85 and 1. In the special case of
B1 = P2 = 1, assumption (a) is reduced to log® n/T = o(1), which is a weak condition.

Assumption (b) is standard in the literature. Fan et al. (2015) maintained normality (their
Assumption 4.1(i)), which is a special case of assumption (b). Pesaran and Yamagata (2012)
also maintained assumption (b) (their Assumption 2a). Assumption (b) implicitly assumes
that Amin(X) is bounded away from zero by an absolute positive constant, which strengthens
Assumption 4.2(ii). Also note that var(x;) = I, so strengthening from cross-sectional uncor-
relatedness to cross-sectional independence in assumption (b) is rather innocuous. In addition,
we assume that the (4 + 20)th moment of x;; is (uniformly in ¢ and ¢) finite for n, T sufficiently
large, which is also a weak assumption. Under the more restricted sequential limit (7" — oo
and then n — oo), VT(§ — po) is approximately normal so the limiting properties could be
calculated for the non-normal case as if normality held. However, in our framework of joint
limit, such procedure breaks down, so we make assumption (b).

In the low-dimensional case (n fixed, T — o00), LM test statistic LM, 7 and Wald test
statistic W, r are asymptotically equivalent in the sense that they all converge in distribution
to X%.ﬁ In the large dimensional case (n,T" — o00), Theorem 5.1 shows that LM, r and W,
are, again, asymptotically equivalent. Wald test requires an additional rate restriction (5.3),
which is the price we pay for estimating ¥~ under the alternative Hy : ju # po.

Recall that a typical threshold estimator Spyes has Hi&ies — (2N YY¢, = O, (s(logn/T)Y?),
where YT is some sparse truth and s is its sparsity index (see Bickel and Levina (2008) Theorem
1 with ¢ = 0). For this rate of convergence, a result like (5.4) requires, as both Pesaran and
Yamagata (2012) and Fan et al. (2015) have pointed out, nlogn/T = o(1), which is essentially
a low-dimensional scenario. Pesaran and Yamagata (2012) and Fan et al. (2015) have hence
come up with their own ingenious ways to relax the condition nlogn/T = o(1) and established
results similar to (5.4) for their Wald test statistics in the CAPM context.

In our case of Wald test, if we also want to allow the interesting large dimension case of
n/T — oo, then assumption (a) and (5.3) necessarily imply 282 + 81 < 4 and 2 < 3/2,
respectively. For example, we can choose the special case 51 = 2 = 1, so assumption (a) and
(5.3) reduce to

(NI

log”n nz -log®n

T = 0(1)7
the latter of which is the binding rate condition and the same as the rate condition in Assumption
4.2 of Fan et al. (2015).

In the simulation study below we compare our tests with test statistics that use Ledoit and
Wolf procedures to regularize the sample covariance matrix estimator.

5.1 Power Investigation

In this section, we analyse the asymptotic distributions of the proposed test statistics under
the alternative hypothesis Hy : i # po. In particular, we shall focus on a sequence of local
alternatives Hy : u = pg := po + 0/v/T, where maxi<;<, |0;| = O(v/Iogn). We focus on the
Wald test without loss of generality.

Theorem 5.2. Suppose Assumptions 4.1, 4.2, 4.3, and 5.1 hold. We make the following
additional assumptions:

5The finite sample performance of these statistics is known to vary. Park and Phillips (1988) established
higher order approximations for Wald test of nonlinear restrictions in the finite dimensional case, and showed
how to improve performance of the test statistic. It may be possible to apply their methodology to the large
dimensional case.
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(¢) (i)

265+61-3 . oo
n og'n :0(1)7
T

(it)
n®"% logn _ o1).
T

(b) Consider the Cholesky decomposition of X, i.e., ¥ = LLT, where L is an n X n nonsingular
lower triangular matriz with positive diagonal elements. Assume that x; = L™ (y; — ) is
cross-sectionally independent for any t, and for some § > 0

‘4+25

limsup max max E‘xm < o0

n,T—o0 1<i<n 1<t<T

n—oo N~

n
lim sup 1 Z‘(L_lﬁ)i‘%ré < 00
=1

Then under Hy : = pg + 60/VT,
War-n 0TS0
V2 (1+20m510) \J2n (1+ 2075710)

4 N(0,1).

The preceding theorem shows that the asymptotic distribution of (W, r—n)/v2n + 407310
under H; has a center T2 710/1/2n + 407X-10. Note that

0 0n(ET) 070/ (D)
V2 +40TE710 T /20 + 4070 (B1) /20 F 4070 Apin(Z)

In the special case of 0 < Apin(X) < Amax(X) < 00, we see that the test has power against
local alternatives that satisfy maxj<;<, |6;] = O(y/ITogn) and 070 = O(n%), where §, > 1/2,
and power tending to one in the case where d, > 1/2. This specification requires that 6 has a
sufficiently large number of non-zero elements. It does not require that all the elements of 6 are
non-zero.

5.2 Testing Linear Restrictions of p

In this section, we consider testing linear restrictions of u using two approaches. We first
consider Hy : Ry = r, where R is a ¢ X n matrix of rank q. We assume that ¢ is a fixed
number; this case covers applications where a finite number of linear restrictions are coming
from economic theory.

Theorem 5.3. Suppose Assumptions 4.1, 4.2 and 4.3 hold. We also make the following as-
sumptions:

(a) Amin(X) is bounded away from zero by an absolute positive constant.

(b) Consider Hy : Ry = r, where R is a ¢ X n matriz of rank q for any fired n and n — oo (q is
a fized number). Moreover, R and r are rescaled in such a way that Amin(RRT) is bounded
away from zero by an absolute constant, and

log®n log?n
s RIS, (1 23+ 5" ) = ol) (5.5
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Then under Hy : Ry = r, if log® n/T — 0 as n,T — oo,

W= T(Ry —r)T(RSRT) " (Ry — r) & X2

Assumption (a) strengthens Assumption 4.2(ii) slightly, which is a mild condition. A suf-
ficient condition for (5.5) in assumption (b) is Amax(RRT) is bounded from the above by an
absolute positive constant and ||X||,, < co. The requirement of A\pin(RRT) and Apax(RRT)
being bounded away from zero and from the above by absolute positive constants, respectively,
could be achieved by normalising each row of R to have £5 norm of 1.

We next take another approach to derive simultaneous confidence intervals for all linear
combinations of p.

Lemma 5.1. Suppose Assumptions 4.1, 4.2, 4.3, and 5.1 hold. Simultaneously for all ¢ € R™,
the unknown p satisfies the following inequalities with confidence 1 — «:

T[¢7(5— )] /6756 —n
V2on

as n, T — oo, where z,, is the upper a percentile of a standard normal.

< Za,

One disadvantage of this approach is that the confidence region for y could be conservative.

6 Simulation Study

In this section, we provide some Monte Carlo simulations that evaluate performance of our
procedures.

6.1 The Correctly Specified Case
We suppose that y; ~ N(u,X) with ¥ =31 ® -+ ® 3, where

1 p; .
Y= J i <1, =1,...,v,
J (Pj 1 ) |pj| J

so in this case ¥ is also the correlation matrix. Given ||;]|% = 2(1 + p?), we have

1 1 v . v
2l = [T20+ ) =n= [T+ 5)).

J=1 J=1

Since []5_; (1 + ,0?) > 1, Assumption 4.3 necessarily implies $; > 1. When ) =1, H%IHEW =
H?:1(1 + p?), which converges to a finite, non-zero limit as v — oo if and only if Z;’:l p?
converges (Knopp (1947) Theorem 28.3). When (1 > 1, Assumption 4.3 is satisfied if [];_, (1 +

)= 0" ),
Likewise
20+ psl) 2

1—p2  1—|pjl

-1 _
135l =

so that via Lemma B.3 in Section B

1 1
*I!E_l\ll—* IS5 = n'"? nt=f
n62 52 H H H;:l (]_ _
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Since [];_, (1 —1|p;j]) <1, Assumption 5.1 necessarily implies 3o > 1. When 8, = 1, n%HZ_lHl =
/1l (1 —1pj|), the denominator of which converges to a finite, non-zero limit as v — oo if
and only if D77, |p;| converges (Knopp (1947) Theorem 28.4). When S5 > 1, Assumption 5.1
is satisfied if [H}’:l (1- |pj|)}_1 =0(nP 1"

We consider = 0, n = 2%, and p; = p) for 7 = 1,...,v. The number of Monte Carlo
simulations is 1000. We compare the quadratic form estimator with Ledoit and Wolf (2004)’s
linear shrinkage estimator (the LW04 estimator hereafter) and Ledoit and Wolf (2017)’s direct
nonlinear shrinkage estimator (the LW17 estimator hereafter).®

The first evaluation criterion is the relative mean square error (MSE) in terms of ¥. Given
a generic estimator 2@ of the covariance matrix X, we compute

E|Se - S)I%
1213
where the expectation operator is taken with respect to all the simulations. Often the precision
matrix £ 7! is of more interest than 3, so we also compute the MSE of the estimator of ¥~
E|Sg' - =77
=415

where the expectation operator is taken with respect to all the simulations. Note that this
requires invertibility of the generic estimator Y and therefore cannot be calculated for the
sample covariance matrix Mp when n > T.

We next calculate A
E|Sc - 2|7

1- ——
E|Mr — 3%

where the expectation operator is taken with respect to all the simulations. The preceding
display is called the simulated percentage relative improvement in average loss (PRIAL) criterion
in terms of ¥ by Ledoit and Wolf (2004). The PRIAL measures the performance of the generic
estimator ¥ with respect to the sample covariance estimator Mp. Note that PRIALe (=00, 1]:
A negative value means Sa performs worse than My while a positive value means otherwise.
Likewise we also compute

E|SG" - =7E

E|M; — =13

Note that this requires invertibility of the sample covariance matrix M7 and therefore can only
be calculated for n < T'.

Finally, we consider testing Hg : u = 0 against Hy : u # 0. We compute sizes of LM and
Wald tests (Theorem 5.1). The significance level is 5%. To investigate power, we generate u;
as fi; e N(0,1)/VT for i =1,2,...,|n%7], where |x] is the largest integer less than or equal
to z; i =0 for i = [n%7] + 1, |[n%7] +2,...,n. These also require invertibility of $¢.

The results are reported in Tables 1-3. In Table 1, we set T = 252 and v = 10 so that
n = 2" = 1024; we set p = 0.5,0.7,0.85. First, consider the top panel (p = 0.5). For the MSE
in terms of ¥ (i.e., MSE-1), all the estimators beat the sample covariance matrix My by a large
margin. The quadratic form estimator & also outperformed the LW04 and LW17 estimators
considerably. For the MSE in terms of ¥~! (i.e., MSE-2), a similar pattern exists. Note that
the MSE-2 cannot be computed for My because My is not invertible when n > T. For the
PRIAL in terms of ¥ (i.e., PRIAL-1), again Y is better than the LW04 and LW17 estimators.

"Furthermore, the largest eigenvalue of X is [1;_, (1 +p;]), which converges as v — oo if and only if >°7_, |p;]
converges (Knopp (1947) Theorem 28.3).

8The Matlab code for the LW04 and LW17 estimators is downloaded from the website of Professor Michael
Wolf from the Department of Economics at the University of Zurich. We are grateful for this.

14



Mr > LW04 LW17

p=0.5
MSE-1 2.989 0.000 0.242 0.243
MSE-2 NA 0.000 0.311 0.308
PRIAL-1 0 1.000 0.919 0.919

size of LM NA  0.0561 1.000 1.000
size of Wald NA  0.050 0.085 0.093

p=0.7
MSE-1 1.760 0.000 0.429 0.430
MSE-2 NA 0.000 0.722 0.715
PRIAL-1 0 1.000 0.756  0.756

size of LM NA 0.050 1.000 1.000
size of Wald NA  0.051 0.158 0.164

p=0.85
MSE-1 0.501 0.001 0.320 0.316
MSE-2 NA 0.002 0.980 0.980
PRIAL-1 0 0.998 0.360 0.370

size of LM NA 0.051 1.000 1.000
size of Wald NA 0.060 0.334 0.329

Table 1: My, &, LW04 and LW17 stand for the sample covariance matrix, quadratic form estimator,
Ledoit and Wolf (2004)’s linear shrinkage estimator, and Ledoit and Wolf (2017)’s direct nonlinear
shrinkage estimator, respectively. MSE-1 and MSE-2 are the MSE in terms of ¥ and ¥, respectively.
PRIAL-1 is the PRIAL in terms of ¥. T = 252 and n = 2! = 1024. 0.000 means less than 0.001.

The sample covariance matrix My has zero PRIAL-1 by definition. The superiority of ¥ in this
experiment is expected because the true covariance matrix is indeed a Kronecker product.

Considering the size of Wald test, we realize that the quadratic form estimator & has the
correct size while the LW04 and LW17 estimators are over-sized. Note that Wald test is not
defined for M7 because My is not invertible. Size of LM test is similar to that of Wald test for
f], but LM test seems to perform poorly for both the LW04 and LW 17 estimators. Undoubtedly,
the quadratic form estimator 3 is the best performing estimator.

As we increase the "mother” correlation parameter p from 0.5 to 0.85, performance of %
remains unchanged across all five criteria. In terms of MSE-1, performance of M7 improves
while performances of LW04 and LW17 estimators initially worsen and then improve. In terms
of MSE-2, PRIAL-1, the size of the LM test, and the size of the Wald test, the performances
of both the LW04 and LW17 estimators worsen. Again the quadratic form estimator ¥ is the
best performing estimator.

Next, we fix p at 0.7 and examine effects of n and T'; the results are reported in Table 2.
If we fix T at 252 and increase v (and hence n), in terms of MSE-1, all the estimators except
the quadratic form estimator ¥ worsen. The same pattern is observed when we use the MSE-2
criterion instead (the sample covariance matrix My dropped out in this case). In terms of
PRIAL-1, we see that all the candidate estimators are becoming increasingly superior to Mr.
As n increases, size of Wald test worsens for all the estimators except 3; a similar pattern is
observed for LM test. If we increase T from 252 to 504, all the estimators improve in terms of
both the MSE-1 and MSE-2 criteria. Also sizes of Wald and LM tests in general improve for
all the estimators.

The results of power investigation are reported in Table 3. We see that power of the quadratic
form estimator X is very good for the specified local alternative. Powers of the LW04 and LW17
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My > LW04 LW17 My Y LW04 LWI17
n=2% T =252 n=2% T =504
MSE-1 0.882 0.001 0.346 0.345 0.442 0.000 0.249 0.246
MSE-2 NA 0.001 0.676 0.656 NA  0.000 0.601 0.531
PRIAL-1 0 0999 0.608 0.609 0 0999 0.438 0.443
size of LM NA  0.039 1.000 1.000 NA  0.053 1.000 1.000
size of Wald NA  0.041 0.153 0.149 NA 0.058 0.148 0.151
n =210 T =252 n =20 T =504
MSE-1 1.760 0.000 0.429 0.430 0.882 0.000 0.345 0.344
MSE-2 NA 0.000 0.722 0.715 NA  0.000 0.677 0.659
PRIAL-1 0  1.000 0.756 0.756 0  1.000 0.608 0.610
size of LM NA  0.050 1.000 1.000 NA 0.059 1.000 1.000
size of Wald  NA  0.051 0.158 0.164 NA  0.062 0.168 0.168
n =21 T =252 n =21 T =504
MSE-1 3.514 0.000 0.489 0.490 1.760 0.000 0.429 0.429
MSE-2 NA  0.000 0.747 0.744 NA 0.000 0.723 0.717
PRIAL-1 0  1.000 0.861 0.861 0  1.000 0.756 0.757
size of LM NA  0.057 1.000 1.000 NA  0.057 1.000 1.000
size of Wald  NA  0.067 0.202 0.221 NA 0.060 0.169 0.181

Table 2: My, &, LW04 and LW17 stand for the sample covariance matrix, quadratic form estimator,
Ledoit and Wolf (2004)’s linear shrinkage estimator, and Ledoit and Wolf (2017)’s direct nonlinear
shrinkage estimator, respectively. MSE-1 and MSE-2 are the MSE in terms of ¥ and ¥~!, respectively.
PRIAL-1 is the PRIAL in terms of ¥. p = 0.7. 0.000 means less than 0.001.

My Y LW04 LWI17 My Y LW04 LWI17
p=0.5n=2% p=0.5,n=210
power of LM~ NA 0.890 0.730 0.866 NA 0925 0.999 1.000
power of Wald NA 0.905 0.689 0.734 NA 0942 0.750 0.780
p=0.7n=2 p=0.7n=210
power of LM NA 1.000 1.000 1.000 NA 1.000 1.000 1.000
power of Wald NA 1.000 0.742 0.833 NA 1.000 0.746 0.806
p=0.85n=2 p=0.85n=20
power of LM NA 1.000 1.000 1.000 NA 1.000 1.000 1.000
power of Wald NA 1.000 0.990 1.000 NA 1.000 0.981 0.977

Table 3: Mr, ¥, LW04 and LW17 stand for the sample covariance matrix, the quadratic form estimator,
the Ledoit and Wolf (2004)’s linear shrinkage estimator, and the Ledoit and Wolf (2017)’s direct nonlinear

shrinkage estimator, respectively. T' = 252. Powers are not size-adjusted.
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estimators in terms of Wald test are less good. Powers of the LW04 and LW17 estimators in
terms of the LM test come at a price of their sizes.

6.2 The Misspecified Case

To gauge how well the Kronecker product model performs when the true covariance matrix
does not have a Kronecker product form, we consider the Monte Carlo setting used by Ledoit
and Wolf (2004). We still assume that y; ~ N(u, X). The true covariance matrix X is diagonal
without loss of generality. The diagonal entries 3;; (i.e., the eigenvalues of X) are log normally
distributed: log £i; ~ N(urw, o2y ). Ledoit and Wolf (2004) defined the grand mean pg of and
cross-sectional dispersion o of the eigenvalues of ¥ as, respectively,

n

1 n
Pe = Z i a? = Z(Ezz — ).
‘ i=1

In the Monte Carlo simulations, we re-define y, and a? as the corresponding population coun-
terparts:

SRS

2 2 2
fg = EXy = MW 0Ty /2 o = var i = 2w tory) _ o2nwtory

Ledoit and Wolf (2004) set g = 1, so we can solve urw = —log(14+a?)/2 and ofy, = log(1+a?),
whence we have
log(1 + a?)

log E“ ~ N (— B

,log(1 + a2)) .

Note that in this data generating process, there are two sources of randomness: one from the
normal distribution of g; and the other from the log normal distribution of ;. Also note
that a diagonal covariance matrix need not have a Kronecker product structure unless, say, the
diagonal elements are all equal. The number of Monte Carlo simulations is again set at 1000.
In the baseline setting of Ledoit and Wolf (2004), u = 0,n = 20, T' = 40, and a? = 0.5.

There are a few Kronecker products which we can consider to approximate ¥ (see Hafner
et al. (2019) for more discussions of model selection). The possible Kronecker factorizations
are 5 X 2 x 2, 4 x 5, 2 x 10. Within each Kronecker factorization, we can further permute the
Kronecker sub-matrices to obtain different Kronecker models. We experiment all the Kronecker
products and compare with the LW04 and LW17 estimators. All the estimators do not know
u = 0 and have to estimate it, except in the case of LM test.

The results are reported in Table 4. The first observation is that performance of the
quadratic form estimator ¥ is relatively robust to the Kronecker product factorization; the
best performing one is 2 x 5 x 2. All the candidate estimators beat the sample covariance
matrix Mp. In terms of MSE-1 and MSE-2, the LW04 and LW17 estimators are only slightly
better than ¥ (2 x 5 x 2). In terms of PRIAL-1 and PRIAL-2, ¥ (2 x 5 x 2) is almost as good
as the LW04 and LW17 estimators. In terms of size of LM test, 3. (2 x 5 x 2) has the correct
size while the LW04 and LW17 estimators are under-sized. In terms of size of Wald test, all
candidate estimators are slightly over-sized.

We next vary o?. We base the comparisons on the 2 x 5 x 2 Kronecker product factor-
ization. The results are reported in Table 5. As a? increases, performance of M7 actually
improves in terms of MSE-1 and MSE-2. On the other hand, performances of 3, the LW04 and
LW17 estimators worsen in terms of MSE-1, MSE-2, PRIAL-1 and PRIAL-2. The worsening
performance of ¥ is not surprising because a? can be interpreted as the distance of ¥ from a
Kronecker product model. The worsening performance of the LW04 estimator has also been
documented by Ledoit and Wolf (2004). As o? increases, > has roughly correct size for LM
test while both the LW04 and LW17 estimators are under-sized. In terms of Wald test, all the
candidate estimators are slightly over-sized.
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by by by by

Mz (5x2x2) (2x5x2) (2x2x5) (4x5)

MSE-1 0.446 0.137 0.136 0.137 0.140
MSE-2 6.876 0.154 0.153 0.154 0.163
PRIAL-1 0 0.684 0.685 0.682 0.675
PRIAL-2 0 0.977 0.977 0.977 0.976
size of LM 0.004 0.043 0.050 0.038 0.038
size of Wald ~ 0.690 0.092 0.087 0.081 0.094

) ) )

5x4)  (2x10) (0x2) ~ oWod LWIT

MSE-1 0.139 0.189 0.188 0.113 0.129
MSE-2 0.163 0.293 0.288 0.122 0.148
PRIAL-1 0.679 0.570 0.571 0.738 0.702
PRIAL-2 0.976 0.957 0.958 0.982 0.978
size of LM 0.041 0.035 0.028 0.022 0.015
size of Wald ~ 0.100 0.163 0.167 0.074 0.083

Table 4: My, ¥, LW04 and LW17 stand for the sample covariance matrix, quadratic form estimator
(factorisations given in parentheses), Ledoit and Wolf (2004)’s linear shrinkage estimator, and Ledoit
and Wolf (2017)’s direct nonlinear shrinkage estimator, respectively. MSE-1 and MSE-2 are the MSE
in terms of ¥ and ¥ ~!, respectively. PRIAL-1 and PRIAL-2 are the PRIAL in terms of ¥ and 71,
respectively. n = 20,T = 40,a% = 0.5.

My (2 x ? ‘) LW04 LW17 My (2 x ? ) LW04 LW17

a?=0.25 a? =0.50
MSE-1 0.492 0.077 0.050 0.070 0.446 0.136 0.113  0.129
MSE-2 7.405 0.089 0.048  0.086 6.876 0.153 0.122 0.148
PRIAL-1 0 0.843 0.898  0.856 0 0.685 0.738  0.702
PRIAL-2 0 0.988 0.993  0.988 0 0.977 0.982 0.978

size of LM 0.004 0.042 0.035 0.020 0.004 0.050 0.022 0.015
size of Wald  0.690 0.083 0.064 0.066 0.690 0.087 0.074 0.083

My (2 ? % 2) LW04 LW17 My (2 x ? % 2) LW04 LW17

a?2=0.75 a?2=1
MSE-1 0.396 0.195 0.154 0.167 0.353 0.243 0.173  0.184
MSE-2 6.311 0.241 0.194 0.204 5.807 0.335 0.259  0.246
PRIAL-1 0 0.469 0.580  0.557 0 0.218 0.469  0.440
PRIAL-2 0 0.959 0.966  0.966 0 0.934 0.948  0.953

size of LM 0.004 0.058 0.017 0.013 0.004 0.067 0.017 0.013
size of Wald  0.690 0.091 0.087 0.093 0.690 0.106 0.090 0.091

Table 5: My, f], LWO04 and LW17 stand for the sample covariance matrix, quadratic form estimator
(factorisations given in parentheses), Ledoit and Wolf (2004)’s linear shrinkage estimator, and Ledoit
and Wolf (2017)’s direct nonlinear shrinkage estimator, respectively. MSE-1 and MSE-2 are the MSE
in terms of ¥ and Y ~!, respectively. PRIAL-1 and PRIAL-2 are the PRIAL in terms of ¥ and ¥ 71,
respectively. n = 20,7 = 40.
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We finally vary the ratio n/T. In the baseline setting we have n/T = 0.5. Here we consider
two variations. The first variation is n = 16,7 = 50 with a ratio of n/T = 0.32. The second
variation is n = 40,7 = 20 with a ratio of n/T = 2. For the first variation, we identify the
Kronecker product factorizations: 2 x 2 x 2 x 2, 4 x4, 4 x 2 x 2 and 2 x 8. For the second
variation, we use the Kronecker product factorizations: 5 x 2 x 2 x 2, 5 x 2 x 4, 5 x 8 and
10 x 2 x 2. We also considered permutations of sub-matrices for each factorization, but the
performances remained relatively unchanged, so we do not report them in the interest of space.
The results are reported in Table 6.

Consider the top panel of Table 6 first. All the candidate estimators beat the sample
covariance matrix Mp. Performance of the quadratic form estimator X is relatively robust to
the Kronecker product factorizations (2 x 2x 2 x 2, 4 x4 and 4 x 2 x 2); the best performing one
is 4 x 2 x 2. In terms of MSE-1, MSE-2, PRIAL-1 and PRIAL-2, the quadratic form estimator
> (4 x 2 x 2) is only slightly worse than the LW04 and LW17 estimators. In terms of size of
LM test, ¥ (4 x 2 x 2) has the correct size while both the LW04 and LW17 estimators are
under-sized. In terms of size of Wald test, all the candidate estimators are slightly over-sized.

Next consider the bottom panel of Table 6. All the candidate estimators beat the sample
covariance matrix My again. The best performing quadratic form estimator has a factorization
(5 x 2 x 2 x2). In terms of MSE-1, MSE-2 and PRIAL-1, ¥ (5 x 2 x 2 x 2) is comparable to
the LW04 and LW17 estimators. In terms of size of LM test, & (5 x 2 x 2 x 2) and the LW04
estimator have correct size while the LW17 estimator is slightly over-sized. In terms of size of
Wald test, all the candidate estimators are slightly over-sized.

By looking at Tables 4 and 6 together, we observe that as n/T increases, PRIAL-1 increases
monotonically for the best performing quadratic form estimator as well as the LW04 and LW17
estimators. Such a pattern is consistent with Ledoit and Wolf (2004). In terms of MSE-
1 and MSE-2, performances of the best performing quadratic form estimator as well as the
LW04 and LW17 estimators worsen as n/T increases. In terms of size of LM test, the best
performing quadratic form estimator always has the correct size, while sizes of Wald tests
increase monotonocally with n/T.

7 Concluding Remarks

We have proposed a new estimator of the Kronecker product model for covariance matrices
- the quadratic form estimator. We establish the rate of convergence and use the estimated
precision matrix to form LM and Wald test statistics. The asymptotic distributions of these
test statistics are established under both null and local alternative hypotheses. Testing linear
restrictions of the unknown mean vector is also investigated. In Monte Carlo simulations, the
quadratic form estimator performs well both when the Kronecker product model is correctly
specified and when it is misspecified.

We remark on a number of possible extensions. One can generalize to allow weakly time
series dependent data (see Hafner et al. (2019) for some work in this direction), and perhaps
to where the spectral density matrix is Kronecker product factored. We may also consider the
two-sample case where X1 := E[(y1+ — p1) (Y1, — p1)7] (n x n), o := E[(y2+ — p2) (Y2, — p2)7]
(nxn), p1 :=E(y1), and po := E(y2,). Cho and Phillips (2018) showed that the hypothesis
of ¥1 = 39 can be tested based on tr(legl) = n; if both the covariance matrices have a
conformable Kronecker product structure, this simplifies to tr(2; 1 E;i) X+ X tr(ELUEQ_ﬂl)) =n.
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by by by by
n/T =032 My (2x2x2x2)  (dx4) (dx2x2) (2xg) W04 LWI7
MSE-1 0.292 0.118 0.122 0.120 0.145 0.098 0.109
MSE-2 1.491 0.134 0.142 0.137 0.190 0.110 0.118
PRIAL-1 0 0.580 0.571 0.576 0.492 0.655 0.618
PRIAL-2 0 0.907 0.902 0.905 0.870 0.924 0.919
size of LM 0.013 0.057 0.050 0.050 0.041 0.023 0.019
size of Wald 0.373 0.081 0.090 0.080 0.133 0.072 0.074

by X by by
n/T =2 Mz (5bx2x2x2) (5x2x4) (5 x 8) (10 x 2 x 2) Lwod - Lwi7
MSE-1 1.684 0.168 0.175 0.216 0.234 0.159 0.196
MSE-2 NA 0.182 0.194 0.286 0.337 0.151 0.164
PRIAL-1 0 0.898 0.894 0.870 0.860 0.904 0.882
PRIAL-2 NA NA NA NA NA NA NA
size of LM NA 0.051 0.054 0.050 0.049 0.0561 0.070
size of Wald  NA 0.155 0.159 0.224 0.260 0.129 0.140

Table 6: My, ¥, LW04 and LW17 stand for the sample covariance matrix, quadratic form estimator
(factorisations given in parentheses), Ledoit and Wolf (2004)’s linear shrinkage estimator, and Ledoit
and Wolf (2017)’s direct nonlinear shrinkage estimator, respectively. MSE-1 and MSE-2 are the MSE
in terms of ¥ and X!, respectively. PRIAL-1 and PRIAL-2 are the PRIAL in terms of ¥ and X!,
respectively. a? = 0.5.

A  Appendix

A.1 Proof of Lemma 4.1

Proof. For part (i), since [[7_; nj = n, we have (mini<j<,nj)” < n. Thus

v < logn/log (112131211} n;) = O(logn).

For part (ii):

max A Y:) < max tr(X;) = max n; < oo.
1<j<v ma( ])_1§j§v (%) 1<j<v 7

A.2 Proof of Theorem 4.1

We first give an auxiliary lemma and an auxiliary theorem leading to the proof of Theorem 4.1.

A.2.1 Lemma A.1

Lemma A.1. Suppose Assumptions 4.1 and 4.2 hold. Then we have

(i) Both maxi<j<y | %] and maxi<j<, |25 (|F are bounded from the above by absolute pos-

itive constants. Moreover both min;i<j<, ||3;||F and mini<;<, HE;lHF are bounded away
from zero by absolute positive constants.

(11) Both maxi<j<, ||X;|l1 and maxi<j<, ||Zj_1|]1 are bounded from the above by absolute pos-
itive constants. Moreover both mini<j<, ||X;|1 and mini<j<, HZj_lHl are bounded away
from zero by absolute positive constants.
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(111) Both maxi<j<y ||3}]ls, and maxi<j<y HEJ»_1||52 are bounded from the above by absolute pos-

itive constants. Moreover both mini<j<y || X;]le, and mini<j<, HEJ-_IHgQ are bounded away
from zero by absolute positive constants.

Proof of Lemma A.1. For part (i), note that
Amin(27) < Amax(55) < |155]F < /M5 Amax(E5)

whence we deduce that maxi<j<, ||X;||r is bounded from the above by an absolute positive
constant and minj<;<, ||X;]|F is bounded away from zero by an absolute positive constant via
Assumption 4.2 and Lemma 4.1. Similarly, we have

1

_ _ _ _ 1
SNNANE Amin(zj 1) < )\max(zj 1) < ||Zj 1||F = vnj)‘maX(Zj 1) = \/nJ')\
max( ])

min(25)’

Y|F is bounded from the above by an absolute positive

whence we deduce that maxi<j<, [|X}
constant and minj<;<, HEj_l || is bounded away from zero by an absolute positive constant via
Assumption 4.2 and Lemma 4.1.

For part (ii), note that
1551l < 13511 < ngll%5l e
=5 e <=5 < nyll55 e

whence we deduce that part (ii) holds via part (i).
For part (iii), we have

ax [|Xjlle, < max |31 F

-1 -1
. < ;
ax |35 e, < max 13577

whence we could deduce the first half of the statement via part (i). Next,

121}2” 135]le, = 1r§rljigv Amax(2j) > 1%121, Amin (25)

which is bounded away from zero by an absolute positive constant via Assumption 4.2(ii).

Finally,
1 1

in |2, = min Apax(X71) > min Apin(351) = mi =
lrﬁnjlgvn i e 155< max(%; )71%1%1” win (%) 1590 Amax(Xj)  maxi<j<y Amax(2;)

which is bounded away from zero by an absolute positive constant via Lemma 4.1(ii). O

A.2.2 Theorem A.1
Theorem A.1. Suppose Assumptions 4.1, 4.2 and 4.3 hold. Then

(1)
ERro) () logn logn
R 19, n,h|di’j dij =0 V n2=AT +0p T )
(ii) We have tr(d™)/(npn_p) = 0> >0 for h=1,...,v. Also,

1 A logn logn
(h)y _ (M| — g g
1Sh2o nRT_n [or(d™) = tr(d™)] = Oy <\/ n2—51T> +Op < T ) '

As a result, minj<p<, tr(cz(h))/(nhn,h) is bounded away from zero by an absolute positive
constant in probability.
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(iii)

[Shlig — [Salig

max |25 — Spllee = max  max
1<h<v 1<h<v 1<i,j<ny,

B logn logn
0 (%) w0 ().

where [Xp]i; and [Sh]i; are the (i,7)th entry of ¥y and X, respectively.

(i)
52— 0% = 0, (%) Lo, (10;{”) |
(v)
12h2y 12, = Shllr = Oy (%) +0, <10§n> ‘
(vi)
1@}?% ”E =3P =0y (M) Lo, <lo§:n> ‘
(vii)
1SR % 12 = Sl = Op < néogﬁ?T> +0, <lo§n) |
(viii)
o 1571 =0, () 40, (20,
(iz)
1hZ 13, = Zhlle, = Op (\/E) L0, (10571) |
()

[ logn logn
_ 1 — o
112}?’}(1) HE Eh ||62 Op ( n2=H17 ) Op < 1 ) ‘

Proof. For part (i), note that dl(g-) = tr Eg?) 1 where Eg{) iy 8 the [i, j]th block of (" (each
(h)

block is n_p xn_p, dimensional) for i, j = 1, ..., ny. Similarly, d(7 ) — tr M {)[ P where M, {1}
is the [4, j]th block of M}h) (each block is n_j x n_j dimensional). Write

5(h ) _ (h) 0,(h) _ — (h) . 50,(h) — - (h)
dij = tr My g, 0y = tr My oy — tr ([(y — ) (G — 7] ){[i,j}} =:d; ;7 —tr ([(?J — )y — )] ) ;
where
L T
0._
Mp = ;(yt ) (e — )7

0,(h) 0
MT T K’I’LhX"'XnU,TLl ><'~~><1’Lh,1MTKTL1 X XNp—1,Mp X XNy

h _ _
[(y )y — ,U)T]( ) = Knh><"'><nu,n1><'"><nh71(y — )y — ,U)TKm><-~-><nh,1,nh><~--><nv,
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M2 s the [4, 7]th block of Mg’(h) (each block is n_p xn_j, dimensional), and ([(7 — p)(y — M)T]( )

T {[i.5]}
is the [4, j]th block of [(§ — p) (7 — p)T] (?) (each block is n_j X n_j, dimensional). Thus we have

1 h h
max max —‘dl( ) _ dl( )
1<h<v 1<ij<n, n_p' I J

L w0 h 1
< max max —‘dl( )—d§ 4)‘ 4+ max max —
1<h<v1<ij<np n_p' I J 1<h<v 1<i,j<n;, T_p,

(A1)

o ([ - w@—w7™)

{1}

We consider the first term of (A.1) first. Note that E[dﬁ’(h)] = dl(Z). Write for some M > 0

2-AT 1 2-/17 1
P (s max (JpE Y -l ar) = (U U -
shsvistism logn n—p 1<h<v 1<4,5<ny, logn n—p

_ 70,(h
= EU: ih: iﬂ” w2 OT Lo gty < nA AT S St ot var(diy /)
- logn n_p 7 bJ - logn - M2

h=1i=1 j=1

_ 70,(h
U maxi<p<v n%nz 51Tmaxlghgv maxi<i,j<ng, V&I‘(didg )/n_h)
- logn - M?

where the second inequality is due to Chebyshev’s inequality. We now show that

max —max Var(d@’j(h)/nh)—O( ! )

1<h<wv 1<i,j<ny, b n2=hT
For arbitrary i,5 = 1,...,np,
n_p n_p

var(dh?:,(h)/n_h) = ngi var <Z [M%({}[?J]}]kk> — n% var <111 Z ?J,E@_l)n_mrk?)t(@_1)n_h+k>

—h k=1 —h t=1 k=1

1 = . (h) . (h) . (h) . (h)

= @ ; ; cov (yt,(z'—1)n,h+kyt,(j—1)n,h+k7 yt,(i—1)n,h+eyt,(j—1)n,h+£)
< C %%cov (R £ 2 20 ) (A.2)
=L, T 22 1= D)n k(= Dn_p+k* 24, (i— 1) p 024, (—1)n_pt0)
where ylfh) = Ky, xxnpmixxn,_, (Yt — p) such that E[y,fh)yt(h”] = 2" and ,:/':t(h) is to be

interpreted similarly, the third equality is due to independence over t of g; in Assumption
4.1(i), and the first inequality is due to Assumption 4.1(iii). Using Lemma 9 of Magnus and
Neudecker (1986), we have
var (vee(2M2"T)) = var (3" @ ") = 2D, D} (=M @ £M)) = (12 + Kp) (E® @ £M),

where the last equality is due to (33) of Magnus and Neudecker (1986). Thus we recognise that
the summand on the right side of (A.2) is some element of (1,2 + K, ;) (S® @X"). We need to
determine the exact position of the summand on the right side of (A.2) in (2 + Ky ) (™M @
¥ (7). We consider X" @ £ and K, (2™ @ (")) separately.

Consider " @ £ first. We now introduce a new way to locate an element in a matrix.
Divide the n? x n? matrix ™ @ () into n x n blocks of matrices, each of which is n x n
dimensional. Then (2™ ® E(h)){[xyw],[%q}} refers the [p, g]th element of the [z, w]th block matrix
of (M @ £ where ,w,p,q =1,...,n. It is not difficult to see that

(h) () .(h) () )
t

cov (2 (=D kPt (G—1)n_p+k 2t (i—1)n_p+0%t,(j—1)n_p+£

23

h
){[i,j]}

dl(}})\ > M}\
’ /



corresponds to

(B0 g k) (0 (A.3)

(i=D)n_p+k,(i-Dn_p+£], [G-Dn_p+k,G-Dn_p+€] }°

We now consider Kn’n(E(h) ® E(h)). It is important to recognise that K, , is a permutation
matrix. Left multiplication of ©(") @ 2 by K, permutes the rows of Y @ 2 Since
K, is n x n, we can also divide K, , into n x n blocks of matrices, each of which is n x n
dimensional. Since K, , is also a permutation matrix, its elements can only be either 0 or 1.
It is not difficult to see that, the [g, p|th element of the [p, ¢Jth block matrix of K, , is 1 for
p,q = 1,...,n; all other elements of K, , are 0. Switch back to the traditional way to locate
an element in a matrix. For p,q = 1,...,7n, [Kna](p—1)n+q,(g—1)n+p = 1. This implies that the
((p — )n + q)th row of K, (3" @ £(")) is actually the ((¢ — 1)n + p)th row of (M @ %),
Switch back to the new way to locate an element in a matrix. This says that, for arbitrary
z,w = 1,...,n, the [q,z|th element of the [p, w]|th block matrix of Kmn(Z(h) ® %) is the
[p, z]th element of the [g, w]th block matrix of £ @ %), Thus

(h) . (h) . (h) () )
t

COV (4 i 1yn_ 4k 2= Dn_ k21— DGt

corresponds to

() & 32()
[Knn(EY @ % ”{[(i—l)n_h+k,<i—1)n_h+é],[(j—l)n_mk,(j—l)n_we]}

— (y(h) (h)
=@M el ){[(j—l)n,h+k,(i—1)n,h+é},[(i—l)n,ﬁk,(g‘—l)n,hﬂ}}'
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Using (A.3) and (A.4), we have

max —max Var(cﬁ’(h)/n_h)

1<h<v 1<i,j<np bl
1 N_pN_p
_ (h) - (h) - (h) - (h)
N 1glf?§vl<r?]a<xnh n2 T;;COV Uy (i=1)n_ h+k:yt (J—Dmn— h+k"yt (i—1)n_ h+€yt (— 1)n_h+£)
C N_pN_p
(h) L) <(n) S
= 121}?2{11 1<r§,1]aJ<th n2 T;;COV (Zt7(1 Dn_p+k %t (G—1)n_ptk? 4, (i—1)n_p+£%4,(i—1)n_ h+€>
n_pn_p
= (h) (h)
1Sh<v 1<% nZ, T k_lg;@ 9 ){ [(i=Dn_n+k,(i—D)n_p+£], [ G-Dn_n+k.G~Dn_n+] }
C N_pLN_p
(h) ()
* 1S 1<ty 2mn n?, T P ;(E ® > ){ [G-Dn_ntk,(i—Dn_p+e] [ (- Dn_ptk,G-Dn_p+e] }
N_pN_p
_ (h) Cy(R)
B 121;?%{1) 152?%% n2_hT —= ( (i—Dn_p+k,(i—1)n_p+£ E(j_1)n_h+k,(j_1)n_h+g)
C SN (s (h)
+ 1121}?%{11 15?%% n2_hT —= (Z(j—l)n,h+k,(i—1)n7h+e ’ E(z’—l)n,h+k,(j—1)n,h+z)
Cot 't
T iSh<viiyen, n2, T L [[Eh]“ bk - [Bnlis - Bonlee + Enlji - [Bonlee - [Bnli [th}k,e]
Cot it
2
= 2, 2, (Bl Bl + B Blad) 5 e 2 2 [0l
Co* 20[21)i.4[2n)5.50*
= Sl [ s ] 0] Y2 < ) 75 12
max |, mmax (Enlii - Znlsg + [Zaliy - [Zalja) nthH nlF < max  max 2T [

O(1)o* O(1)nio* ) ) 1
= X o T IZ-nll% = R Tl IZ-wllElZnlF ) = O g max ngl ||E nllEZllE

1
“o(h)

where the second inequality is due to Cauchy-Schwarz inequality [Xp]i; < +/[En)iiv/[2n]5
using the fact that Xj is a covariance matrix, the fourth last equality uses the fact that
MAaX] <<y MAX] <i<n, [Znlii < Maxi<p<y Amax(Lp) < 00, the second last equality is due to
Lemma A.1, and the last equality is due to Assumption 4.3. We hence have

= (h) logn
1Sy 1<inSn, 1 h‘d - d;, |_ ( n2—51T)' (A.5)

We now consider the second term of (A.1).

tr ([ - m@—m7™)

1
max max ——
1<h<v1<i,j<np N_p

= Inax max

_m® ]
{['L,j}}’ 1<h<v 1<i,j<np, N_p, z:l |:< 'u) ] ){[z,]]} kk

(1o-ma-0m®) {@—M@—umhww

< max

< max max max <
1<h<wv

1<h<v 1<ij<np 1<k<n_p

{[LJ’]J kk

2
1 T
Z yt i Eyt 7
t=1

} o, (lo§n> (A5)

where the last equality is due to Lemma B.1 in Section B. Inserting (A.5) and (A.6) into (A.1)
delivers part (i).

- - |7

1<i<n
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For part (ii), note that for h=1,... v

tr(d ™)/ (npm_p) = nia? tr(5_p) = 0—2nlh Br(Spin) X - X £1(Dy) X 41(S1) X+ -+ x tr(Sp_1)

_h _
=02>0.
Now write
1 nhp
max ‘tr tr(d™) )| = max Z(d(h) dl(’;))‘ < max Z‘
1<h<v npn_p 1<h<v npn_p, 1<h<v npn_p

=1

3(h) () logn log n
< —— | = o
].Igf?i{v 12%%;1 n_ h ’d dlyl | Op ( n2—ﬁlT> + Op ( T > Y

where the last equality is due to part (i). The last part of part (ii) also follows.

For part (iii), write

. d" d\"
max max |[Xpli; — [Snlij| < max  max ’] -
1<h<v 1<i,j<np 1<h<v 1<i,j<np, tr( )/nh tr(d(h))/nh
dy;) dl(’hj) (A.7)
* 1%?51; 1<rzr,lg<nh tr(d™) /ny, tr(d(h))/nh '
Consider the first term on the right side of (A.7).
a?(h) d(h) 1 g
max Imax ) - I max ’ j |
1<h<vi1<ij<mn|tr(d®)/ny  tr(d®)/ny, ~ 1<hS 141, tr(d®)/(npn_y) n- %

0 _ g _

1,J ,J

= 0p(1) max max
1<h<v 1<i,j<ny n_p,

logn logn
-on(Vitie) <o ()
where the second equality is due to part (ii) and the last equality is due to part (i). Consider
the second term on the right side of (A.7).

(h) (h) tr(d™) _ tr(d™)
dl:] le Nh—h A —h (h)
max max - — max max - ‘di A
1<h<v1<ij<m| tr(d(M)) /ny, tr(dM) /ny,  1<h<u1<ig<ng, |trd®)  te@d®) ] n_p

npN_p  MpN_p

: o)
B logn 0 logn N a | i, |
I n2=AHT P\ T L 12ts S, n_p
B logn logn\ | o?|[Zn)ij tr(S_p)
N Op < 7’L251T> + Op ( T >_ 121}18%(11 1§I§}?§}{n;L n_p
B logn logn '\ | 9
= 0p< n251T> +0p< T > jmax | max o”|[Xali|
B logn logn\| o
- 0p< nwlT> +0p( T ) 7 P, Amax ()

where the second equality is due to part (ii), and the last equality is due to Lemma 4.1(ii). Part
(iii) hence follows.
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For part (iv), write

3= 0®| = |1 w0t~ )| = |2 or (1 7 3 - )7 - 5)|
=[5 30 (b = (G- G- 7], - 5)
11—1n ; 1 . )
<o 2o 2 [ = 10)* = By — ) ]’+ s )|
i=1 t=1 - t=1
n T
= LTZZ [ytz Eyf,] +0p (10§n> (A.-8)
=1 t=1

where 9; ; = y¢; — p;, and the last equality is due to Lemma B.1 in Section B. We now establish
a rate for the first term in (A.8). For some M > 0,

(RS 3 ST

=1 t=1

>M> n?- ﬂlT"ar( > IZt 1%1)_

M2

We now show var (=& > ST i) = O(1/(n*>=511)).

n T
ar (an ZZ?J?z) = —var < Zyt z) Tn2 ZZCOV (i Ge.ge.)

=1 t=1 i=1 j=1

C v o C 5
< g 2 200V (ridris Fuyfeg) = o ZZ < (2 ® D) ighlag) + (Knn(E© D) [u]})

i=1 j—l
20 1 1
Tn2 22:1 (E®X) (ig)ligly = Tn2 z;z; ij i = Tn2—B1 nbt =7 =0 (W)
=1 1 J

where the first equality is due to independence over ¢ of Assumption 4.1(i), the first inequality
is due to Assumption 4.1(iii), the third and fourth equalities are due to the similar arguments
which we used to prove part (i), and the last equality is due to Assumption 4.3. Thus we have

=0, ()

1 n T

"/LT' Z Eytz

i=1 t=1

Substituting this into (A.8) delivers part (iv).

For part (v), we have

logn logn
s, 1% = Zalle < o on¥h = Snloe = Oy (\/M)Wp( T )

where the last equality is due to part (iii). For part (vi), invoke Lemma B.4 and use that
maxi<p<y |}, ||F = O(1) in Lemma A.1.

For part (vii), we have
logn logn
— < — = - .
1Sh2e 1% =il 1Sh2y ml|Xn = il = O”(\/ n2ﬁ1T> +O”< T )
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For part (viii), we have

_ - _ logn logn
1 1 1 /
max HE =X < 1?§§vnh”2h X, lFr =0y < o ) +0, ( > .

For part (ix), we have

logn logn
e 121~ Sl < . 19— Sl = 0, ({50 ) + 0, (M),

For part (x), we have

_ o _ logn logn
— 1 < L 1 = —_ .
2, I = 3 e < s 197 = %3 e = O <\/ - ) O\ T

A.2.3 Proof of Theorem 4.1
Proof of Theorem /.1. For part (i),

£ = Sl /ISl = 6% x E1 -+ 98, —® x T - 54 | /IS =
[6° %81 @ @8, -2 x81@ @8, +6° XL ® @8, — 2 x 1@ @S|, /IIE]r
<ESi@ @8, -1 @ - @5, /ISF +16% - ?||T1 @ @ S| 5 /ISl e (A.9)

We consider the first term in (A.9). By inserting terms like 3 ®Yy®---®3%, and the triangular
inequality, we have

219 @5, 518 @5, <

15— zlqunienp +Z (L]i el |15 - =l | I ISde] ) + Lr_[ Iele] 18— Sl -

l=j+1
(A.10)
We first divide the first term of (A.10) by [[,_; [|X¢||#. We have
=10 =2l p [Tio [l [0 = HFH [Zellr _ %1 = HFH[ ||ie—ze||F]
o= 1%l 1217 HZEHF - =Elle 1Xell P
DI Sk —3%
=1 =] | 4 maxickeo [ Xk kHF] (A1)
X1l 7 min <x<o || Xkl

We next divide the summand of the second term of (A.10) by [],_, [|X¢||r. We have for j =
2,...,v—1

e o PRl [borie oY ) AN 072 o R 1D 2P 231 | R > T

HZ:1 1Eelle Bl 2 Rl
1= - Zillp [1 == EZHF] =5 =6l [1+ max; <<y |2k — Zillr]”
- Ele o [D272( B B 7} ming <<y || Sk 7

(A.12)
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We finally divide the third term of (A.10) by [];_, [|X¢||r. We have

L2 Il o2 = Zollp 1% = Bullp

' - A13
T, 15l 1=l (A.13)

Thus we have

. ..@iv_21®---®EUHF/IIEHFS%Z

— 5|, (1 max<p<y ||k — ZkHF)U_

— |E [F3 ming <<y | Xkl F
5 maxi<p<o |ik—2kllF>U 'S -l 5 1= = 5|
<2 (1 <hs< _7
s < T i, [l Z [plrs o’ Z [p7152

logn logn log®n log®n
_ ZHE ~y, HF_vop<,/ R\ o8 ):opO/M%op(T)

where the first inequality is due to that ||X||p = o [[j=1 IIZ]lF via Lemma B.3, (A.11), (A.12)

and (A.13), the first equality is due to Lemma A.1 and Theorem A.1(v)?, the second equality

is due to Lemma A.1 and Theorem A.1(iv), and the third equality is due to Theorem A.1(v).
We now consider the second term in (A.9).

~2 2
52 _ 52 et = 1 logn
|6 _U|H21®"'®EvHF/HZ”F—02—Op< n2_51T)+Op< T

where the last equality is due to Theorem A.1(iv). Part (ii)-(vi) of the theorem could be
established in a similar manner, so we omit the details. O

A.3 Proof of Theorem 5.1

We first give an auxiliary theorem leading to the proof of Theorem 5.1.

A.3.1 Theorem A.2
The following theorem is adapted from Theorem 1 of Kelejian and Prucha (2001).

Theorem A.2. Consider {e7;:1<i<n,n>1,T > 1}, an array of real numbers {br; : 1 <
i<n,n>1,T>1} and Qnr =Y 1 5%1- + >0 brieri. Suppose that

(1) Eler;] =0 for1 <i<n,n>1,T > 1. Furthermore, for eachn>1,T > 1, er1,...,e1n
are (mutually) independent.

(i)

’4—1—2(5

limsup sup sup E‘ET’Z' < 00

T—oo n>11<i<n

lim sup — Z b74)210 < 00

n,T—oo0 T
i=1

for some 6 > 0.

9To see this:
O(logn)

logn logn
:<1+Op( nz_gBlTv ;%)) = 0,(1)

where the last equality could be deduced from the the facts those limg— oo (1 + 1/2)* = e and log® n/T — 0.

v—1

(1 maxi<k<o Hik - EkHF)
+ ;
ming <xg<w HZkHF
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(iii)

liminf — V&F(Qn 7)>C>0
n, T—oo N

for some absolute positive constant C.

Then as n,T — o0,

Qn,T [Qn T]
var(Qn,)

4 N(0,1).

Proof. We can calculate that

E[Qnr] =E [ZET% ZbTﬁTz} = ZE [5%1] = ZU:QF,i
i=1 i=1

n
Qn1 — E[Qn,1] Z — o7+ brier,) = Z Y7
i1

=1
E[YTi] =Efe %“] - O'%i +b%“i‘7%i +2bTi]E€%“i

var QnT |:Z YTZ:| =K [ZZYT’LYTJ] = Z]E[Y’lg,z]a
i=1 j=1 =1

where the last equality is due to independence of 52T ;, across ¢. We now show that

QnT - QnT Z 0
var(Qn, 1) \/‘W

as n, T — oco. This boils down to verifying the Lyapounov’s condition in Theorem B.1 part (b);
that is, for some ¢ > 0,

1)

n

1
lim E\Yr;
WM 2 Far(@u P

‘2+6 —0.

Let’s first find an upper bound for E{YT7i|2+6.
246 246
E}YTi} = E} %z - U%z‘ + bT,i5T,i‘ < 31+6 (E|5%,¢|2+6 + E|U%,z‘|2+6 + |bT,i‘2+6E‘5T,i’2+5)

— 31+(5 (E|€ ‘44—25 +0_4+25 + ’bT,i‘g—HsE‘gT,i‘Q—HS) S Kl 4 KQ’bT,i‘Q—Hs’

for absolute positive constants K7 and Ky for sufficiently large T', where the first inequality is
due to Loeve’s ¢, inequality, and the last inequality is due to the assumption (ii) of the theorem.
Then we have

246
S0 EDTl Tk K (5 i ) KK (0 )
[var (Qn 7"+

[n—lvar(anT)]H‘s/?an/? - [n—lvar(Qn,T)]H(s/Qn‘s/?

i=1
as n,T — oo, where the convergence to 0 relies on the assumption (ii) and (iii) of the theorem.
O
A.3.2 Proof of Theorem 5.1
Proof of Theorem 5.1. Write

LMz —n T — 1)1 (F — po) —

Vono V2n
TG — o)TE G — o) — n N T(5 - po)T (S50 — 71 (7 — po)
B V2n \/% ‘
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We first show that under Hy as n, T — oo,

T(j— po)™S" 1y — po) —n d
on — N(0,1).

Write
T — po)TS" G — o) —n o7 2ot e — o)) (L7H)TLT [ S0 (e — po)] —

V22n N V2n
T T T
. (ﬁ D1 xt) (ﬁ >t xt) -n o zhar —n B Yoy Z%l N Qupr—n

\V2n o V2n B V2n o V2n
Note that for each n > 1,7 > 1, zp1,..., 27, are (mutually) independent under assumption

(b) of the theorem and Assumption 4.1(i). Under Ho,

t=1
1 I
var(zr) = var ( th> =1,
Ti=
[Qn,T] = |:Z 212“,1':| = ZE [212“,1] =n
i=1 i=1
n n n 9
var(Qur) = var (34 ) = S ovar () = 3 [Blet ) - (B1))
i=1 i=1 i=1
= <E[z’%z] - 1) = Z (7z it 2)
i=1 i=1
where 7, ; is the excess kurtosis of zr;:
E[z7,]
vii= ——— —3=E[z7,] — 3.
Yz, [VaI‘(ZT7i)]2 3 [ZT,J 3

We next calculate E[z%l] in terms of moments of zy ;.

T T T T

E[,] = E K\}T tf; x) 4] = S Y Elrwman] (A1)

t=1 s=1 k=1 (=1

Note that the summand in (A.14) isnon-zeroonly ift =s=k={(t=s# k=0 t=k # s =,
t = ¢ # k = s. First, consider the case t = s = k = {. Collecting all the summands in (A.14)
satisfying this, we have

T T
1
Z .’Etz = 1_‘2; 7:)3257,_{_3 T2 nyﬁ,t,l_‘_i (A].5)
where 7, is the excess kurtosis of z; ;:
E [CU?Z]
- —3=E[z},] -3
Vot [var(z¢;)]? 1]
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Second, consider the case t = s # k = £. Collecting all the summands in (A.14) satisfying this,
we have

T T T T
1 1 T -1 1
BBl = Y Y ERIER =T =1 (A6)

t=1 k=1 t=1 k=l

Likewise for cases t =k # s = ¢ and t = { # k = s, both sums are 1 —1/7". Substituting (A.15)
and (A.16) into (A.14), we have

1 & 3 1 1 &
E[Z%z] =72 Z’Yx,m + T +3 <1 - T) =72 Z’Yz,t,z‘ +3
t=1 t=1

whence we have 7,,; = E[z}.] — 3 = % Z;le Va,t,i and

n n T n

T
1
var(Qur) =Y (=i +2) = <T2 > Verit 2) =2n <1 + ﬁ7 1 ;%,m> . (A7)

i=1 i=1 t=1 1=

It remains to verify condition (ii)-(iii) of Theorem A.2. We have

1 1 /1 K
P Qo) =2+ 7 (5 3 S e ) >0

i=1 t=1

for large enough 7" because 7, ; > —3 for all ¢t and 7 by definition of the excess kurtosis. Hence
(iii) of Theorem A.2 is satisfied. Condition (ii) of Theorem A.2 is also satisfied: for some § > 0

4+26

< 00

1
lim supsup sup E‘ — Tt
T—oo n>11<i<n \/th; "

by Theorem B.3 in Section B under assumption (b) of the theorem. Thus we have

Ty —p0)’ S (G —po) =1 _ Qur—n _ Qnr —n
Von v.2n \/QTL (1+ %% doint Zthl Var,t,i)

under Hy as n,T" — 0o, where the second equality is due to

(1+0(1)) & N(0,1),

lim sup — E g E[z},] < limsup max max E[z} il < oo
n,T—00 nT 1= n,T—oo 1<i<n 1<t<T
i=

under the assumption (b) of the theorem, and the weak convergence is due to Theorem A.2.
The theorem would follow if we show that

T(§ — o) (3,0 — S5 — po)
V2n

= o0p(1).
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We now show this.

TI(5 — 10)7 (S5 — S (e — mo)l  |(J7 S (e — o))" (B — =71 (7 21 (ye — po))|

Van B van
SEE o n) (43
1 1
722 Zytz MOz)(Z Ytg — “071>(Eu,,3 Em‘)
i=1 j=1 T t=1 \/thl "
1 n n
< — yt — fio, > =,
V2n <1<z<n f ' ’ ;; “0”]
1 a1 -1
- i (s e Hmem ] 1525

logn 1 log® n 1 oy n2f2=110g° n
:%<W>m”ﬂ(W%w‘iwm”@py%m~
n262+51*3 ]0g5 n
= Op <\/ T > = Op(l)

where the fourth equality is due to Lemma B.1, the sixth equality is due to Assumption 5.1,
and the last equality is due to the assumption (a) of the theorem.

For the Wald statistic, write

War—n Ty —po)TE (G —po) —n

N V2n
T —po)T2 (G — po) — 1 n T(§— po)T(E7 = 275 — po)
B V2n V2n '

We have already shown in the proof of the LM test that under the assumptions (a)-(b) of the
theorem and under Hy as n,T — oo,

Ty — o)X~ (g — po) —
V2n

Display (5.4) would follow if we show that

"2 N(0,1).

T(Q_MO)T(E_l — 2_1)@—H0) =0 (1)
V2n e
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We now show this.

T\(7 — o) (S — S Y — o) | (Fp tma (e = 110) " (E71 =71 (G i (e — o) |
Van Van

- #&j)) ) -5

2 0 on
) S -

M:

M:
7 N
H‘H

MH

2

:

15
=
N
H‘H

Mﬂ

s

Sl

i,J i,J

T

1 1
= —— | max |—= — 0.
Van (1<i<n 77 20 o)

B logn 1 log3n log?n
=0p <\/ﬁ> 1= [%(\/M +O0p | ——

1 1 n262=110g%n nf2=3 log3n
:%”E H1|:OP(VM O ——F —
2824513 |og® B2=3 o>
_o, (\/n > 1T og n>+0p <”2T°g”> = 0,(1)

where the fourth equality is due to Lemma B.1 and Theorem 4.1(iv), and the sixth equality is
due to Assumption 5.1. O

A.4 Proof of Theorem 5.2
Proof. Write

W =T(G— 1) (G —po) =T [§— pr + pr — po] "7 [§ — pr + pr — o]
=T(G— pr)"S NG — pr) + 2T (ur — 110) ™S (G — pr) + T(pr — 10) ™S (ur — po)
= n,T,1 + 9153719

whence we have

Wyt —n Tx 10 Wor1—n T -2 )0
—~ = -+
V2n (1+2005710) (o (14 2075710) \f20 (14 207510) 20 (1+ 26075700)
(A.18)

We first consider the first term on the right side of (A.18).

Wara—n TG~ pr)"S (G — pr) + 2T (pr — p0) T8 (5 — pr) — 1

V2 (1+ 26075710) V2 (1+ 2075710)
T(y— pr)T(E =S — pr) + 2T (pr — po)T (57" = 57Ny — pr)

+

V20 (1+ 2675-10)
(A.19)
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We show that the first term on the right side of (A.19) converges in distribution under the local
alternatives.

T(§ — pr)"S NG — pr) + 2T (pr — 110) TS (G — pr) —
V20 (1+ 267510
[ S — )] (ETTL [ S — )] + 207(L LT [ S — )] =
V20 (1+ 267516

() () + 2L (S ) <0 et b

\/271 (1 + 2975-10) \/2n 1+ 2075-10)
X Ay i bz — Qn,r —
V2 (1+ 2075710) \/271 1+ 2075~ 19)
Note that for each n > 1,7 > 1, 2z 1,..., 21, are (mutually) independent under assumption

(b) of the theorem and Assumption 4.1(i). Under Hj,

erd =8 [ LS a] =0

t=1

T
var(zp) = var ( th> =1,
E[Qn,T] = |:Z Z%i + Z bT,iZT,i:| = Z E [Z%J] =n.

We next calculate var(Q, 7).
n n n
var(Qn ) = var (Z z%Z + Z bT7izT7i) = Z var (Z%,L + brizr;i)
i=1 i=1 i=1

n
E (27 + brizri — Ez%ﬂ-f = E[27; + brizr — 1)?
1 i—1

I
NE

-
Il

n

[(E[Z%z] —1) + QbT,iE[Z%,z‘] + b2Tz] = Z (Vi +2) + QZsz ZTz + Z sz
1 i—1 i=1 i1

I

7

n (A.17), we have already calculated that

1 T 1 T T T 1 T T T
Bt =B | =Y o] =B |55 XY i = g 23 S E [rnssnin]
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Backing up, we have
n T

ST (P ) SR RS 5 9% SLTER RS o

i=1 t=1

We now verify the conditions (ii) and (iii) of Theorem A.2. For the condition (ii), we have

already verified in the proof of Theorem 5.1 that lim supp_, ., sup,>; supy<;<j, E’zTﬂ-}H% < 00
Next,
2446 246 249
lim sup — g br, = limsup — E 2(L 19 =27 limsup — E < 00
n,T—oo T | ’ n—00 nz 1‘ ‘ n—+00 nz 1| ‘

via the assumption (b) of the theorem. Thus the condition (ii) of Theorem A.2 is met. Finally,

%Var(Qn,T) < +ZZ'Y:1:L‘1> T3/2 ZszZE ‘|‘ Zle

i=1 t=1

( +2TTZZ%“> TnTZZ J+ QTE >0

=1 t=1

for large enough n and T because 7y, ¢; > —3 for all ¢t and ¢ by definition of the excess kurtosis.
Thus the condition (iii) of Theorem A.2 is met.
Thus we have

T(§ — pr)"S™ Ny — pr) + 2T (pp — po) TSy — pr) —n _ Qnr —n
V20 (1+ 2675-10) V2 (1+ 2075-10)
Qn,T -n Var(Qn,T) . Qn,T —-n

B = 14+0(1)) % N (0,1
v/var(Qn,r) \/2n (1+%0T2—19) \/V&r(QmT)( +o(1)) = N (0,1)

as n,T — oo.
We next show that the second term of on the right side of (A.19) is 0,(1) under H;

TG = pr) (S =SNG — )| | 27| (e = )T (3 = 1) — )

V20 (1+ 2675-16) V2 (1+ 2075710)
NGE = o) (7 =37 (7 S e — )| . 2107(E7 =27 (7 St (v — i)
V20 (1+ 267510 V20 (1+ 2075-10)
|(\f S —pr) (B -2 )(\f S (e — )| N 2(07(5 - =) (ﬁ S (g — pr))]
V2n ) V2n
\ﬁ (1%&3% \}Té(yt,i ) > 1= ==L

2 -
+ \/7 max |0;| | max W) IEt =27,
1<i<n 1<i<n
logn [ logn log?n
1 1 n262=110g%n nf2=3 log®n
_@HE 1 [Op(VM + Op 7

282413 |og® B2-3 1oo3
~0, <\/” - IT log ”> 40, (” 2T1°g ”) — op(1) (A.20)
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where the second equality is due to Lemma B.1 and Theorem 4.1(iv), and the fourth equality
is due to Assumption 5.1.
Backing up, in (A.19), we hence have under H; as n,T — oo

Wn,T,l —n
V2 (1+ 2075710)

We finally consider the second term on the right side of (A.18).

2 N (0,1)

T(x"! —x1)e
V20 (1+ 2075-10)

= op(1)

because of the similar trick used in (A.20). Backing up, in (A.18), we hence have under H; as
n,T — oo

_ -1
War—n o110 4 N (o)
V2 (1+20m5-10) \J2n (1+ 2075710)

A.5 Proof of Theorem 5.3
Proof of Theorem 5.3.

Wy :=T(Ry—r)"(RERT) ' (Ry — )
=T(Ry —r)"(RERT) " (Ry —r) = T(Ry —r)T [(RERT) ' — (RER") | (Ry —r) (A.21)

We now show that the first term of (A.21) is asymptotically chi square distributed under Hj.
Since R has full row rank ¢ and Apin(2) is bounded away from zero by an absolute positive
constant, RY.RT has full rank ¢q. Consider the Cholesky decomposition of RERT = Ly L1, where
Lp is a ¢ X ¢ nonsingular lower triangular matrix with positive diagonal elements. Write

T(Ry —r)T(RSRT) " (Ry —r) = T(Ry —r)"(Ly!)TLy (Ry — )

S| [ ]

Note that L;R(yl — W), LI_%IR(yg — W), .., Ll_%lR(yT — p) are independent random vectors in
R? with mean zero and variance matrix I,. Then we can invoke a version of the multivariate

central limit theorem to show T'~1/2 23:1 Ly R(y: — p) 4 N(0,1,;) as n,T — oo, whence we
have T(Rj — r)T(RERT) ™ (Rg — 1) % x2 as n, T — oo.
We now show that the second term of (A.21) is o,(1) under Hj.

)T(Rg—r)T [(RSR)™ — (RSRT)™Y] (Rj— )(

iz <1T ZT:[R(% > ( ZT: ) (RERT);} — (RERT); 1]

2
)l ) |(RERTY™ — (RSRT),

1
= Op(D||(RERT) ™ — (RERT) Y|, .
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We need to find a rate for H(RERT)_1 — (RXRT)~! Hl First, note that

|RSRT — RRT|, < 2| R(S ~ S)RT],, < 1Rl IS~ Sl BT,
= PIRTIL IS ~ Zlle, = ¢ Amas RED) | — S,

log®n log?n
= ¢*/* X nax(RRT)[|Z |, [Op <\/ n2—51T> +0p (T = o0p(1),

where the second last equality is due to Theorem 4.1(v), and the last equality is due to (5.5).
Second,

3/2 3/2

-1 3/2 -1 _ ,3/2 -1 — q q
ICR=ED T < a B ESRD T, = 0 A [FEED 7] = S i = SRR Ain (5

= 0(1)

where the last inequality is due to Lemma B.2 in Section B and the last equality is due to the
assumption of the theorem. Then via Lemma B.4 in Section B we have

- _ log3n log?n
[EERT) ™ = (RSB, = 0 A RO [0, (1 255 ) + 00 (2] = ot

Backing up, we have proved that the second term of (A.21) is 0,(1) under Hy. O

A.6 Proof of Lemma 5.1

Proof of Lemma 5.1. The assumptions of the lemma allows us to invoke Theorem 5.1. Thus
under Hy : = pg, as n, T — oo,

T — TG — 10)TS (G — po) —
War —n _ Ty — o) (4 —po) —n N(O,1).
V2n V2n

This implies that for any unknown u
P <T(§ —WE T G —p) —n
a V2n

as n,T — oo, where z, is the upper « percentile of N(0,1). .
Invoking Lemma B.5 in Section B with z = § — p and S = ¥ yields: For any ¢ € R™

(677~ w)]* < ™86 (7 — TS (G — p)

<za>—>1—oz

whence we have

_ 2
Wﬁ;g;)} < (7 pTEG - p).

Multiply both sides by 7', minus n, and divide by +/2n:

T[o7@—w]’ /6786 —n _T@—w S G—p —n
Van . Van |

Thus we asset with confidence 1 — « that the unknown u satisfies simultaneously for all ¢ the
inequalities:

T (67— w]" /6786 —n _
\/ﬁ o

as n,T — oo. O
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B Auxiliary Lemmas

Lemma B.1. Suppose Assumption 4.1(i)-(ii) hold. Then we have

= Op(/logn).

max
1<i<n

\/—Z Yt — ytz

Proof. Under Assumption 4.1(ii), we have, fori=1,...,n, m=2,3,...,

T
1
™) < T Z 27 (Elyea|™ + Elyral™)
=1

1 & 1 <
T ZE‘ytz — Eyi| " < T Z 271 (Eye,|™
t=1 t=1

T
1 !
" Y Elyl™ < 27A™ < 2mlAT = %Am_QAQAL
t=1

for some absolute positive constant A. Now invoke the Bernstein’s inequality in Section B with
03 =4A% For all € > 0

T
1
<' E yt i Eyt 7
t=1

Invoking Corollary B.1 in Section B, we have

1 <& logn logn logn
i — Eyi)| = = .
;yt ) OP<T ! T> O”( T)

The lemma follows. O

> o2 [Ae + @}) < 2¢T7ie,

max
1<i<n|T

We next give two central limit theorems for double-index (n,T’) processes.

Theorem B.1.

(a) Suppose Yy is a random variable independent across 1 <t < T forn > 1 and T > 1.
Assume that
E[Ya: =0  E[Yp, =00

n,t*
Define
T
2 2 Yy
Sn,T T Z Gn,t gn,T,t = .
=1 Sn, T

Assume that S%I > 0 for large enough n and T. Suppose the following Lyapounov’s condi-
tion hold: For some § > 0,

T
lim > 2+6E|Ynt\2+5

T—
HEToO T ST

Then as n,T — oo

T
S éare S N(0,1).
t=1
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(b) Suppose Yr; is a random variable independent across 1 < i < n forn > 1 and T > 1.
Assume that
EYr)] =0  E[Y7]=of,
Define

n

2 2 e Y1,
Spr = D 0T EnT,i = .
i=1 Sn, T

Assume that s? a1 > 0 for large enough n and T'. Suppose the following Lyapounov’s condi-
tion hold: For some 6 > 0,

n

1
lim Z 2+6E’YT1

T
T ST

240
.

Then as n,T — oo
n
d
> &ri = N(0,1).
i=1
Proof. The proofs can be easily adapted from the Lyapounov’s condition for triangular arrays
(cf. p362 Billingsley (1995)) O

Theorem B.2 (Bernstein’s inequality). We let Zy,..., Zp be independent random variables,
satisfying for absolute positive constants A and o3

T
1 !
EZ, =0 Vi, TE E|Zt|mgm7Am—20§, m=23,....
t=1

Let € > 0 be arbitrary. Then
1 X
P QT >

Proof. Slightly adapted from Biihlmann and van de Geer (2011) p487. O

> o2 [Ae + \/ZD < 2¢ T,

We can use Bernstein’s inequality to establish a rate for the maximum.

Corollary B.1. Suppose via Bernstein’s inequality that we have for 1 <i <mn,
(|r 3

for some absolute positive constants K and UO. Then

1< logn logn

Proof. We need to use joint asymptotics n, T — oco. We shall use the preceding inequality with
e = (2logn)/(To3). Fix e > 0. These exist N. := 2/e, T. and M, := max(4K,40¢) such that

for all n > N, and T > T, we have
logn v logn
P pax |7 =M = T

Zth

n T 9

Z (’ Z K6+\F]>§2elog”2l°g":n<5.
=1

=1

>0 Ke—l—\/>]) < 2e” Toge,

max
1<i<n
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Lemma B.2. Suppose matriz A is real symmetric. Then for any comparable real matriz B
>\min (A) )\min (BBT) < )\min (BABT) < >\max (BABT) < Amax (A) )\max (BBT) .

Proof. First, note that BABT is Hermitian. By Rayleigh-Ritz theorem, we have

Amax (BABT) = max ¢'BABT¢c < max /\max(A)HBTC||2 = Amax(A) max ¢"BBTc

llell2=1 llell2=1 llell2=1

= Amax (4) Amax (BBT) .
On the other hand,

Amin (BABT) = min ¢"BABT¢ > Iﬂlin )\min(A)HBTCHQ = Amin(A) ”min c"BBTc

=1

llell2=1 llell2 cll2=1

= Amin (A) Amin (BBT) .

Lemma B.3. For any real matrices A and B,

()
[A@ Blr = [[Alr < || BllF-

(i)
A ® Blle, = [[Alle, x [|Blles-

(iii)
[A® Bl = || Allx x [|B]}x.

Proof. For part (i),
|A® B||7 =tr [(AT® BT)(A® B)| = tr [ATA® B'B] = tr(ATA) tr(B'B) = || A||%|| B|)%.

For part (ii),

|A® Bll¢, = v/maxeval[(A ® B)T(A® B)] = \/maxeval[(AT @ BT)(A ® B)]
= \/maxeval[ATA ® BTB] = y/maxeval[AT Ajmaxeval[BTB] = || A|l¢, || Bll¢,,

where the fourth equality is due to the fact that both ATA and BT B are symmetric and positive
semidefinite. For part (iii), suppose that A is m x n and B is p X gq.

4@ Bl =3 (asllBl) =33 (1oss S5 b )- (iz i) (ZZ o

i=1 j=1 i=1 j=1 k=1 (=1 i=1 j=1 k=1¢=1
= Al ]I B]x.

Lemma B.4. Let Qn,j and €y, ; be invertible (both possibly stochastic) n x n square matrices
for j = 1,...,m, where both n and m could be growing. Let T be the sample size. For any
matriz norm || - ||, suppose that maxi<j<m HQ;;H = Op(1) and maxi<j<m [|Qnj; — U jl| =
Op(am,n,) for some sequence amn 1 With ampr — 0 as m,n, T — oo simultaneously. Then

maxi<j<m |5 = 511 = Op(@mnr).
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Proof. The original proof could be found in Saikkonen and Lutkepohl (1996) Lemma A.2.

19025 = 2551 < 15115 — Q19251

< (191l + 1975 = 051D 1905 — g2 511
Let vjpn1, Zjnr and xj, 7 denote ||Qj_711||, HQJ_}l - Q;TllH and [|Qj., — .||, respectively. From
the preceding equation, we have

Zjn,T
Vjn,T + 2j,n,T)Vjn,T

WjnT = ( < Tjn,T,

whence we have maxi<j<m Wjnr < Maxi<j<m TjnT = Op(@mn1) = 0p(1). We now solve for

Z]?n7T:
2 .
’U]',TL,ijyan
Zj7n7T = °
L = vjn1WjnT
Then we have
2 ) ) 2 ) )
,Uj,’fL7Tw]7n7T maXlS] S’ITL Uj,n,T maXlS]Sm w]yn’:T
max zj,r = max = = Oplamnr)
Lsjsm Lsjsm L= vjprWinr 1= MaX1<j<m Vjn, T MAX1<j<m Wiy, T
where the second equality is due to the fact that 0 < v;,, rw;,r <1 for any j. ]

Theorem B.3. Let {z:;} be a double-index process having zero mean and being independent
across 1 <t <T form>1andT > 1. If there exists k, k > 2, such that

max max max max El|z;|* < oo,
n>1 1<i<n T>1 1<t<T ’

then we have

T k
1
for some absolute positive constant K.
Proof. Slightly adapted from Brillinger (1962). O

Lemma B.5 (Generalised Cauchy-Schwarz Inequality). For a positive definite matriz S and
any vectors ¢ and x

(¢72)* < ¢TS¢-aTS 'a.
Proof. See Lemma 5.3.2 (p178) of Anderson (1984). O
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