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1 INTRODUCTION 2

1 Introduction

Stock returns have both common and firm-specific components. Ross (1976)[2]] proposed Ar-
bitrage Pricing Theory (APT) to summarize that expected returns on financial assets can be
modeled as a linear combination of various factors. In such a model, each asset has a sensitiv-
ity beta to those factors-this tells us how much change in each factor affects the return on each
stock. The APT model explains the excess returns from both cross-sectional and time-series
directions. Moreover, Rosenberg (1974)[26] argued that stock returns behave as a linear com-
bination of characteristic-related factors. Fama and French (1993, 2014)[7][8] approximated
those factors by the returns on portfolios sorted by different characteristics, and they devel-
oped three-factor and five-factor models. After extracting the common movement parts, they
treated the intercept as the mispricing alpha, which is asset-specific and cannot be explained
by those risk factors. Many papers use a similar method to present other characteristic-based
factor models, such as the four-factor model of Carhart (1997)[3], the g-factor model of Hou,
Xue, and Zhang (2015)[16], and the factor zoo by Feng, Giglio and Xiu (2017)[11], see
These models utilize risk factors to capture the co-movements while employing «; and
;i to exploit firm-specific behavior. All of the above papers studied observed factors and the
beta coefficients are estimated by time series Ordinary Least Squares (OLS). However, those

betas are time-invariant and not assigned characteristics-based information.

Consider the panel regression model

J
Yit = o + Z Bjifit + €its (D
j=1

where y;, is the excess return to security 7 at time ¢, f;; are the j' risk factor’s returns at time
t, B;; denotes the ;' factor loading of asset i, ov; represents the intercept (mispricing) of asset
i, and €;; are the mean zero idiosyncratic shocks. In terms of factor loadings /3;;, Connor and
Linton [3] and Connor, Hagmann and Linton (2012)[4] studied a characteristic-beta model,
which bridges the beta-coefficients and firm-specific characteristics by specifying each beta
as an unknown function of one characteristic. In their model, beta functions and unobservable
factors are estimated by the backfitting iteration. They concluded that those characteristic-beta
functions are significant and non-linear. Nonetheless, they restricted their beta function to be

univariate and did not consider the unexplained part within each factor loading function, see

Their model can be summarized by
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J
Yir = Z 9;(Xji) fie + €, (2)
j=1

where X; is the j observable characteristic of firm .

To overcome this limitation, Fan, Liao and Wang (2016)[9] allowed j3;; in
to have a component which is explained by observed characteristics and an unexplained or
stochastic part, written as 3;; = ¢;(X;) + uj;, where u;; is mean independent of X ;. They
proposed the Projected Principal Component Analysis (PPCA), which projects stocks’ excess
returns onto the space spanned by firm-specific characteristics and then applies Principal Com-
ponent Analysis (PCA) to the projected returns in order to find the unobservable factors. This
method not only facilitates theoretical analysis but also has attractive properties even under
large NV and small 7" asymptotics. However, they did not pay enough attention to the mispric-

ing part (alpha), which is crucial to both asset pricing theories and portfolio management.

The discussion of the mispricing component has been extended from the intercepts part (al-
pha) of the Fama-French factor model, see to a portfolio management strategy
such as constructing portfolios weights through the values of the characteristics-alpha func-
tion. For example, Hjalmarsson and Manchev (2012)[14] documented a method of directly
parameterizing the portfolio weights as a linear function of characteristics, such as value and
momentum. They showed this method outperforms other baseline methods according to em-
pirical studies. This research also sheds light on the possibility of using characteristics to
explain the remaining part of multiple factors models. Another seminal paper on firm-specific
characteristics was composed by Freyberger, Neuhierl, and Weber (2017)[13]], which analyzed
the non-linear effects of 62 characteristics through pooling regressions. This study concluded
that 13 of these characterisitcs have explanatory power on stocks’ excess returns after selection

by adaptive group Lasso.

The studies mentioned above demonstrate that characteristics do have explanatory power
for stocks’ excess returns and can be used as explanatory variables for both mispricing and

factor loading functions.

In this paper, we work on a semi-parametric characteristics-based alpha and beta model,
which utilizes a set of security-specific characteristics that are similar to Freyberger, Neuhierl,
and Weber (2017)[13]]. We use unknown multivariate characteristic functions to approximate
both «; and 5;; in Specifically, we assume «; and f3;; are functions of a large set
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of asset-specific characteristics, taking the form a; = h(X;) + 7; and 3;; = g;(X;) + )\
We then estimate h(X;) and g;(X;) as well as the unobserved risk factors f;;. In addition, we

construct a power enhanced test on the mispricing function h(X;) to detect possible networks
of arbitrage characteristics. We will present our model formally in

Some recent papers such as Kim, Korajczyk and Neuhierl (2019)[20] and Kelly, Pruitt and
Su (2019)[19] analyzed a similar model to ours, which assumes that both i (X;) and g,(X;)
are parametric linear additive functions. They both included around 40 characteristics in X;.
However, they drew different conclusions on the existence of h(X;). Kim, Korajczyk and
Neuhierl (2019)[20] set arbitrage portfolio weights as estimated values of i (X;) through one
year rolling windows. And then they showed that their arbitrage portfolios are statistically
and economically significant. However, Kelly, Pruitt and Su (2019) [19] applied instrumented
principal component analysis (IPCA) to the entire time span from 1965 to 2014, and came to
a different result, with no evidence to reject the null hypothesis Hy : h(X;) = X]B = 0. The
introduction of IPCA can be found at Kelly, Pruitt and Su (2017)[18]. They conducted their
hypothesis tests by bootstrap. This dispute spurred the deveploment of a more flexible model

and reliable hypothesis tests to investigate the existence and structure of h(X;).

In this paper, the proposed semi-parametric model does not impose strict restrictions on
functional forms. This model can exploit information contained in characteristics more effi-
ciently and thoroughly. Meanwhile, the semi-parametric setting can also match the results of
Connor, Hagmann and Linton (2012)[4] and some empirical results of Kim, Korajczyk and
Neubhierl (2019)[20]. This is promising as it suggests that the more flexible approach is pick-
ing up the same relationships as in previous studies. The only assumption on the functional
form in my model is additivity of the unknown functions h(X;) and g;(X;). Each univariate

component is approximated by linear combination of B-spline bases.

However, this unrestrictive model brings both opportunities and challenges. According to
Huang, Horowitz and Wei (2010)[[17]], the number of B-spline knots must increase in the num-
ber of observations, in order to achieve a more accurate approximation and better asymptotic
performance. Therefore, the dimension of B-spline bases’ coefficients also grows with the
sample size. Furthermore, mispricing functions are treated as anomalies, so under a correctly
specified factor model, these coefficients are very likely to be sparse. All of these circum-

stances make the conventional Wald tests have very low power. Therefore, a power enhanced

X is a vector of a large set of asset-specific characteristics of stock 1.
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test should be developed to strengthen the power of Wald tests and to detect the most rele-
vant characteristics among a characteristic zoo included in h(X;). Kock and Preinerstorfer
(2019)[21] illustrated that if the number of coefficients diverges as the number of observations
approaches infinity, the standard Wald test is power enhanceable. Meanwhile, Fan, Liao and
Yao (2015)[10] proposed a power enhanced test after showing that if true coefficients have a
sparse structure, the traditional Wald test has very low power. Therefore, they introduced a
screening process to detect all the estimated coefficients one by one, and then select signifi-
cant coefficients’ statistics as a supplement to the standard Wald test. In this paper, we extend
Fan, Liao and Yao (2015)[10] to a group manner. We enhance the hypothesis test on a high
dimensional additive semi-parametric function h(X;) and then test H, : h(X;) = 0. This
method allows all the significant components of i (X;) to be selected and contribute to the test

statistics, with the power of the proposed test approaching to one.

The aforementioned procedures are designed to detect the dynamic structure of 4(X;), and
a careful analysis of h(X;) is theoretically and practically meaningful. Firstly, h(X;) is an
important component of Arbitrage Pricing Theory (APT) and can contribute to asset pricing
theories, namely, linking the mispricing functions with security-related characteristics. There-
fore, like Hjalmarsson and Manchev (2012)[14] and Kim, Korajczyk and Neuhierl (2019)[20]
, h(X;) can be utilized to construct arbitrage portfolios. Secondly, the existence of h(X;)
reveals a network of unsystematic returns that are interconnected through the similarity of

assets’ characteristics.

As noted by Aymanns, Farmer, Kleinnijenhuis and Wetzer (2018)[1]], overlapping portfo-
lios are an important factor in contagion across financial networks. Therefore, the network
of mispricing returns can help diversify risks and reduce the overlap across portfolios. If
the mispricing function /(Xj) is not monotonic, simply setting portfolio weights to the esti-
mated values of h(X;) can be problematic. Because some characteristics with significantly
different values maybe have similar arbitrage returns. Therefore, the network structure i (X;)
is important. Hoberg and Phillips (2016)[15] classified firms’ competitors through the sim-
ilarity of text-based descriptions, which is similar to the clustering of characteristics. They
also compared between text-based and characteristics-based classification methods. In this
paper, we analyze the characteristics-based mispricing function as a demonstration that how
firms’ characteristics can be used to construct a network of arbitrage returns and the distance
between two assets ¢ and j has a straightforward computation of arbitrage return distance,

namely, d;; = ||h(X;) — h(X;)||. The similarity of characteristics is|| X; — X

2, where || - ||2
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represents Ly distance. Inspired by Vogt and Linton (2017) [28]], we employ a hierarchical

K-means classification to group these characteristics within each mispricing return group.

Understanding the structure of this network can not only improve the performance of ar-
bitrage portfolios by longing assets with similar characteristics which provide high arbitrage
returns, but also help us to learn the dynamics of this network through rolling windows. Al-
though this paper mainly focuses on h(X;), the same network can be computed based on
g;(X;) functions, and overlapping portfolios can be avoided by choosing assets with greater

sensitivity difference to a certain risk factor f;.

It is worth clarifying the differences between our research and others, namely, Kim, Kora-
jezyk and Neuhierl (2019)[20], and Kelly, Pruitt and Su (2019)[[19]]. The model setting of this
paper is semiparametric, which brings both flexibility and challenges. This paper considers a
different economic question, which is the existence and networks of mispricing characteristics.
Therefore, we develop power enhanced hypothesis tests and hierarchical K-means clusterings
to investigate the dynamic network structure of 4(X) through one rolling windows. Therefore,
the IPCA approach in Kelly, Pruitt and Su (2019)[19] is no longer suitable as it requires large

T for consistency.

This paper’s contributions are threefold. Firstly, we build up a new semi-parametric characteristics-
based alpha and beta asset pricing model, which is more general and flexible. Secondly, we
apply and extend previous estimation methods, which can fit the current framework better. In
addition, we extend the power enhanced test of Fan, Liao, and Yao (2015) [10] in a group
manner to strengthen the test on mispricing functions, which can select the characteristics that
contribute to the arbitrage portfolios at the same time. Finally, we detect some remarkable
networks of analogous mispricing returns, which are interconnected through the similarity of
security-specific characteristics, after applying our model and methods on CRSP and Compu-

stat data.

The rest of this paper is organized as follows. Section 2 sets out the semi-parametric model.
Section 3 introduces the assumptions and estimation methods. Section 4 constructs a power
enhanced test for high dimensional additive semi-parametric functions. Section 5 employs hi-
erarchical K-Means clustering to build the network. Section 6 describes the asymptotic prop-
erties of our estimates and test statistics. Section 6 simulates data to verify the performance
of our methodology. Section 7 presents an empirical study. Finally, Section 8 concludes

this paper. Characteristics description tables, proofs, mispricing curves and network plots are
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arranged to the Appendix.

2 Model setup

We assume that there are n securities observed over I’ time periods. We also assume that dur-
ing a short period, each security has P time-invariant observed characteristics, such as mar-
ket capitalization, momentum, and book-to-market ratios. Meanwhile, we may omit the het-
eroskedasticity by assuming that each characteristic shares a certain form of variation within

each period for all securities. We suppose that
Yit = ( +71 +Z g] +>\ZJ .fjt+€zta (3)

where 7;; is the monthly excess return of the i*" stock at the month ¢, while X; isa 1 x P
vector of P characteristics of stock ¢ during time periods ¢ = 1,...7T, and where 7" is a small
and fixed time block. In practice, most characteristics are updated annually, and thus, we as-
sume X is time-invariant within this short time period. The h(X;) is an unknown mispricing
function explained by a large set of characteristics whereas +; is the random intercept of the
mispricing part that cannot be explained by characteristics. Similarly, we have characteristics-
beta function g;(-) to explain the 4" factor loadings and the unexplained stochastic part of the
loading is \;; with E'()\;;) = 0, which is orthogonal to the g;(-) function. The quantity f;, is
the realization of the j* risk factor at time ¢. Finally, ¢;, is homoskedastic zero-mean idiosyn-
cratic residual return of the 7! stock at time ¢. The random variables ~; and Aij are used to
generalize our settings and not to be estimated. They will be treated as noise in the identifica-
tion assumptions. Furthermore, ~; can be treated as random effects under conventional panel

settings.

Meanwhile, we impose additive forms for both the i(-) and g;(-) functions to avoid the
curse of dimensionality as below: h(X;) = 25:1 pp(zip) and g;(X;) = 25:1 8;p(xip), Where
(i) and 6,,(z;,) are univariate unknown functions of the p™ characteristic X, for the '

asset. Therefore, we compose the model below:
P

Yit = Z,up ip +’71 +Z Z‘gyp ip +)‘1])f]t+ezt> (4)

7j=1 p=1

Assumption 1. We suppose that:

E(Qt’X’fjt) =0
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E(h(X;)) = E(Qj(Xz‘)) =0,
E(vi|X) = E(\;|X) =0,

E(h(Xz’)gj (Xi)) =0,

Similar to Connor, Hagmann and Linton (2012)[4] and Fan, Liao and Wang (2016)[9], the
Assumption 1 above is to standardize the model settings, including the zero mean assumption
of factor loadings and mispricing functions for identification purposes. We also impose the
orthogonality between mispricing and factor loading parts for identification reason. This is
because the variation of the risk factors can be absorbed into the mispricing part if it is not
orthogonal to the factor loadings. More discussion can be found in Connor, Hagmann and
Linton (2012)[4].

3 Estimation

In this section we discuss the approximation of the unknown univariate functions and our
estimation methods for the model In our semi-parametric setting, we applied
the Projected-PCA following Fan, Liao and Wang (2016)[9] to work on the common factors
and characteristics-beta directly. And then, we project the residuals onto the characteristics-
alpha space that is orthogonal to the beta function. The second step is similar to equality
constrained OLS estimator. Finally, estimates of the characteristics-beta and alpha can be

obtained correspondingly.

3.1 B-Splines Approximation

We construct B-splines to approximate unknown functions 6(-) and p(-) in[Equation 4} Similar

to Huang, Horowitz and Wei (2010)[17], we have the following procedures. Firstly, suppose

that the p™ covariate X, is in the interval [Dy, D], where Dy and D are finite numbers with

Dy < D. LetD ={Dy,Dy,...,Dy < dy <dy < -+ <dp, <D,D,..., D} beasimple
—_— —_—

I+1 I+1
knot sequence on the interval [Dy, D|. Here, m,, = [n"] is a positive integer of the number

of internal knots, which is a function of security size n in period 7', and 0 < v < 0.5. [ is the
degree of those bases. Therefore, we have H,, = [ + m,, bases in total, which will diverge as

n — oo. Following this setting, a set of B-splines can be built for the space (2,,[D].
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Secondly, for the p'" characteristic X,,, based on a set of H,, orthogonal bases {¢1,(X,,), - . .

those univariate unknown functions can be approximated as linear combinations of those bases
H

as fip(Xp) = Z 1 QgPgp(Xp) + RE(X)) and 0,(X,) = Zq 1 Bia®ap(Xp) + RG(XP)’ where

RE(X,) and Rg(Xp) are approximation errors. It is not necessary to use the same bases for

both unknown functions and the representation here is for notation simplicity only. Therefore,
the model can be illustrated as:

H,

P H, J P
Yit = Z(Z apq@bpq(Xip)+R§(Xp))+%+2(z Bypq%q zp +R0(Xp))+>‘ij)fjt+€it
p=1 =

g=1 Jj=1 p=1 ¢=1

3

Foreach: <n,p < Pandt < T, we have:
1 =(1,...,1)T € RT,

H,P
Bi = (Bijis---s BHnjs - B1jps - B, jp)T € REMT

B = (ﬁla"'aﬁ])a
A= (05117 s QUH - APy e 705PHn)T € RH“P?
_qbl,ll(Xll) U ¢1,1Hn (Xll) o ¢1,P1 (XlP) cee ¢1,PHn (XlP)_
@(X) _ ¢2,11(.X21) : " ' ¢2,1H71.(X21) : ¢2,P1 (‘XQP) cee ¢2,PHn (XZP) ’
_¢n,11<Xn1) e ¢n,lHn (an) e ¢n,P1 (XnP) cee ¢n,PHn (XnP)_

where ¢; ,,(X;,) means the h'" basis of the p™* characteristic of individual 4 at time ¢. There-

fore, we have our B-spline model as:
Y = (#(X)A + T + R*(X))1L + (®(X)B + A + RY(X))FT + U, (5)

Y is n x T matrix of y;. ®(X) is the n x PH, matrix of B-Spline bases. A isa PH, x 1
matrix of mispricing coefficients, R*(X) is a n x 1 matrix of approximation errors. B is a
PH, x J matrix factor loadings’ coefficients. R?(X) is a n x J matrix of approximation
errors. We have R%(X,) =7 0 and R(X,) =" 0, as n — oo, see Huang, Horowitz and Wei

(2010)[L7]. Therefore, we omit the approximation errors for simplicity below. F is the 7" x J
matrix of f;; and U is a n x T" matrix of €, the rest are defined the same as

Furthermore, we define the projection matrix as:

P = ¢(X)(2(X)T®(X)) e (X)".

) ¢H77,P(XP>}’
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The remaining goals of this paper are to estimate both (X ) and G(X) consistently and
conduct a power enhanced test of the hypothesis Hy : h(X) = 0, i.e., to check the existence
of mispricing functions under semi-parametric settings. Finally, we construct a network of ar-
bitrage characteristics, recalling that the dimension of (1, ...,0qp4,,...,Qp1,...,Qpy,) €

RPHn js diverging as n — oo.

3.2 Two Steps Projected-PCA

In this section, we combine and extend the method of Projected-PCA by Fan, Liao and Wang
(2016)[9] and equality constrained least squares similar to Kim, Korajczyk and Neuhierl
(2019) [20] to estimate the model above. To facilitate the estimation, we define a T' x T’
time series demeaning matrix Dt = Iy — %1TIIF.E| Next, we demean the equation above on

both sides. Therefore we have

YDy =Y = (&X)B + A)F Dy + UDy.
Mispricing terms disappear due to (®(X)A + I')1.Dt = 0, which help us to work on
the characteristics-based factor loadings and those factors only. From now on, we use F to

represent the demeaned factor matrix.

Our procedures are designed to estimate factor loadings G(X), demeaned unobserved fac-

tors F' and mispricing coefficients A in sequence.

Under the identification conditions in the above section, we have the following estima-
tion procedures similar to Fan, Liao and Wang (2016)[9] and Kim, Korajczyk and Neuhierl
(2019)[20] :

1 Projecting Y onto the spline space spanned by { X, }i<n p<p through a n x n projection
matrix P where P = ®(X)(®(X)T®(X))'®(X)T . We then collected the projected
data ¥ = &(X)(®(X)T®(X)) ' d(X)TY.

2 Applying the Principle Component Analysis to the projected data YTY, which allows

us to work directly on the sample covariance of G(X)FT, under the condition that
E(g;(Xi)ew) = E(g;(Xi)Aij) = 0.

risaT x T identity matrix, and 11 is a7’ x 1 matrix of 1.
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3 Estimating F as \/LT times the eigenvectors corresponding to the first J (assumed given)

eigenvalues of the 7" x T" matrix %?TY (covariance of projected Y).

The method above substantially improves the estimation accuracy and facilitates the
theoretical analysis. Furthermore, it also has some good properties, even under the large
n and small 7" circumstance. Small 7" is preferable in our model setting as we use
one-year rolling windows analysis in both simulation and empirical studies to explore
dynamic network structures of h(X;). Besides, large n is required for our asymptotic

analysis.

Factor loadings GT(X) are estimated as:

A~

G(X) = VE(ETR)!
In the next step, we estimate the coefficients of the mispricing bases.

4 The estimate of A is

~

A =arg mAin vee(Y — ®(X)A1L — G(X)FT)Tvec(Y — ®(X)A1L — G(X)FT)

subject to G(X)T®(X)A = 0y, a closed-form solution can be obtained below:

Leta PH, x 1 vector A be the solution of constrained OLS above:
A =MA,
where

M =1 (2(X)T®(X)) ' @(X)TG(X)(G(X)TG(X)) ' G(X)T@(X),

A~ A

A = L(@X)T(X))B(X)T(Y ~ G)F)1,

given PG(X) = G(X).

As stated in Assumption 1, the h(X) is orthogonal to the characteristics-based loadings
G(X);.

5 We can also estimate the covariance matrix of Ai, i.e., f) extending the methods of
Liew (1976)[22], which can facilitate theoretical analysis in the next section. According
to Liew (1976)[22], A is the equality constrained least-square estimates, which has the
covariance matrix as:

3 =MI;MT,
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where:

3z = (2(X)T2(X)) " e(X)T O(X)(2(X)Te(X)) ",

Q»

T .
52 — >
! T—-1°
T . T P Hy « J P H j ;
where 37 €% =37, (?Jz‘t—zp:1 Zq:l apq¢pq($ip>_2j:1(zp:1 Zq:l Bipa®pa(Tip)) fit)?-

The heteroskedasticity is caused by the random effects of ;.

4 Power Enhanced Tests

There are considerable discussions about the mispricing phenomenon under factor models
and the existence of mispricing functions remains controversial. namely, whether there are
relevant covariates after subtracting co-movements components captured by risk factors. For
recent research, Kim, Korajczyk and Neuhierl (2019)[20] found the characteristics arbitrage
opportunities through estimating a linear characteristic mispricing function, without providing
theoretical results. However, Kelly, Pruitt and Su (2019)[19] conducted a conventional Wald
hypothesis test on the similar mispricing function through bootstrap, concluding that there
is no substantial evidence to reject the null hypothesis. Additionally, they applied the boot-
strap method to estimate covariance matrix 3, which caused potential problems for theoretical
analysis. Moreover, according to Fan, Liao and Yao (2015)[10], their test results may have
relatively low power when the true coefficient vector of linear mispricing function A has a

sparse structure.

Meanwhile, the research from both studies is based on a parametric framework, which rely
on the strong assumption of linearity. However, this assumption is not consistent with Connor,
Hagmann and Linton (2012)[4], which showed that both characteristic-beta and mispricing
functions are very likely to be non-linear. Therefore, we propose a semiparametric model to

accommodate non-linearity to a great extent.

But semi-parametric framework leads to extra challenges for theoretical analysis and hy-
pothesis tests. On the one hand, as mentioned above, the number of coefficients of mispricing
B-splines diverge as n — oo, which implies the power of standard Wald test can be quite

low, see Fan, Liao and Yao (2015)[10]. On the other hand, according to other research of
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asset pricing, like Fama and French (1993,2014)[7][8], mispricing terms can be regarded as
anomalies. This means that in our model setting, the true mispricing coefficient vector A can

be high-dimensional but sparse, reducing the power of conventional Wald test further.

However, according to the results from Kock and Preinerstorfer (2019)[21], conventional
hypothesis tests under these circumstances are power enhanceable. The power enhanced Wald
test in this paper is an extension of Fan, Liao and Yao (2015)[10] to a group manner, which
can also be generalized as hypothesis tests under high-dimensional additive semi-parametric
settings. The proposed tests are power strengthened when the coefficients of the additive
regression A is diverging as n — oo without distorting the test’s size. Meanwhile, this test
is also robust under sparse alternatives. Additionally, the proposed test can select the most
important components from sparse additive functions. Finally, the proposed method can also

be applied when the number of characteristics is also diverging, i.e. P — oo.

Hence, we construct a new test:

equivalently,
Hy: A=0, H :Ac€A

where A C RPH»\0.

Here, we have: o
AYXTAT - PH,
Sl =
2PH,

where S5 is the "original" test statistics. P is the number of characteristics. PH, is the total

number of B-spline bases, and A € RPH» [, is a function of asset number n, therefore,
H,, — oo asn — oco. Under Hy, S; has nondegenerate limiting distribution F' as n — oo.

Given the significance level ¢, ¢ € (0, 1) as well as the critical value F:
Sl|H 0 %d F

lim Pr(S, > F,|Hy) =¢q

N—oo

Pesaran and Yamagata (2012)[23]] illustrated that:
Si|Hy =4 N(0,1),

under regularity conditions.
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Possible sparsity and diverging P H,, means that it is plausible to add a power enhanced
component to S, which can improve the power of the hypothesis test without any size distor-

tions.

Therefore, we can construct an extra screening component .Sy as:
P H,
So = H, E I(E |Qpnl/Gpn = 1),
=1 h=1

where, G, is the ph'" entry of the diagonal elements of 3. I(-) is an indicator for screening

process while 7,, is a data-driven threshold value to avoid potential size-distortion.

Here we use some space to discuss the choice of 7,. By construction and Assumption 3
below, we know all the B-Spline basis and characteristics are orthogonal. Therefore, all the
elements of A are asymptotically i.i.d normal distributed under Hy. And our goal is to bound

the maximum of those values.

Define Z = max {l&pn|/pn}- Under Assumption 3 below, we have
{1<p<P1<h<Hn}

o/ Fon|Ho —4 N (0, 1).

After grouping coefficients of bases that used to represent the unknown function of each
characteristic, let () = 1rn.9ux(ZhH;1 \G&anl/1hy -y ZhHﬁl |&pn|/Gph - - - Zfﬁl |&pr|/dph). Fol-
lowing this, we may set the threshold as 1, = H,\/2log(PH,), where H, = [ + n". As the
H, 1s a slowly diverging sequence, it can control the influence of the group size properly.
Meanwhile, the 7,, also diverges slowly. 7, is a conservative threshold value to avoid potential

size distortion.

Apart from strengthening the power of conventional hypothesis test, I(-) is a screening term

which can select the most relevant characteristics at the same time.

Here, we define the arbitrage characteristics set, which includes the characteristics that have
the strong explanation power on the mispricing functions:
H,

M= {Xm € M: > lopl/opn =m0, m=1,2,..., M}

h=1

Hy,
M ={Xp € MY |yl /60 >0, m=1,2,... M}

h=1
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Therefore, we have M UO = A and M N0 = (). When the set M is relatively small,
conventional tests are likely to suffer the lower power problem. The added Sy can strengthen

the power of the tests to a great extent as H,, is a slowly diverging value .

Therefore, our new test statistics is S = Sy + S; and conclusions of hypothesis tests are

made accordingly. Asymptotic properties of S will be discussed later.

To conclude, the advantages of our new statistics S = Sy + S are:
1 The power of the hypothesis test on mispricing functions are mainly enhanced without
size distortions.
2 We can find specific characteristics which cause the mispricing by screening mecha-
nism.

As designed, S satisfies all three properties of Fan, Liao and Yao (2015)[10]], as n — oo:

1 S is non-negative, Pr(Sy; > 0) =1
2 Sy does not cause size distortion, under H,, we have Pr(Sy =0 | Hy) — 1

3 Sy enhances test power, under alternative H;, Sy diverge quickly in probability given

the well chosen 7, 7.

Based on properties of Sy, we have three properties of S below:

1 No size distortion lim sup Pr(S > F,|Hy) = ¢

n—oo

2 Pr(S > F,|H,) > Pr(S, > F,|H,). Hence, the power of S is at least as large as that of
Sh.

3 If Sy diverges very quickly, we have Pr(S > F,|H;) — 1. This happens, especially,

when the true form of A has a sparse structure.

S Hierarchical K-Means Clustering

This section introduces a hierarchical K-means clustering method to construct a network of

arbitrage interconnected through assets’ characteristics.
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After the screening process in we obtain the relevant components of mispricing

function h(X'), which is estimated as

HTL
M= {Xpm € MY |Gyl /6o =y, m=1,2,... M},
h=1

Therefore, we define an arbitrage characteristics n x M matrix M at time window ¢ as :
M = {X1,Xa,..., X}, where X,,, € M.

Note that these characteristics are time-invariant within each rolling window. Here we also set

arbitrage returns of asset ¢ at rolling window ¢ as:
Uit = ¢(Xz)A

For each rolling window, we classify all n assets through 2 layers K-means clustering. At
the first layer, we group the assets into /& groups according to the similarity of their arbitrage
returns §j;;. At the second layer, we divide R; subgroups within the ;% clustering of the first
layer groups by the similarity of their characteristics, where j = 1,2,..., K . Finally, the
network of arbitrage portfolios can be obtained through these clusterings. K-means clustering
is a popular method to classify similar groups, see Cox(1957)[6] and Fisher(1958)[12] for

details.

We give the classification procedures of both layers below. We define A;; as the difference
between arbitrage returns of g and ;; , as well as T;; as the difference between characteris-
tics:

ANij = Ui — Yju, Where i # j, 7 =1,2,...,n.
Ti; = ||M; — M|, wherei # j,i,j =1,2,...,n,
M; represents the i row of M. We also set two tolerance thresholds as v, and v, which are
used to control the biggest difference within each group of both layers separately. Similar to

Vogt and Linton (2017)[28]], we apply a first difference process before the K-means clustering,

as this is an efficient way to get the initial centroids for K-means to converge more quickly.

For the first layer:

1. First difference: We randomly pick i*" asset and then we calculate A;; with other assets

J = 1,2,...,n. Thus we obtain A;q)...A;q), with n being the total individuals for
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classification. Without loss of generality, we assume A;q) = min{A;q)... Ay}, and
Ai(n) = maX{Ai(l) e Ai(n)}-

2. Ordering: We rank the values obtained in Step 1 as follows:

<Aige ) S - < Dy,

We use the strict inequality mark to show the large jumps of "first difference"”, all of
which are assumed to be larger than ), , while the weak inequality means that the
distance calculated is smaller than 1,,. We identify K — 1 jumps that are larger than v,
above. Thus, the initial classification is achieved and we have a total of K groups with
j1 — 1 members in the first group, C;, jo — j; members in the second group, Cs , . . ., and

Jn — Jjrx + 1 members in the final group Ck.

In terms of the second layer, for the assets in the k' group Cj, we use the same methods
to further divide them into r subgroups as Rx, Rog, - - . , R, Within each subgroup until we

have:

T = || M, — Myl||s < ¢, Wwhere a,b € Ry,i =1,2,...,r, and k =1,2,..., K.

The K-means algorithm is:

1. 1" Step: Determine the starting mean values for each group 5[10}, ey é[;? and calculate

the distances Dy, (i) = A(jji, ELO]) = |9 — ELO]] for each i and k. Define the parti-
tion {CEO], . ,c}?l} by assigning the " individual to the k-th group C,LO] if Dy(i) =

miﬂlgkng Dk’ (Z)

2. 1™ Step: Let {C{l_l], . ,C}l{”} be the partition of {1,...,n} from the latest iteration

step. Calculate mean functions
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And then we calculate A(4;, H) = Ui — 5%}\ for each i and k. Define the parti-
tion {C[l] ...,c}?} by assigning the i*" individual to the k-th group C,Ef] if Dy(i) =

mll’llgkngO Dk’ (Z)

3. Iterate the above steps until the partition {C{w], o ,C%’}} does not change anymore.

In order to accelerate the convergence of K-means algorithm, at the 1'* step, the results

of first difference are used. As we have already obtained our initial grouping after double

difference as {Cy, ..., Ck }, we therefore have our starting values for the 1°* Step:
o = forl <k <K
k |C | lezc: ylt rlx X )

where |Cy.| means the cardinality of the group C.

The consistency and other theoretical results of above process can be found in Pollard(1981,1982)[24][25]],
Sun, Wang and Fang (2012)[27] and Vogt and Linton (2017)[28]].

For the second layer, we repeat the procedures within each group Cj, respect to Y 5, and we

can obtain the network of characteristic arbitrage returns as:

Arbitrage returns

Ci-- C . Cx

T T

Riyp--+ - Ry Ruge- o Rk Rig-- - - Rug

The first layer is the structure of the arbitrage returns, while the second layer is the category
of characteristics that can provide similar arbitrage returns.
6 Asymptotic properties

This section discusses assumptions and properties of estimates and power enhanced statistics
S.
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6.1 Consistency Assumptions

Assumption 2. As n — oo, we have:
1
-Y'Y —p My,
n

FTF =15,

where My is a positive definite matrix and 1y is a J x J identity matrix.

We define Apin (M) and Mo (M) as the largest and smallest eigenvalues of matrix M.
Additionally, we define C,,;, and C,,,, are positive constants such that:
1 1
Cmin < )\m'm<_@T<X)(I)(X)) < )\max<_¢’T<X)(I)(X)) < Cmax
n n

as n — oQ.

We impose these restrictions above to avoid non-invertible stock returns, characteristics,

and rotation indeterminacy separately.

Assumption 3.
dq
1
gG(X)TPG(X) —p ;
dpm,

as n — oo, where dpy,, are distinct entries.

Both Assumption 2 and 3 are similar to Fan, Liao and Wang (2016)[9]], which are used to
separately identify risk factors and factor loadings. Given the orthogonal bases of B-splines

and uncorrelated or weakly correlated characteristics, Assumption 3 is mild.

Assumption 4. K,,;,, and K,,,, are positive constants such that:
1 1
Kpin < Anin(—G(X)TPG(X)) < Apin(—G(X)"PG(X)) < Kinaz
n n

as n — oQ.

This assumption requires the nonvanishing explanatory power of the B-spline bases ®(X)
on the factor loading matrix G(X). This Assumption is mild, and, as we discussed in the
introduction, the explanatory power of characteristics on excess stocks’ returns have been

verified by a lot of previous research.
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Assumption 5. ¢;; is realized i.i.d. idiosyncratic shocks with E(e;;) = 0 and var(e;) = o>

This assumption verifies the heteroskedasticity across different assets, which is caused by
the random effect ;, namely, var(~; + €;) = a?. The off-diagonal elements are assumed to

be zeros, as we have subtracted the co-movement part G(X)FT from the Y.

6.2 Main Results

Theorem 6.1. Let ¥ be a J x T matrix estimate of latent risk factors, Under Assumption 1-4,

asn — oo, then ? =P F.

Theorem 6.2. Define the n x .J matrix G(X) as the estimate of factor loadings G(X). Under
Assumption 1-4 and Theorem 6.1 , as n — oo, then G(x) = G(X).

Theorem 6.3. Let a PH,, x 1 vector A be the solution of constrained OLS above,

where
M = I-(&(X)T®(X)) '@ (X)TG(X)(G(X)T@(X)(2(X)T9(X)) '@ (X)TG(X)) L G(X) ®(X),
A = L(@(X)T0(X)) 1 o(X)T(Y — G(X)FT)1].

Under Assumption 1-4, as n — oo, then ®(X)A = h(X).
Theorem 6.4. Under Assumption 3 and Assumption 5, E(Z) = \/2log PH,,.

Theorem 6.5. Define n,, as the threshold value to control the maximum noise, then:

i Aph — Gon <
InfPr( max |Gy — opnl/Gpn < Mu|A) = 1.

Under n — oo and H, given the properties of Sy and S, then:
S —4 N(0,1),
The power of S is enhanced now as:

inf Pr(reject Hy|A 1.
nf, r(reject Hy|A) —
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7 Numerical Study

In this section, we use Compustats and Fama-French three and five factors’ data to simulate
stocks’ returns and then demonstrate the performance of our estimation and hypothesis test

procedures.

7.1 Data Generation

Firstly, we use Fama-French three factors” monthly returns and all the characteristics that will
be included in the empirical study to mimic the stocks’ returns. Most of the characteristics
are updated annually; therefore, we treat those variables as time-invariant during the one-year
rolling block. For the characteristics that vary every month, we substitute the mean values as
their fixed values per fiscal year. We match Fama-French monthly returns from July of year
t to June of year ¢t + 1 and characteristics of fiscal year ¢ — 1 to generate the stock returns
between July of year ¢ to June of year ¢ + 1. The period we generate is the same as the
empirical study, namely, the 50 years from July 1967-June 2017. Therefore, for each rolling

block of 12 months we have:
3
Yie = h(Xi) + Z 9;(X;) it + €, (6)
j=1

where y;; is the generated stock’s return. h(X;) is the mispricing function consists of a non-
linear characteristic function of z;, to mimic the sparse structure of a mispricing function.
g;(X) is the j' characteristics-based factor loading, which has an additive semi-parametric
structure, and X is the 5 subset consisting of 4 characteristics. fj; is the j* Fama-French

factor returns at time ¢. €;; is the idiosyncratic shock, generated from N (0, 02).

We generate the characteristic univariate functions as:
h(X;) = sin X;,
g1(X1) = X7 + (3X5 — 2X7) + (3X5 — 2X;3) + X7,
92(X2) = X5 + (3XG — 2X¢) + (3X7 — 2X7) + X,
93(X3) = Xg + (3X7 — 2X7) + (3X7; — 2X 1) + X,

where X; is a randomly picked characteristic and ¢ # 1,...,11,12. Furthermore, all the

Xq,..., X9 are chosen from the characteristics of the empirical study without duplication;
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description of these characteristics can be found in the Appendix. Additionlly, all A(X;),
91(X1), g2(X>) and g3(X3) are rescaled to be mean 0 and variance 1. As we use the real data
to conduct the simulation, the assumption of independent X; cannot be satisfied. Whilst some
characterisitcs are highly correlated, we can see from the simulation that the semi-paramtric
model overcome this problem properly when being compared with the serious size distortion

under parametric models.

7.2 Model Misspecification

In this simulated experiment, our purpose is to show the necessity to consider semi-parametric

analysis when the form of factor loading and mispricing functions are unknown.

Under the data generation process, we use both semi-parametric and linear analysis to
compare the Mean Squared Error (MSE) and hypothesis test results under both specifica-
tions. We apply our estimation methodology in to estimate For
semi-parametric specification, we choose the number of B-Spline bases to be [n%3]. n is
the number of assets in each balanced rolling window and |-| means the nearest integer.
We orthogonalize these bases and then use the Projected-PCA and restricted OLS to esti-
mate model As for the hypothesis test part, we choose threshold value to be
N, = Hyv/2log(PH,) = |n%3]\/2log(P[n"3]), where P is the number of characteristics
and n is the number of stocks in each rolling block. For the linear specification, each charac-
teristic only has one basis, which is itself. And then, we repeat the procedure in In

terms of hypothesis test,we use the same logic as in the semi-parametric settings. We set for
N = +/31og(P).

In all the estimation above, we assume we know the real number of factors, which is three.
We will discuss the situation when the number of factors is unknown in the next subsection.
Mean Squared Error (MSE) is also reported to measure the fitness of the model

As we can see from [Table 1|, under different noise levels, namely 02 = 1 and 02 = 4, the

semi-parametric model outperforms the linear model in the following aspects:

1 The fitness of the semi-parametric model is much better than the linear model, which

can be illustrated from MSE.

2 The semi-parametric model can enhance the power of S; by non-zero Sy, which can not

only select the correct mispricing characteristics by also avoid size distortions. As for
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the linear model, it is influenced by the high correlation of characteristics. Therefore,
during certain periods we even obtained the non-invertible characteristic matrix. The
linear model can also select the relevant covariance with decent probability, but it suffers
from serious size distortions. Thus, our semi-parametric model with orthogonal bases

can mitigate this problem to a great extent.

3 The additional component .S is necessary to strengthen the power of S and select the
relevant characteristics that can explain the mispricing function. Because S; can be very

small and even negative, especially when the noise o; is strong.
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7.3 Robustness Under Stronger Noise

In we set two different noise levels of random shocks, namely 02 = 1 and 02 = 4.
Although 0% = 1 is closer to the empirical data, we conduct this comparison to show the
robustness of our methods. When the noise level becomes three times bigger, the accuracy of
power enhanced tests gets much lower for certain windows. However, there are no size dis-
tortions under this solid noise level, recalling that all the components of our simulation model
are rescaled to be unit variance. Thus, the selection probability of relevant characteristics is
affected by the higher noise level, but stronger noise will not cause size distortion under our
methodology. Another fact is that the stronger noise does deteriorate the low power problem
of conventional Wald tests, leading to an even smaller value of S, which can be mitigated

through adding Sp.

Therefore, we conclude that our methods are robust to a higher noise level regarding no size
distortions. However, the accuracy of selecting relevant components and the role of enhancing

the power of hypothesis tests will be influenced negatively.

7.4 Number of Factors

In the empirical study, the number of factors is unknown. Therefore, in this subsection we will

study whether our methodology is robust to a various number of factors estimated.

We simulate another data generation process:

5

vir = h(X) + Y g5(X5) fin + €an, (7)

j=1

similarly, where y;; is the generated stock’s return. h(X;) is the mispricing function consist
of a non-linear characteristic function of X, to mimic the sparse structure of a mispricing
function. g;(X) is the j' characteristics-based factor loading, which has an additive semi-
parametric structure, and X is a subset consisting of four characteristics. f;; is the j Fama-
French 5-factor returns at time ¢. ¢; is the idiosyncratic shock, generated from N (0, c?).

Moreover, we generate characteristic univariate functions as:
h(X;) = sin X;,

g1(X1) = X7+ (3X5 —2X3) + (3X5 — 2X3) + X3,

g2(Xo) = X2 + (3Xg — 2X32) + (3X32 — 2X7) + X3,
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93(Xs) = X3 + (3X7y — 2X7) + (3X7) — 2Xn) + XD,
94(Xy) = X123 + (3X%4 - 2X124) + (SXf5 —2X15) + X1267
95(Xs) = X127 + (3X?8 - 2X128) + (3Xf9 —2X19) + X2207

where X; is a randomly picked characteristic and ¢« # 1,...,19,20. All the X,..., Xy
are chosen from the characteristics of the empirical study without duplication, details can be
found in Appendix. Furthermore, all h(X;), g1(X1), 92(X2), 93(X3), 94(X4), and g5(X5)

are rescaled to be mean 0 and variance 1.

Given the above data generation process, combining with the data generation process in
Section 6.1, we test the influence of over and under-estimated number of factors. We now

choose the number of estimated factors to be three and five under two different data sets and

compare the results in

The first category column is the scenario of over-estimated factors. We simulate the data
generation process using the Fama-French three factors mo