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Abstract

We propose an asset pricing factor model constructed with semi-parametric characteristics-

based mispricing and factor loading functions. This model captures common movements

of stock excess returns and includes a two-layer network of arbitrage returns intercon-

nected by security-specific characteristics. We approximate the unknown functions by B-

splines where the number of B-splines coefficients is diverging. We estimate this model

and test the existence of the mispricing function by a power enhanced hypothesis test.

The enhanced test solves the low power problem caused by diverging B-spline coeffi-

cients. Meanwhile, the strengthened power approaches to one asymptotically. And the

dynamic networks are explored through Hierarchical K-Means Clusterings. We apply

our methodology to CRSP monthly data for the US stock market with one-year rolling

windows during 1967-2017. This empirical study shows the presence of mispricing func-

tions in certain time blocks and a dynamic network structure of arbitrage returns through

groups of some characteristics.
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1 INTRODUCTION 2

1 Introduction

Stock returns have both common and firm-specific components. Ross (1976)[2] proposed Ar-

bitrage Pricing Theory (APT) to summarize that expected returns on financial assets can be

modeled as a linear combination of various factors. In such a model, each asset has a sensitiv-

ity beta to those factors-this tells us how much change in each factor affects the return on each

stock. The APT model explains the excess returns from both cross-sectional and time-series

directions. Moreover, Rosenberg (1974)[26] argued that stock returns behave as a linear com-

bination of characteristic-related factors. Fama and French (1993, 2014)[7][8] approximated

those factors by the returns on portfolios sorted by different characteristics, and they devel-

oped three-factor and five-factor models. After extracting the common movement parts, they

treated the intercept as the mispricing alpha, which is asset-specific and cannot be explained

by those risk factors. Many papers use a similar method to present other characteristic-based

factor models, such as the four-factor model of Carhart (1997)[3], the q-factor model of Hou,

Xue, and Zhang (2015)[16], and the factor zoo by Feng, Giglio and Xiu (2017)[11], see Equa-

tion 1. These models utilize risk factors to capture the co-movements while employing αi and

βji to exploit firm-specific behavior. All of the above papers studied observed factors and the

beta coefficients are estimated by time series Ordinary Least Squares (OLS). However, those

betas are time-invariant and not assigned characteristics-based information.

Consider the panel regression model

yit = αi +
J∑
j=1

βjifjt + εit, (1)

where yit is the excess return to security i at time t, fjt are the jth risk factor’s returns at time

t, βji denotes the jth factor loading of asset i, αi represents the intercept (mispricing) of asset

i, and εit are the mean zero idiosyncratic shocks. In terms of factor loadings βji, Connor and

Linton [5] and Connor, Hagmann and Linton (2012)[4] studied a characteristic-beta model,

which bridges the beta-coefficients and firm-specific characteristics by specifying each beta

as an unknown function of one characteristic. In their model, beta functions and unobservable

factors are estimated by the backfitting iteration. They concluded that those characteristic-beta

functions are significant and non-linear. Nonetheless, they restricted their beta function to be

univariate and did not consider the unexplained part within each factor loading function, see

Equation 2. Their model can be summarized by
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yit =
J∑
j=1

gj(Xji)fjt + εit, (2)

where Xji is the jth observable characteristic of firm i.

To overcome this limitation, Fan, Liao and Wang (2016)[9] allowed βji in Equation 1

to have a component which is explained by observed characteristics and an unexplained or

stochastic part, written as βji = gj(Xi) + uji, where uji is mean independent of Xji. They

proposed the Projected Principal Component Analysis (PPCA), which projects stocks’ excess

returns onto the space spanned by firm-specific characteristics and then applies Principal Com-

ponent Analysis (PCA) to the projected returns in order to find the unobservable factors. This

method not only facilitates theoretical analysis but also has attractive properties even under

large N and small T asymptotics. However, they did not pay enough attention to the mispric-

ing part (alpha), which is crucial to both asset pricing theories and portfolio management.

The discussion of the mispricing component has been extended from the intercepts part (al-

pha) of the Fama-French factor model, see Equation 1, to a portfolio management strategy

such as constructing portfolios weights through the values of the characteristics-alpha func-

tion. For example, Hjalmarsson and Manchev (2012)[14] documented a method of directly

parameterizing the portfolio weights as a linear function of characteristics, such as value and

momentum. They showed this method outperforms other baseline methods according to em-

pirical studies. This research also sheds light on the possibility of using characteristics to

explain the remaining part of multiple factors models. Another seminal paper on firm-specific

characteristics was composed by Freyberger, Neuhierl, and Weber (2017)[13], which analyzed

the non-linear effects of 62 characteristics through pooling regressions. This study concluded

that 13 of these characterisitcs have explanatory power on stocks’ excess returns after selection

by adaptive group Lasso.

The studies mentioned above demonstrate that characteristics do have explanatory power

for stocks’ excess returns and can be used as explanatory variables for both mispricing and

factor loading functions.

In this paper, we work on a semi-parametric characteristics-based alpha and beta model,

which utilizes a set of security-specific characteristics that are similar to Freyberger, Neuhierl,

and Weber (2017)[13]. We use unknown multivariate characteristic functions to approximate

both αi and βji in Equation 1. Specifically, we assume αi and βji are functions of a large set
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of asset-specific characteristics, taking the form αi = h(Xi) + γi and βji = gj(Xi) + λi
1.

We then estimate h(Xi) and gj(Xi) as well as the unobserved risk factors fjt. In addition, we

construct a power enhanced test on the mispricing function h(Xi) to detect possible networks

of arbitrage characteristics. We will present our model formally in Equation 3.

Some recent papers such as Kim, Korajczyk and Neuhierl (2019)[20] and Kelly, Pruitt and

Su (2019)[19] analyzed a similar model to ours, which assumes that both h(Xi) and gj(Xi)

are parametric linear additive functions. They both included around 40 characteristics in Xi.

However, they drew different conclusions on the existence of h(Xi). Kim, Korajczyk and

Neuhierl (2019)[20] set arbitrage portfolio weights as estimated values of h(Xi) through one

year rolling windows. And then they showed that their arbitrage portfolios are statistically

and economically significant. However, Kelly, Pruitt and Su (2019) [19] applied instrumented

principal component analysis (IPCA) to the entire time span from 1965 to 2014, and came to

a different result, with no evidence to reject the null hypothesis H0 : h(Xi) = XᵀiB = 0. The

introduction of IPCA can be found at Kelly, Pruitt and Su (2017)[18]. They conducted their

hypothesis tests by bootstrap. This dispute spurred the deveploment of a more flexible model

and reliable hypothesis tests to investigate the existence and structure of h(Xi).

In this paper, the proposed semi-parametric model does not impose strict restrictions on

functional forms. This model can exploit information contained in characteristics more effi-

ciently and thoroughly. Meanwhile, the semi-parametric setting can also match the results of

Connor, Hagmann and Linton (2012)[4] and some empirical results of Kim, Korajczyk and

Neuhierl (2019)[20]. This is promising as it suggests that the more flexible approach is pick-

ing up the same relationships as in previous studies. The only assumption on the functional

form in my model is additivity of the unknown functions h(Xi) and gj(Xi). Each univariate

component is approximated by linear combination of B-spline bases.

However, this unrestrictive model brings both opportunities and challenges. According to

Huang, Horowitz and Wei (2010)[17], the number of B-spline knots must increase in the num-

ber of observations, in order to achieve a more accurate approximation and better asymptotic

performance. Therefore, the dimension of B-spline bases’ coefficients also grows with the

sample size. Furthermore, mispricing functions are treated as anomalies, so under a correctly

specified factor model, these coefficients are very likely to be sparse. All of these circum-

stances make the conventional Wald tests have very low power. Therefore, a power enhanced

1Xi is a vector of a large set of asset-specific characteristics of stock i.
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test should be developed to strengthen the power of Wald tests and to detect the most rele-

vant characteristics among a characteristic zoo included in h(Xi). Kock and Preinerstorfer

(2019)[21] illustrated that if the number of coefficients diverges as the number of observations

approaches infinity, the standard Wald test is power enhanceable. Meanwhile, Fan, Liao and

Yao (2015)[10] proposed a power enhanced test after showing that if true coefficients have a

sparse structure, the traditional Wald test has very low power. Therefore, they introduced a

screening process to detect all the estimated coefficients one by one, and then select signifi-

cant coefficients’ statistics as a supplement to the standard Wald test. In this paper, we extend

Fan, Liao and Yao (2015)[10] to a group manner. We enhance the hypothesis test on a high

dimensional additive semi-parametric function h(Xi) and then test H0 : h(Xi) = 0. This

method allows all the significant components of h(Xi) to be selected and contribute to the test

statistics, with the power of the proposed test approaching to one.

The aforementioned procedures are designed to detect the dynamic structure of h(Xi), and

a careful analysis of h(Xi) is theoretically and practically meaningful. Firstly, h(Xi) is an

important component of Arbitrage Pricing Theory (APT) and can contribute to asset pricing

theories, namely, linking the mispricing functions with security-related characteristics. There-

fore, like Hjalmarsson and Manchev (2012)[14] and Kim, Korajczyk and Neuhierl (2019)[20]

, h(Xi) can be utilized to construct arbitrage portfolios. Secondly, the existence of h(Xi)

reveals a network of unsystematic returns that are interconnected through the similarity of

assets’ characteristics.

As noted by Aymanns, Farmer, Kleinnijenhuis and Wetzer (2018)[1], overlapping portfo-

lios are an important factor in contagion across financial networks. Therefore, the network

of mispricing returns can help diversify risks and reduce the overlap across portfolios. If

the mispricing function h(Xi) is not monotonic, simply setting portfolio weights to the esti-

mated values of h(Xi) can be problematic. Because some characteristics with significantly

different values maybe have similar arbitrage returns. Therefore, the network structure h(Xi)

is important. Hoberg and Phillips (2016)[15] classified firms’ competitors through the sim-

ilarity of text-based descriptions, which is similar to the clustering of characteristics. They

also compared between text-based and characteristics-based classification methods. In this

paper, we analyze the characteristics-based mispricing function as a demonstration that how

firms’ characteristics can be used to construct a network of arbitrage returns and the distance

between two assets i and j has a straightforward computation of arbitrage return distance,

namely, dij = ‖h(Xi)− h(Xj)‖. The similarity of characteristics is‖Xi −Xj‖2, where ‖ · ‖2
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represents L2 distance. Inspired by Vogt and Linton (2017) [28], we employ a hierarchical

K-means classification to group these characteristics within each mispricing return group.

Understanding the structure of this network can not only improve the performance of ar-

bitrage portfolios by longing assets with similar characteristics which provide high arbitrage

returns, but also help us to learn the dynamics of this network through rolling windows. Al-

though this paper mainly focuses on h(Xi), the same network can be computed based on

gj(Xi) functions, and overlapping portfolios can be avoided by choosing assets with greater

sensitivity difference to a certain risk factor fj .

It is worth clarifying the differences between our research and others, namely, Kim, Kora-

jczyk and Neuhierl (2019)[20], and Kelly, Pruitt and Su (2019)[19]. The model setting of this

paper is semiparametric, which brings both flexibility and challenges. This paper considers a

different economic question, which is the existence and networks of mispricing characteristics.

Therefore, we develop power enhanced hypothesis tests and hierarchical K-means clusterings

to investigate the dynamic network structure of h(X) through one rolling windows. Therefore,

the IPCA approach in Kelly, Pruitt and Su (2019)[19] is no longer suitable as it requires large

T for consistency.

This paper’s contributions are threefold. Firstly, we build up a new semi-parametric characteristics-

based alpha and beta asset pricing model, which is more general and flexible. Secondly, we

apply and extend previous estimation methods, which can fit the current framework better. In

addition, we extend the power enhanced test of Fan, Liao, and Yao (2015) [10] in a group

manner to strengthen the test on mispricing functions, which can select the characteristics that

contribute to the arbitrage portfolios at the same time. Finally, we detect some remarkable

networks of analogous mispricing returns, which are interconnected through the similarity of

security-specific characteristics, after applying our model and methods on CRSP and Compu-

stat data.

The rest of this paper is organized as follows. Section 2 sets out the semi-parametric model.

Section 3 introduces the assumptions and estimation methods. Section 4 constructs a power

enhanced test for high dimensional additive semi-parametric functions. Section 5 employs hi-

erarchical K-Means clustering to build the network. Section 6 describes the asymptotic prop-

erties of our estimates and test statistics. Section 6 simulates data to verify the performance

of our methodology. Section 7 presents an empirical study. Finally, Section 8 concludes

this paper. Characteristics description tables, proofs, mispricing curves and network plots are
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arranged to the Appendix.

2 Model setup

We assume that there are n securities observed over T time periods. We also assume that dur-

ing a short period, each security has P time-invariant observed characteristics, such as mar-

ket capitalization, momentum, and book-to-market ratios. Meanwhile, we may omit the het-

eroskedasticity by assuming that each characteristic shares a certain form of variation within

each period for all securities. We suppose that

yit = (h(Xi) + γi) +
J∑
j=1

(gj(Xi) + λij)fjt + εit, (3)

where yit is the monthly excess return of the ith stock at the month t, while Xi is a 1 × P

vector of P characteristics of stock i during time periods t = 1, . . . T, and where T is a small

and fixed time block. In practice, most characteristics are updated annually, and thus, we as-

sume Xi is time-invariant within this short time period. The h(Xi) is an unknown mispricing

function explained by a large set of characteristics whereas γi is the random intercept of the

mispricing part that cannot be explained by characteristics. Similarly, we have characteristics-

beta function gj(·) to explain the jth factor loadings and the unexplained stochastic part of the

loading is λij with E(λij) = 0, which is orthogonal to the gj(·) function. The quantity fjt is

the realization of the jth risk factor at time t. Finally, εit is homoskedastic zero-mean idiosyn-

cratic residual return of the ith stock at time t. The random variables γi and λij are used to

generalize our settings and not to be estimated. They will be treated as noise in the identifica-

tion assumptions. Furthermore, γi can be treated as random effects under conventional panel

settings.

Meanwhile, we impose additive forms for both the h(·) and gj(·) functions to avoid the

curse of dimensionality as below: h(Xi) =
∑P

p=1 µp(xip) and gj(Xi) =
∑P

p=1 θjp(xip), where

µp(xip) and θjp(xip) are univariate unknown functions of the pth characteristic Xp for the ith

asset. Therefore, we compose the model below:

yit = (
P∑
p=1

µp(Xip) + γi) +
J∑
j=1

(
P∑
p=1

θjp(Xip) + λij)fjt + εit, (4)

Assumption 1. We suppose that:

E(εit|X, fjt) = 0,
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E(h(Xi)) = E(gj(Xi)) = 0,

E(γi|X) = E(λij|X) = 0,

E(h(Xi)gj(Xi)) = 0,

Similar to Connor, Hagmann and Linton (2012)[4] and Fan, Liao and Wang (2016)[9], the

Assumption 1 above is to standardize the model settings, including the zero mean assumption

of factor loadings and mispricing functions for identification purposes. We also impose the

orthogonality between mispricing and factor loading parts for identification reason. This is

because the variation of the risk factors can be absorbed into the mispricing part if it is not

orthogonal to the factor loadings. More discussion can be found in Connor, Hagmann and

Linton (2012)[4].

3 Estimation

In this section we discuss the approximation of the unknown univariate functions and our

estimation methods for the model Equation 3. In our semi-parametric setting, we applied

the Projected-PCA following Fan, Liao and Wang (2016)[9] to work on the common factors

and characteristics-beta directly. And then, we project the residuals onto the characteristics-

alpha space that is orthogonal to the beta function. The second step is similar to equality

constrained OLS estimator. Finally, estimates of the characteristics-beta and alpha can be

obtained correspondingly.

3.1 B-Splines Approximation

We construct B-splines to approximate unknown functions θ(·) and µ(·) in Equation 4. Similar

to Huang, Horowitz and Wei (2010)[17], we have the following procedures. Firstly, suppose

that the pth covariate Xp is in the interval [D0, D], where D0 and D are finite numbers with

D0 < D. Let D = {D0, D0, . . . , D0︸ ︷︷ ︸
l+1

< d1 < d2 < · · · < dmn < D,D, . . . , D︸ ︷︷ ︸
l+1

} be a simple

knot sequence on the interval [D0, D]. Here, mn = bnve is a positive integer of the number

of internal knots, which is a function of security size n in period T , and 0 < v < 0.5. l is the

degree of those bases. Therefore, we have Hn = l + mn bases in total, which will diverge as

n→∞. Following this setting, a set of B-splines can be built for the space Ωn[D].
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Secondly, for the pth characteristicXp, based on a set ofHn orthogonal bases {φ1p(Xp), . . . , φHnp(Xp)},
those univariate unknown functions can be approximated as linear combinations of those bases

as µp(Xp) =
∑H

q=1 αqφqp(Xp) + Rµ
p (Xp) and θp(Xp) =

∑H
q=1 βjqφqp(Xp) + Rθ

p(Xp), where

Rµ
p (Xp) and Rθ

p(Xp) are approximation errors. It is not necessary to use the same bases for

both unknown functions and the representation here is for notation simplicity only. Therefore,

the model Equation 4 can be illustrated as:

yit =
P∑
p=1

(
Hn∑
q=1

αpqφpq(Xip)+R
µ
p (Xp))+γi+

J∑
j=1

(
P∑
p=1

(
Hn∑
q=1

βjpqφpq(Xip)+R
θ
p(Xp))+λij)fjt+εit

For each i 6 n , p 6 P and t 6 T , we have:

1T = (1, . . . , 1)ᵀ ∈ RT ,

βj = (β1,j1, . . . , βHn,j1, . . . , β1,jP , . . . , βHn,jP )ᵀ ∈ RHnP ,

B = (β1, . . . , βJ),

A = (α11, . . . , α1Hn , . . . , αP1, . . . , αPHn)ᵀ ∈ RHnP ,

Φ(X) =


φ1,11(X11) · · · φ1,1Hn(X11) · · · φ1,P1(X1P ) . . . φ1,PHn(X1P )

φ2,11(X21) · · · φ2,1Hn(X21) · · · φ2,P1(X2P ) . . . φ2,PHn(X2P )
...

...
... . . . ...

φn,11(Xn1) · · · φn,1Hn(Xn1) · · · φn,P1(XnP ) . . . φn,PHn(XnP )

 ,
where φi,ph(Xip) means the hth basis of the pth characteristic of individual i at time t. There-

fore, we have our B-spline model as:

Y = (Φ(X)A + Γ + Rµ(X))1ᵀT + (Φ(X)B + Λ + Rθ(X))Fᵀ + U, (5)

Y is n × T matrix of yit. Φ(X) is the n × PHn matrix of B-Spline bases. A is a PHn × 1

matrix of mispricing coefficients, Rµ(X) is a n × 1 matrix of approximation errors. B is a

PHn × J matrix factor loadings’ coefficients. Rθ(X) is a n × J matrix of approximation

errors. We have Rµ
p (Xp) →p 0 and Rθ

p(Xp) →p 0, as n →∞, see Huang, Horowitz and Wei

(2010)[17]. Therefore, we omit the approximation errors for simplicity below. F is the T × J
matrix of ftj and U is a n× T matrix of εit, the rest are defined the same as Equation 4.

Furthermore, we define the projection matrix as:

P = Φ(X)(Φ(X)ᵀΦ(X))−1Φ(X)ᵀ.
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The remaining goals of this paper are to estimate both h(X) and G(X) consistently and

conduct a power enhanced test of the hypothesis H0 : h(X) = 0, i.e., to check the existence

of mispricing functions under semi-parametric settings. Finally, we construct a network of ar-

bitrage characteristics, recalling that the dimension of (α11, . . . , α1Hn , . . . , αP1, . . . , αPHn) ∈
RPHn is diverging as n→∞.

3.2 Two Steps Projected-PCA

In this section, we combine and extend the method of Projected-PCA by Fan, Liao and Wang

(2016)[9] and equality constrained least squares similar to Kim, Korajczyk and Neuhierl

(2019) [20] to estimate the model above. To facilitate the estimation, we define a T × T

time series demeaning matrix DT = IT − 1
T
1T1ᵀT.

2 Next, we demean the equation above on

both sides. Therefore we have

YDT = Ỹ = (Φ(X)B + Λ)FᵀDT + UDT.

Mispricing terms disappear due to (Φ(X)A + Γ)1ᵀTDT = 0, which help us to work on

the characteristics-based factor loadings and those factors only. From now on, we use F to

represent the demeaned factor matrix.

Our procedures are designed to estimate factor loadings G(X), demeaned unobserved fac-

tors F and mispricing coefficients A in sequence.

Under the identification conditions in the above section, we have the following estima-

tion procedures similar to Fan, Liao and Wang (2016)[9] and Kim, Korajczyk and Neuhierl

(2019)[20] :

1 Projecting Ỹ onto the spline space spanned by {Xip}i6n,p6P through a n×n projection

matrix P where P = Φ(X)(Φ(X)ᵀΦ(X))−1Φ(X)ᵀ . We then collected the projected

data Ŷ = Φ(X)(Φ(X)ᵀΦ(X))−1Φ(X)ᵀỸ.

2 Applying the Principle Component Analysis to the projected data ŶᵀŶ, which allows

us to work directly on the sample covariance of G(X)Fᵀ, under the condition that

E(gj(Xi)εit) = E(gj(Xi)λij) = 0.

2IT is a T × T identity matrix, and 1T is a T × 1 matrix of 1.
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3 Estimating F̂ as 1√
T

times the eigenvectors corresponding to the first J (assumed given)

eigenvalues of the T × T matrix 1
n
ŶᵀŶ (covariance of projected Ŷ).

The method above substantially improves the estimation accuracy and facilitates the

theoretical analysis. Furthermore, it also has some good properties, even under the large

n and small T circumstance. Small T is preferable in our model setting as we use

one-year rolling windows analysis in both simulation and empirical studies to explore

dynamic network structures of h(Xi). Besides, large n is required for our asymptotic

analysis.

Factor loadings Ĝᵀ(X) are estimated as:

Ĝ(X) = ŶF̂(F̂ᵀF̂)−1

In the next step, we estimate the coefficients of the mispricing bases.

4 The estimate of A is

Â = arg min
A

vec(Y −Φ(X)A1ᵀT − Ĝ(X)F̂ᵀ)ᵀvec(Y −Φ(X)A1ᵀT − Ĝ(X)F̂ᵀ)

subject to Ĝ(X)ᵀΦ(X)A = 0J, a closed-form solution can be obtained below:

Let a PHn × 1 vector Â be the solution of constrained OLS above:

Â = MÃ,

where

M = I− (Φ(X)ᵀΦ(X))−1Φ(X)ᵀĜ(X)(Ĝ(X)ᵀĜ(X))−1Ĝ(X)ᵀΦ(X),

Ã =
1

T
(Φ(X)ᵀΦ(X))−1Φ(X)ᵀ(Y − Ĝ(X)F̂ᵀ)1T,

given PĜ(X) = Ĝ(X).

As stated in Assumption 1, the h(X) is orthogonal to the characteristics-based loadings

G(X)i.

5 We can also estimate the covariance matrix of Âi, i.e., Σ̂, extending the methods of

Liew (1976)[22], which can facilitate theoretical analysis in the next section. According

to Liew (1976)[22], Â is the equality constrained least-square estimates, which has the

covariance matrix as:

Σ̂ = MΣÃMᵀ,
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where:

Σ̂Ã = (Φ(X)ᵀΦ(X))−1Φ(X)ᵀ


σ̂2
1

. . .

σ̂2
n

Φ(X)(Φ(X)ᵀΦ(X))−1,

σ̂2
i =

∑T
1 ê

2
it

T − 1
,

where
∑T

1 ê
2
it =

∑T
1 (yit−

∑P
p=1

∑Hn

q=1 α̂pqφpq(xip)−
∑J

j=1(
∑P

p=1

∑H
q=1 β̂jpqφpq(xip))f̂jt)

2.

The heteroskedasticity is caused by the random effects of γi.

4 Power Enhanced Tests

There are considerable discussions about the mispricing phenomenon under factor models

and the existence of mispricing functions remains controversial. namely, whether there are

relevant covariates after subtracting co-movements components captured by risk factors. For

recent research, Kim, Korajczyk and Neuhierl (2019)[20] found the characteristics arbitrage

opportunities through estimating a linear characteristic mispricing function, without providing

theoretical results. However, Kelly, Pruitt and Su (2019)[19] conducted a conventional Wald

hypothesis test on the similar mispricing function through bootstrap, concluding that there

is no substantial evidence to reject the null hypothesis. Additionally, they applied the boot-

strap method to estimate covariance matrix Σ̂, which caused potential problems for theoretical

analysis. Moreover, according to Fan, Liao and Yao (2015)[10], their test results may have

relatively low power when the true coefficient vector of linear mispricing function A has a

sparse structure.

Meanwhile, the research from both studies is based on a parametric framework, which rely

on the strong assumption of linearity. However, this assumption is not consistent with Connor,

Hagmann and Linton (2012)[4], which showed that both characteristic-beta and mispricing

functions are very likely to be non-linear. Therefore, we propose a semiparametric model to

accommodate non-linearity to a great extent.

But semi-parametric framework leads to extra challenges for theoretical analysis and hy-

pothesis tests. On the one hand, as mentioned above, the number of coefficients of mispricing

B-splines diverge as n → ∞, which implies the power of standard Wald test can be quite

low, see Fan, Liao and Yao (2015)[10]. On the other hand, according to other research of
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asset pricing, like Fama and French (1993,2014)[7][8], mispricing terms can be regarded as

anomalies. This means that in our model setting, the true mispricing coefficient vector A can

be high-dimensional but sparse, reducing the power of conventional Wald test further.

However, according to the results from Kock and Preinerstorfer (2019)[21], conventional

hypothesis tests under these circumstances are power enhanceable. The power enhanced Wald

test in this paper is an extension of Fan, Liao and Yao (2015)[10] to a group manner, which

can also be generalized as hypothesis tests under high-dimensional additive semi-parametric

settings. The proposed tests are power strengthened when the coefficients of the additive

regression A is diverging as n → ∞ without distorting the test’s size. Meanwhile, this test

is also robust under sparse alternatives. Additionally, the proposed test can select the most

important components from sparse additive functions. Finally, the proposed method can also

be applied when the number of characteristics is also diverging, i.e. P →∞.

Hence, we construct a new test:

H0 : h(X) = 0, H1 : h(X) 6= 0,

equivalently,

H0 : A = 0, H1 : A ∈ A,

where A ⊂ RPHn\0.

Here, we have:

S1 =
ÂΣ̂−1Âᵀ − PHn√

2PHn

where S1 is the "original" test statistics. P is the number of characteristics. PHn is the total

number of B-spline bases, and A ∈ RPHn . Hn is a function of asset number n, therefore,

Hn → ∞ as n → ∞. Under H0, S1 has nondegenerate limiting distribution F as n → ∞.

Given the significance level q, q ∈ (0, 1) as well as the critical value Fq:

S1|H0 →d F

lim
N→∞

Pr(S1 > Fq|H0) = q

Pesaran and Yamagata (2012)[23] illustrated that:

S1|H0 →d N (0, 1),

under regularity conditions.
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Possible sparsity and diverging PHn means that it is plausible to add a power enhanced

component to S1, which can improve the power of the hypothesis test without any size distor-

tions.

Therefore, we can construct an extra screening component S0 as:

S0 = Hn

P∑
p=1

I(
Hn∑
h=1

|α̂ph|/σ̂ph > ηn),

where, σ̂ph is the phth entry of the diagonal elements of Σ̂. I(·) is an indicator for screening

process while ηn is a data-driven threshold value to avoid potential size-distortion.

Here we use some space to discuss the choice of ηn. By construction and Assumption 3

below, we know all the B-Spline basis and characteristics are orthogonal. Therefore, all the

elements of Â are asymptotically i.i.d normal distributed under H0. And our goal is to bound

the maximum of those values.

Define Z = max
{16p6P,16h6Hn}

{|α̂ph|/σ̂ph}. Under Assumption 3 below, we have

α̂ph/σ̂ph|H0 →d N(0, 1).

After grouping coefficients of bases that used to represent the unknown function of each

characteristic, letQ = max(
∑Hn

h=1 |α̂1h|/σ̂1h, . . . ,
∑Hn

h=1 |α̂ph|/σ̂ph . . . ,
∑Hn

h=1 |α̂Ph|/σ̂Ph). Fol-

lowing this, we may set the threshold as ηn = Hn

√
2 log(PHn), where Hn = l + nv. As the

Hn is a slowly diverging sequence, it can control the influence of the group size properly.

Meanwhile, the ηn also diverges slowly. ηn is a conservative threshold value to avoid potential

size distortion.

Apart from strengthening the power of conventional hypothesis test, I(·) is a screening term

which can select the most relevant characteristics at the same time.

Here, we define the arbitrage characteristics set, which includes the characteristics that have

the strong explanation power on the mispricing functions:

M = {Xm ∈M :
Hn∑
h=1

|αph|/σph > ηn, m = 1, 2, . . . ,M}

M̂ = {Xm ∈ M̂ :
Hn∑
h=1

|α̂ph|/σ̂ph > ηN , m = 1, 2, . . . ,M}
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Therefore, we have M ∪ 0 = A and M ∩ 0 = ∅. When the set M is relatively small,

conventional tests are likely to suffer the lower power problem. The added S0 can strengthen

the power of the tests to a great extent as Hn is a slowly diverging value .

Therefore, our new test statistics is S = S0 + S1 and conclusions of hypothesis tests are

made accordingly. Asymptotic properties of S will be discussed later.

To conclude, the advantages of our new statistics S = S0 + S1 are:

1 The power of the hypothesis test on mispricing functions are mainly enhanced without

size distortions.

2 We can find specific characteristics which cause the mispricing by screening mecha-

nism.

As designed, S0 satisfies all three properties of Fan, Liao and Yao (2015)[10], as n→∞:

1 S0 is non-negative, Pr(S0 > 0) = 1

2 S0 does not cause size distortion, under H0, we have Pr(S0 = 0 | H0)→ 1

3 S0 enhances test power, under alternative H1, S0 diverge quickly in probability given

the well chosen ηn,T .

Based on properties of S0, we have three properties of S below:

1 No size distortion lim sup
n→∞

Pr(S > Fq|H0) = q

2 Pr(S > Fq|H1) > Pr(S1 > Fq|H1). Hence, the power of S is at least as large as that of

S1.

3 If S0 diverges very quickly, we have Pr(S > Fq|H1) → 1. This happens, especially,

when the true form of Â has a sparse structure.

5 Hierarchical K-Means Clustering

This section introduces a hierarchical K-means clustering method to construct a network of

arbitrage interconnected through assets’ characteristics.
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After the screening process in section 4, we obtain the relevant components of mispricing

function h(X), which is estimated as

M̂ = {Xm ∈ M̂ :
Hn∑
h=1

|α̂ph|/σ̂ph > ηN , m = 1, 2, . . . ,M}.

Therefore, we define an arbitrage characteristics n×M matrixM at time window t as :

M = {X1,X2, . . . ,XM}, whereXm ∈ M̂.

Note that these characteristics are time-invariant within each rolling window. Here we also set

arbitrage returns of asset i at rolling window t as:

ÿit = φ(Xi)Â.

For each rolling window, we classify all n assets through 2 layers K-means clustering. At

the first layer, we group the assets into K groups according to the similarity of their arbitrage

returns ÿit. At the second layer, we divide Rj subgroups within the jth clustering of the first

layer groups by the similarity of their characteristics, where j = 1, 2, . . . , K . Finally, the

network of arbitrage portfolios can be obtained through these clusterings. K-means clustering

is a popular method to classify similar groups, see Cox(1957)[6] and Fisher(1958)[12] for

details.

We give the classification procedures of both layers below. We define ∆ij as the difference

between arbitrage returns of ÿit and ÿjt , as well as Υij as the difference between characteris-

tics:

∆ij = ÿit − ÿjt, where i 6= j, j = 1, 2, . . . , n.

Υij = ‖Mi −Mj‖2, where i 6= j, i, j = 1, 2, . . . , n,

Mi represents the ith row ofM . We also set two tolerance thresholds as ψy and ψx, which are

used to control the biggest difference within each group of both layers separately. Similar to

Vogt and Linton (2017)[28], we apply a first difference process before the K-means clustering,

as this is an efficient way to get the initial centroids for K-means to converge more quickly.

For the first layer:

1. First difference: We randomly pick ith asset and then we calculate ∆ij with other assets

j = 1, 2, . . . , n. Thus we obtain ∆i(1) . . .∆i(n), with n being the total individuals for
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classification. Without loss of generality, we assume ∆i(1) = min{∆i(1) . . .∆i(n)}, and

∆i(n) = max{∆i(1) . . .∆i(n)}.

2. Ordering: We rank the values obtained in Step 1 as follows:

∆i(1) 6 . . . 6 ∆i(j1−1) < ∆i(j1) 6 . . . 6 ∆i(j2−1)

< ∆i(j2) 6 . . . 6 ∆i(j3−1)

...

< ∆i(jK−1) 6 . . . 6 ∆i(n).

We use the strict inequality mark to show the large jumps of "first difference", all of

which are assumed to be larger than ψy , while the weak inequality means that the

distance calculated is smaller than ψy. We identify K − 1 jumps that are larger than ψy
above. Thus, the initial classification is achieved and we have a total of K groups with

j1−1 members in the first group, C1, j2− j1 members in the second group, C2 , . . . , and

jn − jK + 1 members in the final group CK .

In terms of the second layer, for the assets in the kth group Ck, we use the same methods

to further divide them into r subgroups as R1k,R2k, . . . ,Rrk within each subgroup until we

have:

Υab = ‖Ma −Mb‖2 6 ψx, where a, b ∈ Rik, i = 1, 2, . . . , r, and k = 1, 2, . . . , K.

The K-means algorithm is:

1. 1st Step: Determine the starting mean values for each group ˆ̄c
[0]
1 , . . . , ˆ̄c

[0]
K and calculate

the distances D̂k(i) = ∆(ÿit, ˆ̄c
[0]
k ) = |ÿit − ˆ̄c

[0]
k | for each i and k. Define the parti-

tion {C[0]1 , . . . , C
[0]
K } by assigning the ith individual to the k-th group C[0]k if D̂k(i) =

min16k′6K D̂k′(i).

2. lth Step: Let {C[l−1]1 , . . . , C[l−1]K } be the partition of {1, . . . , n} from the latest iteration

step. Calculate mean functions

ˆ̄c
[l]
k =

1

|C[l−1]k |

∑
i∈C[l−1]

k

ÿit for 1 6 k 6 K
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And then we calculate ∆(ÿit, ˆ̄c
[l]
k ) = |ÿit − ˆ̄c

[l]
k | for each i and k. Define the parti-

tion {C[l]1 , . . . , C
[l]
K} by assigning the ith individual to the k-th group C[l]k if D̂k(i) =

min16k′6K0 D̂k′(i).

3. Iterate the above steps until the partition {C[w]1 , . . . , C[w]K } does not change anymore.

In order to accelerate the convergence of K-means algorithm, at the 1th step, the results

of first difference are used. As we have already obtained our initial grouping after double

difference as {C1, . . . , CK}, we therefore have our starting values for the 1st Step:

ˆ̄c
[0]
k =

1

|Ck|
∑
i∈Ck

ÿit for 1 6 k 6 K,

where |Ck| means the cardinality of the group Ck.

The consistency and other theoretical results of above process can be found in Pollard(1981,1982)[24][25],

Sun, Wang and Fang (2012)[27] and Vogt and Linton (2017)[28].

For the second layer, we repeat the procedures within each group Ck respect to Υab, and we

can obtain the network of characteristic arbitrage returns as:

Arbitrage returns

C1 · · ·

R11 · · · · · · · · ·Rr1

Ck

R1k · · · · · · · · ·Rr′k

· · · CK

R1K · · · · · · · · ·Rr′′K

The first layer is the structure of the arbitrage returns, while the second layer is the category

of characteristics that can provide similar arbitrage returns.

6 Asymptotic properties

This section discusses assumptions and properties of estimates and power enhanced statistics

S.
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6.1 Consistency Assumptions

Assumption 2. As n→∞, we have:

1

n
YᵀY →P MY,

FᵀF = IJ,

where MY is a positive definite matrix and IJ is a J × J identity matrix.

We define λmin(M) and λmax(M) as the largest and smallest eigenvalues of matrix M .

Additionally, we define Cmin and Cmax are positive constants such that:

Cmin 6 λmin(
1

n
Φᵀ(X)Φ(X)) < λmax(

1

n
Φᵀ(X)Φ(X)) 6 Cmax

as n→∞.

We impose these restrictions above to avoid non-invertible stock returns, characteristics,

and rotation indeterminacy separately.

Assumption 3.

1

n
G(X)ᵀPG(X)→P


d1

. . .

dPHn

 ,
as n→∞, where dPHn are distinct entries.

Both Assumption 2 and 3 are similar to Fan, Liao and Wang (2016)[9], which are used to

separately identify risk factors and factor loadings. Given the orthogonal bases of B-splines

and uncorrelated or weakly correlated characteristics, Assumption 3 is mild.

Assumption 4. Kmin and Kmax are positive constants such that:

Kmin 6 λmin(
1

n
G(X)ᵀPG(X)) < λmin(

1

n
G(X)ᵀPG(X)) 6 Kmax

as n→∞.

This assumption requires the nonvanishing explanatory power of the B-spline bases Φ(X)

on the factor loading matrix G(X). This Assumption is mild, and, as we discussed in the

introduction, the explanatory power of characteristics on excess stocks’ returns have been

verified by a lot of previous research.
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Assumption 5. εit is realized i.i.d. idiosyncratic shocks with E(εit) = 0 and var(εit) = σ2.

This assumption verifies the heteroskedasticity across different assets, which is caused by

the random effect γi, namely, var(γi + εit) = σ2
i . The off-diagonal elements are assumed to

be zeros, as we have subtracted the co-movement part Ĝ(X)F̂ᵀ from the Y.

6.2 Main Results

Theorem 6.1. Let F̂ be a J × T matrix estimate of latent risk factors, Under Assumption 1-4,

as n→∞, then F̂→P F.

Theorem 6.2. Define the n×J matrix Ĝ(X) as the estimate of factor loadings G(X). Under

Assumption 1-4 and Theorem 6.1 , as n→∞, then Ĝ(x)→P G(X).

Theorem 6.3. Let a PHn × 1 vector Â be the solution of constrained OLS above,

Â = MÃ,

where

M = I−(Φ(X)ᵀΦ(X))−1Φ(X)ᵀĜ(X)(Ĝ(X)ᵀΦ(X)(Φ(X)ᵀΦ(X))−1Φ(X)ᵀĜ(X))−1Ĝ(X)ᵀΦ(X),

Ã = 1
T

(Φ(X)ᵀΦ(X))−1Φ(X)ᵀ(Y − Ĝ(X)F̂ᵀ)1ᵀT.

Under Assumption 1-4, as n→∞, then Φ(X)Â→P h(X).

Theorem 6.4. Under Assumption 3 and Assumption 5, E(Z) =
√

2 logPHn.

Theorem 6.5. Define ηn as the threshold value to control the maximum noise, then:

inf
α∈0

Pr( max
p6P,h6H

|α̂ph − αph|/σ̂ph 6 ηn|A)→ 1.

Under n→∞ and H0, given the properties of S0 and S1, then:

S →d N(0, 1),

The power of S is enhanced now as:

inf
A∈A

Pr(reject H0|A)→ 1.
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7 Numerical Study

In this section, we use Compustats and Fama-French three and five factors’ data to simulate

stocks’ returns and then demonstrate the performance of our estimation and hypothesis test

procedures.

7.1 Data Generation

Firstly, we use Fama-French three factors’ monthly returns and all the characteristics that will

be included in the empirical study to mimic the stocks’ returns. Most of the characteristics

are updated annually; therefore, we treat those variables as time-invariant during the one-year

rolling block. For the characteristics that vary every month, we substitute the mean values as

their fixed values per fiscal year. We match Fama-French monthly returns from July of year

t to June of year t + 1 and characteristics of fiscal year t − 1 to generate the stock returns

between July of year t to June of year t + 1. The period we generate is the same as the

empirical study, namely, the 50 years from July 1967-June 2017. Therefore, for each rolling

block of 12 months we have:

yit = h(Xi) +
3∑
j=1

gj(Xj)fjt + εit, (6)

where yit is the generated stock’s return. h(Xi) is the mispricing function consists of a non-

linear characteristic function of xi, to mimic the sparse structure of a mispricing function.

gj(Xj) is the jth characteristics-based factor loading, which has an additive semi-parametric

structure, and Xj is the jth subset consisting of 4 characteristics. fjt is the jth Fama-French

factor returns at time t. εit is the idiosyncratic shock, generated from N(0, σ2).

We generate the characteristic univariate functions as:

h(Xi) = sinXi,

g1(X1) = X2
1 + (3X3

2 − 2X2
2 ) + (3X3

3 − 2X3) +X2
4 ,

g2(X2) = X2
5 + (3X3

6 − 2X2
6 ) + (3X3

7 − 2X7) +X2
8 ,

g3(X3) = X2
9 + (3X3

10 − 2X2
10) + (3X3

11 − 2X11) +X2
12,

where Xi is a randomly picked characteristic and i 6= 1, . . . , 11, 12. Furthermore, all the

X1, . . . , X12 are chosen from the characteristics of the empirical study without duplication;
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description of these characteristics can be found in the Appendix. Additionlly, all h(Xi),

g1(X1), g2(X2) and g3(X3) are rescaled to be mean 0 and variance 1. As we use the real data

to conduct the simulation, the assumption of independent Xi cannot be satisfied. Whilst some

characterisitcs are highly correlated, we can see from the simulation that the semi-paramtric

model overcome this problem properly when being compared with the serious size distortion

under parametric models.

7.2 Model Misspecification

In this simulated experiment, our purpose is to show the necessity to consider semi-parametric

analysis when the form of factor loading and mispricing functions are unknown.

Under the data generation process, we use both semi-parametric and linear analysis to

compare the Mean Squared Error (MSE) and hypothesis test results under both specifica-

tions. We apply our estimation methodology in section 3 to estimate Equation 7.1. For

semi-parametric specification, we choose the number of B-Spline bases to be bn0.3e. n is

the number of assets in each balanced rolling window and b·e means the nearest integer.

We orthogonalize these bases and then use the Projected-PCA and restricted OLS to esti-

mate model Equation 7.1. As for the hypothesis test part, we choose threshold value to be

ηn = Hn

√
2 log(PHn) = bn0.3e

√
2 log(P bn0.3e), where P is the number of characteristics

and n is the number of stocks in each rolling block. For the linear specification, each charac-

teristic only has one basis, which is itself. And then, we repeat the procedure in section 3. In

terms of hypothesis test,we use the same logic as in the semi-parametric settings. We set for

ηn =
√

3 log(P ).

In all the estimation above, we assume we know the real number of factors, which is three.

We will discuss the situation when the number of factors is unknown in the next subsection.

Mean Squared Error (MSE) is also reported to measure the fitness of the model Equation 7.1.

As we can see from Table 1, under different noise levels, namely σ2 = 1 and σ2 = 4, the

semi-parametric model outperforms the linear model in the following aspects:

1 The fitness of the semi-parametric model is much better than the linear model, which

can be illustrated from MSE.

2 The semi-parametric model can enhance the power of S1 by non-zero S0, which can not

only select the correct mispricing characteristics by also avoid size distortions. As for
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the linear model, it is influenced by the high correlation of characteristics. Therefore,

during certain periods we even obtained the non-invertible characteristic matrix. The

linear model can also select the relevant covariance with decent probability, but it suffers

from serious size distortions. Thus, our semi-parametric model with orthogonal bases

can mitigate this problem to a great extent.

3 The additional component S0 is necessary to strengthen the power of S1 and select the

relevant characteristics that can explain the mispricing function. Because S1 can be very

small and even negative, especially when the noise σi is strong.
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7.3 Robustness Under Stronger Noise

In Table 1, we set two different noise levels of random shocks, namely σ2 = 1 and σ2 = 4.

Although σ2 = 1 is closer to the empirical data, we conduct this comparison to show the

robustness of our methods. When the noise level becomes three times bigger, the accuracy of

power enhanced tests gets much lower for certain windows. However, there are no size dis-

tortions under this solid noise level, recalling that all the components of our simulation model

are rescaled to be unit variance. Thus, the selection probability of relevant characteristics is

affected by the higher noise level, but stronger noise will not cause size distortion under our

methodology. Another fact is that the stronger noise does deteriorate the low power problem

of conventional Wald tests, leading to an even smaller value of S1, which can be mitigated

through adding S0.

Therefore, we conclude that our methods are robust to a higher noise level regarding no size

distortions. However, the accuracy of selecting relevant components and the role of enhancing

the power of hypothesis tests will be influenced negatively.

7.4 Number of Factors

In the empirical study, the number of factors is unknown. Therefore, in this subsection we will

study whether our methodology is robust to a various number of factors estimated.

We simulate another data generation process:

yit = h(Xi) +
5∑
j=1

gj(Xj)fjt + εit, (7)

similarly, where yit is the generated stock’s return. h(Xi) is the mispricing function consist

of a non-linear characteristic function of Xi, to mimic the sparse structure of a mispricing

function. gj(Xj) is the jth characteristics-based factor loading, which has an additive semi-

parametric structure, and Xj is a subset consisting of four characteristics. fjt is the j Fama-

French 5-factor returns at time t. εit is the idiosyncratic shock, generated from N(0, σ2).

Moreover, we generate characteristic univariate functions as:

h(Xi) = sinXi,

g1(X1) = X2
1 + (3X3

2 − 2X2
2 ) + (3X3

3 − 2X3) +X2
4 ,

g2(X2) = X2
5 + (3X3

6 − 2X2
6 ) + (3X3

7 − 2X7) +X2
8 ,



7 NUMERICAL STUDY 27

g3(X3) = X2
9 + (3X3

10 − 2X2
10) + (3X3

11 − 2X11) +X2
12,

g4(X4) = X2
13 + (3X3

14 − 2X2
14) + (3X3

15 − 2X15) +X2
16,

g5(X5) = X2
17 + (3X3

18 − 2X2
18) + (3X3

19 − 2X19) +X2
20,

where Xi is a randomly picked characteristic and i 6= 1, . . . , 19, 20. All the X1, . . . , X20

are chosen from the characteristics of the empirical study without duplication, details can be

found in Appendix. Furthermore, all h(Xi), g1(X1), g2(X2), g3(X3), g4(X4), and g5(X5)

are rescaled to be mean 0 and variance 1.

Given the above data generation process, combining with the data generation process in

Section 6.1, we test the influence of over and under-estimated number of factors. We now

choose the number of estimated factors to be three and five under two different data sets and

compare the results in Table 3.

The first category column is the scenario of over-estimated factors. We simulate the data

generation process using the Fama-French three factors model but estimate the number of

factors to be five. However, this does not cause any serious problems as we can find from

the Table 3. For some rolling blocks, the probability of mistakenly selected irrelevant char-

acteristics is slightly higher under over-estimated factor numbers. However, over-estimated

factors can increase the model fitting marginally. Therefore, we conclude that overestimating

the number of factors does not cause severe size distortion using our methods.

Unfortunately, underestimating the number of factors can lead to very misleading test re-

sults. We can conclude this from the last column where we estimate the number of factors

to be three while the actual model contains five factors. Compared with the correct estimated

results, underestimating causes not only higher MSE, but also higher distortions, which means

it is more likely to select irrelevant characteristics. Therefore, in the empirical study we prefer

the five factors model rather than the three factors model.
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Ĵ

=
3

N
um

be
ro

fe
st

im
at

ed
fa

ct
or

s
Ĵ
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8 Empirical Study

8.1 Introduction

This section presents the empirical results of short-term mispricing anomalies under the semi-

parametric characteristics-based model. We use monthly stocks’ returns from CRSP and

firms’ characteristics from Compustats, from 1965 to 2017. We constructed 33 character-

istics following the methods of Freyberger, Neuhierl and Weber (2017)[13]. Details of these

characteristics can be found in the appendix. We use characteristics from fiscal year t − 1 to

explain stock returns between July of year t to June of year t + 1. After adjusting the dates

from the balance sheet’s data, we merge the two data sets from CRSP and Computats. We

require all the firms included in our analysis to have at least three years of data in Compustat.

Data is modified with regards to the following aspects:

1 Delisting is quite common for CRSP data. Therefore, we use the way of Hou, Xue

and Zhang (2015)[16] to correct the returns of delisting stocks for all the delisted assets

before 2018. Detailed methods can be found in the appendix of this paper.

2 Projected-PCA works well, even under small T circumstances. Thus, we choose the

width of our window to be 12 months. Another reason for the short window width is

that we assume mispricing functions are time-invariant. Therefore, 12 months blocks

are more realistic. One of the limitations of Projected-PCA is that it can only be used

for a balanced panel, which means the number of stocks will vary when we applied

one-year rolling windows to obtain a short time balanced panel. At the same time, as

we treat all the characteristics as time-invariant within each rolling block, we take those

characteristics’ mean values of 12 months as fixed characteristic values during each

period.

3 B-splines are made based on each time-invariant characteristic above among all the n

firms which are not delisted within each window.

4 Rolling windows are moving at a 12-month step from Jul. 1967 to Jun. 2017. The first

24 months returns are not included as they do not have corresponding characteristics.

5 Excess returns are constructed by the difference between monthly stock returns and

Fama-French risk-free monthly returns, which can be found on their website.
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8.2 Estimation

We first construct the characteristic B-spline bases matrices. We choose v = 0.3, which

means the number of bases for each characteristic within a certain window is bn0.3e, n is the

number of stocks in each balanced panel window. To get a considerable large balanced panel

in each window, some characteristics with too many missing values are eliminated. Therefore,

only 33 characteristics are left, which is also a large set of balance sheet variables compared

with other similar research. We substitute each characteristic with their mean values during a

window width of 12 months. Also, we construct B-spline bases based on evenly distributed

knots, and the degree of each basis is three. Here we can find the dimension of characteristic

bases will diverge as the number of firms in each window increases. According to the data

we collected, firms that can be kept in a balanced panel vary from 1967 to 2017 and ranging

from 468 to 2928, which means both n and Â ∈ RPH are diverging. Large n can satisfy

asymptotic requirements. However, these facts also emphasize the necessity of introducing

a power enhanced component into our standard hypothesis test. Furthermore, we build up

monthly stock excess return Y by a n × T matrix, using yit. Before next step, we use time-

demeaned matrix DT to demean excess return matrix within each window.

Secondly, we project the time-demeaned monthly excess return matrix Ỹ to the B-spline

space spanned by characteristics Φ(X), and then we collect the fitted value Ŷ. Moreover, we

operate Principle Component Analysis on ŶᵀŶ and obtain 1√
T

times the first five eigenvectors

corresponding to the first five biggest eigenvalues as the estimates of unobservable factors F̂.

We choose the number of factors to be five because we prefer the overestimating rather than

underestimating, according to simulation results.

Thirdly, we estimate factor loading matrix as:

Ĝ(X) = ŶF̂(F̂ᵀF̂)−1.

Finally, we use equality-constrained OLS estimator to estimate coefficients of the mispricing

function. We project excess monthly return on the characteristic space Φ(X) that is orthogonal

to factor loading matrix Ĝ(X).

Another goal of this paper is to conduct a power enhanced test on mispricing functions.

Therefore, our final step is to estimate covariance matrix Σ̂ of Â. Methods can be found

above.
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8.3 Factor estimated

We collect all the 5 factors estimated and calculate their time series correlation with Fama-

French 5 factors. We summarize the results below:

Table 5: Correlation Bewteen Estimated Factors and

Fama-French 5 Factors

MKT SMB HML RMW CMA

Fac1 0.257 -0.046 -0.01 -0.038 0.006

Fac2 0.145 -0.008 0.024 -0.004 -0.048

Fac3 -0.122 0.027 -0.043 0.106 -0.044

Fac4 -0.245 -0.054 0.00 -0.035 0.068

Fac5 -0.170 0.018 -0.072 0.097 -0.008

The table above summarises the correlation be-

tween five estimated factors from real data with

Fama-French five factors. "MKT", "SMB", "HML",

"RMW", and "CMA" are Fama-French five risk fac-

tors respectively, denoting "market", "size", "value",

"profitability", and "investment" individually.

However, we only detect a relatively high correlation between estimated factors and the

"Market" factor from Fama-French data. This may be due to the estimated factors are obtained

from projected stocks’ returns, which means both noise and some original information are

filtered.

8.4 Power enhanced hypothesis tests

In this section, we conduct power enhanced tests on each rolling blocks. Firstly, we set thresh-

old value for each window, ηn = Hn

√
2 log(PHn), where Hn is the number of bases for

each characteristic whereas P is the number of total characteristics in each window, which is

equal to 33 in our case. Obviously, ηn is data-driven critical value and diverge as the number

of firms increase. We use this indicator function I(
∑Hn

h=1 |α̂ph|/σ̂ph > ηn) with critical value

ηn = Hn

√
2 log(PHn) to achieve three goals.

1 This indicator function can select the most relevant characteristics that can explain the
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variation of the mispricing function, as all the test statistics that exceed the critical value

will be given the value 1. Therefore, the results of last column in Table 6 are character-

istics selected in M̂ = {α̂p ∈ M̂ :
∑H

h=1 |α̂ph|/σ̂ph > ηn, h = 1, 2, . . . , H, p =

1, 2, . . . , P}.

2 It also contributes to the test statistics S0 by adding values from the most important

covariances and let S0 diverge. As the T is very small in the empirical study, we assume

the homoskedasticity among εit to reduce the estimation noise.

3 It can avoid size-distortion by the conservative critical value ηn, which ignores those

noises by assigning the value 0.

The diagonal elements of covariance matrix Σ̂ are variances of each mispricing bases.

These elements can be substituted into the indicator function directly, i.e., I(|α̂ph|/σ̂ph > ηn),

where σ̂ph is the phth diagonal element of covariance matrix Σ̂.

Finally, the new statistics S can be calculated as:

S = S0 + S1,

S0 = Hn

P∑
p=1

I(
Hn∑
h=1

|α̂ph|/σ̂ph > ηn), S1 =
ÂΣ̂−1Âᵀ − PHn√

2PHn

.

8.5 Test results

This section presents the empirical results. Details can be found in the Table 6, where the table

lists 50 rolling windows results from Jul.1967 to Jun.2017. Generally speaking, the number

of firms that can be included in a 12 months balanced panel is increasing period by period.

The number of our characteristic B-spline bases is a function of the number of firms n within

each block, which is bn0.3e. Therefore, the dimension of tested mispricing coefficient vectors

Â ∈ RPHn is also diverging. This verifies the existence of enhanceable hypothesis tests and

the necessity of using power enhanced component S0, which are consistent with empirical

results.

Recalling S|H0 →d N(0,1), some of the test statistics S are huge enough to reject the null

hypothesis stating that the characteristics-based mispricing function has no explanatory power

on stocks’ excess monthly returns. However, for some testing windows there is no strong

signal showing that characteristic mispricing functions exist after subtracting the effects of
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common factors, which means all the explained variation of excess stock returns has been

included in the part of the common movement, namely Ĝ(X)F̂ᵀ. Moreover, most S1 values

are minimal and even negative. These may be caused by the sparsity structure of the mispricing

function or the low power problems due to diverging dimension of mispricing coefficients.

In terms of the power enhanced component S0, it works well in our empirical study. On

the one hand, it can help us to select the most important explaining characteristics. On the

other hand, it strengthens the power of S1, mitigating the low power problem caused by either

sparsity or diverging coefficients. Illustrating examples can be found in Table 6, when S1 are

small or even negative, but the supplements S0 help S to be significant. Therefore, as the

n→∞, the importance of S0 will become more obvious.

Apart from contributing to the power of tests, the indicator function in the power enhanced

component, namely S0 = Hn

∑P
p=1 I(

∑H
h=1 |α̂ph|/σ̂ph > ηn) can also screen out the most

relevant explanatory characteristics that can be used to construct arbitrage characteristic port-

folios, which are concluded as "Characteristics Selected".

The last column of Table 6 summaries characteristics that contribute to the S0 in different

time windows. The reasons that those characteristics can explain the mispricings are beyond

the scope of this paper. The purposes of this empirical study are mainly to conduct power

enhanced hypothesis tests on mispricing functions and select potential characteristics causing

the mispricing under a very flexible model.

Some phenomena of empirical findings are worth discussing. Momentum, namely cumula-

tive past returns, is a significant category of characteristics that appears frequently. Although

short-term cumulative returns like r2_1 are always selected, we cannot take this as evidence of

arbitrage opportunities as we treat r2_1 as time-invariant and take the mean values of 12-month

r2_1. Therefore, it is very likely that higher meaned one month lagged returns associated with

higher monthly returns. However, this is not the case for long-term and mid-term cumula-

tive returns’ momentum like r12_2, r12_7 and r6_2, because the 12-month mean values of these

variables contain a lot of information from the past year.

Apart from the cumulative returns, some other characteristics contribute to the arbitrage op-

portunities as well. PCM (Price to Cost Margin) appears twice, and from ??, we can find the

mispricing curve is nonlinear and generally decreasing as the value of PCM increases. ROA

(Return-on-asset) also plays a role during 1988-1989. It behaves like a parabola with fluctua-

tions near the 0 point. Details can be found in Figure 3. As for Lev (ratio of long-term debt and
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Table 6: Empirical Study Results

Time period n S S0 S1 MSE Characteristics Selected

Jul.1967-Jun.1968 468 -9.6 0 -9.6 0.005 NONE

Jul.1968-Jun.1969 951 -0.45 8 -8.45 0.004 r2_1

Jul.1969-Jun.1970 1108 1.7 9 -7.3 0.005 r2_1

Jul.1970-Jun.1971 1199 -8.7 0 -8.7 0.006 NONE

Jul.1971-Jun.1972 1333 -10 0 -10 0.004 NONE

Jul.1972-Jun.1973 1409 12.7 18 -5.3 0.005 r12_2,r6_2

Jul.1973-Jun.1974 1466 2.1 9 -6.9 0.005 r2_1

Jul.1974-Jun.1975 1560 -10.7 0 -10.7 0.01 NONE

Jul.1975-Jun.1976 1494 0.1 9 8.9 0.05 r2_1

Jul.1976-Jun.1977 1292 0.1 9 -9 0.004 r2_1

Jul.1977-Jun.1978 1393 -9.4 0 -9.4 0.005 NONE

Jul.1978-Jun.1979 1340 8.6 18 -9.4 0.005 r2_1,r12_7

Jul.1979-Jun.1980 1285 1 9 -8 0.005 r2_1

Jul.1980-Jun.1981 1181 9.7 18 -8.2 0.006 r12_7,r12_2

Jul.1981-Jun.1982 1110 1.2 9 -7.8 0.01 r2_1

Jul.1982-Jun.1983 1044 33.1 36 -3 0.01 r12_2,r12_7,r6_2,r2_1

Jul.1983-Jun.1984 1125 -0.9 9 -9.9 0.006 r2_1

Jul.1984-Jun.1985 2192 -0.2 11 -11.2 0.01 r2_1

Jul.1985-Jun.1986 2236 13.1 22 -8.94 0.01 r12_7,r12_2

Jul.1986-Jun.1987 2273 1.7 11 -9.3 0.01 PCM

Jul.1987-Jun.1988 2235 0.9 11 -10.1 0.01 r2_1

Jul.1988-Jun.1989 2270 1.2 11 -9.8 0.01 ROA

Jul.1989-Jun.1990 2405 -0.1 11 -11.1 0.01 r2_1

Jul.1990-Jun.1991 2376 1.1 11 -9.9 0.02 r2_1

Jul.1991-Jun.1992 2323 2.1 11 -8.9 0.02 r2_1

Jul.1992-Jun.1993 2344 12.2 22 -9.8 0.02 r12_7,r12_2

Jul.1993-Jun.1994 2434 0.4 11 -10.6 0.01 r2_1

Jul.1994-Jun.1995 2548 2.4 11 -8.6 0.01 r2_1

Jul.1995-Jun.1996 2741 14.1 22 -7.9 0.02 BEME,r2_1

Jul.1996-Jun.1997 2928 18.1 22 -3.9 0.01 BEME,r2_1

Jul.1997-Jun.1998 2894 26.5 33 -6.5 0.02 r2_1,r12_7,r12_2

Jul.1998-Jun.1999 2905 24.6 33 -8.4 0.02 AT,LME,r2_1

Jul.1999-Jun.2000 2804 13.8 22 -8.2 0.03 r2_1,r12_7

Jul.2000-Jun.2001 2570 37.7 44 -6.3 0.02 AT,LME, r2_1, r6_2

Jul.2001-Jun.2002 2516 1.3 11 -9.7 0.02 r2_1

Jul.2002-Jun.2003 2491 15 22 -7 0.02 Lev, r2_1

Jul.2003-Jun.2004 2402 3.9 11 -7.1 0.01 r2_1

Jul.2004-Jun.2005 2326 1.8 11 -9.2 0.01 IPM

Jul.2005-Jun.2006 2241 2.5 11 -8.5 0.01 r2_1

Jul.2006-Jun.2007 2178 1.5 11 -9.5 0.01 r2_1

Jul.2007-Jun.2008 2113 12.6 20 -7.4 0.01 r12_2,r2_1

Jul.2008-Jun.2009 2023 1.7 10 -8.3 0.02 r2_1

Jul.2009-Jun.2010 2007 1 10 -9 0.01 r2_1

Jul.2010-Jun.2011 1924 13.6 20 -6.4 0.01 r2_1

Jul.2011-Jun.2012 1990 2.5 10 -7.5 0.01 r2_1

Jul.2012-Jun.2013 1937 23.7 30 -6.3 0.01 r2_1,r12_7,r12_2

Jul.2013-Jun.2014 1909 2.3 10 -7.7 0.01 r2_1

Jul.2014-Jun.2015 1872 5.5 10 -4.5 0.01 r2_1

Jul.2015-Jun.2016 1841 12.4 20 -7.6 0.01 DelGmSale,r2_1

Jul.2016-Jun.2017 1826 26.1 30 -3.9 0.01 C2D,PCM,r12_7

This table summaries the empirical results, where n represents the number of stocks in this

rolling window.
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debt in the current liabilities), it is decreasing when Lev<0 while increasing afterwards, see

Figure 7. In Figure 8, IPM (pre-tax profit margin) behaves like a "V" shape with the turning

point 0 during 2004-2005. DelGmSale (Difference in the percentage in gross margin and the

percentage change in sales) experiences a bump at the 0 point during 2015-2016, see Figure 9.

C2D curve behaves like "V" around the 0 point in 2016-2017, see Figure 10.

Another finding is the momentum of characteristics. Mispricing covariates can be persistent

for two years once appeared, such as BEME (Ratio of the book value of equity and market

value of equity) in Figure 4, AT (Total asset) in Figure 6, and LME (Total market capitalization

of the previous month) in Figure 5. The long-lasting momentum of past cumulative returns

is more significant. We take r12_2 and r12_7 plots as examples and details can be found in

Figure 1.

8.6 A Network of Characteristic Arbitrage Returns

In this section, we illustrate the network of arbitrage returns that are interconnected through

assets’ characteristics. We apply the methods of section 5 to the results in Table 6. We take

Jul. 1986- Jun. 1987 and Jul. 2004- Jun. 2005 as demonstrative examples.

In the rolling window Jul. 1986- Jun. 1987, "PCM" was selected as a mispricing character-

istic that can help to explain the arbitrage opportunity. We are arguing that the arbitrage returns

are inter-related by the characteristic "PCM." We first divide mispriced returns ÿit into differ-

ent return groups. And then, we detect whether there are some clustering structures within

groups of highest and lowest arbitrage returns, respectively. As we have 2326 assets, for the

visualization purpose, we set the threshold value of the K-means method to be relatively small

to have as many as ten groups.

The results are showing below:

As we can see from Table 7, group 2 is outperforming with the largest positive average

return, while group 6 is the worst. Therefore, we detect the clusterings of characteristic "PCM"

within each group individually, which is the second layer clustering in section 5. We apply the

corresponding method and have the following results:

As we can see from Table 8, there are two clusterings of PCM, which can provide extra

positive arbitrage returns. However, group 2.2 is regarded as an outlier, which has a very

negative PCM value but a high arbitrage return. Members in group 2.1 with excellent arbitrage
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Table 7: First layer 1984-1985 (clusterings of ÿit )

Group number Group centeroid Group size

1 0.0059 435

2 0.1205 26

3 -0.0082 428

4 0.0399 189

5 0.0697 71

6 -0.1018 29

7 -0.0617 110

8 -0.0390 250

9 -0.0225 349

10 0.0208 386

Table 8: Second layer 1984-1985 (clusterings of characteristic PCM )

Group number Centeroids of Arbitrage returns Centeroids of PCM Group size

2.1 0.1211 0.2452 25

2.2 0.1039 -7.630 1
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Table 9: Second layer 1984-1985 (clusterings of characteristic PCM )

Group number Centeroids of Arbitrage returns Centeroids of PCM Group size

6.1 -0.1085 0.728 9

6.2 -0.0989 0.288 20

performance have positive but small PCM values.

Table 9 illustrates clusterings of PCM within the low arbitrage group, namely group 6.

Members of this group are divided into two clusterings. Group 6.1 has a relatively large PCM

value, while group 6.2 has a smaller PCM, which is still bigger than that in outperforming

group 2.2. The plots of the above classification can be found at Figure 11, where the assets

are represented by their "PERMNO," and both axes are rescaled. Therefore, the network of

arbitrage returns during Jul. 1986- Jun. 1987 is:

Arbitrage returns 1986-1987

G2 ÿit = 0.12

Group 2.1 PCM=0.25 Group 2.2 PCM=-7.6

G k

. .

G6 ÿit = −0.1

Group 6.1 PCM=0.73 Group 6.2 PCM=0.29

Another example is the arbitrage return ÿit during the year 2004-2005. Power enhanced

screening process selects characteristic "IPM" as the only explanatory variable. Therefore, we

detect the network of arbitrage returns ÿit that are interconnected through "IPM."

Similarly, we apply the hierarchical K-means method. The results of the first layer classi-

fication can be found in Table 10. There are ten groups in total according to the similarity of

arbitrage returns. And then, we pick two groups with the highest and lowest returns, respec-

tively, to check what is the role of "IPM" playing within these two groups.

Similarly, we have classification results in Table 11 and Table 12. Positive IPM values give

higher arbitrage returns. On the contrary, when IPM is closed to zero or very negative, the

arbitrage returns both reach the lowest point.
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Table 10: First layer (clusterings of ÿit )

Group number Group centeroid Group size

1 0.0421 276

2 0.0059 459

3 0.1537 26

4 -0.024 367

5 0.0659 166

6 0.023 387

7 0.0999 120

8 -0.0758 67

9 -0.0437 244

10 -0.0082 436

Table 11: Second layer (clusterings of characteristic IPM )

Group number Centeroids of Arbitrage returns Centeroids of PCM Group size

3.1 0.1681 0.266 5

3.2 0.1502 0.143 21

Table 12: Second layer (clusterings of characteristic IPM )

Group number Centeroids of Arbitrage returns Centeroids of PCM Group size

8.1 -0.0713 -0.07 10

8.2 -0.1016 -0.134 57
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Arbitrage returns 2004-2005

G3 ÿit = 0.15

Group 3.1 IPM=0.27 Group 3.2 IPM=0.14

G k

. .

G8 ÿit = −0.07

Group 8.1 IPM=-0.07 Group 8.2 IPM=-0.13

The plots of and IPM can be found Figure 12, where the axes are rescaled and assets are

represented by their "PERMNO" code with five digits.

9 Conclusion

We proposed a semi-parametric characteristics-based factor model with dynamic network

structures to accommodate both common movements and asset-specific behavior of excess

stock returns. We also proposed power enhanced tests to resolve challenges along with model

flexibility. Our proposed methods work well in simulations and on the US stock market. Some

of the rolling windows show the existence of characteristics-based mispricing functions, which

provides us with theoretical evidence to construct arbitrage portfolios by parameterizing those

selected security-specific characteristics. We also find the phenomenon of "Characteristics

Momentum", which means the mispricing effects of some characteristics can last for several

years once they have appeared. Finally, we detect a dynamic network structure among char-

acteristics that provide arbitrage opportunities.
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10 Appendix

10.1 Characteristic Description

Name Description Reference

A2ME We define assets-market cap as total assets (AT)

over market capitalization as of December t-1.

Market capitalization is the product of shares out-

standing (SHROUT) and price(PRC).

Bhandari (1988)

AT Total assets (AT) Gandhi and Lusting (2015)

ATO Net sales over lagged net operating assets. Net op-

erating assets are the difference between operating

assets and operating liabilities. Operating assets

are total assets (AT) minus cash and short-term in-

vestments (CHE), minus investment and other ad-

vances (IVAO). Operating liabilities are total assets

(AT), minus debt in current liabilities(DLC),minus

long-term debt (DLTT),minus minority interest

(MIB), minus preferred stock (PSTK), minus com-

mon equity (CEQ).

Soliman(2008)

BEME Ratio of book value of equity to market value

of equity. Book equity is shareholder equity

(SH) plus deferred taxes and investment tax credit

(TXDITC), minus preferred stock (PS). SH is

shareholder’s equity (SEQ). If missing, SH is the

sum of common equity (CEQ) and preferred stock

(PS). If missing, SH is the difference between to-

tal assets (AT) and total liabilities (LT). Depend-

ing on availability, we use the redemption (item

PSTKRV), liquidating (item PSTKL), or par value

(item PSTK) for PS. The market value of equity is

as of December t-1. The market value of equity is

the product of shares outstanding (SHROUT) and

price (PRC).

Rosenberg, Reid and Lanstein

(1985) Davis, Fama, and French

(2000)
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C Ration of cash and short-term investments (CHE)

to total assets (AT)

Palazzo

C2D Cash flow to price is the ratio of income and ex-

traoridinary items (IB) and depreciation and amor-

tization (dp) to total liabilities (LT).

CTO We define caoital turnover as ratio of net sales

(SALE) to lagged total assets (AT).

Haugen and Baker (1996)

Debt2P Debt to price is the radio of long-term debt (DLTT)

and debt in current liabilities (DLC) to the mar-

ket capitalization as of December t-1 . Market

capitalization is the product of shares outstanding

(SHROUT) and price (PRC).

Litzenberger and Ramaswamy

(1979)

∆ceq The percentage change in the book value of equity

(CEQ).

Richardson et al. (2005)

∆(∆Gm− Sales) The difference in the percentage change in gross

margin and the percentage change in sales (SALE).

We define gross margin as the difference in sales

(SALE) and costs of goods sold (COGS).

Abarbanell and Bushee (1997)

∆Shrout The definition of the percentage change in shares

outstanding (SHROUT).

Pontiff and Woodgate (2008)

∆PI2A We define the change in property, plants ,and

equipment as changes in property,plants,and

equipment (PPEGT) and inventory (INVT) over

lagged total assets (TA).

Lyandres , Sun, and Zhang

(2008)

DTO We define turnover as ratio of daily volume (VOL)

to shares outstanding (SHROUT) minus the daily

market turnover and de-trend it by its 180 trading

day median. We scale down the volume of NAS-

DAQ securities by 38% after 1997 and by 50% be-

fore that to address the issue of double-counting of

volume for NASDAQ securities.

Garfinkel (2009); Anderson and

Dyl (2005)
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E2P We define earnings to price as the ratio of income

before extraordinary items (IB) to the market capi-

talization as December t-1 Market capitalization is

the product of share outstanding (SHROUT) and

price (PRC).

Basu (1983)

EPS We define earnings per share as the ratio of income

before extraordinary items (IB) to share outstand-

ing (SHROUT) as of December t-1

Basu (1997)

Investment We define investment as the percentage year-on-

year growth rate in total assets (AT).

Cooper, Gulen, and Schill(2008)

IPM We define pre-tax profit margin as ratio of pre-tax

income (PI) to sales (SALE).

Lev leverage is the ratio of long-term debt (DLTT) and

debt in the current liabilities (DLC) to the sum

of long-term debt, debt in current liabilities, and

stockholders’ equity (SEQ)

Lewenllen (2015)

Turnover Turnover is last month’s volume (VOL) over

shares outstanding (SHROUT).

Datar, Naik, and Radcliffe

(1998)

OL Operating leverage is the sum of cost of goods sold

(COGS) and selling, general, and administrative

expenses (XSGA) over total assets.

Novy-Marx (2011)

PCM The price-to-cost margin is the difference between

net sales (SALE) and costs of goods sold (COGS)

divided by net sales (SALE).

Gorodnichenko and Weber

(2016) and D’Acunto, Liu,

Pflucger, and Wcber (2017)

PM The profit margin is operating income after depre-

ciation (OIADP) over sales (SALE)

Soliman (2008)

Q Tobin’s Q is total assets (AT), the market value

of equity (SHROUT times PRC) minus cash

and short-term investments (CEQ) minus deferred

taxes (TXDB) scaled by total assets (AT).

ROA Return-on-assets is income before extraordinary

items (IB) to lagged total assets (AT).

Balakrishnan, Bartov, and Faurel

(2010)
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ROC ROC is the ratio of market value of equity (ME)

plus long-term debt (DLTT)minus total assets to

Cash and Short-Term Investments (CHE).

Chandrashekar and Rao (2009)

ROE Return-on-equity is income before extraordinary

items (IB) to lagged book-value of equity.

in Haugen and Baker (1996)

r12−2 We define momentum as cumulative return from

12 months before the return prediction to two

months before.

Fama and French (1996)

r12−7 We define intermediate momentum as cumulative

return from 12 months before the return prediction

to seven months before.

Novy-Marx (2012)

r6−2 We definer6−2 as cumulative return from 6 months

before the return prediction to two months before.

Jegadeesh and Titman (1993)

r2−1 We define short-term reversal as lagged one-month

return.

Jegadeesh(1990)

S2C Sales-to-cash is the ratio of net sales (SALE) to

Cash and Short-Term Investments (CHE).

following Ou and Penman

(1989)

Sales-G Sales growth is the percentage growth rate in an-

nual sales (SALE).

Lakonishok, Shleifer , and

Vishmy (1994)

SAT We define asset turnover as the ratio of sales

(SALE) to total assets (AT).

Soliman (2008)

SGA2S SGA to sales is the ratio of selling ,general

and administrative expenses (XSGA) to net sales

(SALE).

Table 13: Characteristic Details
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10.2 Proofs

Through out the proofs, we have the number of observations n→∞ and time T is fixed.

Proof of Theorem 6.1 : In equation 5, we have

Y = (Φ(X)A + Γ + Rµ(X))1ᵀT + (Φ(X)B + Λ + Rθ(X))Fᵀ + U,

After multiplying time demeaned matrix DT, where DT = IT − 1
T
1′T1T, as the mispricing

components are time-invariant, therefore we obtain:

YDT = (Φ(X)B + Λ + Rθ(X))FᵀDT + UDT,

Onwards, we define YDT = Ỹ and Fᵀ = F′DT. Demeaned time factors do not change their

properties.

And then multiple both sides by P = Φ(X)(Φ(X)′Φ(X))−1Φ(X)ᵀ,

Ŷ = (Φ(X)B + PΛ + PRθ(X))Fᵀ + PUDT.

And then, we decompose :

Ŷ = Φ(X)BFᵀ + PΛFᵀ + PUDT + PRθ(X)F ᵀ = e1 + e2 + e3 + e4,

as n→∞, therefore nv →∞, approximation error Rθ(X)→P 0, see Huang, Horowitz and

Wei (2010)[17], thus, under orthogonal bases, eᵀ4 →P 0. Therefore,

1

n
ŶᵀŶ =

1

n

3∑
i=1

3∑
j=1

eᵀiej .

Under Assumption 1, we have following results:

for 1
n

∑3
j=1 e

ᵀ
2ej ,

1

n
PΛ→P 0,

therefore,
1

n

3∑
j=1

eᵀ2ej +
1

n

3∑
j=1

eᵀje2 →
P 0.



10 APPENDIX 46

for 1
n

∑3
j=1 e

ᵀ
3ej ,

1

n
PU →P 0,

therefore,
1

n

3∑
j=1

eᵀ2ej +
1

n

3∑
j=1

eᵀje2 →
P 0.

And the only 1
n
eᵀ1e1 left, namely,

1

n
eᵀ1e1 = F

BᵀΦᵀ(X)Φ(X)B

n
F ᵀ.

Therefore, under Assumption 2-4, and fixed T . A much smaller T × T matrix 1
n
Ŷ′Ŷ can

be sovled by asymtotic principal component by Connor and Korajczyk (1986). Estimating

F̂ = 1√
T
{ψ1, ψ2, . . . , ψJ}, where{ψ1, ψ2, . . . , ψJ} are eigenvectors corresponding with the

first J eigenvalues of 1
n
Ŷ′Ŷ.

Thus, F̂→P F follows. �

Proof of Theorem 6.2 : Given F̂, we have:

Ĝ(X) = ŶF̂(F̂′F̂)−1,

as F̂′F̂ = IJ, therefore,

Ĝ(X) = ỸF̂.

Then we need to show:

E((Ĝ(Xi)−G(Xi))
2) = 0.

Take the sample analogue,

1

n
((Ĝ(X)−G(X)))ᵀ((Ĝ(X)−G(X))).

Given:

G(X) = Φ(X)B + Rθ(X).

Ĝ(X) = (Φ(X)B + PΛ + PRθ(X))FᵀF̂ + PUDTF̂
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Therefore,

G(X)− Ĝ(X) = (Φ(X)B + PΛ + PRθ(X))FᵀF̂ + PUDTF̂−Φ(X)B−Rθ(X) = q1 + q2 + q3 + q4.

As shown in section 10.2,

1

n
((Ĝ(X)−G(X)))ᵀ((Ĝ(X)−G(X)))→P 1

n
qᵀ1q1 +

1

n
qᵀ3q3 +

1

n
qᵀ1q3 +

1

n
qᵀ3q1.

Therefore,

1

n
qᵀ1q1 = F̂ᵀF(Φ(X)B + PΛ + PRθ(X))ᵀ(Φ(X)B + PΛ + PRθ(X))FᵀF̂,

due to
1

n

3∑
j=1

eᵀ2ej +
1

n

3∑
j=1

eᵀje2 →
P 0,

and
1

n
eT
1 e1 →P F

BᵀΦᵀ(X)Φ(X)B

n
F ᵀ

then,
1

n
qT
1 q1 →P F̂ ᵀF

BᵀΦᵀ(X)Φ(X)B

n
F ᵀF̂ .

Under Theorem 6.1 and Assumption 2, which gives F̂→ F and FTF = IJ:

1

n
qT
1 q1 →P

BᵀΦᵀ(X)Φ(X)B

n
,

Similarly,
1

n
qT
3 q3 →P

BᵀΦᵀ(X)Φ(X)B

n
,

1

n
qT
1 q3 →P −

BᵀΦᵀ(X)Φ(X)B

n
,

1

n
qT
3 q1 →P −

BᵀΦᵀ(X)Φ(X)B

n
.

Therefore,

1

n
qᵀ1q1 +

1

n
qᵀ3q3 +

1

n
qᵀ1q3 +

1

n
qᵀ3q1 → 0,

thus,

Ĝ(X)−G(X)→P 0

�
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Proof of Theorem 6.3 : Let Ẏ = 1
T

(Y − Ĝ(X)F̂ )1T . By substituting the restriction, we

have the Lagrangian equation:

min
A

(Ẏ − Φ(X)A)′(Ẏ − Φ(X)A) + λĜ′(X)Φ(X)A (8)

Then we take the first order condition with repect toA and λ separately, the we obtain:(
2Φ′(X)Φ(X) Φ′(X)Ĝ(X)

Ĝ(X)′Φ′(X) 0

)(
Â

λ

)
=

(
2Φ′(X)Ẏ

0

)
. (9)

Under Assumption 2, the above matrice are invertible, which can be written as:(
Â

λ

)
=

(
2Φ′(X)Φ(X) Φ′(X)Ĝ(X)

Ĝ(X)′Φ′(X) 0

)−1(
2Φ′(X)Ẏ

0

)
. (10)

Therefore, we obtain:

Â = MÃ,

where

M = I− (Φ(X)′Φ(X))−1Φ(X)′Ĝ(X)(Ĝ(X)′Ĝ(X))−1Ĝ(X)′Φ(X),

Ã =
1

T
(Φ(X)′Φ(X))−1Φ(X)′Ẏ 1T.

Furthermore, let Ξ = Φ(X)Â − h(X) = Φ(X)MÃ− Φ(X)A−Rµ(X), and under
the restriction Ĝ′(X)Φ(X)A = 0, we can obtain:

Ξ = Φ(X)M(Φ(X)′Φ(X))−1Φ(X)′
1

T
(Φ(X)A+Rµ(X)+Γ+(Λ+Rθ(X))F ′)1T−Φ(X)A−Rµ(X).

(11)

Furthermore, we have:

Φ(X)M(Φ(X)′Φ(X))−1Φ(X)′ = (I−(Φ(X)′Φ(X))−1Φ(X)′Ĝ(X)(Ĝ(X)′Ĝ(X))−1Ĝ(X)′)P.

(12)

And then, substituteEquation 12 into Equation 11 and under Assumption 1, Theorem 6.2:

Ξ = Φ(X)A− Φ(X)A−Rµ(X),

therefore,
1

n
ΞᵀΞ→ 0.

And the Theorem 6.3 follows. �



10 APPENDIX 49

Proof of Theorem 6.4 : Define Z = max
{16p6P,16h6Hn}

{|α̂ph|/σ̂ph}. Under Assumption 3.2.3,

we have

α̂ph/σ̂ph|H0 →d N(0, 1).

Therefore, under the H0, we have:

etE(Z) 6 E[etZ ]

= E[max{t|α̂ph|/σ̂ph}]

6
p=P,h=Hn∑
p=1,h=1

E[et|α̂ph|/σ̂ph ]

= net
2/2.

Then take the logarithm of both sides we can obtain:

E[Z] 6
log n

t
+
t

2
.

If we set t =
√

2 log n to minimise logn
t

+ t
2
, then we have:

E[Z] 6
√

2 log n.

Therefore, we can bound the |α̂ph|/σ̂ph by
√

2 log n. �

Proof of Theorem 6.5 : To proof

inf
A∈A

P (reject H0|A)→ 1,

equivalently, we need to prove

inf
A∈A

P (S0 + S1 > Fq|A)→ 1.

S0 = Hn

∑P
p=1 I(

∑Hn

h=1 |α̂ph|/σ̂ph > ηn), as Hn = nv →∞ as n→∞.

Under Theorem 6.4 and n→∞, we have:

E(S0|A)→∞.

Meanwhile Fq = O(1), we can show that:

inf
A∈A

P (S0 + S1 > Fq|A)→ 1.

Then the Theorem 6.5 follows. �
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(a) r12−2 Curve 1972-1973 (b) r12−7 Curve 1978-1979

(c) r12−2 Curve 1980-1981 (d) r12−7 Curve 1985-1986

(e) r12−2 Curve 1982-1983 (f) r12−7 Curve 1982-1983

(g) r12−2 Curve 1985-1986 (h) r12−2 Curve 1985-1986

Figure 1: Mispricing Characteristic r12−2 and r12−7
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(a) PCM Curve 1984-1985 (b) PCM Curve 2016-2017

Figure 2: Mispricing Characteristic PCM

Figure 3: ROA Curve in 1988-1989
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(a) BEME Curve 1995-1996 (b) BEME Curve 1996-1997

Figure 4: Mispricing Characteristic BEME

(a) LME Curve 1998-1999 (b) LME Curve 2000-2001

Figure 5: Mispricing Characteristic BEME

(a) AT Curve 1998-1999 (b) AT Curve 2000-2001

Figure 6: Mispricing Characteristic AT



10 APPENDIX 53

Figure 7: LEV Curve in 2002-2003

Figure 8: IPM Curve in 2004-2005



10 APPENDIX 54

Figure 9: DelGmSale Curve in 2015-2016

Figure 10: C2D Curve in 2016-2017
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(a) Clustering of PCM with highest returns

(b) Clustering of PCM with highest returns

Figure 11: Clustering of PCM 1986-1987
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(a) Clustering of IPM with highest returns

(b) Clustering of IPM with highest returns

Figure 12: Clustering of IPM 2004-2005
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