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Antibiotic resistance has become one of the greatest challenges for modern medicine,
and new approaches for the treatment of bacterial infections are urgently needed to avoid
widespread vulnerability again to infections that have so far been easily treatable with
existing drugs. Among the many approaches investigated to overcome this challenge is
the use of engineered nanostructures for the precise and targeted delivery of existing
antimicrobial agents in a fashion that will potentiate their effect. This idea leans on
lessons learned from pioneering research in cancer, where the targeted delivery of anti-
cancer drugs to mammalian cells has been a topic for some time. In particular, new
research has demonstrated that nanomaterials can be functionalised with active antimi-
crobials and, in some cases, with targeting molecules that potentiate the efficiency of the
antimicrobials. In this mini-review, we summarise results that demonstrate the potential
for nanoparticles, dendrimers and DNA nanostructures for use in antimicrobial delivery.
We consider material aspects of the delivery vehicles and ways in which they can be
functionalised with antibiotics and antimicrobial peptides, and we review evidence for
their efficacy to kill bacteria both in vitro and in vivo. We also discuss the advantages and
limitations of these materials and highlight the benefits of DNA nanostructures specifically
for their versatile potential in the present context.

Introduction
Antibiotic resistance is a worldwide and growing human health issue, with major socio-economic
impact. Significant work is being done to find ways to overcome this threat, but no definitive solution
to this pressing healthcare challenge has yet been found. One promising line of research is the delivery
of antimicrobials with nanomaterials. In particular, the evidence is accumulating that delivery of anti-
microbials via delivery vehicles with ‘nanopatterned’ active molecules on their surface can potentiate
the effects of the antimicrobials and increase their efficiency against microbial targets [1,2].
Nanoengineering enables the positioning of drugs at multiple sites on molecular scaffolds, which

can be functionalised for targeted delivery of their payload. Delivery of such multivalent anti-cancer
drugs has been explored in mammalian cells in several studies [3–7], but little work has been done in
the field of multivalent antimicrobial delivery. With this mini-review, we illustrate how the delivery of
active antimicrobials on the surface of nanostructures can potentiate the effects of existing
antimicrobials.
We first briefly consider the types of antimicrobials that have been used for this purpose, before dis-

cussing a range of materials that have been ‘nanopatterned’ with antimicrobials, including nanoparti-
cles, dendrimers and DNA nanostructures (Figure 1), the degree of specificity and precision with
which the antimicrobials can be patterned on the surface of these vehicles, and how these approaches
potentiate the effects of the antimicrobials. We also comment on the most promising approaches and
future directions for this field. We do not consider materials that encapsulate drugs for delivery, such
as liposomes and micelles, but focus on materials that have the potential for surface modification with
antimicrobials with varying degrees of precision.
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Antimicrobials used for ‘nanopatterned’ delivery
Two main categories of antimicrobials have been combined with nanomaterials to enable the delivery of mul-
tiple copies: antibiotics and antimicrobial peptides (AMPs). Antibiotics are generally classed according to their
mechanism of action against bacteria. These broad categories include cell wall synthesis inhibitors, protein syn-
thesis inhibitors, and DNA or RNA synthesis inhibitors. Antibiotics are small molecules that can be covalently
linked or adsorbed onto a variety of nanomaterials [8,9].
AMPs, also known as host defence peptides, are produced by all life forms [10] and protect against infection.

Each peptide has a broad range of antimicrobial activity usually against both Gram-negative and Gram-positive
bacteria [11]. The key to the antimicrobial activity of AMPs is their interaction with the bacterial membrane.
AMPs cause disruption to the microbial membrane and can cause bacterial cell death through lysis, or they can
translocate into the cytoplasm and attack intracellular targets [12,13]. AMPs have low metabolic stability due to
enzymatic degradation [14], which limits their use as antimicrobials. However, the use of nano-vehicles for
their delivery can overcome this issue and potentiate the activity of AMPs. This potentiation is attributed to
increased stability of the complexes against protease degradation in the matrix and/or inside the cells and
against peptide self-aggregation [15]. It has been suggested that the high surface coverage and high charge
density of the peptides when attached on nanoparticles is what protects the peptides against digestion by
enzymes [16].
In the sections below, we explore the materials that have been explored for use as nano-vehicles for the deliv-

ery of antibiotics and AMPs, thereby potentiating the effects of these antimicrobials.

Nanoparticles
Nanoparticles — defined as particles that range between 1 and 100 nm in diameter — are currently the most
widely used vehicles for the delivery of active antimicrobials attached to their surface. Several properties of
nanoparticles make them attractive candidates for antimicrobial delivery, including their high surface-to-volume
ratio, the possibility of surface functionalisation, and their net-positive charge that allows them to bind to the
negatively charged membrane of bacteria [17,18]. Many nanoparticles, especially metallic ones, possess anti-
microbial properties themselves, however, for the purpose of this review we will focus on their potential as anti-
microbial delivery vehicles. In this section, we will focus on metallic, silica-based or polymer-based
nanoparticles [2,17,19].
Metallic nanoparticles are usually synthesised via chemical reduction in an inorganic salt (gold, silver, alumin-

ium, titanium and others) and have the highest drug-loading efficiency of all types of nanoparticles [20]. Silica
nanoparticles are most widely produced using the sol-gel method [21]. Polymer-based nanoparticles are com-
posed of a polymeric matrix and can be prepared via different methods, such as solvent evaporation or diffusion
and polymerisation. Some of the most commonly used polymers are polylactide (PLA), poly(lactic-co-glycolic
acid) (PLGA) or natural ones, such as alginate and chitosan [22,23]. Antimicrobial drugs can be attached to poly-
meric nanoparticles through covalent bonding, hydrophobic interactions or entrapment [24].

Figure 1. Nanomaterials that have potential for surface modification and drug delivery.

(a) Nanoparticles, (b) dendrimers and (c) DNA nanostructures.
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Several studies have demonstrated that the delivery of antibiotics and AMPs on the surface of nanoparticles
increases their efficiency relative to that of the free antimicrobials (Figure 2). The mechanism of action of the
nanoparticle–antimicrobial conjugates largely depends on the antimicrobial used in each case, but the potenti-
ation of the activity of the antimicrobial substances is generally attributed to the protection of the active anti-
microbial and synergistic effects between the active antimicrobial and the nanoparticle [15].

Gold nanoparticles
Several studies have shown that the effects of antibacterial peptides can be potentiated in vitro and in vivo by
their attachment to gold nanoparticles. Chen et al. attached surfactin, a cyclic peptide that penetrates cellular
membranes, to ultrasmall Au nanodots via nonspecific hydrophobic interactions. Attachment of the peptide to
the nanodots increased its efficiency against non-multidrug-resistant (Escherichia coli, Proteus vulgaris,
Salmonella enteritidis and Staphylococcus aureus) and multidrug-resistant bacteria, such as MRSA, by 80-fold
in comparison with its delivery free in solution. The increased antimicrobial effect was attributed to the

Figure 2. Nanoparticles as antimicrobial delivery vehicles.

(a) Nanoparticles coated with antimicrobials can bind bacterial targets. (b) The antimicrobial cargo acts on the bacterial

surface, sometimes synergistically with the nanoparticle carrier. (c) The synergistic effects between the antimicrobials and the

nanoparticles and the potentiation of the active antimicrobial lead to bacterial cell lysis.
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synergistic effect of the peptide and the Au nanodots on the disruption of the bacterial membrane.
Interestingly, a study in rats showed that the same system could promote healing of MRSA-infected wounds in
vivo [25]. Similar in vitro and in vivo effects were observed for the AMP cecropin-melittin when delivered on
larger Au nanoparticles of 14 nm. The effects of the peptide against E. coli, Klebsiella pneumoniae,
Pseudomonas aeruginosa and S. aureus bacteria were potentiated in vitro and this antimicrobial activity was
retained in vivo when used in wounds infected by P. aeruginosa and MRSA in mice [26]. The activity of
esculentin-1a, a peptide derived from frog skin, against planktonic and biofilm-forming P. euruginosa was
increased by 15-fold when covalently linked to Au nanoparticles. The peptide–nanoparticle conjugate was able
to disrupt the bacterial membrane and cause lysis of bacterial cells [27]. Similarly, the activity of the AMP
indolicidin [28] against Candida albicanis biofilms was potentiated when conjugated on Au nanoparticles.
Studies have also shown that the effects of existing antibiotics can be potentiated when delivered on nanopar-

ticles. Work on antibiotics that are covalently bound on Au nanoparticles has been reviewed in detail by
Vigderman and Zubarev [8]. Briefly, conjugation with nanoparticles has been shown to potentiate the effects of
vancomycin, ampicillin, streptomycin and kanamycin against Gram-negative and Gram-positive pathogenic bac-
teria [8]. In 2002, Lin et al. produced gold nanoparticles that had been patterned with mannose, which binds
specifically to FimH adhesin, a protein found on E. coli type 1 pili. The mannose–Au nanoparticles bound to
this target selectively and significantly more efficiently than free mannose [29]. Phosphatidylcholine-decorated
Au nanoparticles loaded with the antibiotic gentamicin are active against Gram-negative and Gram-positive bac-
teria, and are especially efficient in the prevention and disruption of biofilms [30].
A substantial body of work has also emerged on Au nanoclusters and has been recently reviewed by

Yougbare et al. [31]. Au nanoclusters are ultra-small Au nanoparticles that consist of tens to hundreds of gold
atoms. These nanoclusters have significant antimicrobial activity even when not functionalised with active anti-
microbials, due to electrostatic interactions with the bacterial cell membrane [32]. However, conjugation of
antimicrobial small molecules or macromolecules to Au nanoclusters can increase the potency of the multiva-
lent, nanopatterned antimicrobials in comparison with that of the free active components [31].

Silver nanoparticles
Silver (Ag) nanoparticles have also been used as antimicrobials, mostly exploiting the antimicrobial properties
of silver itself [33,34], but also as vehicles for AMPs and antibiotics attached to their surface. As with Au nano-
particles, conjugation of AMPs to Ag nanoparticles increases the efficiency of these peptides against pathogenic
bacterial strains [35]. For example, the potency of the cationic peptide odorranain-A-OA1 against E. coli
in vitro was increased when the peptide was conjugated to Ag nanoparticles [36]. Ag nanoparticles have also
been used as delivery platforms for photosensitising molecules: Ag nanoparticles conjugated with porphyrin
have been shown to be bactericidal against Staphylococcus epidermidis and E. coli upon light activation [37].
Similar studies have been done with conjugates of Ag nanoparticles with other antimicrobials. In a study

from Mei et al., Ag nanoparticles were combined with the antimicrobial chitosan to produce a synergistic anti-
bacterial effect. The functionalised, multivalent nanoparticles bound to Mg2+ ions on the bacterial membrane
and induced damage [38]. In another study, Ag nanoparticles capped with hydrolysed collagen and blends of
collagen with other natural polymers were shown to have inhibitory activity against E. coli and P. aeruginosa,
and these nanoparticles had low cytotoxicity against murine macrophages [39]. In a study by Khatoon et al.
[40], the efficiency of ampicillin–Ag nanoparticles against drug-resistant bacteria was higher than that of the
free antibiotic, and the toxicity of these nanoparticles to mammalian cells was minimal . Similarly, the effi-
ciency of the antibiotic cefotaxime against strains of E. coli and MRSA was also increased when it was conju-
gated to Ag nanoparticles [41], and a synergistic antibacterial effect has been reported with lysozyme-Ag
nanoparticle conjugates —the presence of these conjugates significantly decreased bacterial cell growth [42]. In
one study, Ag nanoparticles were coated with mesoporous silica that was functionalized with ampicillin; these
nanoparticles had good antibacterial properties and are a step towards overcoming some limitations of metallic
nanoparticles, such as low colloidal stability and aggregation in biological environments [43].

Other metallic nanoparticles
Though Au and Ag nanoparticles are the most commonly used as antimicrobial vehicles, other metallic nano-
particles have also been used. In vitro experiments have shown that Zinc oxide nanoparticles combined with
polymerised geranium oil, which is antibacterial, have good antimicrobial performance against E. coli and
S. aureus [44]. The same two bacteria have been found to be susceptible to Cu nanoparticles chelated to the
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antimicrobial catechin; the chelation protected catechin from oxidation and increased its bactericidal activity in
vitro [45]. Finally, AMPs have been used in combination with alumina nanoparticles. The peptide
EAAA-BP100 was covalently bound to the surface of the nanoparticles, and the antimicrobial activity of the
bound peptide against E. coli and Salmonella typhimurium was greater than that of the free peptide [15].

Silica nanoparticles
Silica nanoparticles have most commonly been used as mesoporous particles into which antimicrobial compo-
nents can be loaded [46], but some studies have been done in which antimicrobials have been attached to their
surface. An interesting study by Syryamina et al. showed that the antimicrobials trichogin GA IV and ampullos-
porin A can be adsorbed on the surface of colloidal silica. The peptides formed close-packed clusters on the
surface of the nanoparticles, although these functionalised nanoparticles were not tested against bacteria [47].
Previously, a study by Li and Wang showed that lysozyme-coated silica nanoparticles are effective against E. coli
in vitro and in an intestine-infected mouse model with minimal side effects [48]. In another study, vancomycin-
modified silica nanoparticles were used to specifically target and kill Gram-positive bacteria [40]. This specificity
of vancomycin for Gram-positive bacteria over Gram-negative bacteria and other cells is due to the specific
hydrogen-bonding interactions of vancomycin toward the terminal d-alanyl-d-alanine moieties of Gram-positive
bacteria [49]. Multivalent vancomycin is active against vancomycin-resistant bacterial strains [50], and
vancomycin-modified silica particles have the potential to overcome this vancomycin resistance by delivering
multiple vancomycin molecules to the bacterial target. In a study published in 2020, this use of vancomycin-
loaded silicon nanoparticles was refined by the addition of the peptide CARG to the surface to facilitate bacterial
targeting. CARG can recognise S. aureus bacteria and facilitate the accumulation of systemically administered
payloads (ranging from drug-sized molecules to nanoparticles) at sites of staphylococcal infection [51]. The
silicon nanoparticles loaded with vancomycin and targeted with the CARG peptide were significantly more effect-
ive than free vancomycin at eradicating a staphylococcal lung infection in mice.

Polymeric nanoparticles
Polymer-based nanoparticles have also attracted interest in the context of antimicrobial delivery. For example,
polyion complex (PIC) nanoparticles carrying the last resort antimicrobial polymyxin B (Pol-B) had a sustained
inhibitory effect on the growth of P. aeruginosa [52]. Similarly, polymer nanoparticles decorated with different dens-
ities of poly(dimethylaminoethyl methacrylate) have antimicrobial activity against E. coli and Mycobacterium
smegmatis [53]. Interestingly, the mechanism of action against the two bacterial strains differed — the nanoparticles
were bactericidal against E. coli and bacteriostatic against M. smegmatis.
Delivery of multiple active molecules on polymeric nanoparticles has also been shown to be effective against

biofilms. For example, the synthetic peptide BAR was more effective at disrupting Porphyromonas gingivalis
and Streptococcus gordonii biofilms when delivered on PGLA nanoparticles than when free [54]. Interestingly,
similar effects have been observed with the delivery of multiple copies of photosensitisers to bacterial targets.
In a study by Staegemann et al., hyperbranched polyglycerol (hPG) loaded with zinc porphyrin photosensitisers
and mannose was used against S. aureus targets. The conjugates had significant antibacterial activity when car-
rying 70 or more mannose units, showing that the targeted delivery of photosensitisers can also potentiate
photodynamic therapy [55].
Finally, in an interesting study by Laroque, Reifarth et al., AMPs were used not in conjunction with nanopar-

ticles and fibres, but in a ‘bottlebrush’ architecture, where polymeric side chains are attached to a backbone.
This material interfered with the bacterial cell envelope and affected bacterial growth [56]. Similar effects were
reported by Zhang et al. [57].

Advantages and challenges
Overall, nanoparticles have a range of properties that make them promising antimicrobial vehicles, such as high
surface area, stability and low production costs. The range of sizes of nanoparticles currently used in antimicro-
bial delivery applications is between 10 and 100 nm, with varying shapes. The range of sizes and shapes is indi-
cative of the versatility of nanoparticles; however, no studies have been done to directly compare the effects of
size and shape on efficacy. More work on this area could inform future studies, although the shape of nanopar-
ticles cannot currently be controlled easily. Au, silica and polymeric nanoparticles generally have good biocom-
patibility and relatively low toxicity to mammalian cells [58]. However, the vast majority are non-biodegradable
and their accumulation in organs can become toxic in the long term. Moreover, the exact position of the active
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molecules on the nanoparticles is difficult to control and this means that multiple types of active molecules
cannot be easily or precisely attached to one nanoparticle. This makes the functionalisation of nanoparticles
with combinations of active molecules — either ‘cocktails’ of antimicrobials or combinations of antimicrobial
and targeting molecules — extremely challenging.

Dendrimers and dendrimeric peptides
Another category of materials that have shown promise as delivery vehicles is that of dendrimers. Dendrimers
are highly branched, globular, polymeric structures (Figure 1b) that are usually made of poly(amidoamine)
(PAMAM), poly(propyleneimine) (PPI) or poly(ethylene glycol) (PEG). They have three distinct structural fea-
tures: a central core; surface functionalities; and branching units that link the two. The branching units are
identical fragments that build up from the core to make star-like macromolecular structures [59]. Dendrimers
are normally nano-scale in size and they have narrow polydispersity, uniform nanomorphology and tunable
surface entities. The terminal groups at the arms of the dendrimer determine its solubility, reactivity and poten-
tial for further modification [60]. Dendrimers themselves have shown potential as selective antibacterials that
mimic the action of AMPs, associating with and disrupting bacterial membranes through cationic and hydro-
phobic interactions [61,62], but they can also potentiate the effects of antimicrobials. They have been used as
encapsulation agents, but here we focus on approaches that enable the delivery of multiple antimicrobial mole-
cules on the surface of the dendrimer [63,64].

Dendrimer–antimicrobial conjugates
A variety of antibiotics and AMPs have been conjugated to dendrimers in attempts to potentiate their antimicrobial
effects. Penicillin that was conjugated to a PAMAM dendrimer via a PEG linker retained its activity, and this
system was effective against S. aureus when designed so that the penicillin stayed bound to the dendrimer and
when designed so that penicillin was released in close proximity to the bacteria [65]. Choi et al. developed
dendrimer-based vancomycin conjugates against Gram-positive bacteria, and these nanostructures bound to
vancomycin-resistant and non-resistant S. aureus with nanomolar affinity [49]. In a recent study, the antibiotic
ciprofloxacin was conjugated to a G0-PAMAM dendrimer, and the antimicrobial activity of the conjugate was
greater than that of free ciprofloxacin against Enterococcus faecalis, S. aureus and P. aeruginosa [66].
Glycodendrimers and phosphorus dendrimers have also been used in combination with the antibiotic levofloxacin.
The synergistic action of the dendrimers and the antibiotic significantly increased antibacterial efficiency against
E. coli in comparison with the free antibiotic [67]. AMPs have also been combined with dendrimers to potentiate
their effects — peptides that were covalently conjugated with cationic carbosilane dendrons caused significant
damage to bacterial membranes in E. coli and S. aureus in vitro [68]. Finally, Kitov et al. have developed a lactose-
based polymeric nanosystem that carries multivalent, templated inhibitors of Shiga toxin (which is produced by
E. coli) [69]. This system increased the activity of the inhibitors by several orders of magnitude in vivo.

Advantages and challenges
Dendrimers offer a range of advantages as nano-vehicles, the main one being precise control of the size of the
dendrimer and the number of active molecules that can be attached on its surface. They can also increase the
solubility of antimicrobials and, due to their modular nature, their chemical and physical properties are
tunable. However, dendrimers are expensive to produce, and can be cytotoxic due to interactions between
the positively charged dendrimers and the negatively charged cell membrane [70].

DNA nanostructures
An emerging category of antimicrobial delivery vehicle is DNA nanostructures. These nanostructures are made
by folding a long piece of single-stranded, circular DNA into pre-designed shapes, first proposed by Seeman in
the 1980s [71,72] and revolutionised by Rothemund in 2006 [73]. The structures are held together by hundreds
of oligonucleotides (Figure 3a) that can be functionalised to carry a wide variety of active molecules
(Figure 3b). Each oligonucleotide can be functionalised independently, so that the nanostructures can simultan-
eously carry multiple different molecules that are precisely positioned on the structure’s surface [74–78].
Another advantage of DNA nanostructures is their excellent biocompatibility; though they can have low stabil-
ity in biological fluids, mostly due to susceptibility to DNA-targeting enzymes present, this stability can be
improved with chemical modifications [79].
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A few studies have clearly demonstrated the potential of DNA nanostructures as antimicrobial delivery vehi-
cles. In 2014, Setyawti and colleagues showed that tetrahedral DNA nanostructures loaded with Au nanoclus-
ters as detection beacons and with actinomycin as the active antimicrobial (Figure 3c) can be taken up by
E. coli and S. aureus. Treatment with the nanostructure reduced the bacterial population by 65%, whereas the
free antibiotic reduced the population by 42%. The increased activity of the bound drug was attributed to its
localised release from the DNA vehicle via degradation of the DNA by DNAses present in the bacteria [80].
More recently, tetrahedral DNA nanostructures have been used by Liu et al. to deliver the AMP GL13K

Figure 3. DNA nanostructures have potential as antimicrobial delivery vehicles.

(a) Hundreds of oligonucleotides (red) bind to pre-designed positions of a long, circular, single-stranded piece of DNA (blue),

folding it and holding it in place to form a nanostructure. (b) Each one of the oligonucleotides (red) can be functionalised so that

it carries active molecules, such as antimicrobials (enzymes, small molecules, peptides) or fluorophores. (c) DNA nanostructures

that have been used to date as antimicrobial carriers. DNA pyramids have been combined with antimicrobial peptides (left) or

the antibiotic actinomycin and gold nanoparticles (centre), while a ‘five-well frame’ nanostructure (right) has been used to deliver

the antimicrobial enzyme lysozyme and at the same time specifically bind bacterial targets using aptamers.
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(Figure 3c) to E. coli and P. gingivalis. The nanostructures increased bacterial uptake of the peptide, increased
the stability of the peptide by protecting against proteases in the extracellular environment, and potentiated the
effects of the peptide against both bacterial targets [81].
DNA origami has recently been used as a delivery vehicle for the antimicrobial enzyme lysozyme. In this

study, Mela et al. exploited the potential for simultaneous multi-functionalisation of DNA origami by adding
three functional components: aptamers that specifically bind to E. coli and Bacillus subtilis, the antimicrobial
enzyme, and fluorophores to act as detection beacons for the nanostructures (Figure 3c). The nanostructures
specifically bound to their bacterial targets, and the origami-bound lysozyme was more efficient at slowing bac-
terial growth than free lysozyme [82].
These studies show that the ability to relatively easily modify and functionalise DNA nanostructures makes

them promising nano-vehicles that enable controlled, precise and targeted delivery of antimicrobials. Any
desired functionality can be added to the DNA nanostructures by attaching enzymes, proteins, drugs, peptides
and other functional molecules to them with nanometre precision. This precision allows for control of the
spatial relationships between each of the functional molecules and between the functional molecules and their
targets, thereby providing fine control over their interactions. Consequently, DNA nanostructures have enor-
mous potential for tuneable microbial targeting applications and could hold the key to overcoming the thera-
nostic challenges posed by growing antibiotic resistance.

Conclusion
Antibiotic resistance remains a world-wide health issue that is rendering us once again vulnerable to diseases
that have been treatable for decades. A wealth of research is emerging from efforts to overcome this threat,
including attempts to deliver multiple copies of one or more antimicrobials in a patterned, precise, and targeted
manner. Nanomaterials are showing great potential as vehicles for the precise delivery of active antimicrobials
and the potentiation of their effects against their targets. Despite disadvantages such as potential cytotoxicity,
in the case of nanoparticles and dendrimers and limited stability in biological fluids in the case of DNA nanos-
tructures, the concept of delivering antimicrobials through nanostructures is gaining momentum. Further
research is now needed to understand how to overcome the limitations of different nanocarriers and how
exactly the targeted delivery of antimicrobials potentiates their effects so that these effects can be maximised.
Also, characterisation of the pharmacokinetic and pharmacodynamic properties of antibacterial nanocarriers
need to be studied for those materials to be successfully translated into successful candidates in in vivo drug
delivery.
Developments in DNA nanotechnology have enabled the delivery of antimicrobials with nano-vehicles,

which is becoming increasingly precise. This fine-tuning of the delivery provides more and more control
over which antimicrobials are delivered, in what combinations and in what numbers to their bacterial
targets. DNA nanostructures show particular promise due to their biocompatibility and high functionalisa-
tion potential. They provide a platform that is highly versatile and can be functionalised to simultan-
eously carry antimicrobials, photosensitisers, detection beacons such as fluorophores, and aptamers and
antibodies that allow for specific sensing and binding of bacterial targets. The future of antibiotics likely
lies in multivalent, targeted and precise delivery and more research is needed in this field to understand
and gain full control over the ways in which DNA nanostructures can become potent antibacterial
nano-vehicles.

Summary
• Antibiotic resistance is one of the greatest challenges in modern medicine. New approaches

to the treatment of bacterial infections are urgently needed.

• Use of ‘nano-vehicles’ for precise, targeted delivery of antimicrobial agents to potentiate their
effects shows promise.

• Nanoparticles, dendrimers and DNA nanostructures can be used for this type of antimicrobial
delivery.
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• Of those, DNA nanostructures show exceptional potential for functionalisation with active anti-
microbials and targeting molecules to increase the efficiency of the antimicrobials.

• Ongoing studies are exploring the development and optimisation of DNA nanostructures as
antimicrobial delivery vehicles.
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