
Surrogate Model Optimisation for PWR
Fuel Management

Application of advanced surrogate models to optimisation
problems in nuclear fuel loading pattern generation

Andrew James Whyte

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Jesus College December 2020

Revision hash: ab83498

To my parents, Carol and Martin Whyte.

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents
of this dissertation are original and have not been submitted in whole or in part for consideration
for any other degree or qualification in this, or any other university. This dissertation is my own
work and contains nothing which is the outcome of work done in collaboration with others,
except as specified in the text and Acknowledgements. This dissertation contains fewer than
65,000 words including appendices, footnotes, tables and equations and has fewer than 150
figures.

Andrew James Whyte
December 2020

Acknowledgements

Many people have contributed to this PhD, either directly or indirectly. The author hopes that
the most important ones are acknowledged here, and apologises to anyone who went so far as
to read this and has been left out. You must have helped me out, or you wouldn’t be looking,
please remind me and I’ll buy you a pint.

University staff who are owed recognition, include: Peter Benie who has lent his expert
level IT skills, and demonstrated the better part of valour while commenting on my efforts. I
would like to thank Prof Joan Lasenby, who arranged my EPSRC funding at the last minute.
Thanks to Zhiyao Xing and Dr Eugene Schwageraus, for the contribution of simulation results
used in Appendix C for their insights and advice with respects to this section of the thesis and
for allowing me to collaborate with them on their research. Prof Berloff and Kirill Kailin, who
took the idea of fuel loading pattern optimisation and developed the concept of polariton based
simulation that is mentioned in Section 6.8.

Thanks to Dr Geoff Parks for his unwavering support and timely advice, for taking the
risk of accepting a headstrong, cantankerous, mature student, helping to guide him through
the admissions process and for sticking with him on this journey. Also, the the fastidious
corrections of Prof Jennifer Whyte and Geoff – without whom all would be lots.

I am grateful to the staff at ANSWERS, Jacobs. Particularly to Chris Bazel and Dr Ben
Lindley who made running WIMS on the Cambridge HPC possible. I enjoyed the support of
Alan Charles on using WIMS and for inspirational conversations on optimisation.

Thanks to Dr Janine Ochoa for marrying me, supporting and proofreading my work, and
sharing our time in college. Also, thanks to Chris Mangnall, for helping me through GCSE
and A-Level maths and, more recently, being my companion on the Stanford University, École
Normale Supérieure, and University of Toronto MOOCs on quantum mechanics, statistical
mechanics, and quantum machine learning that lead to, and shaped this PhD.

Finally, I should thank all of the friends who I have invited to eat with me in college
over the past three years. If you were then forced into a conversation about the problems of
global energy, nuclear power, optimisation, neural networks or quantum simulators, you are the
ultimate proof that there is no such thing as a free lunch!

Abstract

Pressurised Water Reactor (PWR) fuel management is an operational problem for nuclear
operators, requiring solutions on a regular basis throughout the life of the plant. A variety
of conflicting factors and changing goals mean that fuel loading pattern design problems
are multiobjective and, by design, have many input variables. This causes a combinatorial
explosion, known as the ‘curse of dimensionality’, which makes these complex problems
difficult to investigate.

In this thesis, the method of surrogate model optimisation is adapted to PWR loading
pattern generation. Surrogate models are developed based around three approaches: deep
learning methods (convolutional neural networks and multi-layer perceptrons), the fission
matrix and simulated quantum annealing. The models are used to predict core parameters of
reactors in simplified optimisation scenarios for a microcore, a small modular reactor, and a
‘standard’ PWR. The experiments with deep learning models show that competitive results can
be obtained for training sets using a much lower number of simulations than direct optimisation.
Fission matrix experiments demonstrate the method to predict core parameters for the first time,
with interesting preliminary results. Novel experiments using simulated quantum annealing
demonstrate the technique is able to generate loading patterns by following heuristic rules and
is suitable for application to custom optimisation hardware.

The principal contribution of this work is to show that surrogate model optimisation can be
used to augment fuel loading pattern optimisation, generating competitive results and providing
enormous computational cost reduction and thus permitting more investigation within a given
computational budget. These methods can also make use of new computational hardware such
as neural chips and quantum annealers. The promising methods developed in this thesis thus
provide candidate implementations that can bring the benefits of these innovations to the sphere
of nuclear engineering.

Table of contents

List of figures xvii

List of tables xxi

Nuclear Terms: xxiii

Optimisation Terms: xxvii

Mathematical Nomenclature: xxxiii

1 Introduction: Optimisation and PWR Fuel Management 1
1.1 PWR Fuel Management . 1

1.1.1 Operation and Fuel Reloading . 1
1.1.2 In-core Reactor Physics . 3
1.1.3 PWR Data Sources . 4
1.1.4 ‘Full Sized’ PWRs . 5
1.1.5 ‘Small’ PWRs . 8

1.2 Optimisation in Nuclear Power Plants . 8
1.2.1 Multiobjective Optimisation . 11
1.2.2 The No Free Lunch Theorem . 12
1.2.3 Surrogate Model Optimisation . 14
1.2.4 Evaluating the Performance of Multiobjective Optimisation 15
1.2.5 Understanding Fuel Management Problems in terms of Dimensionality 17

1.3 Aims and Objectives . 17
1.4 Guide to the Thesis . 18
1.5 Summary . 19

2 Surrogate Model Optimisation Techniques 21
2.1 Introduction . 21

xii Table of contents

2.1.1 Surrogate Model Definition . 21
2.1.2 Surrogate Modelling Methods . 23

2.2 Sampling Plans . 24
2.2.1 Types of Sampling Plan . 25
2.2.2 Prediction-based Exploitation . 27

2.3 Evaluating Accuracy of Estimates . 28
2.4 Surrogate Model Construction . 29

2.4.1 Polynomial Models . 29
2.4.2 Radial Basis Function Models . 31
2.4.3 Kriging . 33
2.4.4 Support Vector Regression . 35
2.4.5 Artificial Neural Networks . 38

2.5 Summary of Methods . 43

3 Surrogate Model Optimisation, Deep Learning and PWR Fuel Management 47
3.1 Applications of Surrogate Models . 47

3.1.1 Mechanical Engineering . 48
3.1.2 Computational Fluid Dynamics and Aerospace Design 48
3.1.3 Meteorology and Physical Geography 49
3.1.4 Mineral Prospecting and Mining . 49

3.2 Surrogate Models in Nuclear Engineering 50
3.3 Deep Learning Surrogate Models . 51

3.3.1 Deep Learning Model Architecture 52
3.4 PWR Fuel Design and Management . 53

4 Framework and Methodology for Surrogate Model Optimisation 57
4.1 A Simplified Structure for SMO Fuel Loading Optimisation 58
4.2 Software Architecture . 58

4.2.1 Python . 60
4.2.2 C++ . 60
4.2.3 Simulation of the Neutron Transport Equation 60
4.2.4 Deep Learning Frameworks . 63
4.2.5 Multi Layer Perceptrons . 63
4.2.6 Convolutional Neural Network . 64
4.2.7 Optimisation . 65
4.2.8 Approaches to Parallelism in Optimisation 65
4.2.9 Dimod . 66

Table of contents xiii

4.3 Parallel and Serial Optimisation Algorithms 67
4.3.1 NSGA-2 Algorithm Modified for PaGMO2/PyGMO2 67

4.4 A 6×6 Microcore with Rotational Symmetry 68
4.5 Summary . 72

5 Deep Learning Surrogate Models 75
5.1 Introduction . 75
5.2 Surrogate Model Optimisation . 76

5.2.1 Optimisation Tasks . 77
5.2.2 Optimisation Algorithm . 77
5.2.3 Training Sets . 78
5.2.4 MLP based Surrogate Model . 78
5.2.5 CNN based Surrogate Model . 79

5.3 Design of Deep Learning Surrogate Models 79
5.3.1 Method . 79
5.3.2 Results . 80

5.4 Experiment 1: BOL PPF vs Position of Hot Pin 84
5.4.1 Method . 84
5.4.2 Results . 84

5.5 Experiment 2: BOL PPF vs Mean Enrichment 87
5.5.1 Method . 87
5.5.2 Results . 88

5.6 Experiment 3: EOC Burnup vs PPF . 93
5.6.1 Method . 93
5.6.2 Results . 94

5.7 Experiment 4: SMR Core . 95
5.7.1 Method . 96
5.7.2 Results . 98

5.8 Summary . 98

6 Fission Matrix Loading Pattern Model 105
6.1 Introduction . 105
6.2 Fission matrix for the 6×6 Microcore . 106
6.3 A Fission Matrix Surrogate Model . 107
6.4 Experiment 1: Powermap Prediction . 110

6.4.1 Method . 110
6.4.2 Results . 111

xiv Table of contents

6.4.3 Limitations of a Fission Matrix Model 113
6.5 Experiment 2: BOL PPF and Mean Enrichment 113

6.5.1 Method . 113
6.5.2 Results . 113

6.6 Experiment 3: PPF vs Cycle Length . 115
6.6.1 Method . 116

6.7 Results . 120
6.8 Discussion . 122

7 Extended Work: Quantum Annealing Optimisation of a Heuristic Surrogate Model125
7.1 Introduction . 125
7.2 Adiabatic Optimisation using a Simple, Rule-based Surrogate 127

7.2.1 Adiabatic Quantum Computers and Quantum Annealing 127
7.2.2 Methodology . 128
7.2.3 Results . 130

7.3 Extension: LPs from the DW2000Q Quantum Annealer 133
7.4 Discussion . 135
7.5 Conclusions . 137

8 Discussion and Conclusions 139
8.1 Insights into Surrogate Model Development 139

8.1.1 Deep Learning . 140
8.1.2 Fission Matrix . 141
8.1.3 Quantum Annealing . 142
8.1.4 Trends in Computational Optimisation 142

8.2 Recommendations for Future Research . 144
8.3 Conclusions . 146
8.4 Significant Contributions to the Field . 147

References 149

Appendix A Neutron Transport Equation and Fission Matrix 167
A.1 Derivation of the Fission Matrix from Neutron Transport 167

Appendix B Supporting Technical Studies 171
B.1 Generating a Sampling Plan that Maximises the Variance of Means 171
B.2 NSGA 2 Parametrisation Study . 174

B.2.1 NSGA2 studies in literature . 174

Table of contents xv

B.2.2 Number of generations . 175
B.2.3 Populations size . 176
B.2.4 Population P and generations N . 177
B.2.5 Crossover cr and mutation rate m 178
B.2.6 Review . 180

B.3 Kolmogorov-Smirnov Test . 180
B.3.1 Review . 181

B.4 PPF or pin power variance . 182
B.5 Required Neutron Population for Fission Matrix 183

Appendix C Application of the SMO Framework to FHR Fuel Technology 187
C.1 Introduction . 187

C.1.1 Simulation Experimental Set-up . 189
C.2 Neuro-Surrogate Model Development . 190

C.2.1 Neural Network Architectural Investigation 190
C.2.2 Evaluation of Accuracy of Deep Learning Networks 193

C.3 Results . 194
C.3.1 Beginning of Life k∞ Prediction . 194
C.3.2 Discharge Burnup and Reactivity Coefficients Over Depletion 195

C.4 Conclusions . 196

Appendix D Technical details 199
D.1 Technical Information on Computer Equipment: 200

List of figures

1.1 Reload design process in a utility company 3
1.2 The geometry different PWR cores showing locations of fuel assemblies . . . 6
1.3 EPR fuel assembly designs . 7
1.4 NDF example . 11
1.5 Hypervolume and ε indicators . 15

2.1 Architecture of (a) direct iterative optimisation, and (b) surrogate model opti-
misation . 22

2.2 (a) Latin Hypercube; (b) Orthogonal Sampling 27
2.3 A trained Support Vector Surrogate Model 38
2.4 A simplified single input, single output ANN 39
2.5 A slightly more complex neural netowrk . 41
2.6 Relationships between Surrogate Modelling techniques 44

3.1 Deep learning topologies . 52

4.1 System process . 57
4.2 Software architecture . 59
4.3 A microcore design . 68

5.1 Experimental microcore flux . 76
5.2 Heatmap of MLP topologies . 81
5.3 Error vs Loss Function . 82
5.4 Training size vs model accuracy . 83
5.5 CNN parameter prediction error . 83
5.6 Experiment 1: DSO vs Random data trained MLP and CNN surrogate models 85
5.7 Experiment 1: DSO vs Sobol MLP and CNN surrogate models 87
5.8 Experiment 2: DSO and deep learning SMO results 88
5.9 Experiment 2: SMO results in Serpent . 88

xviii List of figures

5.10 Experiment 2: DSO and SMO LPs . 90
5.11 Experiment 2: SMO and DSO repeated runs 91
5.12 Experiment 2: SMO(p = 100, N = 1000) 92
5.13 Experiment 3: DSO and SMO results . 94
5.14 Experiment 3: SMO results in Serpent . 95
5.15 Experiment 3: DSO and SMO burnup LPs 96
5.16 A small SMR similar to Nuscale . 97
5.17 SMR detector data . 97
5.18 Experiment 4: DSO and SMO SMR results 98
5.19 Experiment 4: SMO results in Serpent for SMR 99
5.20 Experiment 4: DSO and SMO SMR LPs . 100
5.21 Flow diagram for choosing SMO . 102

6.1 Example fission matrix . 106
6.2 Training Examples for fission matrix model 111
6.3 Experiment 1: Decomposed fission matrix model 112
6.4 Experiment 2: Initial populations and final NDF results for DSO and SMO. . 114
6.5 Experiment 2: SMO results in Serpent . 114
6.6 Experiment 2: DSO and SMO LPs . 116
6.7 Experiment 2: DSO and fission matrix SMO results 121
6.8 Experiment 3: SMO results in Serpent . 122
6.9 Experiment 3: DSO and SMO LPs . 123

7.1 Future HPC node architecture . 126
7.2 The operation stack of a quantum annealer 128
7.3 Core representation in qubits . 129
7.4 Transverse fields, h . 129
7.5 LP designs generated by SQA for a two fuel-type PWR. 131
7.6 LP designs generated by SQA for a three fuel-type PWR 131
7.7 Minor embedding, ‘Chimera graph’ for two fuel types 134
7.8 Core designs generated by DWave QAs . 135

B.1 A high variance sampling technique . 173
B.2 Repeated patterns in the sampling plan . 174
B.3 Relative hypervolume indicator plot for NSGA2 176
B.4 Absolute hypervolume indicator plot for NSGA2 177
B.5 Hypervolume indicator vs population size 178
B.6 Hypervolume indicator vs crossover . 179

List of figures xix

B.7 Hypervolume indicator vs mutation . 179
B.8 PPF and pin power variance . 182
B.9 DSO and SMO results . 183
B.10 DSO and SMO burnup results . 183
B.11 SMO results in Serpent vs DSO for burnup 184
B.12 Difference between fission matrix and its transpose 185

C.1 (a) AGR fuel elements, and (b) A solid pin model 188
C.2 A simple feed-forward, MLP-type neural network. 191
C.3 Error heatmap for different sized networks 192
C.4 Error heatmap for depletion study of solid pin designs 193

List of tables

2.1 Table of RBFs . 32

3.1 Selected literature on in-core fuel management 54

4.1 Optimisation frameworks . 64
4.4 Serpent Simulation Parameters . 69
4.5 Objective variables considered . 71
4.2 Approaches to parallelism in optimisation frameworks 73
4.3 Continuous integration testing frameworks 73
4.6 Software component summary . 74

5.1 Parameters used in NSGA2 . 78
5.2 Keras summary data for the CNN . 80
5.3 MAE for MLP, CNN and Monte Carlo . 85
5.4 Execution time for MLP, CNN and Monte Carlo 89
5.5 Hypervolumes for DSO and SMO . 93

6.1 Correlation tests for fission matrix and surrogate model 112
6.2 Execution time for fission matrix model and DSO 115
6.3 Burnup model parameters . 119

7.1 SQA results (mean of 30 runs), values to 4 s.f. 132
7.2 Results for LPs burned up to 13593 MWd/tonne in PANTHER 133
7.3 Results on the DW2000Q QAs . 135

8.1 Enabling factors for deep learning and quantum computing. 143

B.1 NSGA2 parameters . 174
B.2 Parameters used in this study . 175
B.3 Optimal parameters used in further work . 181

xxii List of tables

B.4 K-S Test for DSO and SMO . 181

C.1 Simulation data summary totals. 190
C.2 Prediction accuracy of sequential networks 194
C.3 Prediction percentage error (%) of sequential networks 195

D.1 lscpu information for machines used in this thesis 200
D.2 version data for software used in this thesis 201

Nuclear Terms:

ke f f Effective multiplication factor is a defining at-
tribute of a nuclear system. It represents the aver-
age number of neutrons created for every neutron
absorbed or lost by leakage.

BP A Burnable Poison is a material that absorbs neu-
trons and is converted to other isotopes. In this
way it effectively reduces the local neutron flux
available for fission reactions, whilst reducing in
concentration over time. Eventually an ideal BP
is used up and its effect is suppressed.

burnup Burnup is term used to measure the amount of
energy that has been extracted from fuel. It is
measured in MWd/kgHM, End Of Cycle (EOC)
burnup is critical factor for a nuclear reactor; by
extracting more energy from the same amount of
fuel, then fuel costs and down time are reduced.

checkerboarding Alternating the arrangement of nuclear fuel as-
semblies in a 2D layout task, this achieves lower
power in high reactivity fuel and increases burnup
in low reactivity assemblies

cycle length Cycle length refers to the amount of time from
when a reactor is refueled to the EOC.

DNBR Departure from Nucleate Boiling Ratio is a sig-
nificant safety factor for PWRs. Defined as the
predicted critical heat flux (the point where nu-
cleate boiling stops and a layer of steam at the
surface of the fuel cladding inhibits heat transfer
to the coolant) divided by the local heat flux.

xxiv Nuclear Terms:

enrichment Enrichment when used for uranium fuels refers to
the weight percentage of the isotope U235 in the
material.

EOC The End Of Cycle refers to the reactor at the time
when effective multiplication factor= 1, at this
time reactors such as PWRs must stop operation
to be refuelled.

GDA The Generic Design Assessment (termed DCD
under the US regulatory body) is a detailed design
document which must be supplied to a regulatory
body, such as the UK’s Office of Nuclear Regula-
tion (ONR) for approval before a license to build
a nuclear reactor is issued.

LP Loading Pattern refers to the arrangement of fuel
in the core of a reactor, this is usually the arrange-
ment of fuel assemblies, in terms of types of fresh
assembly designs and the effective rotation and
movement of assemblies that have been in the
core for a number of cycles.

LWR A Light Water Reactor is a catch all term for any
type of reactor that uses water as a coolant.

PPF Power Peaking Factor is a core performance met-
ric that is calculated from highest power density
region divided by the mean power density in the
reactor core. Regions can be at the pin or assem-
bly level. For assembly design the local power
peaking factor is also considered. Lower PPFs
generally increase the total power produced by
the generators.

PWR A Pressurised Water Reactor is a type of Light
Water Reactor (LWR) that uses water at high pres-
sure to simultaneously cool and moderate the core.
PWRs form the majority of the reactor fleet in op-
eration today.

Nuclear Terms: xxv

SMR Small Modular Reactor refers to any of a range of
small modern reactors that are designed to be mod-
ular and therefore more easily mass produced.

SNUPPS A 4-loop PWR design by Westinghouse, imple-
mented at Wolf Creek and Callaway in the US,
and in a modified form at Sizewell B in the UK.

Optimisation Terms:

ε-tube The ε-tube refers to the space that is taken up
around the f̂ of a Support Vector Regression. The
points that lie outside of the ε-tube are called the
support vectors.

activation function The activation function refers to any of a number
of functions (e.g. arctan(x), relu, leaky relu, sig-
moid) that is used to keep the inputs bounded in
neural network nodes.

ANN An Artificial Neural Network is an algorithm for
information processing named after its ability to
ape one process for learning observed in biologi-
cal neural cell clusters.

brute force Brute force refers to a method of computational
search where the solution is found by system-
atically evaluating input values until all values
have been evaluated or an acceptable solution is
found. It can prove a competitive approach for
some classes of difficult problem.

CFD Computational Fluid Dynamics refers to the use
of computers to predict the complex motion of
fluids by solving or approximating the Navier-
Stokes equations.

CNN Convolutional Neural Networks are a leading type
of Artificial Neural Network (ANN) for spatial
data. Convolution layers are followed by a feed-
forward network. A major benefit of convolu-
tional neural networks is the unsupervised feature
extraction.

xxviii Optimisation Terms:

CPU Central Processing Units are the primary compo-
nent of a computer that carries out arithmetic logic
according to loaded (programmable) instructions

curse of dimensionality If the number of inputs to a system increases lin-
early, the solution space increases exponentially,
making search more difficult. The increased chal-
lenges associated with solving problems in high
dimensionality spaces are known generally as the
Curse of Dimensionality.

deep network Deep networks are usually defined as neural net-
works with three or more hidden layers. The term
is used more generally to refer to developments
in ANN topologies that have been developed in
the last fifteen years.

DSO Direct Simulation Optimisation is the term used
in this thesis to refer to iterative optimisation on
the original simulation or system.

dual objective function Dual objective function refers to the objective
function that is derived by elimination of the orig-
inal variables from the Lagrange function, so that
it is written solely in terms of the dual variables.

dual variables Dual variables or Lagrange variables refers to
the variables introduced to create the Lagrange
function, in Lagrangian optimisation.

error backpropagation An algorithm for deducing the weight of connec-
tion signals between nodes in neural networks
with hidden layers.

error-based exploitation Exploitation of the search space based on indi-
cations of the error between the surrogate model
and the objective function.

FPGA Field Programmable Gate Array is a type of pro-
grammable logic integrated circuit, that can carry
out complex calculations in a single clock cycle
at the cost of silion real estate

Optimisation Terms: xxix

GIS Geographic Information System is an electronic
system for storing and analysing spatial or geo-
graphic data.

GPU Graphical Processing Units are types of proces-
sor architecture developed for 3D graphics and
subsequently applied to scientific computing

KKT The Karush-Kuhn-Tucker conditions are that, at
the point of the solution, the product between
dual variables and constraints goes to zero in a
Lagrangian dual problem.

Kriging An algorithm for interpolation between sampled
points using Gaussian distributions.

Lagrange function Lagrange function refers to an objective function
that is derived by the addition of dual variables,
(also called Lagrange multipliers) to an optimisa-
tion function. An optimum is then known to be
at the saddle point, where the dual variables are
maximised and the original objectives are min-
imised.

Latin hypercube sampling A method of sampling based on the latin square,
which is a square with one sample per row and col-
umn. The extension to continuous variables and
many dimensions requires that the each dimen-
sion is split into a number of equal regions and
one sample is made per axis-aligned hyperplane.

Least squares criterion Criterion for minimum scalar error:

min
w

Σ

[
y(i)− f̂ (x,w)

]2

(1)

MAE An error measure used in computing. In a com-
puter, it is computationally more efficient to cal-
culate the Mean Absolute Error rather the RMSE.
Although the output is similar the mathematical
operation is different.

meta-model See surrogate model.

xxx Optimisation Terms:

MIMO Multi Input Multi Output describes objective func-
tions that have many variate inputs and many vari-
ate outputs (both x and y are vectors).

MLP Multi Layer Perceptrons are a common type of
ANN where nodes connect from the input layer
through a number of hidden layers to the output
layer and each layer connects only to the subse-
quent layer.

MO Multiobjective Optimisation describes optimiza-
tion problems that have more than one output
objective.

MOC Method of Characteristics is a technique for solv-
ing partial differential equations by converting
them in to ordinary differential equations. It is
primarily referenced in this text as a method for
solving the neutron transport equation.

NDF The Non Dominated Front also known as the
Pareto frontier of a MO problem is the N −1 di-
mensional space that describes the space where
one or more objectives are optimal. The NDF is
useful for decision makers as any solution that
lies on this frontier cannot be improved for one
objective without impairing another objective.

NFL The No Free Lunch theorem states that, for the
set of all problems, no optimisation strategy out-
performs any other. This means that information
gleaned by successive trials of the optimisation
algorithm also implies assumptions about the ob-
jective function, f

overfitting A model is said to be overfitted if it describes
the sample set well, but does not perform well
at predicting the function f (x). Unless data is
noise-free, care must be taken to avoid overfitting.

Optimisation Terms: xxxi

polynomial regression Polynomial regression is a surrogate model based
on generated relationships between input x and
output variables y using sums of polynomial func-
tions of different orders.

prediction-based exploitation Exploitation of the search space based on the pre-
dictions given by the surrogate model.

QA Quantum annealers are machines that optimse a
function by expressing the function in the form
of an ‘Ising model’, the global optimum of which
is found by transitioning to it via a quantum adia-
batic process. (see Section 7.2.1)

RBF A Radial Basis Function refers to a function
that is symmetrical radially from a centre point,
used in estimation of f̂ (x). An example is the
sinc(x) function, which forms the basis function
for wavelet transforms.

RSM Response Surface Model a method similar to poly-
nomial regression.

SA Simulated Annealing is a method of iterative opti-
misation which exploits an analogy between the
way a metal cools and freezes into a minimum en-
ergy crystalline structure (the annealing process)
and the search for a minimum in a more general
system.[176]

SMO Surrogate Model Optimisation is optimisation of
a system by running the optimisation on a model
of the system that is not generated by adherence
to the original physics of the system.

surrogate model A model of the system that is being studied, allow-
ing the investigation of a search space when the
system being studied is difficult, costly or slow to
sample.

xxxii Optimisation Terms:

SVR Support Vector Regression is a method of regres-
sion where points within an error margin ±e are
ignored, the results being dominated by the outly-
ing or support vectors. SVR is generally regarded
as a special case of Support Vector Machines.

XOR gate Exclusive OR is a basic logic function, which
processes true when exactly one input is true but
not both, so the truth table is:

x1 x2 x1 XOR x2

0 0 0
0 1 1
1 0 1
1 1 0

Mathematical Nomenclature:

RMSE The Root Mean Squared Error.
Π(x) The rectangular function, a function defined as:

Π(x) =


0.0 if |x|> 0.5

0.5 if |x|= 0.5
1.0 if |x|< 0.5

(2)

f̂ (x) The Surrogate Model Function, a function that is
built based on observations of f (x).

G The Gram matrix, defined as:

Gi, j = g
(
∥x(i)− c(j)∥

)
, j = 1, . . . ,n (3)

where x and c are vectors on a Euclidean space,
and g is an arbitrary function.

V The Vandermonde matrix, a matrix whose terms
are a geometric progression in each row.

w The weight vector or matrix, a set of real num-
bers that scale different inputs in many regression
methods. For example: w = [w1,w2, . . . ,wn].

x The input variable vector x = [x1,x2, . . . ,xn].
y The output vector y = [y1,y2, . . . ,yn].

xxxiv Mathematical Nomenclature:

U (a,b) The Uniform Random distribution, a random func-
tion whose probability is evenly distributed be-
tween bounds, a & b.

PDF =

 1
b−a , for x ∈ [a,b]

0, otherwise
(4)

d Number of dimensions or input variables xi of
f (x).

f (x) The objective function that describes the aspect,
cost or other performance metric of the problem
to be optimised.

m The order of a polynomial model.
r2 The correlation coefficient of functions or sam-

ples.
sinc(x) Usually defined as:

sinc(x) =

1, for x = 0

sin(2πx)/2πx, otherwise
(5)

A symmetrical function which is common in engi-
neering and signal processing. For example, it is
used as the basis function of wavelet transforms.

central limit theorem A theorem that states that, for sets of independent
random variables, their properly normalized sum
tends toward a normal distribution.

Chapter 1

Introduction: Optimisation and PWR
Fuel Management

1.1 Pressurised Water Reactors, Design and Management
of Fuel Assemblies

This thesis investigates the applicability of Surrogate Model Optimisation (SMO) to Pressurised
Water Reactor (PWR) loading patterns. In this chapter, we will introduce PWR fuel optimisation,
firstly through a description of the process of PWR fuel reload design with a focus on the kind
of issues facing designers. Then some common PWR core designs are presented, followed by
an introduction to iterative optimisation and the landscape of multiobjective optimisation today.

1.1.1 Operation and Fuel Reloading

A PWR is a batch fuelled Nuclear Power Plant (NPP) that normally operates for between
twelve and twenty-four months between refuelling [16]. In theory, a reactor can run until
the multiplication factor ke f f ⩽ 1.0 when the reactor is no longer critical. However, due to
contractual obligations, it is normal for the refuelling of a reactor to be carried out at a planned
outage. Planned outages are usually arranged to be at seasonally low baseload times. These are
summer in the UK or spring or autumn in the US, where air conditioning units account for a
significant power draw (28.6% of residential power use [22]).

The process for fuel reload design in an example utility company’s organisational structure is
described by Glasstone and Sesonske [75, p. 604]. Figure 1.1 shows Glasstone and Sesonske’s
organisational groups and a graphical representation of the process. There are three main
groups: the plant scheduling group, who are responsible for operation management; the fuel

2 Introduction: Optimisation and PWR Fuel Management

procurement group, who are responsible for economic management analysis and procurement;
and the in-core reactor analysis group, who are responsible for the reactor physics analysis.
The first step in the process is for the plant scheduling group to establish the planned outage
window for refuelling and to generate requirements for the next batch in terms of predicted
energy requirements. The fuel procurement group will generate requirements in terms of plant
economics, energy needs and the available fuel for refuelling. The in-core reactor physics group
then use this information to generate the best loading pattern possible over a process involving
two fidelities of simulation. Once every group is satisfied with the proposed solution, a detailed
simulation is carried out for regulatory purposes, and the regulator will expect evidence that the
proposed loading pattern is be within safe operating parameters.

Within safe operating parameters, some of the trade-offs that are possible are:

• Maximising discharge burnups and uniformity of discharge burnup

• Reducing feed batch size;

• Extending cycle time, increasing plant availability;

• ‘Low leakage’ fuel loading, which extends the life of the pressure vessel by minimising
the neutron leakage from the core;

• Reducing feed enrichment whilst retaining a high enough reactivity to achieve the
requisite cycle length;

• Minimising the Power Peaking Factor (PPF) and other metrics to achieve a more even
coolant temperature profile; or

• Minimising Burnable Poison (BP), due to the ‘residual poisoning penalty’ of high neutron
capture isotopes that build up during exposure. [175, 75]

Due to the changing requirements for operators caused by changing economic and regulatory
conditions and the number of groups involved in the decision, it is often better to understand
the trade-offs between different Loading Patterns (LPs) than it is to try to establish a single
‘best’ core LP[175]. To do so electricity utility companies are interested in developing fast,
efficient procedures that explore a wide range of fuel scenarios. [75, p. 607].

Section 4.1 will introduce a simplified model of Figure 1.1 used in this thesis, as it has not
been possible to recreate the working groups of a utility company. Due to its commercially
sensitive nature actual scenario data has not been available in this thesis. However, possible
requirements have been selected from the above list, and the activity of the in-core reactor
physics group has been approximated.

1.1 PWR Fuel Management 3

Plant Schduling Group:
Establish energy generation

requirements

Other responsibilities
include refuel
schedule, and
planned outage
times

Fuel Procurement
Group:
Purchases the fuel

Other responsibilities
include economic analysis
of plant management

In-Core Reactor Analysis Group:
Performs Physical Calculations

InitialCore
Reload Design

Defines:
Batch size, Enrichments

Output:
Economic

Guidelines
for Batch

Output:
Energy

Requirements
for Batch

Multicycle point
reactor model

Finish

Design with
License approval

Detailed Design
ensures buy-in
from operator

groups

Operational Core
design with
Regulatory
Compliance

Nodal Simulator
with a
Course Mesh

Licensing Simulation:
Fine mesh2D diffusion
or 3D nodal code

Regulatory
Compliance :
Incorporates data from
plant at EOC

1

2

3

4

Fig. 1.1 The fuel reload design process showing active organisational groups in a utility
company, based on the description in Glasstone[75]. Stage four must occour after operational
data has been collected from the previous batch.

1.1.2 In-core Reactor Physics

The in-core reactor analysis group is mainly interested in the modelling of physical processes
that occur within the core of the nuclear reactor. These include neutron transport, Computational
Fluid Dynamics (CFD), heat transfer and material degradation effects.

The neutron transport equation is a differential equation, based on a the balance of neutrons
being produced by fission, and neutrons lost from the geometry or absorbed by materials. The
behaviour of neutrons can be understood from a 3D coordinate r, the energy E, a solid angle
Ω̂, velocity v(E) and time t. When considering civil power reactors, it is often convenient and
reasonable to assume scattering is isotropic on average and that the neutron interactions can be
simplified into a few energy groups.

Unfortunately, complexity arises from the vast array of isotopes being created as fission
products (whose atomic mass forms a spectrum between 70 and 160) and daughter nuclides
created by the decay chain of unstable fission products [18, p 30]. The interactions of the
neutrons with these materials is an extremely complicated process, but is governed by a well
established equation:

M ·Ψ(⃗r,E,Ω̂) =
1
K

χ(E)
4π

S(⃗r) (1.1)

4 Introduction: Optimisation and PWR Fuel Management

The neutron transport equation, and the fact that each isotope of every element in the core has
its own set of cross-section Σ values forms the basis of much of the complexity of neutronics,
which is mentioned in more detail in Section 4.2.3. However, for a more detailed reference,
there is also a significant body of work on neutronics, including seminal textbooks by Bennet
and Thompson [18] (a qualitative overview), Lewis [129] and Oka and Kiguchi [249] (with
insights on the complexity of simulation).

The coupling of neutronics with heat transfer and CFD is a matter of some interest in the
field at this time [228], but due to the complexity of the stable coupling of complex systems of
differential equations and the added problems associated with automating this for optimisation,
it is not within the scope of this thesis.

1.1.3 PWR Data Sources

Optimisation of the fuel can be at the assembly level (known as fuel design), in-core fuel
management, and out-of-core fuel management. In this section, a number of commercial and
research reactor core designs, for which reliable core data is available to the academic researcher.
In-core fuel management is the arrangement of the assemblies of fresh and usually older batches
of fuel in the core. Logging of the fuel history, the conversion ratio, and the residual reactivity
would allow the extension of techniques in this thesis to mixtures of batches of fuel, called
reload cores. Out-of-core fuel management includes all of the design, manufacture, handling,
purchasing and storage tasks associated with fuel before it is put into the core. This is controlled
by the ‘fuel procurement group’ mentioned in Section 1.1.1. This thesis will mainly consider
in-core fuel management, of the kind that would be carried out by the in-core reactor analysis
group. The ultimate goal of PWR fuel management would be to unite the reload core with
the specific choices of fresh fuel design. This has been described as the ‘grand challenge’ of
fuel management [220] and progress has begun made to break this division, for example by
Maldonado, [140].

Expert knowledge of the operation of a nuclear reactor is usually kept confidential by the
utility companies. However, a number of reliable sources of information about PWR cores are
available. Firstly, in order to be licensed, detailed design data is supplied to the regulatory body
in the form of a Generic Design Assessment (GDA). In some countries, such as the UK and
US, this information is publicly available. The GDA is used in Sections 1.1.4 and 1.1.5 for the
description of EPR1 and Nuscale designs, respectively.

1 EPR used to stand for "European Pressurised Reactor, which was changed to "Evolutionary Power Reactor"
to encourage international adoption, but is no longer being used as an acronym and is now simply being called
EPR.

1.1 PWR Fuel Management 5

Although GDAs give significant insight into the geometry of the designs, the operation of
the plant is considered commercially sensitive information, and so it is not usually released by
the utility companies. A recent trend in the nuclear industry is for organisations like the World
Association of Nuclear Operators (WANO) to be actively working to generate ‘self-regulation’
of the nuclear industry through a process of peer-review. This means the sharing of expertise
between utility companies and is an economically sensible step, since a nuclear accident
anywhere will have negative effects on the nuclear industry worldwide. For example, following
the Fukushima incident in Japan, every NPP in Germany was shut down – a decision that
politicians directly attributed to the accident. In general, this has not extended to the sharing
of data or expertise between utilities and academia. However, this important trend parallels
similar trends in a diverse array of scientific fields. For example, drug discovery, astronomy,
particle physics and computer science have open data policies and many academic journals
have adopted guidelines on the open publishing of data [157].

A significant exception in the nuclear industry is the Benchmark for Evaluation and Valida-
tion of Reactor Simulations (BEAVRS) benchmark [86]. In this case, a considerable amount of
operator knowledge has been released to the academic community. The BEAVRS benchmark
includes the actual start-up core design and operational data at the level of sensor outputs from
a reactor in the United States and is examined in Section 1.1.4, which is on the most common
design of PWR, a configuration of 193 assemblies.

1.1.4 ‘Full Sized’ PWRs

PWRs contribute around 67% of all active NPPs [91], which has led to a fairly standard core
arrangement of 193 fuel assemblies, as shown in Figure 1.2 for example in SNUPPS reactors
from Westinghouse and the EPR design by Framatome.

Most modern PWR fuel is based on a 17×17 array of pins called an assembly (a notable
exception is the Russian designed VVER2). This near universal design has been made by
Westinghouse and Babcock and Wilcox since at least 1979 [229], and the geometric designs
remain almost completely unchanged in modern reactors [13], while important innovations
have occurred in the materials used for cladding, use of BP pins and in the recognition of the
benefits of fuel design and loading pattern optimisation.

6 Introduction: Optimisation and PWR Fuel Management

a) 'SNUPPS' type PWR Core
(193 Assemblies)

b) KAIST Benchmark Core
(52 assemblies)

d) Nuscale SMR Core
(37 assemblies)

c) 6x6 microcore (36 Assemblies)

Single 17x17 pin fuel assembly

Fig. 1.2 The geometry of different PWR cores showing the locations of fuel assemblies, a) a
Westinghouse Standard Nuclear Unit Power Plant System (SNUPPS) type PWR, b) the KAIST
benchmark small research core [36], c) a 6×6 microcore used for experiments in this thesis
and d) an SMR core by Nuscale [168].

EPR

The UK EPR - GDA [13] has been redacted since the beginning of this project, so a combination
of the author’s notes and the U.S. Nuclear Regulatory Commission’s design control documents
[12] have been used instead as evidence.

Figure 1.3 on p. 7 shows the assembly designs that have been authorised in the EPR. Two
main variables are considered: the use of burnable poisons and the fuel enrichment. An example
of core loading is described in the GDA documents, demonstrating examples of start-up and
ongoing core loading patterns. Apart from subsituting a control rod for an instrumentation tube,
all of the designs have four axes of mirror symmetry. The allowed fuel designs are a major
limitation for the core loading pattern designers, who are limited to only authorised assembly

2 VVER is the acronym from the Russian: Vodo-Vodyanoi Energetichesky Reaktor

1.1 PWR Fuel Management 7

A1

A2

B1

B2

C1

C2

C3
Guide Tube

Instrument Tube
2.25 wt % U-235

2.13 wt% U235 with 4wt% Gd2O3
2.70 wt% U235
2.56 wt% U235 with 4 wt% Gd2O3
2.89 wt% U235 with 8 wt% Gd2O3
1.89 wt% U235 with 8 wt% Gd2O3
2.56 wt% U235 with 2 wt% Gd2O3
3.25 wt% U235
3.08 wt% U235 with 2 wt% Gd2O3
2.76 wt% U235 with 6 wt% Gd2O3
2.27 wt% U235 with 8 wt% Gd2O3

Legend:

Fig. 1.3 The PWR fuel assembly designs licensed by the EPR GDA, shown in a consistent
colour scheme, based on [12] and similar to the now redacted [13].

designs and will be further limited by the stock that has been purchased by a separate group
within the organisational structure.

BEAVRS

The BEAVRS benchmark defines itself as follows:

“This document introduces a new benchmark that addresses many of the short-
comings of previous LWR benchmarks by providing a highly-detailed [sic] PWR
specification with two cycles of measured operational data that can be used to
validate high-fidelity core analysis methods.” [86]

The data includes an initial core loading pattern and two reload configurations, transitioning to
an ongoing batch plan. The operational data, including sensors and burnups are also included.

The BEAVRS benchmark initial core loading pattern is used as a comparison in the results
in Chapter 7, where full start-up core loading pattern designs are generated using a quantum
annealer.

8 Introduction: Optimisation and PWR Fuel Management

1.1.5 ‘Small’ PWRs

There is a current trend for Small Modular Reactors (SMRs). These reactors are smaller than
typical PWRs. The advantage of this is that they can be process manufactured, leading to
standardisation and reduced cost per unit. However, many of the current designs can be fitted
with conventional PWR fuel assemblies. These smaller geometries offer novel and potentially
interesting opportunities for optimisation.

Chapters 5 and 6 of this thesis investigate a theoretical reactor, as shown in Figure 1.2c.
This reactor would not be optimal for real operation. However, it has a comparable size to
SMRs such as Nuscale [168] and Multi-Application Small Light Water Reactor (MASLWR)
[153]. The microcore was created as a minimal ‘toy problem’ that has not previously been
investigated.

KAIST

The benchmark from KAIST is a small reactor simulation based on 13 standard PWR assemblies
with reflected boundary conditions [36]. The KAIST benchmark does not represent a real
power reactor design, but is freely available and popular for experimentation. However, due
to the the sensitive nature of real commercial reactor data, it is often used in academic and
simulation literature. The core is formed by a 4×4 array of fuel with three missing assemblies
from the corner and reflected boundary conditions (as shown in Figure 1.2b).

Nuscale

Nuscale is a relatively new US company, which entered the SMR market in 2011 with the
stated aim of brining their novel design to the market by the end of the decade [167]. Although
current estimates now put this at 2026 [169], the company has demonstrated the ability to
generate regulatory compliance documentation.

It is expected that a number of cores will be used at any site, with each SMR producing
just 45 MW. The core is shown in Figure 1.2d, and can be analysed with rotationally symmetry
with 10 assemblies per quadrant [168].

1.2 Optimisation in Nuclear Power Plants

Despite significant advances in research on optimisation in nuclear power plants ([220, 219, 84,
162]), and the development of a number of tools for the purpose of in-core fuel management
with automatic optimisation capabilities (e.g. FORMOSA-P [104], CM-PRESTO [193] and
PANTHER [156]), it was claimed by Turinsky in 2005 that expert operators following heuristic

1.2 Optimisation in Nuclear Power Plants 9

rules will outperform automated in-core optimisation tools [219]. Despite the age of this claim,
it would seem that utility companies have not significantly changed their approach, and in-core
fuel management optimisation is still carried out by expert operators using heuristic rules [220].

The alternative to heuristic rules for global optimisation, and the one favoured by this
thesis is iterative optimisation; techniques such as Simulated Annealing (SA) or evolutionary
algorithms. These approaches are useful since they work without complex manipulation of
the objective function. Due to the very high complexity of neutron transport simulations or
CFD, system behaviour can change significantly with small changes to neglected variables. So
is useful to be able to optimise without manipulating the objective mathematically, since this
builds robustness to this kind of potential failure.

SA and evolutionary approaches along with other Metropolis methods form the foundation
for of a vast array of optimisation techniques based on stochastic iterative optimisation. Rather
than finding the differential operator of the objective function, it is sufficient to solve the
problem by running a simulator many times. This broad class of optimisation techniques will
be termed ‘iterative optimisation’.

Iterative optimisation algorithms are sometimes referred to as ‘black box’ optimisation,
because they are able to optimise when the objective function is neither visible nor mathe-
matically defined. While this is an advantage in practical terms, opinion is divided within the
scientific community, since these techniques can be applied without careful analysis.

Iterative optimisation often uses some form of metaphor as an inspiration for the algorithm.
In our day to day lives, people routinely use metaphor as a powerful tool in gaining insight and
understanding, but it is not apparent that the real-world uses metaphor in its function3. In other
words, the search landscape of a nuclear fuel loading pattern does not necessarily lend itself to
the behaviour of crystals cooling, wolf pack dynamics or jazz musicians.

The enthusiastic usage of metaphors in the search for novel algorithms, led to further criti-
cism of research into iterative optimisation techniques. An insightful critique of metaphorical
approaches in optimisation is given by Wayland [231] who singles out (by his own admission,
unfairly) the so-called ‘harmony search’ algorithm and proves that it is clearly a subset of
evolutionary algorithms.

However, it has been shown many times that iterative optimisation strategies are performant
under a wide range of problems, particularly the more common approaches, such as SA or
evolutionary algorithms [111, 152, 175]. A central theme of this thesis is how and when
engineers, in general, and nuclear operators, in particular, might consider a metaphorical
method, what caveats must be understood and what advantages the approach might bring.

3 The author appeals to the reader’s common sense here, since it is the domain of philosophers such as Dennett
[54, pp. 38–66] to discuss this rigorously.

10 Introduction: Optimisation and PWR Fuel Management

Iterative optimisation problems in nuclear engineering and PWR fuel management often
require repeated solutions for neutron transport problems or thermal hydraulics, which are
notoriously computationally complex, requiring a long time to execute. Execution time of
computer programs is usually measured in time per Central Processing Unit (CPU).

Since iterative optimisation typically requires solving the problem multiple times, the
following accounting can be done in order to evaluate the motivation for this work:

ttot = N
(
ta + Itp) (1.2)

where:

ttot = total computational time, CPU hours

N = number of generations

ta = time for execution of the optimisation algorithm

tp = time for evaluation of the objective problem algorithm

I = Number of evalutions of the objective per generation

For nuclear engineering optimisations; where the optimisation algorithm may have a ta in the
order of hundreds of seconds, the burnup calculations have tp measured in hours, then:

tp ≫ ta

Therefore, the additional cost of increasing the complexity of the optimisation algorithm is
justified if it results in improvements in I, up to the point where kta becomes comparable to Itp,
where k is the rate of increase in computation time of ta per I.

1.2 Optimisation in Nuclear Power Plants 11

1.2.1 Multiobjective Optimisation

Fig. 1.4 Illustration showing a Non-Dominated Front (NDF), the points in red, of a set of points
in 2D, based on the pareto.py script (seed = 61).

It is sometimes possible to amalgamate objectives, by creating a ‘cost’ function, in which
the cost of many objectives can be traded off as if the system was a single output metric (in
fact, it becomes a single objective optimisation). If the variables are not orthogonal, then
a cost function between the variables can be created and the Multiobjective Optimisation,
(MO) collapses into a single variable optimisation of the cost function. However, creating a
cost function for the trade-off between orthogonal variables is not always possible[147]. For
example, running a reactor at a higher flux density (and therefore evolved power) will increase
neutron leakage and decrease the operational life of the reactor vessel. The correct choice
depends on factors that may not be substitutable or may be unknown to the utility. Variables
such as flux leakage and power generation may not be easily traded: since the utility company
will want to extend the NNPs life and to profit by generating the maximum power possible.
However, increasing the power ouput will decrease the plant longevity, while plant life may also
be affected by political or physical constraints that are naturally unpredictable. Furthermore,
predicting energy requirements over periods longer than the ’contract to supply’ is also difficult.

Due to the conflicting parameters being optimised and the involvement of many parties, in
in-core fuel management, there is a focus on understanding trade-offs such as those described

12 Introduction: Optimisation and PWR Fuel Management

in Section 1.1.1. It is preferential, in an N objective problem, to identify an N −1 space that
is known as the Pareto or Non Dominated Front. NDF generation from solution points was
proposed by Gass and Saaty [73]. The NDF are solutions that cannot be improved for any
objective without reducing the performance of another objective, that is to say that they are
not dominated. Identification of the NDF allows the Decision Maker (DM) to choose suitable
solutions that meet subjective (or un-modelled) requirements of the system, or to propose a
range of solutions to other groups within the utility company.

Whilst it might be possible to compare the monetary cost of a reactor verses the power
evolved, this would ignore other factors that the DM might be aware of. These might include,
for example, future energy demand, the importance of ensuring a reliable energy supply to the
country’s economy, the relative difficulty with which new reactors can be built, and the chance
of downtime from higher power operation, as well as pressure from the contract to supply.
The idea of an NDF is shown in Figure 1.4, where the green dots are solutions where another
solution gives less y for the same or less x, known as the ‘dominated set’. The non-dominated
set are depicted by red crosses. These solutions represent the ‘best’ set of solutions when x and
y are orthogonal objectives. The NDF forms a DN −1 space for any problem of dimensionality
DN. This approach is common in economics, such as in the discussion of economic strategies
that distribute wealth between individuals [147]. If the trade-off between x and y is not known,
then the NDF gives the DM the knowledge of whether a given solution is among the set of best
possible solutions, for conflicting objectives.

1.2.2 The No Free Lunch Theorem

A basic assumption of any system that is to be optimised by iterative, ‘black-box’ methods is
that successive trials will impart some information about the underlying system. It is easy to
intuit that all optimisation strategies will perform equally poorly when operating on a random
function. Since each input and output value are independent, no information is gained from
one result to the next, so no meaningful inference about the problem can be made. 4

By extending this result to the set of all functions, it is fairly easy to qualitatively interpret
the theorem of Wolpert and MacReady [241], the so-called No Free Lunch (NFL) theorem for
optimisation.

“For both static and time-dependent optimization problems, the average perfor-
mance of any pair of algorithms across all possible problems is identical.” [241]

4 Although truly random functions cannot be created algorithmically, pseudo random functions, such as the
Mersenne Twister algorithm [149] are considered good approximations.

1.2 Optimisation in Nuclear Power Plants 13

Thus, no search algorithm can be more efficient than any other at locating the global optima (or
any optima) based on previous results, across this set of all functions. Furthermore, for every
example where a particular optimiser gives an improved performance, there is a counter example
where that optimiser is less performant on that objective function than another optimisation
strategy.

This result appears to run against the obvious effectiveness of search and optimisation
algorithms, but, in fact, it simply points towards the underlying structure, and therefore, the
predictability of physical systems and a way forward for iterative optimisation. The set of all
functions is overwhelmingly ‘Kolmogorov Random’ (conceptual random functions that are
entirely made of sets of independent random variables) and are, therefore, only computable
with an infinitely sized (or function sized) lookup table. In fact, the known universe can be
shown to have structure, meaning that information about the search space can be intuited from
the observed data for real systems.

This is equivalent to saying that in real world systems, the Occam’s razor principle applies
(i.e. that systems of lower complexity are more common than systems of higher complexity).
Occam’s razor has been argued as a response to the NFL by Whitely and Watson [232] and
Giraud-Carrier and Provost[74] in 2005. An argument for Occam’s razor can be constructed as
follows. Consider that real problems exist inside a framework of fundamental particles that
obey rules. For example, each particle in a Hamiltonian physical system can be seen to be
represented by a six-dimensional tensor, and the interactions of the particles considered to be
calculations of these tensors. Real fundamental particles follow more complex dynamics but
are still essentially predictable within the bounds of probability functions.

Extending this premise for the entire universe is a daunting task. Luckily, the ‘heavy
lifting’ of calculating the complexity for quantum systems, extending it to every particle, and
considering corner cases like the beginning of the universe when radiation was dominant, was
done by Lloyd [136], thereby giving us an upper limit to the complexity of real systems:

“The universe can have performed no more than 10120 operations on 1090 bits.”[136]

Although these results may be anecdotal, they do imply the existence of a numerical upper
limit to the amount of information that the universe encodes. While this is necessarily more
than can be considered, it is less information than a conceptual Kolmogorov random function
would contain. Any example of a real system in an engineering problem will concern itself
with a tiny fraction of the universe, and so contains much less information. Furthermore, it will
likely be appropriate to consider the system at a higher level than the atomic one, where still
less information will be required.

14 Introduction: Optimisation and PWR Fuel Management

The significance of the NFL theorem, stated another way, is that an arbitrary algorithm that
outperforms a brute force method, or any other algorithm, is using aspects of the structure of
the physics of the objective function, either intentionally or inadvertently.

The surrogate model approach in this thesis is an attempt to create an alternative algorithm,
that actively incorporates knowledge of the design space into a model. The NFL is relevant to
the justification of a surrogate model as the model is a metaphorical model of the real system.
Normally it is a simplification of the original system, and therefore it is important to be aware
that the physical structure imparted from the objective function to the surrogate model that
guides the optimisation is based on the assumptions of that particular surrogate modelling
approach.

The NFL theorem of optimisation, on the one hand shows us that there will always be work
to be done to show that some algorithm operates more effectively on a given class of problems
than another, while on the other hand, it shows us that this result will only be helpful in the
domain of the class of problems being investigated. For a truly unknown objective function,
it is acceptable to use a search algorithm that makes few assumptions about the search space.
Logically, it also follows that, when even very rudimentary aspects of the objective function are
known, intentional use of the problem structure in the optimiser is advantageous. Armed with
this knowledge, a framework for optimisation that utilises aspects of the objective function
within the optimiser is seen as a significant goal. With the insight that we must use physical
information in optimisation problems, it is now possible to start to look at how to develop
a system of optimisation that begins to break open the ‘black box’ of iterative optimisation
algorithms.

1.2.3 Surrogate Model Optimisation

The original aim of this PhD was to investigate ways to alleviate the computational burden
of objective function evaluation – the main cost of iterative optimisation. Equation 1.2 tells
us that the biggest gains can be made in the cost of evaluating the objective function. Three
approaches to reducing the cost of iterative optimisation can be attempted. Firstly, to try to
optimise with fewer iterations (see, for example, the work by Charles [33]) or, secondly, try
to decrease the complexity of the objective function (for example, in nuclear simulations, a
coarser mesh or a model with fewer energy groups might be implemented). The third approach,
which will be investigated here, is to replace the objective function with another function that
has properties that reduces the computational complexity. The resulting approach, Surrogate
Model Optimisation (SMO), inevitably requires an understanding of when it is acceptable to
use a function as a metaphor for another function.

1.2 Optimisation in Nuclear Power Plants 15

For metaphorical methods that are developed by testing the original objective function, a
balance between the cost of generating the training data and the cost of the original optimisation
process must be considered.

1.2.4 Evaluating the Performance of MO

(a) The hypervolume indicator (b) ε-indicator by addition

Fig. 1.5 Hypervolume and ε-indicators, the two main indicators of performance used for MO
(hypervolume.py, epsilon.py seed=61)

When comparing methods of single objective optimisation, the performance of the optimi-
sation algorithm depends on how much computational budget is used and the average value of
the optimal solution found. Unlike single objective optimisation, the performance of a multi
objective optimisation must be derived from the NDF, an N-1 dimension frontier.

The usual methods of measuring the performance of MO’s results are the hypervolume
indicator and the binary ε indicator [34].

The hypervolume indicator, is the volume of the region between a large-valued fixed
reference point and the NDF. For example, in Figure 1.5a, a two-objective problem, the
hypervolume indicator is the area shaded in blue. Problems can occur with the hypervolume
indicator if values from the NDF have a larger magnitude than the reference point. If the NDFs
are known in advance, then the maximum value for each objective can be used or it is common
practice to normalise objectives and use a reference point of 1.0.

The ε indicator measures how far an NDF from one optimisation would need to move in
order to be dominated by another. It can be applied when comparing two NDFs. It can be
generated by multiplication or by addition of the NDF points by a target vector ε until it is
dominated by the other at every point (termed strictly dominated).. In essence, it is a measure of

16 Introduction: Optimisation and PWR Fuel Management

the distance at the closest point from one frontier to the other, and can be used to measure how
much better one set of solutions is than another. The ε indicator (by addition) is demonstrated
in Figure 1.5b, the first NDF is moved by the 45o vector ε until it intersects with the second
NDF, at this point the ε-indicator is the magnitude of ε .

A disadvantage of both the hypervolume and ε indicators is that they treat the normalised
objectives as equivalent. While this makes sense on benchmark problems where the objectives
are often of equally weighted, this is expressly not the case for real world MO problems, where
one objective may have a substantially different distribution from the other. It is also not
possible to use relative values a priori, meaning that this step can only be carried out after
the completion of a study. Another approach for comparing SMO with Direct Simulation
Optimisation (DSO), rather than just measuring performance, it would be useful to understand
how closely the distribution of points from SMO matches the DSO results. In order to do this, a
number of statistical tests can be considered.

Non-parametric statistical tests for similarity

A number of statistical tests for significance exist and are routinely used for the comparison of
NDFs [112]. Statistical tests, such as the ones mentioned below, act on univariate analysis and
can be applied to the hypervolume or ε-indicators.

• Kolmogorov-Smirnov (K-S) Test: The most popular measure of ‘goodness of fit’ [14],
the K-S test is based on the ‘supremum’ difference between ranked members of a set
and a distribution, or two sets of data. It has also been extended to multivariate forms
[178, 61].

• Mann Whitney Wilcoxon U Test: A rank-based estimate of likelihood of similarity
to the median, similar to the ANOVA test. This method is sensitive to variance of
distributions and deviations from normality [59].

• Kruskal-Wallis Test: A rank-based statistic that gives an indication of the likelihood of
two sets of samples being from the same distribution. It does not require the normality
assumption of other tests [119].

These approaches use ranked data, which reduces the effect of outlier data.
Another approach is to perform a Multivariate Analysis of Variance (MANOVA). A

MANOVA is an analysis of variance of multiple, multivariate sample sets. It has a num-
ber of advantages for certain types of data, such as being able to find differences not shown in
multiple ANOVAs on individual variables [212, pp. 322–390].

1.3 Aims and Objectives 17

1.2.5 Understanding Fuel Management Problems in terms of Dimension-
ality

The input and output spaces of a problem are counted in either the number of states, or the
number of dimensions for continuous variables.

Before problems are investigated, it is important to assess how many dimensions are being
searched and whether this is feasible. As an example, consider the complexity of fuel assembly
design vs a PWR core. If both problems have 1/8 symmetry, optimising the enrichment of
U235 per uniform assembly in the core and enrichments per pin in the assembly, then there
are 31 variables in in the full sized ‘SNUPPS’ core and 39 variables per assembly. SMR cores
have significantly fewer input variables, meaning that single batch SMR cores are significantly
simpler problems for optimisation than a single assembly, specially, if symmetry is allowed
and the inputs are continuous, or have the similar numbers of possible values.

The reason that this thesis concentrates upon core level optimisation is because, surprisingly,
this is a more tractable problem than fuel design from a numerical point of view. Furthermore,
the ‘mean free path’ of a neutron makes assembly design a roughly linear problem, with each
pin’s power correlated to its own enrichment and equally connected to all other pins. This makes
the assembly design problem relatively structured, but still numerically difficult. Furthermore,
fuel designs are part of the GDA, so they are rarely added after the initial construction of a
reactor.

The reasons that most of the core design happens at the assembly level is partly because the
Regulatory Design Assessment usually only authorises a small number of assembly designs.
This means that the procurement team only make purchases from these options. Since the
procurement team must ensure that there is always an inventory of fuel available for the plant,
they will often purchase the fuel months or even years in advance. Since the purchasing team
are disconnected from the immediate needs of the reactor designers, it is often the case that
only a small selection of different fuel types are available.

1.3 Aims and Objectives

This thesis aims to investigate the suitability of SMO for the management of fuel in nuclear
reactors. It investigates the technique of SMO by designing a framework for evaluation of SMO,
which will be tested with a number of fuel loading scenarios. The framework is designed to
maximise the likelihood of success of the surrogate models and to demonstrate the benefits of a
framework approach. Using a framework of code facilitates experiments on the application of
SMO to be carried out in a systematic way for a variety of scenarios.

18 Introduction: Optimisation and PWR Fuel Management

This thesis describes three novel approaches to nuclear fuel management optimisation, each
one using a different ‘surrogate’ model to estimate the objective to be optimised. Collectively,
they are examples of SMO. These techniques are based on export of standard methods from
fields like deep learning or quantum computing (Chapter 5 and 7), or adapted from a method
used in source convergence of Monte Carlo simulation – the Fission matrix, as in Chapter 6.

Due to the enormous potential economic and social benefits of nuclear energy and the
unprecedented safety requirements, the simulation of nuclear reactors has been investigated
with a high level of detail over the last seventy years. Although novel work is ongoing, and
unsolved problems exist in areas such as the stable coupling of differential equations for neutron
transport,fluid dynamics, heat transfer and material degradation [228] and some uncertainty
remains in the libraries of neutron cross-sections used, very accurate simulations of reactors
are now possible (e.g. [114]). However, the opportunity exists to investigate models of nuclear
systems with a very low computational cost for the purposes of optimisation. In light of this
opportunity, the objectives of the thesis are:

• To create a framework for the evaluation of SMO problems

• To test the framework on a number of different nuclear fuel management scenarios

• To develop a number of surrogate model designs and evaluate their suitability in the
above scenarios

• To evaluate the value of these SMO techniques as applied to in-core PWR fuel manage-
ment

1.4 Guide to the Thesis

This chapter introduces the concept of fuel management in PWRs, as well as key concepts
in multi objective optimisation and the core concept of SMO. Chapter 2 provides a detailed
introduction to a number of current techniques for creating surrogate models. Chapter 3 reviews
the literature around SMO, deep learning and fuel management in PWRs.

Chapter 4 introduces the methods and tools used to achieve the goals of the thesis, Glasstone
and Sesonke’s model (introduced in Section 1.1.1) will be used as a template for the simplified
process described in Chapter 4 of this thesis.

Studies using the framework of software tools are presented in Chapters 5, 6 and 7. In
Chapters 5 and 6 two radically different surrogate modelling approaches are developed and
evaluated. The aim of Chapter 5 is to introduce and investigate the suitability of deep learning
surrogate models, which have been successfully applied in a number of other industries.

1.5 Summary 19

Chapter 6 investigates the possibility of converting the well understood statistical model, the
fission matrix, into a surrogate model for the purposes of optimisation. Chapter 7 considers the
application of novel experimental hardware, quantum annealers (QAs). Chapter 8 considers
the three different surrogate models in the context of the contribution to nuclear engineering
and the trends in optimisation research.

1.5 Summary

This chapter has attempted to outline the context of PWR fuel loading pattern optimisation.
This is an ongoing problem, and one that is solved manually on a routine basis. The approaches
fall into two major categories: Heuristic approaches based on rules adhered to by an expert
operator, such as those of Galperin [72], and Metropolis or iterative type approaches used by
Parks [175] and others [84, 219, 60, 120, 33].

This thesis aims to extend the iterative approach, by investigating surrogate modelling
techniques as a way to contend with the combinatorial explosion of solutions which commonly
complicate the problems. Chapters 5 and 6 will introduce novel techniques for this.

Heuristics create simplified models that are easy to optimise but do not necessarily represent
the problem, in Chapter 7 a quantum simulated annealing approach is used to encode a simple
set of heuristic rules. In this way, surrogate modelling is able to show a connection between
these disparate approaches. The problem is so large [71] that concluding that the global optimal
solution has been found cannot normally be done with this method.

This thesis is an investigation of SMO, methods that use regression or other simplified
modelling techniques to reduce the computational complexity of the search space. These
methods have become increasingly popular, and are beginning to be successfully applied in the
field of nuclear engineering.5

5 Code used in this section is available for audit, reproducibility and derived works. A copy can be obtained
from the repository under the permissive two-clause Berkeley Standard License [3]:

https://bitbucket.org/ajw287/chapter1-demos.git

Chapter 2

Surrogate Model Optimisation
Techniques

2.1 Introduction

Surrogate Model Optimisation (SMO) has been applied successfully in many different areas
of engineering to optimise a function that is expensive to sample. In contrast, there have been
limited examples of surrogate methods being applied in nuclear engineering. When surrogate
methods have been used in nuclear engineering, for example Faria and Pereira [60] or Kim et
al. [107] the language has not been used. So there is potential for conceptual advantages of the
approach to be brought to the subject by a thorough study. This chapter reviews a number of
methods of surrogate modelling for engineering problems in general, with a view to application
in nuclear engineering. The choice of mathematical notation has been modified somewhat
from reference texts to be compatible with common symbols used in nuclear engineering to aid
clarity during application.

2.1.1 Surrogate Model Definition

In 2018 Skinner and Zare-Behtash [200] defined a surrogate model as:

“Surrogate assisted optimisation aims to alleviate the computational burden of
the [...] optimisation process by defining a simplified mathematical relationship
allowing for fewer numerical simulations to be required” [200]

This is usually a simplified model of a complex, computationally expensive computer simu-
lation, and the usual justification for a surrogate model is decreased computational expense
[213].

22 Surrogate Model Optimisation Techniques

STARTAccurate Neutronics
Simulation

Initial Population

MOEA/D(or other optimisation)

Evaluate per pin powers
of the design

gen>max?

gen += 1

Final Population
 Solutions

Evolve solutions by selection
 & crossover

mutation
selection

crossover

a)
START

Accurate Neutronics
Simulation

Initial Design

enough
results?

Train the network

Initial Population

MOEA/D(or other optimisation)

MLP or other Surrogate Model

Evaluate results

Evaluate per pin powers
of the design

no

yes

gen>max?

gen += 1

Final Population
 Solutions

Evolve solutions by selection
 & crossover

mutation
selection

crossover

in out

b)

Fig. 2.1 Architecture of (a) direct iterative optimisation, and (b) surrogate model optimisation

2.1 Introduction 23

However, all mathematical models of a system in engineering can be considered to be
simplified models. So, this thesis will use the following definition:

A surrogate model is a simplified model of the system that is being studied that is not
generated by adherence to the original physics of the system.

The surrogate model is therefore a metaphorical model that apes the complex physical
process to allow exploration of the search space in the surrogate model more economically than
results could be obtained from a physics based simulation. Surrogate models can also be used
to model real-world systems where experimental sample collection takes a long time or large
cost.

Direct iterative optimisation techniques follow a flow diagram similar to Fig. 2.1a. In these
algorithms, solutions are tested and, by a variety of techniques ,improvements to the design
are made. This kind of optimisation relies only on very basic assumptions about the objective
function, which may not be differentiable.

The problem can be represented by an objective function f (x), with an input vector x of
length d, called the number of dimensions. The output vector y, which may be single valued
or multiple valued, is defined such that y = f (x), furthermore visibility of f (x) is usually
only available through discrete samples. Figure 2.1(b) shows a flow diagram for SMO: first,
a training set is created; machine learning techniques are applied to the training set to create
a model; optimisation takes place using the model; then the resulting optimised solutions are
tested with the original accurate neutronics simulation.

SMO is useful when a high cost is associated with obtaining these samples from f (x). The
cost that is incurred to retrieve a sample can take a variety of forms. For instance, cost could
be computational, as is the case for neutron transport calculations or for CFD. It could be
monetary, for example when recovering mining core samples. There might be temporal cost,
when predicting events like earthquakes or a less tangible cost, for example when samples
require a biopsy. Whatever form the cost takes, it should be economical in terms of development
effort to create a surrogate function f̂ (x), compared to collecting samples directly from f (x).

The aim of the surrogate model is to approximate sufficiently f (x) accurately for the
required purposes, which are assumed to be optimisation of the engineering problem, f in terms
of x. Methods are normally extensible to objective functions that are multi-variate in terms of
inputs and outputs (called MIMO). It is common practice to use the univariate version y = f (x)
when discussing aspects of the methods that are not directly related to the multi-variate aspects.

2.1.2 Surrogate Modelling Methods

Skinner and Zare-Behtash [200] recently reviewed surrogate models for aerospace design
covering polynomial regression models, Radial Basis Functions (RBFs), ANNs, and Kriging.

24 Surrogate Model Optimisation Techniques

Another recent study, Palar et al. [172], lists the following surrogate modelling methods:
polynomial regression, RBFs, Kriging, Support Vector Regression (SVR), ANNs and Hu et al.
[88], who also mention the method of non-intrusive polynomial chaos expansions (NIPCE).
This chapter will describe polynomial regression models, RBFs, Kriging, SVR and ANNs. For
historical reasons each method has evolved separately and different labels are used for similar
concepts. An attempt has been made to use a uniform mathematical lexicon across the methods,
to demonstrate the similarities and promote a comprehensive understanding of the subject.

Skinner and Zare-Behtash [200] split surrogate models into parametric and non-parametric
and by regression method:

“Parametric approaches (such as kriging or polynomial regression) are model
dependant [sic], forming a functional relationship between the response variables
and the design variable samples that are known. Non-parametric approaches (such
as radial-basis functions or neural networks) use local models in different regions of
the sample data to build-up an overfall [sic] frame work of the model. Furthermore,
surrogates can also be classified into regression type (polynomial regression, radial
basis functions) which tend to be better suited to noisy functions, and interpolation
type (kriging) creating best-fit response models.” [200]

The truth is more complex. This chapter will show that these divisions, though conceptually
useful, are somewhat arbitrary. Although polynomial regression and basis function methods
form two basic methods of regression, it is possible to have parametric basis function methods,
meaning that the definitions are not mutually exclusive.

2.2 Sampling Plans

Each of the metaphorical methods of system modelling discussed in this chapter are generated
by choosing a flexible surrogate function ŷ, and fitting it to the objective function y by taking
results or samples. In this section a consideration of the sampling plan is made. Sampling of
the output function f (x) for a d dimensional design problem x ∈ D ⊂ Rd with n samples, can
be defined as: {

x(i) → y(i) = f (x(i))|i=1,...n
}

(2.1)

In order to have certainty that the samples in (2.1) are representative of f , the sampling plan
should be selected to effectively cover the domain of the problem. When d is large, the curse of
dimensionality makes effective sampling vastly more difficult.

2.2 Sampling Plans 25

2.2.1 Types of Sampling Plan

Early work in sampling is described by Wang and Shan [227] as coming from the theory of
design of experiments, and concentrated samples at the boundaries. Since computers mainly
produce systematic errors rather than random errors it was argued by Sacks et al. [192] that
space filling methods were superior.

Pure Random Sampling

The simplest method of generating a sample set is to randomly select each value of x, such
that x ∈ U (a,b). This method appears attractive on initial inspection as each dimension is
considered independently and there is no preference for a particular value. However, there is
also nothing to stop clustering of sample points, so should a cluster occur then the model may
be trained and fit the clustered samples well. If a surrogate model is trained on a set of samples
that are clustered, it is likely to perform poorly in predicting the objective function for points
outside the cluster. The probability that points generated by random sampling will cluster
becomes lower as the number of samples increases. So, a larger set of samples is required to
reduce the probability of a cluster occurring to an acceptable level.

A further problem can be observed with random sampling in multivariate systems. Here if
the system is nonlinear, then sensitivity to the interaction of variables means that the sampling
method may not adequately cover areas of the search space that are of interest. For example,
in a system that is sensitive to the mean of a set of input variables, random sampling would
generate sets of data that tend towards a Gaussian distribution of the input mean due to central
limit theorem. In Section B.1 an attempt is made to generate a random set that is as close to flat
in terms of mean value as possible.

Although the pure random sampling method has been justifiably out of favour for many
years, a resurgence has been seen in random sampling methods. This is due to the increase in
performance of computers for applications where there is a high dimensionality of the input
vector; here the benefits of alternative methods of sampling are lower. Random sampling has
been found to be advantageous for highly nonlinear systems [142]. Methods such as Latin
Hypercube Sampling require many more computer operations to generate the initial samples,
so it can be practical to use random sampling when the dimensionality is very high.

Systematic Sampling

An intuitive method of generating samples is to create samples at regular intervals across the
search space. For each input dimension, n samples are selected over a range R, at a value change
of k where k = R/n. Each permutation of the input samples must be evaluated to establish a

26 Surrogate Model Optimisation Techniques

hypergrid shaped sample space. The input sample space grows with d as nd; so, as the number
of inputs increases, the number of permutations of inputs rapidly increases. Essentially, in
developing a training set, it is important to be able to ‘sample until’ [183, p. 313] the surrogate
model can be trained. The problem with systematic uniform sampling is that the granularity of
the sampling must be decided in advance. Uniform random sampling is advantageous here as it
is unbiased and because the problem is very multimodal, making the likelihood of inputs being
clustered low.

Latin Hypercube Sampling

Latin hypercube sampling ensures that there is a uniform distribution of samples by dividing
the range by the number of samples and selecting a random point in each division of the
range for each dimension. The approach is attributed to McKay [150] and the method was
shown to provide significant improvements in performance on computers at the time. Since
clustering cannot occur, it was shown that the results converge more quickly in an example
using estimators of a CFD problem [150]. As seen in Figure 2.2, Latin hypercubes are not
necessarily structure-free. As early as 1989, Hunter [89] warns that the Latin hypercube
produces biased averages as a result of the structure in the sampling programme for selected
problems.

Orthogonal Sampling

Orthogonal sampling was proposed by Tang [215] in 1993. It is a modification of Latin
hypercube sampling, where each region of the space is selected like in Latin hypercube
sampling. However, there is also a criterion that each d − 1 dimensional section contains a
number of samples, similar to a sudoku puzzle. Figure 2.2 shows that this avoids accidental
structure occurring in the samples by ensuring that each variable is equally sampled in the
subsection of the space.

Sobol Sampling

LPτ or Sobol sequence sampling was proposed by Sobol in 1979 [207]. The description here is
based on the Anotonov and Saleev variant of Sobol Sampling ([11] article in Russian) described
by Bratly and Fox [27] and Press et al. [183]. Sobol sampling is a method of creating a
sample set that is uniformly and spread across the search space and each new sample fills gaps
compared to previous samples. Thereby minimising clustering, like orthogonal sampling, with
the advantage that the samples are deterministic, with new values in the sequence filling empty
spaces between samples.

2.2 Sampling Plans 27

Sobol sequences can be generated for arbitrary numbers of dimensions leading to the
potential to generate deterministic training sets that have a known value of space coverage.

Fig. 2.2 (a) an example of a legal (albeit specifically selected) Latin hypercube; and (b) an
example of the orthogonal sampling. Orthogonal sampling demonstrates better spreading by
enforcing a sample in each quadrant of the space. Diagram adapted from Tang [215]

Other Methods

Random sampling and Latin hypercube represent the most common sampling methods in use
today [39]. Other methods exist, such as including proposed solutions from Faure, Niederreiter
and others [183, p 314]. Research continues in this area, with Montgomery et al. [154]
proposing three new methods aimed at unbiased experiment design. In Appendix B, Section
B.1 the author experiments with a sampling plan that combines random variables in an attempt to
create a uniform distribution. As the problem landscape changes, for example when computers
get faster, methods become more or less favourable.

2.2.2 Prediction-based Exploitation

When the surrogate model is used to identify optimal locations to explore, it is called prediction-
based exploitation. This is done by taking an initial sample set from f , generating a surrogate
model f̂ , then using f̂ to generate solutions in order to identify input ‘neighbourhoods’ where
the output variables appear to be optimal. The objective function f is then sampled around this
area and the model is improved, or localised based on the new samples (termed in-fill samples)
(c.f. prediction-based exploitation with error-based exploitation discussed on page 34).

28 Surrogate Model Optimisation Techniques

The strategies for sampling in the previous sections are aimed at one stage sampling or for
generating the initial sampling plan. They aim to find a way to spread samples across the search
space. It is generally assumed that the number of samples is limited by the expense of collection,
and so the problem is ‘solved’ by finding an acceptable solution or when the amount of resource
available to spend on gathering samples is exhausted. When online sampling, Sórbester et al.
[206] have shown that, for a defined maximum number of samples, it is advantageous to spend
0.35n of the n samples on the initial sampling plan and the remainder of the samples on in-fill
samples. If a limit to the number of samples is set and in-fill sampling is not to be used, then
there is not a clear way to establish how many samples are required. Sórbester refers to some
researchers using ‘rules of thumb’:

“Based on past experience, we find that about n = 10d points are needed in the
initial design.” [97]

Considering the nature of regression, the number of samples required is dependent on
the complexity of the function being modelled. Despite the academic value of such a ‘rule
of thumb’ being questionable, it is useful to know what other researchers have found to be
sufficient in the context of real problems.

2.3 Evaluating Accuracy of Estimates

In order to evaluate the accuracy of a surrogate model it is important to use tools that can
quantify the error of f̂ (x) compared to f (x). The simplest measure of error of a set of points to
another is the Root Mean Squared Error (RMSE) defined in (2.2):

RMSE =

√
Σ

nt
i=1(y

(i)− ŷ(i))2

nt
(2.2)

The RMSE forms the basis of much of the work to minimise errors between ŷ and y. However,
another metric, called the correlation coefficient, is important for the development of surrogate
models for optimisation. In optimisation the objective is to develop a globally accurate model
for the purpose of establishing important input configurations. The correlation coefficient
compares the landscapes of the functions and not the values. It is defined by Forrester et al.
[67, p. 37] as:

r2 =

(
cov(y, ŷ)√

var(y).var(ŷ)

)2

(2.3)

2.4 Surrogate Model Construction 29

and expands to:

=

(
ntΣ

nt
i=1y(i)ŷ(i)−Σ

nt
i=1y(i)Σnt

i=1ŷ(i)√[
ntΣ

nt
i=1y(i)2 − (Σnt

i=1y(i))2
][

ntΣ
nt
i=1ŷ(i)2 − (Σnt

i=1ŷ(i))2
]
)2

(2.4)

These two methods of measurement of the error and correlation of f̂ to f form the basis of
correction of surrogate models. It is worth noting that the RMSE is partly designed to scale the
error for the purposes of human inspection. An equivalent measurement is the Mean Absolute
Error (MAE) which preferred since it is more economical computationally. Some surrogate
development schemes use a variety of error measurement techniques such as log(error2) in
order to establish a greater penalty for larger errors, for example Chollet et al. [37].

2.4 Surrogate Model Construction

2.4.1 Polynomial Models

Polynomial regression models are generated from the sum of weighted polynomials to recon-
struct f , as shown in (2.5). Each order of the polynomial is multiplied by a real number, called
a weight, w. The Response Surface Model (RSM) is a term coined in 1951 by Box and Wilson
[26] while working on polynomial regression models. RSM might be considered more general,
but it has become associated with polynomial regression models to the point where it is now
ambiguous and the term polynomial regression model will be used in this thesis.

f̂ (x,m,w) = w0 +w1x+w2x2 + · · ·+wmxm (2.5)

As noted by Box and Draper in 1987, a polynomial expression of order m that best
approximates a function f (x) would be the Taylor expansion of f , truncated to m+1 terms
[25, p. 423]. It follows logically that a higher order model would fit the sample set more
effectively. However, as the order increases the model becomes more specialised for the dataset
that created it. This is particularly true for higher order models which diverge faster than lower
order models. If the data contains noise (from systematic error in simulations or measurement
error in experimental data), then there is a balance between generalising the data to a low order
model that ignores outlying data and overfitting f to too high an order that will not predict well
for new samples. This issue is known as an overfitting problem.

For a single output example, with n sample points of x, where y has been established,
the basis for creating a polynomial regression model from a set of points using least squares

30 Surrogate Model Optimisation Techniques

estimation is the Vandermonde matrix, V, as shown in (2.6):

V =


1 x1 x2

1 . . . xm
1

1 x2 x2
2 . . . xm

2
...

...
...

1 xn x2
n . . . xm

n

 (2.6)

Then by using the Least squares criterion for estimation:

w⃗=
(
VTV

)−1VTy (2.7)(
VTV

)−1VT is known as the Moore-Penrose pseudo-inverse, V+, and is widely supported in
mathematical programming languages.

In order to extend a polynomial regression model to more outputs, the complexity increases
rapidly with the dimensions required for the V matrix dimensionality. Furthermore inputs are
considered to be independent variables, so interaction of these variables cannot be modelled.
Typically this is described as the difficulty describing a continuous approximation of an XOR
gate, where an input, xi, changes the effect that the other input, x j, has on the output. A realistic
example could occur where a burnable poison in a nuclear reactor fuel pin affects the burnup of
fuel in adjacent pins. The number of neutrons being produced by both of these pins would then
affect other pins that are further away so the input variables (fuel enrichment and poison mass
fraction) cannot be transformed linearly to produce accurate pin power predictions.

As previously mentioned, selection of optimal order m is critical to polynomial regression.
If the order is too high, then the model will not extrapolate well beyond the data points. If the
order is too low, then the model will not fit the data well.

Order Estimation

In order to carry out polynomial regression, a choice of m must be made, and this can be done
in a number of ways. If domain-specific knowledge can be leveraged, then it should be. For
example, if the task were to model the motion of an object under a force, it can be expected that
it will have a trajectory that follows a cubic law for position. In this case, selecting a higher
order polynomial could be predicted to exhibit overfitting on the data.

Since m is always an integer and unlikely to be a large number, it is usually feasible to
estimate the order by brute force [67, p. 40]. The cross-validation εcv is calculated by splitting
the samples into a number of groups and then estimating the prediction error for each group
when the model is trained on the rest of the sample data. This process must be repeated for

2.4 Surrogate Model Construction 31

each group:

εcv(w⃗) =
1
n

n

∑
i=1

[y(i)− f̂ (x(i),w′)]2 (2.8)

where w′ are the weights associated with each polynomial f̂ . For a given order of f̂ , the mean
cross-validation ε̄cv when trained on each of the subsets of data left after the removal of the test
group, gives an estimate of the prediction error [67, p. 36].

As the number of groups tends to the full set of data (albeit n−1 is the maximum), then
εcv becomes a better estimate of the interpolation inside the sample range. There is a trade-off
between the number of groups and computational expense for calculating the cross-validation.

Polynomial Models Summary

Polynomial models are relatively easy to understand and provide very computationally-efficient
surrogate models. They are also extremely useful in the quantification of uncertainty of a model.
Three major disadvantages of traditional polynomial fitting are the inability to model nonlinear
combinatorial problems, the curse of dimensionality and overfitting.

If the problem is a MO, then the dimensionality of V increases linearly. This means
that the number of calculations required increases very quickly and the problem becomes
computationally expensive. However, recent advances made in the computation of polyno-
mials have changed the status quo. For example, the Effective Quadratures library allows
computationally-efficient polynomial regression in many dimensions, Seshadri and Parks [195].

2.4.2 Radial Basis Function Models

The term Radial Basis Function (RBF) refers to any function that is symmetrical (radial), and
is used as the basis of the surrogate model. They are also known in the literature as Radial
Basis Function Networks. In this thesis g(r) will be used to define the RBF, where r is the
Euclidean distance |x−c(i)|, although an interpolation step can be used to estimate c (see [179]
for a description). This text will describe the case where the basis functions are centred at the
sample points, c(i) = x(i), and where nc is the number of samples:

f̂ (x) = wT g(r) =
nc

∑
i=1

wig
(
|x− c(i)|

)
(2.9)

The advantage of using radial functions where r is the radial distance (e.g. r3 or a thin plate
spline r2ln(r)) is strictly associated with the intuitive understanding that real-world functions
are continuous, and so values close to a sample will have a value relation to the sample.
Symmetry is not necessarily true in real systems, but, without a priori system knowledge, it

32 Surrogate Model Optimisation Techniques

is a reasonable assumption. A number of possible choices for g(r), the RBF, are shown in
Table 2.1. Insight may be used by the practitioner to match the basis function to the real-world
application. For example, if the objective function were to involve the Brownian motion of gas
particles, then a Gaussian basis function would be the natural choice, since the random motion
of a population of particles in a medium naturally forms a Gaussian function [19, pp. 6–10].

Table 2.1 Table of RBFs, examples described by [67, p. 46].

Basis Function
Estimation

Comments
Complexity

linear g(r) = r very low Linear decay with distance r
cubic g(r) = r3 very low Cubic decay with distance r
thin plate spline g(r) = r2 ln(r) low A spline curve r
multiquadratic g(r) = (r2 +σ2)1/2 high More general approximation, due to

σ parameter
Gaussian g(r) = e−r2/2σ2

high More general approximation, due to
σ parameter, c.f. Kriging, p. 33

The weight vector can be estimated independently of the basis function, by substituting the
Gram matrix (G) defined as:

Gi, j = g
(
|x(i)− c(j)|

)
, j = 1, . . . ,n (2.10)

Substituting (2.10) into (2.9) and switching to matrix notation:

f̂ (x(j)) = wG = y j, j = 1, . . . ,n (2.11)

From (2.11) the weights can be established by:

w = G−1y (2.12)

Note that (2.12) is identical to the error backpropagation algorithm used in neural networks
with a single hidden layer (see Artificial Neural Networks p. 38). If the radial basis function
has other parameters, such as σ , then these must also be established. This is covered in the
section on Kriging on p. 33.

2.4 Surrogate Model Construction 33

RBF Summary

Radial Basis Functions represent the objective function f as the sum of basis functions. This is
an attractive method due to the ease of implementation. For some situations RBF methods can
be shown to be a universal predictor [67, p. 75]. However, how well the surrogate model fits the
objective function can be basis function dependent, so physical insight is useful. Radial basis
functions have been applied in many areas of engineering, including aerodynamics [63, 131],
mechanical engineering [110] and physical geography (see [188] for a good summary).

2.4.3 Kriging

Kriging is a special case of an RBF approach, with a basis function shown in (2.13). This
method was developed by Matheron [146]. Kriging aims to carry out the reverse process of the
Weirstrass transform described in Equation B.4. Due to its popularity, features and independent
development, it is usually considered separately from other RBFs.

g(i) = e

(
−

d
∑

j=1
θ j|x

(i)
j −x j|

p j

)
(2.13)

The Kriging basis function, (2.13), exhibits a variable vector p that varies the exponent and
the θ from the Gaussian equation in Table 2.1 is replaced with an n dimensional vector
θ = {θ1,θ1, . . . ,θn,}, so a Kriging model can contain basis functions with different widths.

To generate a Kriging model, the definition of correlation, (2.3), is used on the vector of
outputs Y to generate a correlation matrix:

R =

r[Y (x(1)),Y (x(1))] . . . r[Y (x(1)),Y (x(n))]
...

r[Y (x(n)),Y (x(1))] . . . r[Y (x(n)),Y (x(n))]

 (2.14)

Taking roots, and rearranging (2.3):

cov(y, ŷ) = r.var(y).var(ŷ) (2.15)

Then, substituting y for ŷ, the covariance matrix is found to be:

Cov(y,y) = var(y)2R (2.16)

In order to estimate θ and p, an assumption is made that ε is an independent random distribution
in x and ŷ → y, using σ2 to denote variance. There is then a logical inversion of the conditional

34 Surrogate Model Optimisation Techniques

probability for a normal distribution to say that Likelihood L is :

L(Y(1), ...,Y(n))|µ,σ) =
1

(2πσ2)n/2 e

(
−∑(Y(i)−µ)2

2σ2

)
(2.17)

Substituting in (2.16) puts (2.17) in terms of the sample data:

L =
1

(2πσ2)n/2|R|1/2 e

(
− (y−1µ)T R−1(y−1µ)

2σ2

)
(2.18)

and taking natural logs:

ln(L) =−n
2

ln(2π)− n
2

ln(σ2)− 1
2

ln(|R|)− (y−1µ)T R−1(y−1µ)

2σ2 (2.19)

By taking derivatives w.r.t. µ and σ to find the maximum likelihood, the parameters µ̂ and σ̂

can be found to be optimal at:

µ̂ =
1T R−1y
1T R−11

(2.20)

and

σ̂
2 =

(y−1µ)T R−1(y−1µ)

2σ2 (2.21)

which substitutes back into (2.19) to create a polynomial time calculation of ln(L):

ln(L)≈−n
2

ln(σ̂2)− 1
2

ln(|R|) (2.22)

Although (2.22) is in terms of σ and R, it cannot be differentiated, so the values θ and p
must be found by an iterative search method, such as simulated annealing, tabu search or an
evolutionary algorithm.

Error-based Exploitation

An interesting feature of the Kriging method is that it allows an estimation of the error
of | f (x)− f̂ (x)|. When this is used to guide the sampling plan, it is termed error-based
exploitation. This can be useful to guide the sampling plan to generate in-fill samples that
generate the most accurate surrogate model possible.

2.4 Surrogate Model Construction 35

Kriging Summary

Kriging is one of the most popular methods for surrogate modelling in use today. It has been
widely applied in aerospace, mining, physical geography and nuclear engineering [76, 188,
189, 199, 242]. It can be seen as a special case of RBFs or as a method of Gaussian Process
Regression, since the radial basis function is a normal curve.

2.4.4 Support Vector Regression

Support Vector Regression works to minimise the number of points in the collected samples
y(i)|i = 1, . . . ,n that have an f̂ (x(i)) error that is greater than ε .

The surrogate function for SVR shown in (2.23) is similar to an RBF. However, it is
important to note that the parameters bias b and weights w are calculated in a different manner
[67, p. 64]:

f̂ (x) = b+
n

∑
i=1

w(i)g(x,x(i)) (2.23)

The description of SVR will follow the same process as [202], on which this description
is based, by starting with a linear regression of one output y, then generalising. For a linear
regression of f , so (2.23) becomes:

f̂ (x) = b+wx (2.24)

where w is a vector of real numbers and b is a real number. The selection of optimal parameters
is given by:

minimise
w

1
2
|w|2

subject to

 y(i)−⟨w,x(i)⟩−b ≤ ε

−y(i)+ ⟨w,x(i)⟩+b ≤ ε

(2.25)

Since it is not always possible to find a line that fits all the points in a set with error less than ε ,
a slightly more complex function than (2.25) is needed. The solution is to incorporate a cost
function to the minimisation term:

36 Surrogate Model Optimisation Techniques

minimise
w

1
2
|w|2 +C

n

∑
i=1

ξ
+(i)+ξ

−(i)

subject to


y(i)−⟨w,x(i)⟩−b ≤ ε +ξ+(i)

−y(i)+ ⟨w,x(i)⟩+b ≤ ε +ξ−(i)

ξ+(i),ξ−(i) ≥ 0

(2.26)

where ξ+(i) and ξ−(i) are called slack variables and increase the sensitivity of f̂ when
(

f (x)−
f̂ (x)

)
> ε . Note that in this section bracketed superscripts are used to denote different variables,

rather than powers. The volume that is taken up by f̂ (x)± ε is called the ε-tube.

Using the Lagrangian to Solve the Dual Problem

In order to optimise 2.26, a Lagrange function is defined, by adding dual variables (also called
Lagrange multiplier variables), η+,η−,α+, and α−, which must be maximised. The problem
is then solved by searching for the saddle point where the original variables, w and b, are
minimised and Lagrange multiplier variables have been maximised. The Lagrange function
looks like:

L =
1
2
|w|2+

C
1
n

n

∑
i=1

(ξ+(i)+ξ
−(i))

−
n

∑
i=1

(η+(i)
ξ
+(i)+η

−(i)
ξ
−(i))

−
n

∑
i=1

α
+(i)(ε +η

+(i)− y(i)+w ·x(i)+b)

−
n

∑
i=1

α
−(i)(ε +η

−(i)− y(i)+w ·x(i)−b)

(2.27)

Although (2.27) looks complicated, it is fairly logical, with a similar expression for each of
the variables. At the saddle point sought:

∂L
∂w

= 0 = w−
n

∑
i=1

(α+(i)−α
−(i))x(i) (2.28)

∂L
∂b

= 0 = w−
n

∑
i=1

(α+(i)−α
−(i)) (2.29)

2.4 Surrogate Model Construction 37

∂L
∂ξ+

= 0 =
C
n
−α

+(i)−η
+(i) (2.30)

∂L
∂ξ− = 0 =

C
n
−α

−(i)−η
−(i) (2.31)

Substituting (2.28) into (2.24), then f̂ for the case where g(x) is a straight line, the surrogate
function becomes:

f̂ (x) = b+w−
n

∑
i=1

(α+(i)−α
−(i))(x(i) ·x) (2.32)

The purpose of this substitution is to put the objective function in terms of only the dual
variables. This is called the dual objective function and can be seen in (2.33).

maximise

−1
2 −∑

n
i=1(α

+(i)−α−(i))(x(i) ·x)

−ε ∑
n
i=1(α

+(i)+α−(i))+∑
n
i=1 y(i)(α+(i)+α−(i))

subject to

∑
n
i=1(α

+(i)−α−(i)) = 0

α+(i),α−(i) ∈ [0,C]

(2.33)

The final variable that must be established is the bias, b. This can be established using a
number of methods, either by analysis of (2.34) and (2.35) or by interior point optimisation,
used for complex g(x) as described by Keerthi et al. [103].

Smola and Schölkopf summarise the Karush-Kuhn-Tucker (KKT) conditions as:

“These [Karush-Kuhn-Tucker (KKT) conditions] state that at the point of the
solution the product between dual variables and constraints has to vanish.” [202]

So:
0 = α

+(i)(ε +ξ
+(i)− y(i)+(w · x(i))+b)

0 = α
−(i)(ε +ξ

−(i)+ y(i)− (w · x(i))−b)
(2.34)

0 = (C−α
+(i))ξ+(i)

0 = (C−α
−(i))ξ−(i)

(2.35)

Equations (2.35) show us that α±(i) =C is a requirement for results (x(i),y(i)) to be outside
of the ε-tube, and therefore a support vector. A support vector cannot be simultaneously on
both sides of the ε-tube so α+(i)α−(i) = 0 (one of them must be zero). From the second factors
in (2.34) it can be seen that α+(i),α−(i) vanish for | f̂ (x(i))− y(i)|< ε so only samples that are
outside of the ε-tube are required for the derivation of the surrogate model with SVR. This is a

38 Surrogate Model Optimisation Techniques

very important result for SVR models. Figure 2.3 shows the final f̂ function graphically for
SVRs.

Fig. 2.3 The surrogate model f̂ acting on a test vector in a trained Support Vector Surrogate
Model, adapted from [202].

SVR Summary

This description of the construction of a surrogate function, f̂ , using SVR is only for a basis
function, g(x), which is a straight line. However, the method extends to more complex basis
functions (the derivations of this can be found in [202]). The method allows the derivation of
surrogate models from a sparse set of points, essentially only support vectors are required to
completely model the system.

2.4.5 Artificial Neural Networks

ANNs are information processing algorithms inspired by one aspect of learning behaviour
exhibited by biological neural cells. This origin story is usually distracting from the value of
the algorithm, so this thesis will aim to keep the description relevant to surrogate models and
nuclear engineering. However, it is worth noting that neural networks have been used in many
other applications and have generated significant progress in areas such as character and image
recognition, as well as video, speech and audio processing [123].

Neural networks have previously been used in nuclear engineering to predict core parame-
ters, for example [163] (found in [220]) and in optimisation of core loading patterns by Faria
and Pereira [60] and Kim et al. [107]. An ANN, such as the one shown in Figure 2.5, is

2.4 Surrogate Model Construction 39

usually set up with low random initial weights between nodes. The process of training the
network (modifying the parameters to make the output f̂ approximate f well) is then typically
as follows:

1. Initialise the network topology with low valued, random weights w.

2. Perform a feedforward evaluation of f̂ to establish error ε and value at each node in the
network.

3. Execute the error backpropagation algorithm (p. 39) to get error derivatives for each of
the weights in the network.

4. Modify the weights using gradient descent

5. Terminate, if the number of iterations has been satisfied or the network has converged.

6. If not, then return to step 2.

The Backpropagation Algorithm

The method by which ANNs adapt to approximate the objective function is called error
backpropagation. This algorithm is essentially a recursive application of the chain rule for
differentiation. The creation of the backpropagation algorithm is often attributed to Rummelhart
and Williams [191], though it is posited by LeCun et al. [123] that the algorithm has been
discovered independently at least three times (the earliest, 1974 by Werbos [230, p. 9]). It is
described below, following the procedure in the lecture by Winston [238], and based on the
descriptions in [56] and [24, chap. 4] for Multi Layer Perceptrons (MLPs).

Fig. 2.4 A simplified single input, single output ANN with two single hidden layer nodes for
explanatory purposes.

Consider an MLP such as shown in Figure 2.4. The layers of the network are input x, hidden
1 h1, hidden 2 h2 and output, ŷ. They are calculated as follows:

40 Surrogate Model Optimisation Techniques

ŷ = g(w3 h2)

h2 = g(w2 h1)

h1 = g(w1 g(x))

(2.36)

The transfer function is:
ŷ = g(w3 g(w2 g(w1 g(x)))) (2.37)

Differentiating w.r.t. w1 and using the chain rule, as mentioned previously:

∂ ŷ
∂w1 =

∂

∂h2
ŷ

∂

∂h1
h2

∂

∂w1 h1 (2.38)

A simple error function ε is used, defined as:

ε =
1
2
(ŷ− y)2 (2.39)

and
∂ε

∂ ŷ
= (ŷ− y) (2.40)

Equation (2.38) allows the calculation of the sensitivity of w1 w.r.t. the error ε

∂ε

∂w1 =
∂ε

∂ ŷ
· ∂ ŷ

∂h2
· ∂h2

∂h1
· ∂h1

∂w1 (2.41)

Although g() (called the activation function) can be a wide variety of nonlinear functions, this
example will use the sigmoid function, defined as follows:

g(a) =
1

1+ e−a (2.42)

The reason that the sigmoid function has been popular is due to a peculiar property of its
derivative1:

dg(a)
da

=
d

da
(1+ e−a)−1

dg(a)
da

= g(a)(1−g(a))
(2.43)

Thus, the derivative of the sigmoid function can be expressed in terms of the original function.
Using the sigmoid activation function, (2.42), and substituting its differential property, (2.43),
into (2.36). It is now possible to substitute the results and (2.40) into (2.38) to create the result:

1Although the sigmoid function is used in this derivation. Activation functions such as ReLu are now considered
superior [160] and will be used in the experimental section of this thesis.

2.4 Surrogate Model Construction 41

∂ε

∂w1
= (ŷ− y)·

w3g(w3 h2)(1−g(w3 h2))·
w2g(w2 h1)(1−g(w2 h1))·
w1g(g(x) w1)(1−g(g(x) w1))

(2.44)

Equation (2.44) allows us to calculate the effect of changing w1 based only on weights that are
further down the network (which are calculated first in the weight update scheme 2.4.5) and
local variables. These local variables have already been calculated in the forwards pass, item
2 in the list on p. 39. By using this method to modify weights, ANNs are able to scale linearly
with the number of inputs, outputs and network complexity.

It has been shown above that it is possible to find the differential of the error w.r.t. each
weight in a network with a single input and output. In the next paragraphs some housekeeping
will be done to extend this to multiple input, multiple output networks, with multiple hidden
layer neurons.

Fig. 2.5 A slightly more complex network, the weights (w1,w2,w3) now form matrices.

Considering Figure 2.5, it is fairly easy to see that the weights will become matrices, and
the inputs x can be converted to a vector. The transfer function from (2.37) becomes:

ŷ = ∑
i, j

g(w3
i j ∑

k,l
g(w2

kl ∑
m,n

g(w1
mn g(x)))) (2.45)

42 Surrogate Model Optimisation Techniques

Similarly, the gradient of error for a given weight is given by (for example, with a weight in the
first layer):

∂ε

∂w1
p j

= (ŷ− y)·

g(∑
i, j

w3
i j g(∑

k,l
w2

klg(∑
m,n

w1
mn g(x))))(1−g(∑

i, j
w3

i j g(∑
k,l

w2
klg(∑

m,n
w1

mn g(x)))))·

g(∑
k,l

w2
kl g(∑

m,n
w1

mn g(x)))(1−g(∑
k,l

w2
kl g(∑

m,n
w1

mn g(x))))·

g(w1
p j g(x))(1−g(w1

p j g(x)))
(2.46)

The significance of the results in (2.46) should not be understated. It allows the fast computation
of all derivative of weights of large networks with a great deal of repeated expressions in the
calculation. Furthermore, multiple outputs can improve the learning rate of neural networks
by increasing the value of the gradient of weights, making neural networks well suited to MO
problems.

This section describes very simple feedforward networks called an MLPs. These are
characterised by the outputs of each layer feeding into the inputs of the subsequent layer.
However, a wide variety of network topologies have been experimented with [9, chap. 5]
describes the derivation of error backpropagation for feedback networks, where the outputs of
nodes can go to any layer, forwards or backwards.

Weight Optimisation

In order to modify the weights of the network, the amount that each weight should change can
be modified by gradient decent:

∆wi j =−α
∂ε

∂wi j
(2.47)

where α is a constant called the learning rate. In order to start a training sequence, the weights
should be initialised in the correct range:

“With large initial weights, [ANNs] typically find poor local minima; with small
initial weights, the gradients in the early layers are tiny, making it infeasible to
train [ANNs] with many hidden layers” [85]

Gradient descent is not a very advanced optimisation technique; however, it is effective enough
to find the global optimum if the weights are initialised with suitable values [85]. More
advanced algorithms, such as the ‘Adam’ algorithm [109] have now superseded stochastic
gradient decent.

2.5 Summary of Methods 43

Artificial Neural Network Topology

Relatively early work in ANNs showed that, like RBFs, even simple networks could act as
universal function approximators [46], so work concentrated on simple networks until the
recent interest in deep networks began, summarised concisely by LeCun et al. [123]. Deep
networks showed a marked improvement on simple (or shallow) networks. Telgarsky [217]
showed in 2015 that there are, in fact, functions that cannot be represented efficiently by shallow
networks, and that a large set of functions are more easily represented in deep networks. A
great deal of progress has been made in the last ten years. In 2016, Mhaskar et al. described
the kind of problems for which deep or shallow learning is advantageous. They show that, for
complex problems, orders of magnitude of improvement of error performance are achieved
with three or more hidden layers. Even on only moderately complex problems the performance
is shown to be better with deep networks [151].

Since the development of deep learning techniques, there has been an explosion of industrial
usage of deep learning neural networks by companies like Google Inc. [6] and Facebook Inc.
[96, 37]. These companies have released libraries of professionally developed code, under
permissive licenses, allowing public, academic and commercial use.

Artificial Neural Network Summary

Khurana et al. [106] suggest that:

“Neural networks work well when the relationship between the design space and
the objective function is complex, less intuitive, and highly-dimensional.” [200]

Comparison of (2.11) with the definition in (2.37) shows that RBFs are equivalent to a MLP
with no hidden layers, g(r) representing the neural activation function or radial basis function
[179] (see pp. 32 and 40) . For this reason (and perhaps an interest in aligning the research)
RBFs are often called Radial Basis Function Networks in the literature.

Although ANNs have been hyped a great deal, the advantages and flexibility of the approach,
as well as the libraries of standardised code from international corporations, make this approach
extremely attractive.

2.5 Summary of Methods

Nuclear engineering has a number of highly nonlinear, computationally expensive problems
that make them ideal for surrogate modelling. Recent papers, for example Leniau et al. [126]

44 Surrogate Model Optimisation Techniques

in 2015 and Wu et al. [242] in 2018, point towards an increasing trend of surrogate models in
this area.

Although surrogate methods can be usefully described using the categories of parametric,
where model parameters are tuned to fit the sample set and non-parametric where basis functions
are added without modification and by regression type (polynomial regression or radial basis
functions), we have seen that this is not the full story. Polynomial models are parametric, but
radial basis functions can be parametric or not. Furthermore, most methods are equivalent as
shown in Figure 2.6. Polynomial regression fits a polynomial curve of an externally chosen
order m to the sample set. It is simple to implement but suffers computationally at higher input
modality whereas Radial Basis Function Regression fits a set of basis functions with different
central positions, to the data set.

Fig. 2.6 Relationships between Surrogate Modelling techniques, references [179] and [203]

This chapter has described the implementation of five methods of surrogate model development.
These are polynomial regression, RBFs, Kriging, ANNs and SVR. At first glance each of these
methods appears disparate. However, the aim of this chapter has been to show the intimate
connections between the different methods, by formulating each method using a common
mathematical language.

Since there are many similarities between methods, an awareness of techniques from each
method is important to avoid wasted effort. A great deal of work has been repeated in the
last century that could have been avoided if researchers had been aware of efforts in related
fields. Selection of a technique for further work is usually made based on an author’s personal

2.5 Summary of Methods 45

preference, as remarked by Razavi et al. [188]. The author’s choice of surrogate method for
nuclear engineering is ANNs based on the nonlinearity of the problem requiring a method that
can achieve extremely complex representations. Also recent innovations in the field may bring
advantages and an active research community, coupled with the availability of comprehensive
peer-reviewed libraries supplied under permissive licenses.

This chapter has described at a technical level a number of different surrogate models that
have been used in surrogate model optimisation. The technical aspects of these technologies
are intended to inform the reader when evaluating the application of these methods in nuclear
engineering as well as in the wider engineering, discipline in the next chapter.

Chapter 3

Surrogate Model Optimisation, Deep
Learning and PWR Fuel Management

While the previous chapter introduced SMO methods, this chapter examines the literature
around in-core fuel management optimisation, SMO and the growing trend for deep learning in
nuclear engineering.

Nuclear science has a long history of pioneering modern numerical techniques. For example,
Monte Carlo [221] and iterative optimisation [174], but this would no longer appear to be the
case. If the community continues to ignore modern techniques, it will inevitably struggle to
attract talented scientists.

Until recently, there was almost no appetite for deep learning among the academic commu-
nity in nuclear engineering. The proceedings of PHYSOR 2018 [1] included no papers with
the terms ‘machine learning’, ‘deep learning’, ‘neural network’ or ‘surrogate model’ in the title.
This bias has now been rightly discarded. There is now much, perhaps too much, enthusiasm
for deep learning in nuclear engineering, and a rapidly growing corpus of literature. At the
now cancelled PHYSOR 2020, there would have been eight papers presented that referenced
‘machine learning’, ‘deep learning’ or ‘neural networks’ in their titles [5]. The author is lucky
to have worked at the forefront of these techniques, and has been able to contribute meaning-
fully to the adoption of deep learning techniques in SMO and as a part of the wider nuclear
engineering community.

3.1 Applications of Surrogate Models

The following sections concisely describe SMO techniques that have been applied in other
areas of engineering.

48 Surrogate Model Optimisation, Deep Learning and PWR Fuel Management

3.1.1 Mechanical Engineering

Examples of applying surrogate models in the area of mechanical engineering are concentrated
in the area of CFD, but many other examples exist, including Yang et al. [248] who use
surrogate models for vehicle frontal impact simulation, and Marklund et al. [143] who use first-
and second-order polynomial approximations to investigate impact on the ‘B-pillar’ component
of a car. Forrester and Keane [66] demonstrated the application of surrogate models to the
design of a passive vibration isolating structure, creating novel performant structures, and later
demonstrated helical spring design and cantilever ‘Nowacki’ beam design by using surrogate
modelling [165],[67, pp. 198–201].

3.1.2 Computational Fluid Dynamics and Aerospace Design

Perhaps the most successful application of surrogate approximation for the purposes of optimi-
sation is in the calculation of flows around objects in fluid dynamics. This is due to the high
computational cost of performing CFD calculations, such as the direct numerical simulation of
Navier-Stokes equations in three dimensions. CFD lends itself to surrogate methods due to the
validity of the assumptions of continuity and conservation laws, and the similarity of the shape
of responses with common basis functions.

Aircraft wing optimisation is an extremely popular aerodynamic optimisation problem for
surrogate modelling. Robinson and Keane [189] derived a family of RBFs for use as surrogate
models when optimising supercritical aerofoil morphology, and Keane [102] designed wing
morphology using Kriging with multi-fidelity models in 2003. Forrester et al. [67, p. 197]
demonstrate eighth-order polynomial regression to model drag coefficients on aerofoil design
in 2008. Research continues in 2013, when Li et al. [131] investigated the nacelle/pylon
(engine) position on wings with RBFs. Laurencau [121] compared advanced methods of
Kriging effectiveness on aerodynamic shape optimisation, while Fincham and Friswell [63]
successfully applied RBFs to wing morphology in 2015. Khurana et al. [106] investigated
optimising aerofoil design using neural network surrogate models. Recently, in 2016, Palar
et al. [172] compared a number of multi objective optimisation algorithms while using a
second-order local surrogate model, which is updated at each point in the search space.

Helicopter rotor blades are another design problem commonly investigated using surrogate
optimisation. Collins [41] applied fourth-order polynomial regression to rotor design, and Glaz
et al. [76] used a Kriging method to investigate vibration dampening in helicopter blades. In
addition Massaro et al. [145] used a neural network with an evolutionary algorithm to optimise
efficiency at multiple objective altitudes and speed conditions in 2011.

3.1 Applications of Surrogate Models 49

Compressor design is another CFD problem that has benefitted from the application of
surrogate models. Lian and Liou [134] used second-order polynomial regression and Kipouros
et al. [110] applied RBF models in the context of multi objective optimisation in compressor
design. Queipo et al. [185] applied polynomial surrogate models in the optimisation of the
design of fuel injectors for NASA rockets in 2005. In 2008, Jaeggi et al. [94] compared Kriging
with a related Gaussian process method called the Sparse Pseudo-input Gaussian Process
(SPGP) finding that the SPGP outperformed Kriging on computation cost by a factor of four
and produced better predictions in multi-fidelity models of diffuser design.

3.1.3 Meteorology and Physical Geography

Weather prediction has long been used for the development of models and surrogate models.
Forrester et al. note that meteorologists often work with surrogate models:

“The pressure [contour] chart is, of course, a surrogate model of the real pressure
distribution, based on measurements at a network of weather stations”[67, p. 111]

Chorley [38] reviewed a number of surrogate methods in use in physical geography in 1965,
including linear and polynomial regression, showing that this was already common practice at
the time.

Razavi et al. [188] conducted and excellent review of surrogate methods related to water-
resource modelling, covering polynomial regression, RBFs, and Kriging methods, and referenc-
ing 48 papers on surrogate methods in water resources and many more over physical geography.
Their conclusion on the selection of methods is as follows:

“It is not trivial to suggest the best function approximation technique for the
purpose of response surface modeling, and metamodel developers typically pick
a technique based on their preference and level of familiarity as well as software
availability. Function approximation techniques that are able to (1) act as exact
emulators, (2) provide a measure of approximation uncertainty, and (3) efficiently
and effectively handle the size of the data set [...] of interest” [188]

3.1.4 Mineral Prospecting and Mining

Building a mine or an oil well is an expensive undertaking. Therefore, it is important in any
geophysical survey to establish the minimum number of samples in order to make informed
decisions. However, extracting a core sample (a sample is denoted as x in our description) is an
activity that varies in cost – from the collection of surface samples (which have negligible cost)

50 Surrogate Model Optimisation, Deep Learning and PWR Fuel Management

to remote-area, ultra-deep, offshore core samples, which are collected from kilometres down,
where the specialised drilling rigs alone cost many millions of USD per week [196], and there
is significant danger to personnel [40].

For this reason, surrogate modelling methods have always been salient to geophysicists.
Most models use Geographic Information Systems (GIS) map coordinates as the input, with
a third dimension being the concentration of ore in samples. Kriging was invented by Danie
Krige [116, unsubstantiated], a South African mining engineer, and its history is described by
Cressie [44], who states that the term was coined by Matheron [146] in 1962.

As well as Kriging, other methods have also been applied to geological problems, notably a
method developed by Singer and Kouda [199], who successfully applied neural networks to
predict of mineral deposits in Japan. Research continues with further examples demonstrated
by Porwal et al. [181] and Corsini et al. [43], who have both applied glsterms:rbf models to
predict the location minerals and groundwater, respectively.

3.2 Surrogate Models in Nuclear Engineering

The complexity of in-core fuel management and fuel design has long been recognised as being
highly nonlinear. The US Atomic Energy Commission [222, pp. 605–614], for example,
discussed the nonlinear effects of control rods on adjacent fuel pins back in 1955. The in-core
fuel management search space was investigated by Galperin [71] in 1995, who found the space
to be extremely complex, with 1010 local optima in a search space with 1012 states. Despite
the early recognition of the complexity of the problem, the label of surrogate modelling has
not been used in the context of nuclear engineering until recently. There have, however, been
a few attempts at using surrogate models. As early as 1993, Kim et al. [107] used shallow
(single, hidden layer) ANNs to model PWR core parameters for a surrogate based optimisation
of in-core fuel management. They concluded that the accuracy of their predictions was too
low for application to SMO. They were achieving between 5% and 10% prediction error in
networks that were a few hundred neurons in size. However, other works, such as Lysenko
et al [137] used neural networks to control parts of the calculation in concert with analytical
techniques and demonstrated utility. Another attempt was made by Faria and Pereira [60] in
2003, who again used smaller, shallow ANNs for core-reload pattern design and optimisation.
This time, in-fill sampling was used to continually update the networks. They found that they
were able to consistently design better systems than the reference design. They investigated the
model using three different types of fuel preparation (MOX, AIROX and co-processing) but
the experiment only considered the movement of fuel around the core rather than swapping
fuel in and out. In 2008, Bae et al. [17] used SVR, kernel method is used to train ANNs for

3.3 Deep Learning Surrogate Models 51

prediction of PPF in fuel assemblies, concluding that the approach "sufficiently accurate for
using in power peaking factor monitoring". However, no optimisation methodology or control
strategy is considered.

Polyomial regression surrogate models such as the CESAR 5.3 code [224] have been
successfully applied in mean cross-section prediction over burnup.

In recent years there has been an increasing trend of papers directly referencing meta-
models, meta-modelling or surrogate modelling applied to nuclear engineering problems. In
particular, Leniau et al. [126] used shallow ANNs to predict the plutonium content of MOX
fuel, isotopic concentrations and cross-sections over burnup.

“MLPs showed a very good accuracy since the average error on plutonium con-
tent determination is 0.37% with a standard deviation associated to the error of
1.55%.” [126]

In 2018, Wu et al. [242] applied first-order polynomial regression and Kriging to the BISON
nuclear fuel simulation code for modelling the release of fission gases. They found that “Kriging
metamodels are applied to greatly alleviate the computer burden during [Markov Chain Monte
Carlo] MCMC sampling.” [242]

Despite the mixed results of previous studies using surrogate models to optimise in-core
fuel management, and other aspects of nuclear engineering, it is clear that the problems can be
tackled using this technique. Furthermore, progress during the past ten years means that there
is the possibility that further successes can be achieved by applying modern machine learning
techniques to the area of fuel design and in-core fuel management.

3.3 Deep Learning Surrogate Models

As mentioned previously, there is now a growing trend for the application of machine learning
and particularly deep learning in the nuclear industry, based on methodological innovations
such as Convolutional Neural Networks (CNNs) [123] and availability of tools mentioned in
section 2.4.5. For example, at the PHYSOR 2020 conference there would have been eight
papers presented by other authors on ‘machine learning’, or ‘neural networks’ [252, 133, 210,
65, 216, 141, 186, 205]. Compared to the previous PHYSOR [1], with no papers using these
keywords in the title.

Of the PHYSOR 2020 papers, Zhang et al. [252] refer to the use of CNNs, in this case, it is
investigated for simulation of flux and power distribution compared to the diffusion equation,
with a view to extending the work to optimisation. However, unlike this thesis the optimisation
step is not achieved.

52 Surrogate Model Optimisation, Deep Learning and PWR Fuel Management

3.3.1 Deep Learning Model Architecture

The first type of neural network surrogate model used in this thesis is an MLP type – a simple
feedforward neural network commonly used for regression and classification tasks. As shown
in Figure 3.1a, an array of processing nodes connect inputs, x, to outputs, y; each node sums the
inputs and applies a transform to the data; and between nodes a weighting factor wi, j is applied.
The weights, w, define an approximation of the required outputs, y. The backpropagation
algorithm, made popular by Rummelhart et al. [191], is used to optimize the weights of the
network.

The second type of deep learning surrogate model is called a CNN [122], represented
diagrammatically in Figure 3.1b. This network configuration is well-suited to spatial data,
such as recognition of images [99]. In this architecture, a population of filter kernels perform
‘convolutions’ on the input image. The resulting images have a sensitivity to the pattern of
the kernel that gave rise to them. These images are usually put through a ‘pooling layer’
(scaled down), and these layers are repeated a number of times. The network finishes up
with a deep feedforward neural network similar to an MLP. The system is successful because
it does not require the designer to specify the base ‘kernels’ that will perform low-level
image processing; they arise naturally from the convolution layers of the CNN. This type
of network has proven extremely effective at recognising images, due to its translational
invariance. Although translational invariance does not automatically occur in nuclear core
design, by selecting inputs to represent the water gap and control/instrumentation pins, the
effects of geometric variance are encoded into the inputs of the networks. The CNN represents
an example of a typical advanced deep learning tool.

(a) A simplified diagram of an MLP. (b) A diagram of the CNN layer structure.

Fig. 3.1 Deep learning topologies [233].

3.4 PWR Fuel Design and Management 53

3.4 PWR Fuel Design and Management

Table 3.1 shows a concise selection of the in-core fuel management literature in chronological
order. The earliest research found by the author was conducted by Haling, who proposed an
optimal strategy for the power distribution of a BWR [81]. Although the optimisation strategy
is simply heuristic, the work recognises that the subject is complex and of interest to operators.
Despite this early contribution, very little research was conducted for the next twenty years,
despite significant contributions from Naft and Sesonike [159] and Ahn and Levine [7], because
the computational power for detailed neutronics simulation and iterative optimisation was
not readily available. As computer technology advanced in the 1980s, interest in approaches
to iterative optimisation was revived. Development of the UK AGR programme coincided
with the increased availability of computational power, which made iterative optimisation
approaches possible (e.g. [173, 174]). Arrangement of fuel is inherently a combinatorial
problem. Although iterative optimisation strategies cope well with combinatorial explosion,
the search space is still extremely large and the number of iterations required makes them
computationally expensive. The implications of this were investigated by Galperin [71], who
concluded that since the computational power was not available at the time to conduct an
iterative search, a heuristic approach was required to make the problem tractable. Thus, two
broad approaches were developed largely in parallel: either to iterate over solutions measuring
the objective or to simplify the problem to the point where the objective is relatively easy to
find.

As computational power increased rapidly during the 1990s a large number of optimisation
strategies have followed the stochastic optimisation approach. A selection of these papers
includes research by Mahlers [139], Šmuc et al. [204], DeChaine and Feltus [51], Chapot
et al. [32], and Francois and Lopez [70]. One of the main advantages of stochastic iterative
optimisation is that it is possible when very little is known about the problem. Heuristic
approaches were championed by Galperin and his students, and hybrid techniques have also
been investigated, for example Stevens et al. [209].

Iterative optimisation does not guarantee the best solution (or non-dominated set), and is
costly in terms of computational power. However it has proven extremely robust and is thus
able to deliver acceptable results for a wide range of problems. The algorithms used – typically
simulated annealing and evolutionary algorithms – have been successfully applied to a wide
range of engineering problems [67] and can be applied when no mathematical analysis of the
system is possible.

On the other hand, heuristic approaches must be carefully designed to correspond with the
real world. An optimal solution for the heuristics does not guarantee a real-world solution and,

54 Surrogate Model Optimisation, Deep Learning and PWR Fuel Management

inevitably, simplification must take place in order to create a tractable set of heuristic rules,
which may mean that the optimisation is happening on the wrong problem.

SMO aims to unite these approaches by generating a model from analysis of the data
and automating the heuristic rule generation. It has the potential to be unbiased by human
designers, and potentially avoids the heuristic approach’s pitfall of optimising the wrong
problem, while significantly reducing the computational load of the iterative optimisation
algorithm. Furthermore, with the advent of parallel computation techniques, it may be possible
to develop the model in parallel with the evaluation of the objective function, essentially running
a novel optimisation based on the new data produced at each objective evaluation.

Although SMO is a relatively recent development in the nuclear field, a number of re-
searchers have used SMO, without applying the label. These include Faria and Pereira [60] and
Ortiz and Requena [171] who have, in the past, applied neural networks as surrogate models to
the problem of in-core fuel management.

In recent years, the nuclear academic community has begun to consider SMO and deep
learning strategies more seriously, overcoming initial scepticism. With the publication of review
papers such as [162] and [77], we are seeing an acceptance of the significance of the innovations
that have revolutionised subjects, such as natural language processing, image recognition and
speech synthesis.

This chapter has discussed the trends and techniques that are used for in-core fuel manage-
ment, without investigating the tools that are required for the implementation of such a system.
The next chapter will introduce the tools that have been selected to develop an extensible
framework for SMO of in-core fuel management problems.

Table 3.1 Selected literature on in-core fuel management. Abbreviations used in this table:
ACS=Ant Colony System, BE=Binary Exchange, GA=Genetic Algorithm, GPT=General
Perturbation Theory, HR=Heuristic Rules LP=Linear Programming, NN=Neural Network,
NC=Nodel Code, SA=Simulated Annealing

First Author Reactor Algorithm Evaluation Software Yr. Ref.

Haling BWR HR 1 group model - 1963 [81]
Fenech - - - - 1970 -a

Naft PWR Direct Search Semi-analytic JUMBO 1971 [159]
Ahn PWR - - - 1985 [7]
Parks AGR Metropolis/ SA Custom code AMETROP 1989 [174]
Poon - SA, GA GPT FORMOSA 1993 [180]
Mahlers PWR SA / LP Green’s method - 1994 [139]
Kropaczek PWR SA GPT FORMOSA 1995 [118]

3.4 PWR Fuel Design and Management 55

First Author Reactor Algorithm Evaluation Software Yr. Ref.

Šmuc PWR SA 1½D Diffusion Eq. MOCALPS 1995 [204]
Stevens PWR SA NC SIMAN 1995 [209]

DeChaine
PWR/
BWR

GA NC CIGARO 1995 [51]

Parks PWR GA GPT, NC
FORMOSA,
PANTHER

1996 [175]

Galperin PWR Tree search + HR - - 1997 [71]
Yamamoto PWR GA, SA, GA+BE diffusion - 1997 [247]
Chapot PWR GA NC GENESIS 1999 [32]
François BWR GA NC PRESTO-B 1999 [70]

Faria PWR NN NC
WIMS,
CITATION

2003 [60]

Ortiz BWR GA+NN - CM-PRESTO 2004 [171]
Martín-
del-
Campo

BWR GA - CM-PRESTO 2004 [144]

De
Lima

PWR ACS - RECNOD 2008 [49]

Esquivel-
Estrada

BWR ACS CM-PRESTO 2011 [58]

Hill PWR tabu, SA, GA GPT FORMOSA-P 2015 [84]
a Found in [159] 1972 and others (original article by Fenech "Application of Optimization Methods to Nuclear

Power Plant Design and Optimization, Trans. Am. Nucl. Soc., 13, 90 (1970)" not located).

Chapter 4

Framework and Methodology for
Surrogate Model Optimisation

In the last three chapters, the concept of PWR in-core fuel management has been introduced, as
well as the concept of iterative MO and the rationale for SMO. In this chapter, the tools used by
the author will be described as well as the software architecture used to carry out experiments.

Plant Requirements

Fuel Options:

In-Core Reactor Analysis:
Reactor Physics Calculations

Hypothetical
Requirements:

Economic
Guidelines
for Batch

Hypothetical
Fuel Available:

Energy
Requirements

for Batch

Surrogate Model

Finish

Design with
License approval

Operational Core
design with
Regulatory
Compliance

Monte Carlo or
Nodal Simulator

Licensing Simulation:
Fine mesh2D diffusion
or 3D nodal code

Regulatory
Compliance :
Incorporates data from
plant at EOC

3

4

Surrogate Model
Optimisation

(Maximises space
exploration)

Design Evaluation
Analysis and evaluation

of the method

training
data

Fig. 4.1 The simplified in-core fuel design process used in this thesis (c.f. Utility organisational
structure, Figure 1.1)

58 Framework and Methodology for Surrogate Model Optimisation

This thesis proposes and discusses two advanced surrogate models which have not been
previously applied to nuclear engineering, including transferring a novel optimisation approach
to the nuclear field. During the investigation, experiments often informed what steps would
subsequently be taken. So, rather than describing the step-by-step experiments without results,
this chapter will describe the software architecture, the tools used, and the framework that
has been developed for the experiments. While sequential descriptions of the experiments,
informed by experimental results, are presented in the following chapters, this chapter describes
the discrete building blocks of the environment where experiments can take place.

4.1 A Simplified Structure for SMO Fuel Loading Optimi-
sation

It is not possible to develop a model of the full interactions of the working groups of an
organisation employing hundreds of people in a single PhD thesis, so a simplified subset of the
interactions as a simulated environment is created. This allows the in-core fuel management
experiments to be carried out. Figure 4.1 shows the implemented activities in colours, while
the groups or activities that are substituted by requirements are shown in grey.

For the purposes of this thesis, a software framework has been developed to allow rapid
experimentation with a number of requirements, models and optimisation algorithms.

4.2 Software Architecture

In order to rapidly develop advanced systems, the author adopted software best practices,
such as unit testing, version control and modular design. In addition, in order to enable good
scientific practices, such as reproducibility and further development an open data approach has
been adopted. Source code and data are made available with publications and this thesis under
a permissive open source license for the benefit of the scientific community and interested
parties.

Furthermore, by utilising the open source Application Programming Interfaces (APIs),
the author has been able to ensure the quality of implementations of standard algorithms like
NSGA2 [50], convolution and deep learning architectures. These have been selected from a
peer-reviewed, portable, implementations that are actively tested by a community of users and
developers. Other authors can also download and verify the results presented in this thesis
– a concept called “standing on the shoulders of giants” after the famous Newton quote. A
graphical representation of the software architecture is shown in Figure 4.2. Three major

4.2 Software Architecture 59

PaGMO

libboost

PyGMO

Optimisation

Surrogate Model

Optimiser

WIMS

Neutronics

File
Parser

File
Gen

Tensorflow

Keras

Neural Model
or other stack

Surrogate Model

ANALYSIS

Surrogate Framework

in Python3

TRAINING
SET RESULTS

ESTIMATED
RESULT

Deep Learning
Model

PANTHER

SERPENT

Remote
or local file
interface

INPUT
FILE

OUTPUT
FILE

Fitness Interpreter

Fig. 4.2 Software architecture diagram, showing software components, and the flow of data
within a re-useable framework for experiments

external software solutions have been leveraged, namely neutronics, optimisation and surrogate
models. By building clear interfaces to these software libraries, it has been possible to swap
components in and out for use in different experiments in this thesis.

It has been shown that open source software is able to respond to security threats more
quickly than proprietary software [194], and that opening the source of a project can lead to
improved modularity in the architecture [138]. With this in mind, the choice of optimisation
and deep learning libraries has been influenced by a preference for permissively open-source
licenses.

With an explosion of excellent software tools in recent years, there are often multiple tools
available to solve a problem. The author does not claim that the chosen tools are necessarily
superior to achieve the required computing techniques; instead the following sections describe
the chosen software tools, with reasons for choosing or not choosing them where reasons exist.
The focus in the selection is to ensure that the chosen API was suitable for the task rather than
to try to claim that it is the best tool. Alternative options are listed in Table 4.6, at the end of
this chapter.

60 Framework and Methodology for Surrogate Model Optimisation

4.2.1 Python

Python is the default programming language used in this thesis, it is an open-source pro-
gramming language developed by Van Rossum [223] that is commonly used in scientific
computing

Choosing a programming language that is ‘in vogue’ is a justifiable design choice as it allows
the development to benefit from modern API releases in areas like deep learning, quantum
computing and optimisation with up-to-date community support for libraries, and also so that
other researchers can download and test claims made in this thesis and supporting publications
with relative ease. As of February 2020, Python is the third most popular programming
language according to the TIOBE index for programming language popularity [218].

4.2.2 C++

C++17 is a standardized programming language that evolved from an object-oriented version
of ANSI C. ISO accreditation means that this is one of the major programming languages used
in software development today [90].

Like ANSI C, C++ is a high level language, with access to low level features. This means
that there are structures like objects, vectors and linked lists natively implemented in the
language, but also pointers and ‘direct’ (managed) memory access.

These features make C++ a good choice for very computationally efficient programming.
In addition, PaGMO2 had been implemented in C++. The original plan for this thesis did not
involve C++ programming and merely used the PyGMO API as an interface to the PaGMO2
library. However, when certain features were required by the author (see 4.3.1), using this
programming language became a necessary. As of February 2020, C++ is the fourth most
popular programming language according to the TIOBE index for programming language
popularity [218].

4.2.3 Simulation of the Neutron Transport Equation

A simulation is required to model the neutron population in a reactor in terms of the geometry,
materials and energy spectrum.

At steady state, in a critical reactor, the neutron transport equation is a balance equation
describing the flux of neutrons, in terms of gains and losses. For a multiplicative medium
with no external source, one form of the neutron transport can be described based using the
following nomenclature:

E is the neutron Energy (MeV)

4.2 Software Architecture 61

r⃗ is the cartesian position vector
Ω̂ is the direction vector (radians)
ΣT the absorption cross-section (barns)
ΣS The scattering cross-section (barns)
ΣF The fission cross-section (barns)
Ψ is the angular neutron flux (n/(cm2sradian))
ν mean number of neutrons per fission event
K the effective multiplication factor
χ fission emission spectrum

by a ‘loss operator’, described by Carney et al. [30] as :

M ·Ψ(⃗r,E,Ω̂) = Ω̂ ·∇Ψ(⃗r,E,Ω̂)︸ ︷︷ ︸
leakage

+ ΣT (⃗r,E)Ψ(⃗r,E,Ω̂)︸ ︷︷ ︸
absorption

−
∫

∞

0

∫ 4π

0
dE ′dΩ̂

′
ΣS(⃗r,E ′ → E,Ω̂′ → Ω̂)Ψ(⃗r,E ′,Ω̂′)︸ ︷︷ ︸

scattering

(4.1)

and a ‘source term’:

S(⃗r) =
∫

∞

0

∫ 4π

0
dE ′dΩ̂

′
νΣF (⃗r,E ′)Ψ(⃗r,E ′,Ω̂′)︸ ︷︷ ︸
f ission

(4.2)

This allows the neutron transport equation to be expressed as:

M ·Ψ(⃗r,E,Ω̂) =
1
K

χ(E)
4π

S(⃗r) (4.3)

Complexity arises due to cross-sections being a function of energy of neutrons and individual
to each isotope. In any medium where fission occurs, a wide range of fission products will build
up and decay so the behaviour of the system also depends on the neutron population history.

There are two broad approaches to solve this equation for neutronic systems. Firstly,
deterministic approaches; where Equation 4.3 is solved explicitly. Secondly, a stochastic
approach called the Monte Carlo method.

Of the deterministic approaches, two methods are relevant to this thesis: Method of Char-
acteristics (MOC) such as WIMS[135] and nodal methods such as PANTHER [156]. MOC
solutions, are characterised by the transport equation being solved along straight lines through
the geometry in a finite number of directions. Whereas nodal methods consider the transport
at a discretised mesh. Nodal methods require homogenised cross-sections typically gener-

62 Framework and Methodology for Surrogate Model Optimisation

ated by other methods such as MOC. A good reference for the interested reader on nodal
implementation is found in Smith [201].

Monte Carlo simulation of the neutron transport can be carried out by software packages
such as Serpent [128]. In this approach a probabilistic simulation is made of a set of simulated
neutron histories from the point of birth, migration through a modelled geometry to the
point of absorption or leakage. The behaviour of a population of simulated neutrons gives
an approximation of the behaviour of the (many orders of magnitude larger) population of
neutrons in a similar geometry. Thus a Monte Carlo simulation can be made to generate very
accurate results for arbitrary geometries, albeit at a considerable comuptational cost.

Two methods of solving neutronics problems have been used in this thesis. In Chapters 5
and 6 the Serpent software [128] has been used to evaluate the power level and reactivity of
designs proposed by the optimisation algorithms, while in Chapter 7 the PANTHER nodal
code [156] has been used in conjunction with outputs from the WIMS [135], to generate lattice
physics solutions to neutronics problems.

Contemporary academic texts usually attempt to carry out nuclear optimisation problems
using deterministic codes, such as nodal codes (see table 3.1) or MOC. WIMS software [135],
an MOC solver, was applied as the evaluator in a number of problems during several stages of
the PhD that have not been presented. Homogenised cross-sections from WIMS are used in
the PANTHER simulations in Chapter 7, due to organisational issues with the management
of jobs on the shared computer resources, it was easier to simply redevelop the code to run
on nodes of the ‘skylake’ Cambridge High Performance Computer (HPC). At the point where
massive parallelisation is available, a modern code that is designed to be multi-processor aware
offered significant advantages. This led to investigations using Serpent, which has a modern,
more easily machine-readable input and output file format, which lends itself to algorithmic
optimisation experiments.

Serpent is a Monte Carlo neutron transport solver with burnup capabilities developed by
VTT in Sweden [128]. The Monte Carlo method generates a non-deterministic solution, which
means that there is stochastic noise on the output values. Although evolutionary algorithms are
robust to stochastic noise, it is a problem for MO, where, close to the NDF, the stochastic noise
contributes significantly to error. For this reason, MO methods require special treatment in order
to operate on stochastic objective functions. A number of solutions are compared and discussed
by [29], including the noise-hardened NSGA2 algorithm. These methods compensate for the
noise but multiply the computational cost. The author’s approach to this has been to avoid
the problem entirely by setting the seed of the Monte Carlo simulations per run of NSGA2
algorithm. This means that for each run of the NSGA2, the system is optimising a deterministic
system that approximates the neutron transport solution with some estimable disturbance.

4.2 Software Architecture 63

In Chapter 7 a standard PWR core with 193 fuel assemblies was investigated, similar to the
one shown in Figure 1.2a. The computational expense of the Monte Carlo simulations increases
with the area of the simulation, so a fast ‘nodal’ code was used. Here, results from the MOC
Solver in WIMS [135] were used as building blocks to simulate cores, from an eighth core with
diagonal and orthogonal symmetry in PANTHER [156]. This was done for validation of the
heuristically evolved loading patterns.

4.2.4 Deep Learning Frameworks

A number of deep learning libraries have been released in the past ten years, significantly
improving the situation for researchers, and in turn helping to maintain the momentum in this
field of research. At the start of this project (when the decision about software architectural
choices was made), it was unclear which APIs would be successful. The author has been
fortunate to have chosen libraries that continue to be actively supported, and developed. The
libraries chosen are Keras [37], which acts as an abstraction layer from the Tensorflow [6]
library which manages intensive calculations efficiently. Table 4.6 shows a list of other options
which were consdered.

Keras

Keras is a high-level deep-learning library which uses Tensorflow or Theano [20] as a backend
and allows efficient development of standard neural network architectures. [37], alternative
high level deep learning packages include PyTorch [177] and Café [96] – which has now
evolved into the Café2 project that will merge into pyTorch.

Tensorflow

Tensorflow is a library developed by Google, which is capable fo performing memory-efficient
tensor operations [6]. A rival open-source library called Theano [20] was in development
when software design was being carried out. However, it was retired in 2019, with the authors
agreeing that Tensorflow should become the de facto standard.

4.2.5 MLP

A simple deep MLP is used to predict the PPF and horizontal and vertical positions of the
hottest pin. Using the w/o U235 on a per-assembly level as the inputs, this means that the
input dimension for a quarter core is nine, while the output dimension is three (the hottest
pin coordinates and PPF). In order to select an appropriate topology for the MLP, a short

64 Framework and Methodology for Surrogate Model Optimisation

Table 4.1 Comparison of optimisation frameworks

Language Lanuage/Interfaces Comments

PISA C++/files Optimisation library with
many working optimisation
algorithms. No longer
developed by the authors.

JMetal Java/JNI- Actively developed API with
many implemented optimisa-
tion algorithms. Many authors
contribute their own optimisa-
tion algorithms

PaGMO/ PyGMO C++14/ BOOST/ Python Actively developed library for
optimisation.

study of network topology was carried out, which examined the numbers of hidden layers and
neurons per hidden layer. The results of the study are shown in Figure 5.2. The choice to
keep the number of neurons per layer constant across the network was made in order to reduce
complexity and keep the design tractable on a two-dimensional heatmap. The performance seen
in Figure 5.2 confirms that MLP networks are robust to a wide variety of topological values.
This has been discussed in the literature by many authors (see [24, p. 130] and more recent
deep learning interest is sometimes regarded as being set in motion by Le Cun [123]). A fairly
large network with nine layers of 80 neurons was chosen for these experiments. The weights
are modified using backpropagation and the ‘Adam’ algorithm [109], and the loss function used
was the MAE. The network was trained for 500 epochs. In each training epoch, the system
trained on a set of 50 randomly selected samples from the training set, N. This helps to reduce
overfitting of the network to the training set compared to training on the whole set.

4.2.6 CNN

The topology of the CNN used is shown in Table 5.2 in Section 5.2.5. It was chosen based on
reasonable compromises for memory limits and the number of training examples available and
with reference to reference CNN topologies such as LeNet-5 [124], AlexNet [117], or the VGG
series of networks [198] (current versions are VGG-16 and VGG-19). Three convolution and
pooling layers are followed by six layers of fully connected feedforward layers. As with the
MLP, ‘Adam’ was used to modify weights based on a MAE loss function. The training was
carried out for 100 epochs with a sample size of 50. Unlike in the MLP surrogate model, the
CNN directly predicts the per-pin powers. The objective functions are then calculated from the

4.2 Software Architecture 65

surrogate outputs by the usual means. These values were chosen based on comparison with
existing example networks from the literature [198, 211, 87] and experimentation to fit the
input image size and output data.

4.2.7 Optimisation

Table 4.1 shows a comparison of different APIs for optimisation. This thesis uses Parallel
Global Multiobjective Optimizer (PaGMO). PaGMO is a computationally efficient optimisation
package available under the MIT license. The complete Python interface, called and PyGMO
Global Multiobjective Optimizer (PyGMO), operates computationally intensive tasks in C++11
through the LIBBOOST interface.

The PyGMO documentation describes it as:

“a scientific Python library for massively parallel optimization. It is built around
the idea of providing a unified interface to optimization algorithms and problems,
and to make their deployment in massively parallel environments easy.

Efficient implementantions [sic] of bio-inspired and evolutionary algorithms are
sided to state-of-the-art optimiation algorithms (Simplex Methods, SQP methods,
interior points methods, . . .) and can be easily mixed (also with your newly-
invented algorithms) to build a super-algorithm exploiting algorithmic cooperation
via the asynchronous, generalized island model.” [47]

Features of PyGMO that have been ustilised include:

• Non-dominated Sorting Genetic Algorithm 2 (pygmo.nsga2)

• Exact hypervolume algorithm for two dimensional points (pygmo.hv2d).

• Fast Non-dominated Sorting (pygmo.fast_non_dominated_sorting)

• Pareto dominance (pygmo.pareto_dominance)

• Population selection utilities (pygmo.sort_population_mo, pygmo.select_best_N_mo,
pygmo.decompose_objectives)

4.2.8 Approaches to Parallelism in Optimisation

Due to the high economic cost of DSO, many researchers have investigated ways to run an
iterative optimisation in parallel. For algorithms where most of the computational expense is

66 Framework and Methodology for Surrogate Model Optimisation

in fitness evaluation, evaluating more than one individual’s fitness at the same time bestows
significant advantages.

Table 4.2 describes how a number of APIs have approached optimisation parallelism. The
different approaces are described below.

Algorithmic Parallelism

Algorithmic parallelism refers to the separation of the algorithm into separate processes, that
can then be run at the same time. This parallel operation is either spread across compute nodes
on a cluster of computers, on different cores in the same machine or as processes running on a
single processor and given alternate time slices by the operating system.

This approach to parallelism is usually more involved since the programmer must decide
how communication between different processes occurs. Since it was not possible for the author
to complete projects without parallel operation, algorithmic parallelism had to be implemented
instead. The approach used is described in Section 4.3.1.

Island and Archipelago Parallelism

The approach to parallelism that is commonly used in optimisation is termed ‘Island and
Archipelago’. It is a simple approach to the parallelisation of tasks that relies on the expectation
that many runs of an algorithm are required. The approach splits separate instances of the
algorithm to run on different processors – for example, the PyGMO implementation is described
by Izzo [93]. This is ideal for running instances of problems that can be distributed to different
nodes in a cluster. However, if the objective function requires large amounts of computational
budget, then Island and Archipelago parallelism gives limited benefits.

4.2.9 Dimod

Dimod [42] is a hardware-neutral software library for the implementation of quantum annealing
optimisation problems in Python. For Chapter 7 the dimod library is used. The choice of
this library was based on the hardware neutrality, open source license and having the highest
number of features in Table 2 of [64].

However, it is worth noting that, at this time, the only implemented backend for the
Dimod software is the developer’s hardware, the D-Wave Quantum Annealer and the D-Wave
Simulated Quantum Annealer (a software implementation of the company’s product).

4.3 Parallel and Serial Optimisation Algorithms 67

4.3 Parallel and Serial Optimisation Algorithms

In order to complete this project within a realistic timeframe, the algorithms in the PyGMO
library had to be made to operate in parallel. Although PyGMO was selected partly due
to its support for parallel operation modes, it turns out that the most important method of
parallelism for surrogate model work is algorithmic parallelism. This is not possible with
every type of optimisation algorithm; algorithms with a concept of ‘neighbourhood’ usually
require the fitness of every individual to be calculated before each offspring is generated (e.g.
MOEA/D [251]). This meant that of the implemented multiobjective algorithms available in
the framework, NSGA2 [50], remained the only feasible option, with other implementations
such as NSPSO [132] (a Nondominated Sorting extension of Partical Swarm Optimisation by
[55]) being actively developed by the community of PyGMO developers.

4.3.1 NSGA-2 Algorithm Modified for PaGMO2/PyGMO2

In order to use algorithmic parallelism, modifications to the PyGMO library were required to the
implementation of the NSGA2 algorithm and supporting interfaces. This was initially carried
out as a branch of the original PyGMO library. After a satisfactory solution was agreed with the
community, a ‘pull request’ was created for this implementation. The parallel implementation
that was developed met the vision of the PaGMO/PyGMO developers.

Description of changes made for parallel operation

In order to optimise efficiently in parallel, an additional wrapper to the ‘fitness’ function has
been developed by the author. Although this allows parallel fitness evaluations, the python3,
BOOST interface and C++ library had to be modified.

The initial implementation split fitness evaluations into two functions: a ‘start fitness’
and a ‘wait_collect_fitness’; the ‘start_fitness’ function returns an instance hash
that the (blocking) ‘wait_collect_fitness’ uses to find the results. In the MO, all of the
individuals in a generation can have their evaluation initiated before any of the results are
required. The net gain of this parallelism is close to 1/population_size due to the high cost of
evaluation of nuclear simulations, when compared to MO.

The second implementation was based on suggestions from the PaGMO/PyGMO commu-
nity as well as parallel development from them. This method adds an optional ‘batch fitness’
implementation and other flags to the algorithm. A properly developed parallel algorithm can
then call the ‘batch fitness’ function. This is superior to the simple implementation above as
it allows many function evaluations to be made, and a single function can distribute the calls

68 Framework and Methodology for Surrogate Model Optimisation

across a cluster or across another distributed computing environment. After the first parallel
implementation was completed, the community had implemented the preferred interface, but
no algorithm in the PyGMO library actually used the parallel functionality. So, the author then
implemented a parallel NSGA2 algorithm, including testing and debugging and provided a pull
request to the community maintainers.

Quantitative evaluation of equivalence over a range of problems

The PaGMO/PyGMO library has unit-testing functions as well as continuous integration
implementations. In order for the code to be accepted, unit test compliance must be observed
in the integration test shown in Table 4.3.

The pull request for the parallel branch developed by the author was merged into the main
branch of Pagmo in March 2019.

4.4 A 6×6 Microcore with Rotational Symmetry

1
2

3

4
5

6

7
8

9

1
2

3

4
5

6

7
8

9

1 2 3

4 5 6

7 8 9

123

456

789

n
o
n
 r

e
fl
e
ct

iv
e
 s

u
rf

a
ce

non reflective surface

waterfuel assemblies

Fig. 4.3 A small microcore, created as a Serpent simulation for the purposes of investigating
the optimisation of small cores.

4.4 A 6×6 Microcore with Rotational Symmetry 69

The initial experiments with SMO will use a tractable problem: a microcore composed of
6×6 standard PWR assemblies. The layout described here is shown diagrammatically in
Figure 4.3. The core is formed of 36 PWR ‘standard’ fuel assemblies [229] arranged in a
square. A fourth-order rotational symmetry is used, to simplify the design. This allows limited
checker-boarding of the design while keeping the number of variables relatively low. In initial
experiments, the assembly enrichment is varied on a per- assembly basis. So, there are only
nine input variables (the U235 enrichment of each assembly), and each variable is able to take
22 values of enrichment between 0.8 and 5 w.t.%. This creates a discrete input space with
1,207,269,217,792 possible solutions.

Simulation in Serpent

The DSO simulations in Serpent use parameters as shown in Table 4.4. The detectors used in
the simulations to estimate pin powers are collecting the ‘total fission energy deposition’ in
MeV .

Table 4.4 Serpent Simulation Parameters for BOL and Burnup simulations and for training the
fission matrix

BOC Burnup Fission matrix

Source neutrons per cycle 20000 20000 800000
Active cycles per timestep 500 500 500
Inactive cycles per timestep 100 100 100
Fuel Temperature (K) 900 900 900
Coolant Temperature (K) 600 600 600

Burnup simulation in Serpent

The experiments in this section use Serpent’s stand-alone burnup calculation. The power density
is set to 40 kW/kgU, the fuel is depleted using 20 cumulative depletion steps, based on the
example burnup code for a PWR assembly [127]. The burnup steps are at 0.1, 0.5, increments
of 1 from 1-10, increments of 2.5 from 12.5-20, and increments of 5 from 25 to 40 MWd/kgU.
From the Serpent simulation, the cycle length is estimated by taking a linear interpolation in
terms of ke f f and burnup at the step where ke f f goes below unity.

70 Framework and Methodology for Surrogate Model Optimisation

Multiobjective Objectives

Although in-core reactor analysis groups at a utility company will optimise designs over many
objectives simultaneously, it is instructive to consider two variables at a time. This is since the
(N−1)D ‘surfaces’ in N dimensional spaces take up relatively more space as N increases [115],
so the ‘NDF to hypervolume’ becomes larger making realistic consideration of the search space
more difficult.

The startup experiments look at PPF vs the position of the hottest pin, while burnup
experiments investigate the variance of the pin powers (an analogue for PPF) and cycle length,
a selection of objective variables are presented in Table 4.5.

4.4 A 6×6 Microcore with Rotational Symmetry 71

Table 4.5 Objective variables considered

Objective /units Description Attributes

PPF Power Peaking Factor is a common mea-
surement of the evenness of the tempera-
ture of the coolant as it leaves the reactor.
By lowering PPF, more power is deliv-
ered to the turbines for a fixed maximum
temperature inside the reactor.

Error is a function of
the hottest pin

Radial distance of
hottest pin

Moving the hottest pin to the outside,
while reducing the PPF, the core designer
can create a design that has a flatter overall
power profile.

Mean enrichment
/w/o U235

Enrichment of the isotope U235 from nat-
ural uranium, is a major cost centre in fuel
manufacture. The cost of enrichment is
exponential with w/o U235, so modest re-
duction of enrichment gives significantly
improved fuel cost.

Trivial to calculate
from the inputs

EOC Burnup .(−1)
/MWd/kgU

The burnup achieved before ke f f< 1.0, A
reactor that delivers a controlled amount
of power for longer, delivers more total
power per refuel and is offline less of the
time relative to a shorter cycle. Optimisa-
tion considers minimisation problems by
convention, so the number is multiplied by
−1.

Reactors are refuelled
at planned outages, so
a longer possible cy-
cle may not benefit
the utility company as
much as expected.

Pin Power Variance
(PPV)

An alternative measure of the evenness of
the temperature of the outlet coolant would
be the variance of the pin powers

Less sensitive to a
stochastic error on
pins, for example
with Monte Carlo
simulations.

Selection of some pairs of objective variables from the table was found to generate single
optimal results, for example lowering PPF and reducing mean enrichment unexpectedly created

72 Framework and Methodology for Surrogate Model Optimisation

a unique solution. On analysis, this turns out to be because the parameters of the simulation
allowed enrichment that generates ke f f< 1, so at near zero powers, a single lowest solution for
PPF can be seen.

Pairs of variables that generate interesting NDFs have been the focus of this study, as it is
of interest to know how the surrogate models perform across the NDF.

Criticisms of the Problem

The author acknowledges that the limitations of the design will lead to reduced optimality in
the found solutions. Full checkerboarding is not possible at the chosen fourth-order rotational
symmetry. However, the aim of this exercise was to create a viable minimal core design
that allows for optimisation experiments without becoming overly complex. This microcore
design and optimisation scheme has the advantage that it has not, to the best of the author’s
knowledge, been investigated in the literature. One problem when comparing SMO (or any
other automatically generated) results with expert human designers is that there is a large corpus
of literature that already describes near-optimal design solutions for existing cores, which are
known to most human experts (e.g. examples include [174, 13, 180, 175]).

4.5 Summary

A wide variety of cutting-edge computing libraries and techniques have been applied in this
thesis. Where the tools were unable to deliver a suitable solution, for example, in the case of
parallel operation of the optimisation algorithm, modifications to the tools were developed.
This could be achieved by developing code around APIs, as was possible for the SMO, or by
developing solutions within the APIs reviewed by peers. Modifications to open-source tools
made by the author have been accepted by the community after following software development
best practices.

Table 4.6 shows a summary of the APIs used to generate this thesis. Although it is vital for
the author to share the methodology used, it is also possible to show the working of software
by sharing the source, as has been adopted in this thesis.

The next three chapters will describe, in a roughly linear fashion, experiments using a
number of different surrogate model techniques developed using the software framework
described in this chapter in order to show when and how SMO can be applied to problems
associated with in-core fuel management in a PWR.

4.5 Summary 73

Table 4.2 Comparison of approaches to parallelism in optimisation frameworks

Type of Parallelism Implementation Levela Comments
Algorithmic Island Archipelago

PISA – – – File based interfaces allows
user-defined parallelism

JMetal P × – Parallel implementation of
problem/algorithm on multi-
ple independent populations

PyGMO/PaGMO I × × Support for high performance
computers and clusters run-
ning multiple islands

a × = Implemented, P = Partially Implemented, I = Implementation by the author, – = Not Implemented

Table 4.3 Continuous integration testing frameworks

Testing
Provider Result Website

Circle CI success https://circleci.com
Travis CI passing https://travis-ci.org
AppVeyor passing https://ci.appveyor.com

74 Framework and Methodology for Surrogate Model Optimisation

Table 4.6 Summary of software component choices

Component Chosen Alternatives Comments

Optimisation PyGMO
JMetal, PISA,
scipy.optimization,
matlab

Chose python API due to fit
with overall language, better
multiobjective support than
scipy. [47]

MO Algorithm NSGA2

Simulated
Annealing,
evolutionary
algorithms, heuristic
methods ... and
many more

NSGA2 is a well researched
algorithm, which is exten-
sively used to benchmark al-
gorithms [120, 130, 50].

Quantum Annealing dimod / Ocean
Qiskit, forest SDK
(IBM)

The dimod interface is an
open source hardware neutral
environment. However, the
Ocean inc. API is the only im-
plemented interface for quan-
tum annealing at this time.
[42]

Deep Learning Keras / Tensor-
flow

Cafe, Theano,
PyTorch, effective
quadratures

Keras operating on Tensor-
flow gives good abstraction
for deep learning architectures
with low level access deep
learning architecture. [37, 6]

Neutronics Serpent1,
PANTHER2

WIMS, OpenMOC,
OpenMC

Serpent is a Monte Carlo neu-
tronic solver capable of solv-
ing for arbitrary geometries
[128]. PANTHER is a nodal
code that is used for full
core PWR evaluation and used
due to the existing BEAVRS
benchmark [82].

1 Used in Chapters 5 and 6 2 Used in Chapter 7

Chapter 5

Deep Learning Surrogate Models

5.1 Introduction

This chapter examines two deep learning regression models used with iterative optimisation
to create an SMO process. These deep learning surrogate models are evaluated for a ‘toy’
problem of optimising the design of a ‘microcore’ simulation, which is constructed from 36
‘standard’ PWR fuel assemblies as described in Section 4.4. The design is considered with order
four rotational symmetry, reducing the problem to nine assemblies (Fig. 4.3). Although there
are legitimate limitations of this core design for applications in the real world, it is ideal for
investigation and optimisation strategy evaluation. The designs are relatively easy to simulate,
the design space is bounded, and results can be interpreted by human experts.1 The final
experiment shows how this technique can be easily extended to a geometry equivalent to the
Nuscale SMR.

The software design philosophy adopted is to use standardised state-of-the-art implementa-
tions of recognised software techniques, and open source libraries where possible. In particular,
recent years have seen the release of the advanced machine learning libraries tensorflow [6]
and Keras [37] and the optimisation library PyGMO [92]. Therefore this philosophy allows for
cumulative development of new knowledge that uses the state-of-the-art, and can be replicated
as researchers have access to the underlying source code.

The surrogate models used to predict the core parameters are deep Multi Layer Perceptrons
(MLPs), and Convolutional Neural Networks (CNNs). The objective parameters considered are
PPF and the position of the hottest pin at the Beginning of Life (BOL), PPF and the average

1Results in Section 5.4 have been peer reviewed and accepted for the PHYSOR 2020 conference [235]. They
are presented here in Section 5.4, and text is used in this chapter and Section 4.4. It is reproduced here with some
modifications to make the subject more tractable in the context of the thesis and to extend work to incorporate the
use of Sobol sequences as training data.

76 Deep Learning Surrogate Models

Fig. 5.1 An example flux map for the microcore as described in Section 4.4

enrichment, as well as PPF and cycle length; these are outputs in the MLP model and derived
from pin power predictions in the CNN. The surrogate models are developed using a number of
tests to establish the best design parameters.

The derived deep learning models are then used as surrogate models with a benchmark
iterative optimisation algorithm: the Non-dominated Sorting Genetic Algorithm (NSGA2) [50].
The speed of the deep learning models enables them to evaluate thousands of solutions per
second. This means that the optimisation algorithm could be given larger populations with
minimal impact on the computational budget or that more exploratory settings can be chosen,
while using only a fraction of the computational time that a more traditional DSO approach
would require. However, in this study, the performance of most results are compared using
like-for-like settings of the optimisation algorithm.

5.2 Surrogate Model Optimisation

SMO is becoming popular in the field of nuclear engineering [242]. The method is advised
for problems where the objective function is computationally expensive [67, 148] and works
by applying a standard optimisation algorithm on a ‘surrogate function’, which is usually

5.2 Surrogate Model Optimisation 77

regressed from data points obtained by sampling the original objective function. The significant
components used in this chapter are described below.

5.2.1 Optimisation Tasks

The DSO and training simulations use the Serpent Monte Carlo code [128], to simulate a ‘toy’
example of a fuel arrangement problem. This enables an exploration of the SMO approach to
fuel management problems. As described in Section 4.4, nine assemblies are arranged into a
square lattice, quadrant rotational symmetry is applied on two sides, and they are surrounded
by water at an equal thickness to the assemblies followed by non-reflective (black) boundaries
(Fig. 4.3). The assemblies, labelled 1–9, are standard PWR type assemblies separated by a
small water gap. Each assembly has an enrichment value that can be varied independently,
with quantised enrichment values at increments of 0.2 between 0.8 and 5.0 w/o U235. Monte
Carlo simulations were run for uniformly random uranium enrichments in each of the nine
assemblies; these form an initial set of training simulations used to train surrogate models.

A number of objectives are investigated. PPF measures the uniformity of the power
generated [208, p73] and is an indicator of safe power that can be evolved within the allowed
Departure from Nucleate Boiling Ratio (DNBR). The position of the hottest pin is an indicator
relevant to the shape of the power profile, controlling and monitoring the axial position of the
hottest pin is of interest operators ensuring that DNBR is not exceeded [158]. Neural networks
have been used previously to predict similar scenarios [158, 108]. Average enrichment of the
pins is also used as an objective since this has a significant impact on the cost of the fuel, while
extending burnup can be used to directly extend the time that the reactor operates, or to deliver
a greater degree of controllability if a plant is operating on a fixed batch length.

5.2.2 Optimisation Algorithm

NSGA2 is considered a ‘solid multi-objective algorithm’. It is widely used in many real-world
applications and is easily parallelised [47]. The parameter values used in this chapter are shown
in Table 5.1 and are used for both SMO and DSO unless otherwise stated. Although the number
of generations, N, and population size, P, are generally smaller than used in other studies, such
as [50] (P = 100), [175] (N = 51,P = 204) and [130] (P = 300). These parameters were found
to perform well and are chosen to represent the DSO in the best possible light, despite its very
high computational cost. The choice of parameters is based on the study in Appendix B, where
the parameters are considered in detail. NSGA2 is widely used as a benchmark algorithm when
comparing novel algorithms or techniques. The implementation used in these experiments is
from the software library PyGMO [92], with modifications as detailed in Section 4.3.1.

78 Deep Learning Surrogate Models

Table 5.1 Parameters used in NSGA2

Parameter Value

Population size, P 50
Generations, N 60
Crossover probability 0.95
Mutation probability 0.01

5.2.3 Training Sets

Initially, the correct size of training set was unknown, so two large training sets were generated.
Firstly, a uniform random training set was generated, using the Mersenne twister algorithm
[149]. In the random training set, although each input (the enrichment of an assembly in w/o
U235) is uniformly distributed in discrete values of 0.2 from 0.8w/o U235 to 5w/o U235, the
mean value of the ensemble tends to be normally distributed around tid-range value by central
limit theorem.

The second training set uses the Sobol sequence for nine dimensions [207] to create a
‘space filling’ set. Sobol sequences are known to gracefully fill many dimensional spaces with
a limited number of samples. That is to say, that for a given number of sample points, the
space will be divided by points in a reasonably equal manner, and each subsequent point will
be placed into the largest undivided subspace. Unlike pseudo random sets of data, the Sobol
sequence is deterministic – each subsequent value fills a gap in the previous set. So the training
set is selected from the first part of the set and tested with the same test set as other experiments.

The size of the initial training sets are comparable to the number of simulations required
by the DSO, which is considered to be the limit of a useful SMO. In Section 5.3, the size
of the training sets is investigated by reducing the size and observing the error. Subsequent
experiments either use new smaller training sets, based on this evidence, or use the full,
previously generated, training sets.

5.2.4 MLP based Surrogate Model

A simple deep MLP is used to predict the output variables. For example, PPF and the horizontal
x,y positions of the hottest pin. Using the w/o U235 on a per-assembly level as the inputs,
this means that the input dimension for a quarter core is nine, while the output dimension of
the surrogate model is three (the hottest pin coordinates and PPF). For an experiment where
the optimisation objectives are the PPF and to maximise the distance of the hottest pin from
the centre of the core (modelled by 1− |x,y| in relative coordinates). In order to select an
appropriate topology for the MLP, a short study of network topology was carried out. The

5.3 Design of Deep Learning Surrogate Models 79

numbers of hidden layers and neurons per hidden layer were varied. Figure 5.2 shows the
results. The choice to keep the number of neurons per layer constant was made in order to
reduce complexity and keep the design comprehensible on a two-dimensional heatmap. The
performance seen in Figure 5.2 confirms that MLP networks are robust to a wide variety of
topological values. This has been discussed in the literature by many authors (see [24, p130]
and more recent deep learning discussion starts with [123]).

Based on the study in Section 5.3.2 a fairly large network with nine layers of 80 neurons
was chosen for subsequent experiments. The weights are modified using backpropagation and
the ‘Adam’ loss algorithm ([109] see also Section 2.4.5). The network was trained for 500
epochs. In each training epoch, the system trained on a set of 50 randomly selected samples
from the training set, N. This helps to reduce over-fitting of the network to the training set
compared to training on the whole set, while the number of epochs helps to ensure that all of
the training set is tested.

5.2.5 CNN based Surrogate Model

The CNNs for the microcore are trained on the per pin input image. It is significant to note
that the possibility exists for CNN type neural networks to predict solutions for arbitrary pin
problems. In this study the training set and the inputs are limited to uniform assemblies;
however, this limitation is from the training data and the optimisation problem, not of the CNN.

The topology of the CNN used is shown in Table 5.2. Three convolution and pooling layers
are followed by six, fully-connected, feedforward layers. As with the MLP, ‘Adam’ is used
to modify weights based on a MAE, loss function [109]. The training was carried out for 100
epochs with a sample size of 50. This number of epochs ensures that all training samples are
used, while the sample size helps to avoid over specialisation of the network on the training set.
Unlike in the MLP surrogate model, the CNN is used to predict pin-by-pin power of the system,
the objective variables are then calculated from this output.

5.3 Design of Deep Learning Surrogate Models

5.3.1 Method

In order to establish the parameterisation of surrogate models for use in the following experi-
ments, a series of short studies have been carried out.

In this section, the design of two types of versatile surrogate models is investigated. The
models are MLP and CNN types. The architecture of the CNN is based on designs from
literature [122, 124, 117], but the MLP design is established by testing the depth and size of

80 Deep Learning Surrogate Models

Table 5.2 Keras summary data for the CNN showing topology and modifiable parameters

Layer name (type) Output dimensions No. parameters

conv one (Conv2D) (53, 53, 3) 84
pooling 1 (Average Pooling) (26, 26, 3) 0
conv two (Conv2D) (24, 24, 6) 168
pooling 2 (MaxPooling2D) (12, 12, 6) 0
conv three (Conv2D) (10, 10, 3) 165
pooling 3 (MaxPooling2D) (5, 5, 3) 0
dense 1 (Dense) (3000) 228000
dense 2-5 (Dense) (250) 1528601
reshape 1 (Reshape) (51, 51) 0

rectangular networks exhaustively. The size of the training set and the type of loss function are
considered by testing the design and observing the error on the training set.

Three loss functions are investigated for types of error over the training run. These are
MAE, mean squared error, and mean squared logarithmic error. The MAE is much more
computationally efficient than the other two loss functions, since the operation of setting the
sign bit is a single ‘bit’ operation, rather than numerous floating point operations for mean
squared or mean logarithmic error. The mathematical significance of mean squared error is that
large error values are amplified making them more significant to the loss algorithm than MAE.
Larger error values are more easily divided into weights when carrying out backpropagation.
The significance of mean logarithmic error is that it selectively punishes outlier error values,
encouraging the algorithm to be more generalising than MAE.

The size of the training set is critical to the performance of deep learning surrogate models.
However, if the training set becomes too large it competes with the computational cost of the
DSO. The performance of MLPs and CNNs training on random and Sobol training sets of
different sizes is considered based on the MAE of the network on the same random test set.

5.3.2 Results

Figure 5.2 shows the error heatmap for different geometries of rectangular MLP type neural
networks. The heatmap shows the error for networks with one to one hundred and fifty neurons
per layer and one to twenty hidden layers. Although it is possible to iterate this heatmap many
times to generate a smoothed version, it is instructive to inspect results for a single seed value.
When the author produced averaged results, interesting features of the heatmap related to the
reliability of results were lost.

5.3 Design of Deep Learning Surrogate Models 81

Unsurprisingly, the heatmap shows that networks with few neurons per hidden layer generate
poor results. These results are explained by a network with a few neurons being functionally
unable to generate a function with the complexity of the objective function. When a network is
too deep it also fails to train, this is likely due to the problem of backpropagation of small error
values through many layers of network. At each layer the error differential must be distributed
to all the weights. This value can quickly become too small to be represented in a floating point
representation (see p. 39 for a description of the backpropagation algorithm). Both of these
areas fail catastrophically and generate error values in the region of 20%.

When the network becomes too large (in the top right hand quadrant), the results become
unstable. This is likely due to the CPU and memory being overwhelmed. Anecdotal results
here have found different behaviour on different computers, although the general behaviour is a
rolling increase in likelihood of catastrophic failure to contain the error magnitude. Very large
and Not A Number (NAN) results can be returned in this area and are shown in white on the
heatmap.

A mild gradient of decreasing error can be observed in networks with a depth from one to
five layers and above 50 neurons per layer. This is the increase in performance developed in
‘deep learning’ designs (see p. 43 for more discussion of this).

Fig. 5.2 Heatmap of MLP topologies (seed=3454321) [233]

The MLP networks used in this study are chosen to have a topology of 80 neurons per layer
and nine hidden layers. This was determined to be suitably far from all of the regions of high
error described above.

Figure 5.3, shows a graph of the MAE when an MLP network is trained with three different
loss functions. The logarithmic loss function fails to converge. This is because the error
differential becomes disproportionately small at low values, making it impossible for the
backpropagation algorithm to work. The square error and the MAE perform similarly, although
the square error appears to be less stable. Based on the improved average performance, the
MAE is used as the loss function in all subsequent experiments.

82 Deep Learning Surrogate Models

0 10 20 30 40 50
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%
Performance of different Loss functions

Mean absolute error
Mean squared error
Mean squared logarithmic error

Epoch

M
ea

n
ab

so
lu

te
er

ro
r

/%

Fig. 5.3 Comparison of mean error performance evolution over training for three loss functions,
applied to the CNN surrogate model.

In Figure 5.4, it can be seen that surrogate models trained on Sobol sequences outperform
random sets for both MLP and CNN surrogate models for predicting PPF. This result was
surprising, given the expected convergence of the mean of multivariate inputs through the
central limit theorem to bias a random training set towards a mid-range mean.

The error of the CNN model for random data showed much more highly erratic performance
than either the Sobol CNN or the MLP tests. The results were calculated 5 times per training
set size and exhibit a fairly high variance. The pin-for-pin results in Figure 5.4b for the CNN,
show that the random surrogate model predicts the pin values up to five times more accurately
than the Sobol CNN. This might be explained by the Sobol algorithm having been trained on
a space-filling training set, so it operates less effectively on average, but is more efficient at
predicting significant pin powers as observed in Figure 5.4a. In order to use a CNN that has
trained to predict per-pin powers, it is important to ensure that the objectives actually correlate.
The CNN predicts pin powers with a mean accuracy of 0.64%, but the PPF is predicted with
much larger errors. The increase in error is because the PPF is particularly susceptible to the
error on outlier values, whereas the loss function of the neural network rewards prediction
on average. Despite quite high actual error between the predicted value and the objective
parameter, the correlation of the variables is good, as shown in Figure 5.5. This makes using
it as an optimisation objective acceptable, at least in the domain of the test set used in this
instance.

5.3 Design of Deep Learning Surrogate Models 83

(a) PPF (a derived parameter for the CNN) (b) CNN, pin powers

Fig. 5.4 MAE of MLP and CNN models, trained on diffferent sized training sets and tested on
the same random test set (mean results for 5 iterations, seed = 221179).

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
Actual PPF

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Pr
ed

ic
te

d
PP

F

Correlation of actual and predicted PPF for a CNN

y = 0.74x + 0.33
90% of data points in this interval

Fig. 5.5 CNN parameter prediction error for random LPs

Thus far in the chapter, short studies have been used to establish the design parameters of
the two deep learning surrogate models. In the following four experiments, these deep learning

84 Deep Learning Surrogate Models

surrogate models are used to demonstrate SMO. The first two experiments (Sections 5.4 and
5.5) prove the concept of SMO applied to the startup conditions of the microcore, firstly by
optimising for the radial distance of the hottest pin vs the PPF, then by considering PPF vs
mean enrichment. The third experiment (Section 5.6) shows that the surrogate model can be
applied to more computationally expensive problems by optimising for PPF vs cycle length
in a study that requires burnup simulations. Finally, Experiment 4 (Section 5.7) shows the
scalability of the work beyond the ‘toy’ example of the 6× 6 microcore, by applying the
optimisation to an initial core loading problem in an SMR core, similar to the Nuscale design
described in Section 1.1.5 and Figure 1.2d.

5.4 Experiment 1: BOL PPF vs Position of Hot Pin

5.4.1 Method

NSGA2 was used with the MLP and CNN surrogate models and in a DSO using Serpent for
solution evaluation. The NDF for the populations of SMO processes were then re-evaluated
using Serpent. The SMO outputs are compared with the NDF from populations of different
generations in the DSO. When NSGA2 runs using an existing surrogate model objective
function, the computational resource usage is less than one hundred thousandth that of the
direct optimisation process.

Based on the trends seen in Figure 5.4, the networks were trained on a set of up to 3200
uniform randomly generated core designs and predictive performance was evaluated using
another 800 similarly random designs, while models trained on Sobol training sets were trained
on the first 3000 core designs and tested on 800 random core designs. The size of the training
set is comparable to the DSO requirements, the aim being to create the best possible surrogate
model and compare the NDF results of surrogate and direct optimisation approaches.

The loss function used is MAE and the surrogate models are trained for 50 epochs on 100
samples. These numbers are chosen to maximise the chance that all training samples are used
while training, and the epoch approach avoids overspecialisation of the network.

5.4.2 Results

Simulations show that the surrogate models achieve moderate errors for the objective variables
on a test set of random data and are able to generate results using hundreds of thousands of
times less computational resource. The CNN predicted pin powers with a MAE around 1%;
however, this translated to MAE values of 3.805% and 2.421% for the actual objective variables
over the test set. This is likely due to the training of the CNN to predict pin powers on average,

5.4 Experiment 1: BOL PPF vs Position of Hot Pin 85

whereas the PPF depends upon the highest outlier value. Execution time measurements in
Table 5.3 are shown relative to MLP training time in order to compensate for effects specific
to the hardware and software platform. For reference, the mean MLP training time was 172.4
CPU seconds over 30 iterations on the low-end laptop hardware used.

It can be seen from Figure 5.6 that the MLP SMO process yields an NDF that has similar
performance to the NDF of the direct optimisation for generation five, while the CNN SMO
process has a NDF that has similar performance to the twelfth generation.

Table 5.3 MAE for MLP, CNN and Monte Carlo on training data (mean values for 30 runs)

MLP CNN Monte Carlo

Training set, N 3200 3200
Test set 800 800
MAE per-pin /% - 0.9949 29.31E-5
error for PPF/% 2.374 3.805 29.31E-5
error for hot pin /% 4.051 2.421 -
relative CPU time (evaluation) 10−7 10−5 ∼ 18a

relative CPU time (training) 1.000 15.26 -
relative CPU time (NSGA2) 0.03 0.4 ∼ 107 a

a HPC nodes used for Monte Carlo (see Table D.1 for hardware specs.)

Approximate overall Pareto front

Fig. 5.6 Sample NDF for populations in a DSO vs MLP and CNN surrogate models trained on
random input data (N = 3200)[233]

86 Deep Learning Surrogate Models

The MLP outperforms the CNN at predicting PPF but underperforms at predicting the hot
pin location. However, the CNN performs better when predicting non-random (optimisation)
input data. This is believed to be because the CNN is predicting pin power while the MLP is
predicting PPF, which is derived from pin powers. This may cause the the CNN’s results to
be more robust to the extrapolation that occurs when the optimisation search moves the input
space away from the random training set.

When the Sobol trained surrogate models are applied, the CNN shows an improved perfor-
mance in terms of the position of the hottest pin but does not dominate for the PPF, as shown in
Figure 5.7.

If the surrogate models investigated here could be used to seed the DSO population, they
have the potential to reduce computational resource usage by up to 25%, assuming that the
training set already exists. However, the training set (at 3200 samples) is not justified in terms of
computational expense for this experiment. If data created during a design study already exists,
such as in previous work [236], or if an optimisation is going to be carried out on a regular
basis, then creation of a surrogate can be justified. Random training data is equivalent to the
random initial populations used by many iterative optimisation algorithms (including NSGA2)
and might be reused to create a surrogate model. The CNN surrogate model significantly
outperforms the MLP model for SMO at generating lower PPFs. If the optimisation algorithm
used a population of 300, as per [130], and the CNN surrogate still performed comparably for
twelve generations, then a net computational saving would be seen. This is not inconceivable
since population size primarily discourages premature convergence to local optima rather than
changing the rate of NDF progression [78].

This initial study has shown that a deep learning surrogate model can generate a final
population that has migrated away from the random range of results and towards the NDF, and
that the calculation of results from the surrogate model is extremely computationally efficient
compared to direct Monte Carlo simulation of the system neutronics. Further work should
establish the investment versus benefit of SMO with regards to direct optimisation where
population size is similar to that in other studies using NSGA2 (see Section 5.2.2).

By training the surrogate model on a more space-filling training set, the surrogate model
appears to compete more effectively during optimisation. Smaller training sets can also be
considered as an approach to justify the surrogate model training set. Although the parameter
error decreases as size of training set increases, as seen in Figure 5.4, the highest improvements
are when the training set goes from 100 to 1500, justifying smaller training sets. Finally, it
should be noted that an assumption has been made that low MAE on a random test set correlates
to SMO performance. Although this follows logically, it may be possible to use surrogate
models that have high MAE but good correlation.

5.5 Experiment 2: BOL PPF vs Mean Enrichment 87

Approximate overall Pareto front

Fig. 5.7 Sample NDF for populations in a DSO vs MLP and CNN surrogate models trained on
Sobol set input data (N = 3000)[233]

5.5 Experiment 2: BOL PPF vs Mean Enrichment

5.5.1 Method

An advantage of SMO is that once a training set has been created, surrogate models can be
created or re-used for subsequent studies at minimal computational cost. In this experiment,
the CNN model from the previous experiment is repurposed to study other objective variables.

A lower PPF allows a higher average coolant temperature at the outlet of the reactor without
violating the DNBR, which is advantageous in terms of generator efficiency and the overall
efficiency. Lower enrichment enables cheaper fuel, since the isotopic enrichment of uranium
is expensive, due to the similarity of atomic weights of the naturally most common isotopes
U238 and U235. In this experiment the enrichment and PPF are minimised.

A DSO is carried out using NSGA2 and the parameters shown in Table 5.1. The same
optimisation is then carried out with an SMO. The final NDF of the SMO is then evaluated in
Serpent and the solutions that are achieved are compared.

The aim of this experiment is to establish whether the SMO could be used to find similar
results to the DSO without the computational expense. For this reason the DSO and SMO are
run a number of times with different seeds. This allows the comparison of NDFs generated.

88 Deep Learning Surrogate Models

5.5.2 Results

Evolution of optimisation of PPF and Enrichment on DSO

P
P

F

Enrichment (w/o U235)

Initial evaluations
Final NDF solutions

(a) DSO, ∼ 200 cpu hrs, (HPC)

Enrichment (w/o U235)

Evolution of NSGA2 on PPF and Enrichment using SMO

Final NDF for surrogate model

(b) CNN SMO, < 0.012 cpu hrs, (laptop)

Fig. 5.8 Examples for DSO and deep learning SMO initial and final population results

Fig. 5.9 NDF LPs for the CNN SMO simulated in Serpent.

5.5 Experiment 2: BOL PPF vs Mean Enrichment 89

Table 5.4 Execution time for MLP, CNN and Monte Carlo (mean values for 30 runs)

population generations CPU time/s machinea

DSO using Serpentb 50 60 ∼ 3.6×106 HPC
DSO using WIMSb 50 60 ∼ 9.0×105 Lise
CNN SMO 50 60 40.0 laptop
CNN SMO(p = 100, N = 1000) 100 1000 1300.0 laptop
50×Serpent evaluations - - 63600 Lise
50×MOC evaluations - - 15000 Lise

a for machine descriptions see Table D.1, b Calculated from direct simulation times and NSGA2 parameters

Figure 5.8 shows the results of NSGA2 running a DSO and an SMO using a CNN model.
For the purposes of this experiment, the surrogate model is assumed to have been pre-trained.
Figure 5.8a shows the initial population and final population for NSGA2 optimising for mean
enrichment and PPF using a DSO. The nine assemblies of the microcore (Figure 4.3) and the
PPF evolved. Initial tests in this experiment were found to achieve a low power peaking factor
by having a low ke f f (< 1.0). This is because subcritical reactors appear to exhibit extremely
low PPFs in the Monte Carlo simulation (as the initial population of simulated neutron chain
reactions rapidly die out). To ensure that the system did not use this strategy, the minimum
enrichment allowed was 2.4 w/o U235. These figures show that the algorithm is capable of
optimising both the DSO and the SMO problems, although the optimised results for the SMO
give higher estimated values for PPF. A visual inspection of the NDF results for both SMO and
DSO shows structural similarities. The results, shown in Figure 5.10 are arranged in ascending
order by mean enrichment in vertical columns from left to right. By inspection, we can see that
the SMO framework generates solutions that look reasonable at least at a superficial level. It is
also apparent that at least one edge of the NDF does not achieve the global minimum solution
(the lowest possible enrichment is uniform 2.4w/o U235). This is unsurprising for two reasons.
Firstly, the search is conservative in terms of computational expense in order to compare with
the DSO. Secondly, the ‘edge cases’ of the NDF in a converged population may be difficult to
obtain, because crossover operations will create offspring between the parents in the search
space and, therefore, away from the edges of the NDF.

The computational budget for the DSO, given in Figure 5.8, is based on the actual opti-
misation, which was carried out in Serpent. Serpent is a Monte Carlo type simulation, which
achieves high accuracy over arbitrary geometries but at a high computational cost. It is in-
structive to compare the same cost with a more economical simulation. Although the author
has attempted to generate the same geometry in the WIMS code, it is not possible due to the
rotational boundary condition used. This feature does not exist in version 10 of WIMS, the

90 Deep Learning Surrogate Models

2.4 2.4 2.6 2.4 2.4 2.6 2.4 2.4 2.6 2.4 2.4 3.8 2.4 2.4 4.2 2.4 2.4 4.2 2.4 2.6 5.0 2.4 2.4 4.2 2.4 2.8 4.2

2.4 2.6 2.6 2.4 2.6 4.0 2.6 3.4 4.0 2.6 3.4 4.0 2.6 3.0 3.0 3.0 3.0 4.0 3.0 3.4 4.0 2.6 3.0 4.0 3.0 3.0 4.0

2.6 2.6 2.4 2.6 2.6 2.4 2.6 2.6 2.4 2.6 2.6 2.4 4.8 2.6 2.4 4.8 2.6 2.4 2.8 4.8 2.4 4.2 4.8 4.6 4.2 4.8 4.6

1.13719 1.14276 1.15651 1.16379 1.16898 1.17968 1.18845 1.18213 1.19545
2.51 2.67 2.78 2.91 3.04 3.20 3.38 3.58 3.67
1.93 1.87 1.75 1.65 1.62 1.53 1.58 1.45 1.44

2.4 2.4 2.6 2.4 2.4 2.6 2.4 2.6 2.8 2.4 2.4 4.2 2.4 2.4 4.2 2.4 2.4 5.0 2.4 2.6 4.2 2.4 2.6 4.2 2.4 2.8 4.4

2.6 3.0 2.6 2.6 3.0 4.0 2.6 3.4 4.0 2.6 3.0 2.4 2.6 3.0 4.0 2.6 3.4 4.0 3.0 3.0 3.0 2.6 3.4 4.0 3.0 3.4 4.0

2.6 2.6 2.4 2.6 2.6 2.4 2.6 2.6 2.6 4.8 2.6 2.4 4.8 2.6 2.4 2.6 4.8 2.4 3.4 4.8 4.6 4.2 4.8 4.6 4.2 4.8 4.6

1.14603 1.15170 1.16181 1.16600 1.17276 1.17663 1.18410 1.19055 1.20117
2.58 2.73 2.84 2.98 3.16 3.29 3.44 3.64 3.73
1.85 1.76 1.69 1.66 1.61 1.59 1.53 1.46 1.43

 k :
mean enrichment :

PPF :

eff

 k :
mean enrichment :

PPF :

eff

(a) Selected (18/44) NDF LP arrangements generated by a CNN SMO for the bottom righthand quadrant
of the microcore (seed=3453412, pygmo_micro.py)

2.4 2.6 2.6 2.4 2.6 3 2.4 2.8 3 2.4 2.6 3.6 2.4 2.6 3.6 2.4 2.6 3.6 2.4 2.6 3.6 2.4 2.6 4 2.4 2.6 3.6

2.6 2.6 2.6 2.6 3.2 2.6 2.6 3.2 2.4 2.6 2.8 2.6 2.6 3.2 2.6 2.6 3.2 3.2 2.6 3.2 4.2 2.6 3.2 4.8 2.6 3.2 4.8

2.6 2.4 2.4 2.6 2.4 2.4 2.6 3.6 2.4 3.8 2.4 2.4 2.6 3.4 2.4 2.6 3.6 2.4 3.8 2.4 2.4 2.8 3.4 2.4 3.8 3.4 2.8

1.14470 1.15430 1.16189 1.16025 1.16160 1.16539 1.17096 1.17367 1.17838
2.53 2.64 2.78 2.80 2.82 2.91 3.02 3.13 3.24
1.66 1.81 2.53 1.72 1.67 1.60 1.55 1.53 1.46

2.4 2.6 2.6 2.4 2.6 3 2.4 2.8 3 2.4 2.6 2.6 2.4 2.6 3.6 2.4 2.6 3.6 2.4 2.6 3.6 2.4 2.6 3.6 2.4 2.6 3.6

2.6 3.2 2.6 2.6 3.2 2.4 2.6 3.2 2.6 2.6 2.8 2.6 2.6 3.2 2.6 2.6 3.2 2.6 2.6 3.2 4.2 2.6 3.2 2.4 2.6 3.2 4.8

2.6 2.4 2.4 2.8 3.6 2.4 2.6 3.6 2.4 3.8 3.6 2.4 3.8 2.4 2.4 3.8 3.4 2.4 2.8 3.6 2.4 3.8 3.4 4.4 2.8 3.4 4.4

1.15177 1.15943 1.16256 1.15937 1.16466 1.16878 1.17045 1.17066 1.17508
2.60 2.78 2.80 2.82 2.84 2.96 3.04 3.16 3.31
1.81 1.69 1.69 1.69 1.72 1.57 1.55 1.63 1.48

 k :
mean enrichment :

PPF :

eff

 k :
mean enrichment :

PPF :

eff

(b) Selected (18/32) DSO LP arrangements generated for the bottom righthand quadrant of the microcore
(seed=3453421)

Fig. 5.10 Examples for DSO and SMO LPs,

stable release at the time of writing. However, similar experiments, using a reflected boundary
conditions take around 3 minutes per burnup step on the ‘Lise’ blade computer. This means
that the equivalent DSO optimisation would take ∼ 120 CPU hours. Although it is dangerous to
compare simulations from different computers, the aim of these numbers is to show the reader
that the surrogate model in this case is running four orders of magnitude faster than direct
simulations, even on entry level hardware, compared to high end hardware used for the DSO
simulations. Figure 5.10 shows side-by-side results from the DSO and SMO. The solutions
found by both strategies compare favourably to a recognised strategy, called an in–out loading
pattern [208, p. 210]. This is where the high reactivity fuel is loaded at the edge of the reactor
and lower reactivity fuel is placed at the centre.

It is known from the training sets of the CNN that the prediction performance of the
surrogate model is reliably a few percent (see Table 5.3) on a random test set. However, it is
also known that the designs of interest have structure and are not random. Furthermore, due to
the central limit theorem, a set of nine random uniform variables will have a distribution whose

5.5 Experiment 2: BOL PPF vs Mean Enrichment 91

macro parameters (such as mean enrichment) are no longer evenly distributed. This means that
it is possible that the surrogate model is operating in a region of the search space that it has not
been trained upon and is likely to be performing poorly compared to the DSO. For this reason
the NDF is simulated in Serpent to establish the actual performance of the SMO.

Fig. 5.11 Repeated runs show competitive results between the SMO and DSO.

Figure 5.9 shows the results of the SMO from Figure 5.8b with actual direct simulation
results for the final NDF. As expected, the results are no longer accurate. It can be seen that
the surrogate model over estimates the PPF, leading to an improved result from the solutions
than the surrogate model predicts. The calculation of enrichment is a linear problem in terms
of input variables (it is the mean of them); however, PPF is a non-trivial product of the inputs
and a product of the particular geometry, neutronics and inputs. This makes finding all NDF
results apart from the limit case (where each input enrichment is minimised), more difficult.

In order to confirm that the SMO reliably competes with the DSO, the experiment has been
run for a number of seed values as shown in Figure 5.11. Here the NDFs are plotted to show
that the SMO reliably generates competitive solutions. In a few cases, the SMO finds solutions
that dominate the DSO.

This experiment has shown that SMO can generate competitive results for LPs over two
objectives compared to a single run of the DSO. Based on the execution times shown in Table
5.4, the SMO is seen to be many times more efficient than an equivalent DSO. If the training

92 Deep Learning Surrogate Models

Fig. 5.12 Comparing previous results with a more exploratory SMO (p = 100, N = 1000).

set exisits, a computational cost improvement of ∼ 690 times can be observed between running
SMO with a much higher population and generation count. Including testing the NDF in
the worst case,the most exploratory SMO is still seven times more computationally efficient,
compared to a DSO running at a much lower population×generation count. This result, does not
consider the further actual gains that can be made by parallel evaluation of direct simulations,
but is, in itself, a significant result of the thesis.

Table 5.5 compares the hypervolumes of the DSO and SMO from the runs shown in Figure
5.11. From this data it can be seen that the SMO appears to performs slightly better than the
DSO for this metric on these seed values. However, the difference in hypervolumes is only
two percent – an amount that can not be relied upon with only a few iterations. The DSO
could not be repeated further within the allotted HPC budget without limiting the work of other
students. However, it is very clear that the SMO results are competitive in terms of objectives
and certainly thousands of times faster.

Further analysis using the two-dimensional extensions of the K-S Test by Peacock [178]
does not conclusively show that the DSO and SMO distributions are significantly similar or
different (found in Appendix B.3).

5.6 Experiment 3: EOC Burnup vs PPF 93

The fact that the DSO cannot be run more than five times shows the value of the SMO
technique. Using it, it is possible to carry out many more exploratory experiments than would
be possible with DSO alone.

It is important to recognise that the hypervolume indicator does not capture all aspects of
the performance of a MO. Inspection of Figure 5.11, shows that the DSO appears to reliably
dominate the search in the bottom right quadrant, while the SMO is more competitive in the top
left. It follows that the SMO increases its hypervolume by extending the NDF further.

Table 5.5 Hypervolumes for DSO and SMO, calculated with a reference point at (5,5)

DSO SMO

Hypervolumes 8.695312 8.689278
8.694719 8.605199
8.145597 8.831682
8.681574 8.771061
8.528866 8.464937

Mean value: 8.549214 8.672431

Figure 5.12 shows the results presented previously, with an overlaid line showing the
maximum NDF achieved with the SMO (p = 100, N = 1000) simulation, where the NSGA2
parameters are chosen without the constraints of computational cost incurred by conforming
to the limitations of the DSO. In this case the p value is chosen to be 100 (the limiting factor
on population is checking the NDF values by direct simulation) and N has a value of 1000.
With these parameters the SMO takes around thirty minutes on the laptop hardware (see Table
D.1), which would be equivalent to 10% of the first generation on of the DSO. In particular, the
larger SMO is able to find the edge of the NDF (this is the trivial, uniform 2.4 w/o U235) but
this is not found by either the DSO or the SMO with less exploratory parameters.

5.6 Experiment 3: EOC Burnup vs PPF

5.6.1 Method

In this experiment the lifetime operation parameters of a single batch microcore is considered.
The objectives are to extend the cycle length of the design (minimising negative cycle length),
while minimising the PPF. The input parameters are the enrichments each of nine uniform
uranium assemblies (w/o U235 from 0.8 to 5.0).

A training set of enrichments that conform to the first thousand entries of the Sobol set was
generated and simulated in Serpent. The aim was to establish if the objective parameters could

94 Deep Learning Surrogate Models

be reliably predicted by a suitable surrogate model, and if that surrogate model could be used
for SMO. The test set used was the first generation of the DSO.

The surrogate model used is an MLP type deep learning model. Due to the extremely high
cost of running the DSO on the HPC, a single run of the DSO is provided for comparison. As
with all experiments, the code required to validate these results is provided, and it is hoped that
this will allow validation and reproduction of the claims.

An initial version of this experiment that used pin power variance as an objective of the
experiment is presented in Appendix B.4.

-1 * cycle length (MWd/kg U)

(a) DSO, ∼ 4000 cpu hrs, (HPC)

-1 * cycle length (MWd/kg U)

(b) MLP SMO, < 0.0019 cpu hrs, (laptop)

Fig. 5.13 Examples for DSO and SMO initial and final population results.

5.6.2 Results

In Section 5.5, the training set had already been generated for the investigation of training set
size, (Figure 5.4). Based on the trends of this graph, it made sense to use a large training set,
since error continues to reduce. In this experiment, the training set must be generated, and a
balance between model accuracy and computational resource must be found. Based on Figure
5.4, one thousand training samples is selected, as this gets around 70% of the performance
observed from the largest training sets.

The DSO and SMO runs for the PPF and cycle length show that both simulations reach
similar NDFs, and that the values found are in similar areas, as shown in Figures 5.13a and
5.15b. It is of interest to note that the MLP surrogate model used for this burnup experiment
does not perform well on the random initial population.

5.7 Experiment 4: SMR Core 95

Fig. 5.14 NDF LP for the CNN SMO simulated in Serpent.

Figure 5.14 shows the surrogate NDF results simulated in Serpent. The SMO NDF does
not generate performant results in this case when compared to the NDF of the DSO.

The SMO NDF LPs generates 52 solutions, whereas the DSO LPs in Figure 5.15 generates
only 10. The greater diversity of solutions generated by the SMO is interesting as it allows an
efficient use of the computational resource to directly simulate results that are close to the NDF.
This experiment shows that a surrogate model can be used to explore parts of the NDF that
have not been found by an equivalent run of the DSO. In the next, and final, experiment of this
chapter the scalability of the approach is examined, by considering an SMR core.

5.7 Experiment 4: SMR Core

In the previous experiments, the author intentionally used a hypothetical, square reactor. This
‘toy’ problem is used to provide a first examination of the applicability of these techniques

96 Deep Learning Surrogate Models

1.8 1.2 2.8 1.8 1.2 3.0 1.8 1.6 3.0 1.8 1.6 2.8 3.0 1.8 2.8 3.0 2.2 3.2 1.8 1.8 2.8 1.8 3.4 2.8 3.0 1.6 2.8

1.2 2.0 3.0 1.4 2.2 2.2 1.2 2.2 3.4 1.4 2.2 3.4 1.4 2.6 3.0 3.0 2.2 5.0 1.4 4.8 3.0 1.2 2.2 3.4 3.0 2.2 3.4

2.2 2.4 5.0 2.6 3.8 5.0 3.6 2.4 5.0 4.6 2.8 5.0 4.6 4.0 2.8 0.8 4.0 4.6 4.6 2.4 5.0 4.6 4.0 5.0 2.4 4.0 5.0

1.04568 1.06596 1.07872 1.09281 1.13442 1.16087 1.12648 1.12826 1.15270
4.61 6.86 7.97 9.21 11.72 13.87 15.15 15.98 16.62
1.86 1.75 1.61 1.80 2.17 2.22 1.97 1.62 2.12

1.8 1.2 3.2 1.8 1.6 3.2 1.8 1.6 3.2 1.8 1.6 3.2 3.0 1.8 2.8 3.0 2.2 3.2 3.0 1.8 3.0 4.6 1.6 3.2 3.0 1.6 3.2

1.4 2.2 2.2 1.2 2.2 3.4 1.2 2.0 4.6 2.0 2.2 3.0 1.4 4.8 2.2 3.0 2.2 5.0 1.2 4.8 2.2 0.8 2.2 4.6 3.0 2.2 4.6

2.6 2.8 5.0 2.8 2.4 5.0 3.6 2.4 5.0 3.6 2.8 5.0 4.6 3.8 1.8 0.8 4.0 5.0 2.2 3.8 4.8 2.4 4.0 5.0 2.8 2.4 5.0

1.05910 1.07412 1.08513 1.10270 1.15000 1.16059 1.13788 1.14334 1.15457
6.17 7.53 8.66 9.64 13.78 14.04 15.41 16.05 17.30
1.62 1.59 1.87 1.50 2.15 2.25 2.17 3.48 2.14

 k :
Cycle Length (MWd/kgU):

PPF :

eff

 k :
Cycle Length (MWd/kgU):

PPF :

eff

(a) Selected (18/52), LP arrangements generated by a CNN SMO (seed=3454312, pygmo_micro.py)

1.0 2.2 2.8 1.0 2.2 4.4 1.0 2.2 2.8 1.0 2.2 4.4 1.0 2.2 2.8

2.2 2.8 3.2 2.2 2.8 3.2 3.2 2.8 3.2 3.2 2.8 3.2 3.2 4.8 3.2

4.0 4.6 5.0 4.0 4.6 5.0 4.0 4.6 5.0 4.0 4.0 5.0 4.0 3.4 5.0

1.12561 1.13665 1.14107 1.14793 1.15676
11.81 13.77 13.93 14.77 15.36
1.71 1.59 1.68 1.54 1.86

1.0 2.2 4.4

2.2 2.8 3.2

3.6 4.0 5.0

1.13001
15.72
1.62

 k :
Cycle Length (MWd/kgU):

PPF :

eff

1.0 2.2 2.8 1.0 2.2 2.8 1.0 2.2 4.4 1.0 2.2 2.8

3.2 2.8 3.2 3.2 2.8 3.2 2.2 2.8 3.2 3.2 2.8 3.2

4.0 3.4 5.0 3.6 4.0 5.0 4.0 4.0 5.0 4.0 4.0 5.0

1.13277 1.13462 1.13219 1.13744
15.77 16.11 16.45 16.82
1.52 1.53 1.57 1.56

 k :
Cycle Length (MWd/kgU):

PPF :

eff

(b) Entire populatin of DSO LP arrangements generated for the bottom righthand quadrant of the
microcore (seed=3454321)

Fig. 5.15 Examples for DSO and SMO LPs, maximising burnup and minimising PPF

and focus the investigation on deep learning SMO. For the final experiment with deep learning
surrogate models, a small, single batch, SMR based on the proportions of the Nuscale core is
optimised using the same principles as the other experiments, to show how easily the benefits
of this technique can be applied to more realistic problems for nuclear engineers.

5.7.1 Method

An initial single batch core loading pattern is evaluated for PPF and enrichment to establish
the NDF. Due to the high computational cost of quarter core evaluation in Serpent, data from
previously collected training sets can be used as a starting point for the convolutional portions
of deep learning CNNs, creating a useful contribution for subsequent work. The convolution
layers are imported from the experiment in Section 5.5. A small Sobol training set of 1000
simulations is used to train the feedforward layers of the model, and the initial population of
50 simulations from the DSO is used as the test set. The setup is shown in Figure 5.16a, with
the flux map shown for reference in Figure 5.16b. In order to extract the fission rate of the

5.7 Experiment 4: SMR Core 97

(a) SMR mesh (b) Example SMR flux map (seed = 1586624087)

Fig. 5.16 A small SMR with order 4 rotational symmetry.

Fig. 5.17 Total fission energy per pin for the SMR in Serpent. The detector data must be
reconstructed around lines of symmetry to be analysed (seed = 1586624087).

pins a ‘detector mesh’ must be created and parsed from the output files. The results of the

98 Deep Learning Surrogate Models

reconstructed mesh is shown in Figure 5.17; the detector data is padded with zeros for the
purposes of prediction in the CNN.

(a) DSO, ∼ 1500 cpu hrs, (HPC) (b) CNN SMO, < 0.08 cpu hrs, (laptop)

Fig. 5.18 Examples for DSO and SMO initial and final population results for experiment 4.

5.7.2 Results

The results for this section are presented in the same format as other experiments. Firstly the
results of the DSO and SMO runs are shown in Figure 5.18a and Figure 5.18b respectively. The
results are then presented with the direct simulation of the SMO NDF in Figure 5.19. In this
case the surrogate model does not compete well with the DSO, generating results that have a
much higher estimated and actual PPF. The low accuracy of predictions of the deep learning
surrogate models in this experiment may be due to a requirement for a larger training set on a
larger problem. Interestingly the SMO still generates results that have a lower mean enrichment.
The SMO extends the total discovered NDF by 13.6%.

5.8 Summary

The contribution of this chapter has been to design and develop two deep learning surrogate
models, train them and apply them to four experiments in optimisation of simple, once-through
loading pattern problems. At the time of development convolutional neural networks had not
been applied to the problems of fuel loading patterns.

Significant advantages have been demonstrated to using surrogate model techniques to
augment and aid the application of DSO, when solving problems in nuclear engineering. While
the technique is not expected to replace DSO, it has been shown to beneficially augment it in a

5.8 Summary 99

Fig. 5.19 NDF LPs for the CNN SMO SMR simulated in Serpent.

number of scenarios, especially where computational expense is a limiting factor, SMO can
generate non-dominated solutions, reducing the computational burden of repeating the same
DSO, and augmenting the results with low and in some situations negligible computational
cost. Many DSO results in this chapter were achieved using the Cambridge HPC, which is a
significant computational resource that is not available to every researcher or nuclear engineer.

The results of Experiment 1 (p. 84) show that surrogate models can generate results closer
to the NDF than early stages of optimisation, potentially enabling acceleration of a DSO at
the start of the process. This has immediate applications when a corpus of training data has
already been produced; data created during a design study or as a by-product of traditional
iterative optimisations could be repurposed for this. The requirement of a large training set
offsets the gains of the surrogate model at times. However, it is possible for advantages such as
the continuity of the search space and the low computational cost of search to permit interesting
solutions. Furthermore the CNN generates a pin-for-pin solution, meaning that a suitably trained

100 Deep Learning Surrogate Models

2.4 2.4 2.6 2.4 2.4 2.6 2.4 2.8 2.6 2.4 3.6 4.8 2.8 3.6 4.8 3.6 3.6 4.8

2.4 2.2 2.2 2.8 2.4 2.4 2.2 2.4 2.8 2.4 2.4 2.2 2.2 2.8 2.4 3.8 2.2 2.4 3.4 3.8 3.8 2.2 3.6 3.4 3.8 3.8 2.2 3.6 3.4 3.8

2.6 2.8 2.6 2.4 2.6 2.2 2.4 2.6 2.8 2.6 2.4 2.6 2.2 2.4 2.6 2.8 2.6 2.4 2.6 2.2 2.4 4.8 3.4 2.8 2.4 2.8 2.2 2.4 4.8 3.4 3.2 2.4 3.2 2.2 2.8 4.8 3.4 3.2 2.4 3.2 2.2 3.6

2.4 2.2 2.4 2.4 2.4 2.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.8 2.2 2.4 2.4 2.4 2.2 2.8 3.6 2.4 2.4 4.2 2.4 2.4 3.6 3.6 3.6 2.4 4.2 2.4 3.6 3.6 3.6 3.6 2.4 4.2 2.4 3.6 3.6

2.4 2.2 2.6 2.4 2.6 2.8 2.6 2.4 2.2 2.6 2.4 2.6 2.8 2.6 2.4 2.2 2.6 2.4 2.6 2.8 2.6 2.4 2.2 2.8 2.4 2.8 3.4 4.8 2.8 2.2 3.2 2.4 3.2 3.4 4.8 3.6 2.2 3.2 2.4 3.2 3.4 4.8

2.4 2.8 2.2 2.2 2.4 2.4 2.8 2.4 2.2 2.4 2.4 2.8 2.2 2.2 2.4 3.8 3.4 2.4 2.2 3.8 3.8 3.4 3.6 2.2 3.8 3.8 3.4 3.6 2.2 3.8

2.6 2.4 2.4 2.6 2.4 2.4 2.6 2.8 2.4 4.8 3.6 2.4 4.8 3.6 2.8 5.0 4.8 3.6 3.6

1.13617 1.13962 1.13780 1.17554 1.19775 1.19930
2.44 2.46 2.48 3.20 3.40 3.48
2.39 2.37 2.34 2.15 2.17 2.19

 k :
mean enrichment :

PPF :

eff

(a) Selected (6/58), NDF LPs generated by a CNN SMO for an SMR (seed=1454).

2.4 4.2 2.4 2.8 2.6 3.2 2.4 4.2 2.4 2.4 2.6 4.6 4.6 4.2 3.2 3.8 4.2 4.6

3.0 3.4 3.0 2.8 3.0 4.0 2.8 3.0 2.8 4.0 4.0 3.0 3.0 2.8 4.0 4.0 3.0 3.0 2.8 4.0 4.0 3.0 2.8 2.8 4.0 4.0 3.0 2.8 2.8 4.0

2.4 2.8 2.4 2.4 2.4 3.4 2.4 3.2 2.8 2.4 2.4 2.4 2.8 2.8 2.4 2.8 2.4 2.4 2.4 3.0 2.4 4.6 2.8 2.4 2.4 2.4 3.0 2.4 3.2 2.8 2.4 2.4 2.4 3.0 4.6 4.6 2.8 2.4 2.4 2.4 3.0 3.8

4.2 3.0 2.4 2.4 2.4 3.0 4.2 2.6 3.0 2.4 2.4 2.4 3.0 2.6 4.2 3.0 2.4 2.4 2.4 3.0 4.2 2.6 3.0 2.4 2.4 2.4 3.0 2.6 4.2 2.8 2.4 2.4 2.4 2.8 4.2 4.2 2.8 2.4 2.4 2.4 2.8 4.2

2.4 3.4 2.4 2.4 2.4 2.8 2.4 2.8 2.8 2.4 2.4 2.4 2.8 3.2 2.4 3.0 2.4 2.4 2.4 2.8 2.4 2.4 3.0 2.4 2.4 2.4 2.8 4.6 4.6 3.0 2.4 2.4 2.4 2.8 3.2 3.8 3.0 2.4 2.4 2.4 2.8 4.6

3.0 2.8 3.0 3.4 3.0 4.0 2.8 3.0 2.8 4.0 4.0 2.8 3.0 3.0 4.0 4.0 2.8 3.0 3.0 4.0 4.0 2.8 2.8 3.0 4.0 4.0 2.8 2.8 3.0 4.0

2.4 4.2 2.4 3.2 2.6 2.8 2.4 4.2 2.4 4.6 2.6 2.4 3.2 4.2 4.6 4.6 4.2 3.8

1.16472 1.16039 1.16469 1.16476 1.17035 1.17226
2.84 2.84 2.90 2.96 3.18 3.24
2.04 1.93 1.90 1.85 1.80 1.76

 k :
mean enrichment :

PPF :

eff

(b) Selected (6/14), NDF LPs generated by the DSO for an SMR (seed=3454321).

Fig. 5.20 Examples for DSO and SMO LPs, minimising PPF and enrichment.

CNN could potentially break the in-core out-of-core fuel management separation, allowing
pin-for-pin full core optimisation.

Experiment 2 (p. 87) describes an example where the SMO is able to perform similarly
and in some cases outperform the DSO. Furthermore, due to the low computational cost, it is
trivial to increase the population, and run the SMO for more generations. This creates a NDF
that is more space-filling and generates solutions that are comparable to the solutions found by
DSO runs. A significant results of this experiment is that SMO can enable more exploratory
investigation of a search space.

Experiment 3 (p. 93) demonstrates a model delivering non-dominated solutions for burnup
simulations. In this case the computational advantages of the surrogate model become even
more clear. The computational cost of the burnup DSO is 4000 cpu hours, while the SMO is
achieved two million times faster on inferior hardware.

Experiment 4 (p. 95) generates a surrogate model of a Nuscale type SMR. This demonstrates
the technique in a reactor that is being designed today. Although the SMO performs markedly
less well than the DSO, the SMO still weakly dominates, generating non-dominated results that
were not found by the DSO.

The value of Experiments 2 and 4 is that it is shown that, for the seed values investigated, the
SMO is able to generate non-dominated solutions many tens of thousands of times faster than by
direct simulation, whereas Experiments 1 and 3 demonstrate that the SMO can generate direct

5.8 Summary 101

simulation results that outperform the initial population of the DSO while being significantly
more exploratory that the DSO. It should be noted that across the experiments most of the deep
learning SMO results generate NDFs with more solutions, the cause of this is not known. It may
imply that the surrogate search space is more smoothly graduated, making space filling results
more common in the surrogate NDF. However, it could also be a product of the stochastic noise
found in the DSO, further research on this may generate more insights.

A deep learning surrogate model improves in performance with the number of training
examples. There is, therefore, an argument that the development of the training set is too
expensive to justify the development of a surrogate model and that the benefits are too small.
In this chapter it has been shown that prediction error improves dramatically as the training set
increase to 1000 (p. 83). This is around thirty percent of the cost of the optimised DSO used.
Furthermore, the results seen in this chapter show that the surrogate models are routinely able to
produce results that weakly dominate the DSO (that some points on the SMO NDF outperform
the DSO NDF). This means that using an SMO provides insights that could otherwise be missed
by repeating the DSO for a given computational budget.

NSGA2 can operate with a high degree of parallelisation. It is possible to evaluate every
member of the population independently for a given generation before the results are used to
generate the next generation. However, the training set is trivially parallelisable; that is to
say that the entire set can be submitted to independent processors and evaluated without data
from other simulations being required. This means that if a suitably powerful HPC is available,
then generating the training set will be N times faster in terms of wall-clock time than running
the DSO at maximum parallelisation. This is for a DSO such as NSGA2, that can be fully
parallelised per generation. However, many algoirthms such as MOEA/D involve a concept
of neighbourhood that further reduces the possible parallelism. Moving forwards, it would be
interesting to establish if the results of the SMO can be used as the initial population of the
DSO, effectively reducing the number of generations that the DSO has to run for, potentially
significantly reducing the number of DSO generations required. If the final population of the
SMO can be used as as the initial population of a shorter DSO, then an augmented simulation
that benefits both from the computational acceleration of the SMO process and the reliability of
the DSO may be achieved.

Figure 5.21 shows the relative cost of running a DSO vs a SMO. Although there are more
decisions for an SMO, the worst case scenario is that the SMO costs around 34% of the cost of
executing the DSO, while subsequent runs of the SMO will cost less than 0.85% of the cost of
executing the DSO.

Furthermore, as discussed in Section 1.1.1 in a real LWR, such a process must be carried out
many times during the operational life, and it is highly unlikely that only one optimisation will

102 Deep Learning Surrogate Models

Does a
training set exist for

this problem?

Problem to optimise

Run the DSO, p=50, N=60
(cost += 1)

Does a
surrogate model exist for

this problem?

Finish

Generate a training set
(cost += 0.333)

Train a model
(cost += 0.0001)

Run the SMO
(cost += 0.00008)

Does the
overall NDF meet the

requirements?

Choose to run
an SMO?

Simulate 25 NDF results
(cost += 0.00833)

yesno

no

yes

no

yes

no

yes

Fig. 5.21 A flow diagram demonstrating the relative computational costs of SMO and DSO.

be carried out at each refuelling, since multiple trade-off scenarios will need to be considered.
These factors create a stronger justification for the generation of a training set to carry out SMO.
If the optimisation is going to be carried out on a regular basis, then DSO becomes analogous
to renting a house – in that a solution is found but the cost of the next optimisation is the same,
whereas building a SMO is analogous to buying the house since, after an initial investment,
computational cost can be spent operating a DSO closer to the NDF. In this chapter it has been
shown that the ‘house’ can be built for around the same cost as one instalment of ‘rent’.

The initial investment of generating a training set is justified by the very fast investigation
of novel objective functions – to generate alternative solutions that may be missed by the DSO
or to seed a DSO with promising solutions. As the ‘open data’ trend (see p. 4) becomes more
common in the nuclear industry; larger, curated, training sets than those generated as part of

5.8 Summary 103

this work will inevitably become available to industry and researchers. These can then be used
to beneficially augment the process of fuel loading pattern optimisation with SMO techniques.

In the next two chapters, other metaphorical, surrogate methods to accelerate optimisation
strategies are investigated. Firstly the Fission matrix, then a matrix encoding of Galperin’s
heuristic rules are evaluated using a quantum annealer. 2

2 Code used in this section is available for audit, reproducibility and derived works. A copy can be obtained
from the repository under the permissive two-clause Berkeley Standard License [3]:

https://bitbucket.org/ajw287/chapter5-deep-learning.git

Chapter 6

Fission Matrix Loading Pattern Model

6.1 Introduction

In this chapter, a surrogate model is derived from the fission matrix. The rationale for this
model is to create a surrogate model that competes in computational efficiency with the deep
learning models used in Chapter 5, but that has a basis in the simulations. In order to do this
a fairly radical approach is taken: the fission matrix for a loading pattern is reconstructed
from component matrices for uniform loading patterns. Although the method was developed
independently to it, the method bears some similarities to the hybrid method proposed by
Raunand and Williams [187], which applied a similar method to changes in temperature in
reactors.

The fission matrix is, in essence, a statistical model of neutrons. Each entry in the matrix
represents the probability that a neutron moves from its origin to a fission event in a region of
interest. Like other SMO methods, the fission matrix model is generated from ‘training’ data.
Running a Monte Carlo simulation, while recording the frequency with which neutrons are
born in one region and die in a fission reaction in another, makes it possible to estimate the
probability of these events. The first eigenvector of the fission matrix is proportional to the
amount of fission energy generated in each region [31].

Relatively recent studies by Carney et al. [31, 30] have sparked renewed interest in fission
matrix approaches, with applications to ‘source convergence’ (the pre-estimation of ke f f for the
purposes of reducing the number of inactive cycles in Monte Carlo simulations). In their 2014
paper, Carney et al. comment that the fission matrix form of the neutron transport equation has
been known since the first days of the Monte Carlo method and has been applied many times.

The suitability of the fission matrix as a surrogate model was evaluated using three exper-
iments. The first experiment evaluates predictions of the microcore fission rate on a quarter
assembly resolution for a number of fixed LPs, the second experiment uses the model developed

106 Fission Matrix Loading Pattern Model

in the first experiment as a surrogate model for optimisation of PPF and enrichment, and the
third experiment looks at PPF and cycle length using a simple fission-matrix based surrogate
model to predict cycle length.

6.2 Fission matrix for the 6×6 Microcore

For the purposes of the experiments, the nine-assembly microcore introduced in Section 4.4
is used. In this chapter, each quadrant of each assembly is considered independently. This is
common when considering the burnup of assemblies as rotation is limited to four angles due to
the symmetry of square fuel assemblies used in most PWR designs.

Figure 6.1 shows an example of a fission matrix for the bottom right-hand quadrant of the
microcore, with four regions per assembly, and thirty six entries per region (corresponding
to the fission caused in the output region). In this case, each row of the fission matrix covers
half of a row of assemblies, so the top quadrants of assemblies 1-3 are considered first with
respect to the fission rate in every other region, then the lower quadrants of assemblies 1-3 and
so on. The fission matrix shows strong diagonality as neutrons are most likely to cause fissions
close to where they are born. In this case, the rotational symmetry creates a connectivity from
assembly 2 to 4, and 3 to 7; this can be seen as off-diagonal artefacts in the matrix.

The matrix also has good diagonal symmetry since it is reasonable to assume isotropic
scattering in a PWR, that the neutrons have no mean angular neutron flux [249, p. 51]. In other
words, a neutron is equally likely to travel from A to B as from B to A.

1 3 2 4 6 5 7 9 8

In
pu

t A
ss

em
bl

y
N

um
be

r

Output Assembly Number

2 1 3 5 4 6 8 7 9

1

3

2

4

6

5

7

9

8

2

1

3

5

4

6

8

7

9

Fig. 6.1 The fission matrix for a quadrant of the 36 assembly microcore.

6.3 A Fission Matrix Surrogate Model 107

6.3 A Fission Matrix Surrogate Model

In the Serpent Monte Carlo code [128], the fission matrix can be generated by defining the
correct mesh for the tallying of neutron events. In order to generate a high-integrity fission
matrix from a Monte Carlo simulation, a large number of neutrons are required. 800,000
neutrons were used in these experiments, which was an amount that was found to yield a fission
matrix that was reasonably diagonally symmetric, while retaining computational benefits for
three enrichments. The noise level of the fission matrix was established using visual inspection
and confirmed with a short study in Appendix B, Section B.5.

The eigenvalue form of the neutron transport equation, called the forward fission matrix
equation by Brown et al. [28] is shown in Equation 6.1, where S⃗t represents the neutron source
at some time t, K is the effective multiplication factor and F is the fission matrix.

S⃗t1 =
1
K

FS⃗t0 (6.1)

If the system is in steady state then S⃗t1 = S⃗t0 and S⃗ can be seen to be an eigenvector and K an
eigenvalue of F , so the per-region fission rate is then approximately the first eigenvector of F .

Si =
1
K

N

∑
j=1

Fi, jS j (6.2)

Each entry in the fission matrix is described by Carney et al. [31] as the “fission rate in spatial
region i due to average neutron born in region j” .

Fi, j =
FNs(⃗r)
FDs(⃗r)

=
fission rate in region i due to fission source in region j

fission source in region j
(6.3)

The surrogate model hinges on generating FN and FD, then separating them and reconstituting
them on a per-assembly basis.

In this chapter, the model is generated by separating the F matrix from a number of
generated fission matrices, then separating the FD vector for each enrichment by taking the
sum of the rows. The FN matrix is then generated from the mean of the training matrices.
This assumes that there is the same neutron flux density shape and coupling over the range of
U235 enrichment in question. Although this is acknowledged to be a large approximation, the
surrogate model does not need to be an accurate model of the system. Instead, the surrogate
model informs the optimisation algorithm which direction to move in the search space. Thus,
it is sufficient for the surrogate model to correctly estimate the sign of the gradient of output
variables in the region of the search space that the search trajectory crosses.

108 Fission Matrix Loading Pattern Model

It is known that the absorption cross-sections of U235 and U238 differ, which will have
knock-on effects to the connectivity of the regions in the fission matrix. However, since the
isotopic concentration of U235 is only changing from 1.6w/o to 3.2w/o, the change of U238
(from 98.4w/o to 96.8w/o) is small, the coupling is assumed not to be affected. This assumption
allows the creation of a single FN matrix of the connectivity of the regions. The effects of
discretisation are discussed in [31]; a discretisation level of a quarter assembly was chosen
based on this study and to permit further work with fuel shuffling. The method described in
this section is clarified by way of a simplified example.

Example: The fission matrix surrogate model

The fission matrices used in this chapter are calculated using 6×6 regions, which generates a
36×36 fission matrix. It is impractical to write this out numerically, but for the purposes of a
worked example, the same core is considered with 2×2 regions, to demonstrate the process
used to generate the surrogate model for novel loading patterns.
First, fission matrices for three enrichments are generated from a Monte Carlo simulation for
the geometry; these are 4×4 matrices, F(enrichment). The FD vector is generated by taking the
row-sum of the fission matrix, as shown for the example enrichments below:

Uniform 1.6 w/o U235:

F(1.6) =


0.157 0.042 0.016 0.005
0.041 0.133 0.034 0.005
0.016 0.032 0.133 0.036
0.005 0.005 0.033 0.136

 , F(1.6)
D =


0.219
0.212
0.217
0.182


Uniform 2.4 w/o U235:

F(2.4) =


0.177 0.048 0.017 0.005
0.047 0.151 0.038 0.005
0.017 0.038 0.149 0.039
0.006 0.005 0.038 0.156

 , F(2.4)
D =


0.247
0.242
0.243
0.205


Uniform 3.2 w/o U235:

F(3.2) =


0.191 0.051 0.019 0.006
0.050 0.163 0.042 0.006
0.019 0.040 0.161 0.043
0.006 0.005 0.041 0.171

 , F(3.2)
D =


0.266
0.259
0.262
0.227



6.3 A Fission Matrix Surrogate Model 109

Equation 6.3 is then used to create connectivity matrix FN , by dividing each element by the
corresponding row of FD.

F(1.6)
N =


0.157/0.219 0.042/0.219 0.016/0.219 0.005/0.219

0.041/0.212 0.133/0.212 0.034/0.212 0.005/0.212

0.016/0.217 0.032/0.217 0.133/0.217 0.036/0.217

0.005/0.182 0.005/0.182 0.033/0.182 0.136/0.182


Based on an assumption that the connectivity is not changed by changing the enrichment, the
element-wise mean of the FN is used for novel LPs.

F(mean)
N =


0.043 0.011 0.004 0.001
0.011 0.036 0.009 0.001
0.004 0.009 0.036 0.008
0.001 0.001 0.009 0.032


Using this data, a novel LP can be approximated by the following steps:

1 2

3 4

Legend

3.2 w/o U235

2.4 w/o U235

1.6 w/o U235

Target LP

rotational symmetry

The approximated fission matrix F̂ for the target LP is generated as follows:

F̂(target) =



FN 1,1 ·F(2.4)
D,1 FN 1,2 ·F(2.4)

D,1 FN 1,3 ·F(2.4)
D,1 FN 1,4 ·F(2.4)

D,1

FN 2,1 ·F(3.2)
D,2 FN 2,2 ·F(3.2)

D,2 FN 2,3 ·F(3.2)
D,2 FN 2,4 ·F(3.2)

D,2

FN 3,1 ·F(2.4)
D,3 FN 3,2 ·F(2.4)

D,3 FN 3,3 ·F(2.4)
D,3 FN 3,4 ·F(2.4)

D,3

FN 4,1 ·F(1.6)
D,4 FN 4,2 ·F(1.6)

D,4 FN 4,3 ·F(1.6)
D,4 FN 4,4 ·F(1.6)

D,4



F̂(target) =


0.043 ·0.266 0.011 ·0.266 0.004 ·0.266 0.001 ·0.266
0.011 ·0.242 0.036 ·0.242 0.009 ·0.242 0.001 ·0.242
0.004 ·0.243 0.009 ·0.243 0.036 ·0.243 0.008 ·0.243
0.001 ·0.182 0.001 ·0.182 0.009 ·0.182 0.032 ·0.182



110 Fission Matrix Loading Pattern Model

F̂(target) =


0.01062 0.00271 0.00111 0.00026
0.00279 0.00862 0.00241 0.00025
0.00105 0.00211 0.00774 0.00147
0.00035 0.00028 0.00198 0.00578


The primary eigenvector (corresponding to the largest eigenvalue) S⃗, is proportional to the
fission rate per region. In this case:

S⃗ =


0.700
0.588
0.377
0.149


Rearranging the eigenvector according to the regions of the discretisation of the fission matrix
gives the estimated relative map of fission rates.

Target relative f ission map, T̂ ∝

(
0.700 0.588
0.377 0.149

)

Experiment 1 (Section 6.4) investigates the effectiveness of this model for a number of arbitrary
6×6 region fuel LPs. The source code is also made available for investigation of the surrogate
modelling process (instructions for obtaining the code are found in Section 6.8).

6.4 Experiment 1: Powermap Prediction

A simple experiment with the fission matrix model, which aims to confirm that the fission rate
of regions in arbitrary loading patterns can be predicted by the method developed in Section
6.3.

6.4.1 Method

The first experiment aims to establish a model that is able to predict the power maps of a number
of LPs, in order to evaluate whether this approach is feasible as the basis of a surrogate model
for optimisation. A fission matrix is generated for each of the ‘A:Training’ LPs of Figure 6.2,
then the normalised power map is compared with the first eigenvector of the generated fission
matrix. Due to the very high granularity required of the fission matrix, very large populations
were required in order for the resultant fission matrix to exhibit a low level of noise. The
populations used in these simulations are described in Table 4.4.

6.4 Experiment 1: Powermap Prediction 111

By generating fission matrices for three training enrichments it becomes possible to generate
an approximation to a fission matrix F̂ for a previously unseen arbitrary LP made up of these
three enrichment values. For example, the LPs ‘B:Test’ are loading patterns chosen for the
experiment. The process for generating the surrogate model fission matrices has been carried
out as described in the worked example on p. 108.

filename: hpc_ 00 16

1 2 3

4 5 6

7 8 9

filename: hpc_ 00 24

1 2 3

4 5 6

7 8 9

filename: hpc_ 00 32

1 2 3

4 5 6

7 8 9

filename: hpc_ 99 01

1 2 3

4 5 6

7 8 9

filename: hpc_ 99 02

1 2 3

4 5 6

7 8 9

filename: hpc_ 99 03

1 2 3

4 5 6

7 8 9

Legend

3.2 w/o U235

2.4 w/o U235

1.6 w/o U235

A:Training B:Test

Fig. 6.2 Cores used for training and validating the fission matrix surrogate model

This method of generating the ‘model fission matrix’ is very crude. Assumptions include: the
linkage of the FD term depending only on the geometry. In reality, the value of FD is dependent
on the cross-section of the target cell as well as the geometry of the system. Furthermore, the
source term is assumed to be completely linked to enrichment, which is untrue, since the source
is a product of the fissile material (which is only the enrichment at BOL) and the neutron flux
spectrum. This model implicitly assumes that the flux spectrum is the same as the constituent
fission matrices. Therefore, as the target core power map diverges from the power maps of
uniform cores used as ‘training’ data, it can be expected to perform less well. Despite these
caveats, this experiment investigates a number of LPs to test if the model may be a good enough
model for the optimisation to proceed.

6.4.2 Results

In the first two columns of Figure 6.3, the first fission matrix eigenvector is shown on a relative
colour-map. Then the actual power map for each uniform core is then depicted. The first
eigenvector of the fission matrix is known to be proportional to the magnitude of fission
reactions occurring in each region. The second column shows the actual total fission power
calculated by the Monte Carlo simulation. The next three columns show the eigenvector,

112 Fission Matrix Loading Pattern Model

a ‘generated’ result and the actual power map. The generated result was created using the
decomposed fission matrix from the three uniform simulations to create a source and geometry
term for each position and enrichment. It is then possible to generate a ‘model matrix’ whose
eigenvectors are shown in the ‘generated’ column. Visual inspection shows that they follow
the fission matrix and power map to some extent. The results in Table 6.1 were generated
using the SciPy [225] implementation of the Pearson’s product-moment correlation coefficient
(described in [212, p. 53]). From the table it can be seen that there is a statistically significant
result for all of the tests, with two of the three tests showing a high (> 95%) likelihood of the
‘null hypothesis’ being true – that the model is correlated with the results. These results do not
prove the null hypothesis, but do provide evidence to support it.

1.6 w/o U235 (hpc_0016)

2.4 w/o U235 (hpc_0024)

3.2 w/o U235 (hpc_0032)

Loading Pattern 1 (hpc_9901)

Loading Pattern 2 (hpc_9902)

Loading Pattern 3 (hpc_9903)

Fig. 6.3 The fission matrices from uniform distributions are split into geometry and source
terms and are then used to reconstitute a ‘surrogate fission matrix’ eigenvector.

Table 6.1 Correlation tests for power map to fission matrix and to surrogate model (to 6 s.f.)

Fission Matrix Surrogate Model
Pearson’s R p-value Pearson’s R p-value

hpc_0016 0.959097 0.00247531 – –
hpc_0024 0.972104 0.00115643 – –
hpc_0032 0.979600 0.000620010 – –
hpc_9901 0.972368 0.00113472 0.984934 0.000338787
hpc_9902 0.999314 7.04828E-07 0.998811 2.12050E-06
hpc_9903 0.810218 0.0506083 0.725750 0.102506

6.5 Experiment 2: BOL PPF and Mean Enrichment 113

6.4.3 Limitations of a Fission Matrix Model

The fission matrix model created in this experiment is most accurate when it is predicting a
system with a flux shape that is similar to the original flux shape. This is because the FD of a
given assembly is based both on the amount of fissile isotopes in the assembly (proportional
to enrichment in this experiment) and the flux in that assembly. The model used here varies
the source of neutrons caused by enrichment, but not the multiplicative aspects of the resultant
increase. However, a highly simplified approximation could still have the right sign of gradient,
even after neglecting the multiplicative effects of neutron chain reactions. Thus, it may still be
of use, since the surrogate model is being used only for navigating the search space rather than
for collecting meaningful results.

The results of the correlation calculation in Table 6.1 are promising. Two of the three test
patterns have correlation p-values less than 0.05%, where 5% is a typical value for accepting
the null hypothesis [95, p.832]. However, the last model (where it is expected that there is a
significant neutron flux at the outside) yields a p-value greater than 10.0%. Whether this is
sufficient similarity for a surrogate model to point in the right direction is the subject of the
next experiment.

6.5 Experiment 2: BOL PPF and Mean Enrichment

6.5.1 Method

This experiment proceeded similarly to the one in Section 5.5 of Chapter 5: a DSO was run and
compared to a run of the SMO. An important difference is that, due to the creation of fission
matrices for only three enrichments, the optimisation is limited to these enrichment values.
In order to make the comparison fair, the DSO has the same requirement. The optimisation
algorithm used for both the SMO and DSO is NSGA2 [50], implemented in Pygmo [92]. The
hyperparameters of the algorithm are unchanged and found in Table 5.1.

6.5.2 Results

The results depicted in Figure 6.4 show the initial and final populations of DSO and SMO runs.
Visual inspection of the (identical) initial populations shows that the SMO generates numerically
inaccurate results, but that the overall shape of the results displays some similar features to the
direct simulation evaluation. Side-by-side comparison of the NDFs (Figure 6.4) shows that the
DSO generates a result that appears to compete with the SMO evaluation. However, when the
SMO results are evaluated in Serpent, the results for the SMO are strictly dominated in this case.

114 Fission Matrix Loading Pattern Model
P

P
F

of optimisation

Evolution of NSGA2 on PPF and Mean Enrichment on DSO

(a) DSO, ∼ 200 CPU hrs, (HPC)

Evolution of NSGA2 on PPF and Mean Enrichment using SMO

Initial SMO population
Final SMO population

(b) Fission matrix SMO, < 0.045 CPU hrs, (laptop)

Fig. 6.4 Examples of initial populations and final NDFs for DSO and SMO.

Fig. 6.5 NDF LP for the fission matrix SMO evaluated in Serpent.

6.6 Experiment 3: PPF vs Cycle Length 115

The surrogate model underestimates the PPF in every case at the NDF. Analysis of the actual

Table 6.2 Execution time for fission matrix model and DSO

CPU time (s) machinea

Fission matrix generationb 5.06×105 Lise
Fission matrix SMO 132.7 laptop
Fission matrix burnup SMO 495.9 laptop
DSO ∼ 3.6×106 HPC

a for machine descriptions see Table D.1, bper value of enrichment investigated.

LPs generated by these runs (Figure 6.6) shows some structural similarities and differences in
the evolved solutions. Both optimisations find the trivial, lowest enrichment solution and there
appears to be a preference towards higher enrichments at the edge for both of the other NDF
sets of solutions. The central four enrichments are 1.6 w/o U235 in all solutions in both NDFs.
Figure 6.6a shows the LPs that result from the SMO, while Figure 6.6b shows the LP results for
the example run of the DSO. It should be noted at this stage that the results here are for single
runs of the algorithms. In order to make less anecdotal observations of the trends in LPs from
each method, more runs would need to be carried out or the experiment could be repeated for a
geometry that is possible in a deterministic solver such as WIMS [135]. Due to the extreme
computational cost of the DSO, and the limited access to resources that could run WIMS (see
Section 4.2.3), this has not been possible. The computational cost of generating parts of the
fission matrix based SMO are shown in Table 6.2. It can be seen that in order to achieve a
high fidelity fission matrix, a large computational cost must be expended. The fission matrix
SMO does not contribute a significant amount to the computational budget, so it is considered
acceptable that this has been implemented in a high level language and not been optimised for
efficiency. For more complex problems with variables such as burnable poisons or more values
of enrichment, more fission matrices may be required. Although generation of a number of
fission matrices is more parallelisable than a DSO, it is likely to become uncompetitive in terms
of total computational cost if many combinations of fission matrices were required.

6.6 Experiment 3: PPF vs Cycle Length

In this experiment the fission matrix model is used to generate BOC fission rates per region.
These are used to estimate the cycle length in a simple burnup model that considers U235 and
conversion of U238 to Pu239.

116 Fission Matrix Loading Pattern Model

1.6 1.6 1.6

1.6 1.6 1.6

1.6 1.6 1.6

1.00361
1.60
2.10

1.6 1.6 1.6

1.6 1.6 3.2

1.6 1.6 2.4

1.01790
1.87
1.69

1.6 1.6 1.6

1.6 1.6 3.2

1.6 2.4 1.6

1.02270
1.87
1.66

1.6 1.6 1.6

1.6 1.6 3.2

1.6 2.4 2.4

1.02510
1.96
1.66

1.6 1.6 1.6

1.6 1.6 3.2

3.2 2.4 1.6

1.03893
2.04
1.72

1.6 1.6 1.6

1.6 1.6 3.2

3.2 2.4 2.4

1.04176
2.13
1.62

1.6 1.6 1.6

1.6 2.4 1.6

1.6 1.6 1.6

1.02122
1.69
1.94

1.6 1.6 1.6

1.6 2.4 1.6

1.6 2.4 1.6

1.02793
1.78
1.83

1.6 1.6 3.2

1.6 1.6 1.6

1.6 3.2 3.2

1.03702
2.13
1.62

 k :
mean enrichment :

PPF :

eff

(a) NDF LPs generated by a fission matrix SMO evaluated in Serpent for the bottom right-hand quadrant
of the microcore (seed=3453412).

1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 2.4 1.6 1.6 2.4 1.6 1.6 2.4 1.6 1.6 2.4 1.6 1.6 2.4

1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 2.4 1.6 1.6 2.4 1.6 1.6 2.4 1.6 1.6 2.4 1.6 1.6 2.4 1.6 1.6 2.4 1.6 1.6 2.4

1.6 1.6 1.6 2.4 1.6 1.6 1.6 2.4 2.4 2.4 1.6 1.6 1.6 2.4 2.4 1.6 2.4 3.2 2.4 1.6 1.6 2.4 2.4 1.6 2.4 2.4 3.2

1.00361 1.01297 1.01828 1.01794 1.02802 1.03097 1.02827 1.03488 1.03097
1.60 1.69 1.87 1.78 1.96 2.04 1.87 1.96 2.13
2.00 1.86 1.64 1.69 1.52 1.42 1.56 1.48 1.33

 k :
mean enrichment :

PPF :

eff

(b) DSO LPs generated for the bottom right-hand quadrant of the microcore (seed=3453423).

Fig. 6.6 Examples for DSO and fission matrix SMO LPs.

6.6.1 Method

In this experiment the DSO is compared to a simple burnup model using the fission matrix
eigenvalue solution as the basis for the calculation. Details of the direct simulation and surrogate
model are described below.

Burnup Simulation in Serpent

The experiments in this section use Serpent’s stand-alone burnup calculation. The power density
is set to 40 kW/kgU and the fuel is depleted using 20 cumulative depletion steps, based on the
example burnup code for a PWR assembly [127]. The burnup steps are at 0.1, 0.5, increments
of 1 from 1-10, increments of 2.5 from 12.5-20, and increments of 5 from 25-40 MWd/kgU.

From the Serpent simulation, the cycle length is estimated by taking a linear interpolation
in terms of ke f f and burnup steps at the step where ke f f goes below unity.

A Simple Surrogate Burnup Model

The simplest model of cycle length considers only the number of fissile nuclei in the reactor
at BOC and the rate of utilisation, such as in the description by Stacey [208, pp. 219–221].
However, fertile isotopes are converted to fissile isotopes as neutrons interact with them. These
experiments use only Low Enriched Uranium (LEU) – uranium with an isotopic enrichment
below 5% U235. The major fissile isotope produced in LEU through neutron capture in U238
and two successive β -decays is Pu239 [18, p. 60]. This conversion creates the possibility of

6.6 Experiment 3: PPF vs Cycle Length 117

extending the fuel cycle beyond the amount of U235 originally loaded into the core. Considering
only U235 and Pu239 as fissile isotopes, and U238 as a fertile isotope, Lewis [129, pp. 252-255]
generates the following burnup model:

d
dt

NU235(t) =−NU235(t)σU235
a φ(t) (6.4)

d
dt

NU238(t) =−NU238(t)σU238
a φ(t) (6.5)

d
dt

NPu239(t) = σ
U238
γ φ(t)NU238(t)−σ

Pu239
a NPu239(t) (6.6)

Due to the high proportion of U238 compared to the other isotopes, the NU238 is considered
constant.

NU238(t)≈ NU238(0) (6.7)

Equation 6.6 then simplifies to

d
dt

NPu239(t) = σ
238
c φ(t)N238(0)−σ

Pu239
a NPu239(t) (6.8)

Integrating Equation 6.4 and Equation 6.8 gives:

NU235(t) = NU235(0)e−σU235
a Φ(t) (6.9)

NPu239(t) =
σ238

c
σPu239

a
N238(0)

(
1− e−σPu239

a Φ(t)
)

(6.10)

The fluence is defined by Equation 6.11.

Φ(t) =
∫ t

0
φ(t ′)dt ′ (6.11)

A number of simplifications are now required for the fission matrix model to be used. It is
assumed that the relative BOC fission rate obtained from the surrogate model F̂ in region
j is related to the flux φ according to Equation 6.12. In fact, the flux must increase as the
cycle proceeds due to the reduced inventory of fissile material and the accumulation of fission
products that absorb neutrons.

For simplicity, the fission rate per region is assumed to stay constant. Which permits the
fixed case flux and fluence to be calculated using Equations 6.12 and 6.13, respectively. Here
PD is the power density and BUcore is the total burnup for a 2D (equivalent to 1cm3 deep)

118 Fission Matrix Loading Pattern Model

simulation of the core at the time of interest:

φ j =
PD T̂j

E f Σ f , j
(6.12)

Φ j(t) =
BUcore(t) T̂j

E f Σ f , j
(6.13)

This allows the objective function for the surrogate model to be to minimise Equation 6.14,
which is proportional to the number of fissile atoms present. It is known from Section 5.6 that
a cycle length of 10 MWd/kU is a possible for the microcore. So, by maximising the total
inventory of fissile material for this amount of burnup, a surrogate objective might be found for
increasing the cycle length.

−N f issile ≃−1×

(
36

∑
j=1

NU235
j (0)e−σU235

a Φ j +
σ238

γ

σPu239
a

N238
j (0)

(
1− e−σPu239

a Φ j
))

(6.14)

This model ignores the position of the fissile inventory. In reality, the core may be subcritical
if all of the fissile inventory is too far apart for a neutron chain reaction to be sustained. This
model does not consider the position of the fissile material in the core. The poisoning effects of
fission products are also ignored.

6.6 Experiment 3: PPF vs Cycle Length 119

Table 6.3 Fission matrix burnup model parameters for the four region-example, based on data
obtained from Stacey [208, pp. 13,669-674] and calculated values

Nuclear Data

σU235
f (barns) 577

σU235
a (barns) 101+577 = 678

σU238
c (barns) 2.73

σPu239
f (barns) 741

σPu239
a (barns) 274+741 = 1015

Energy per fission (MeV) 200

Calculated Values
Enrichment (w/o U235)

1.6 2.4 3.2

NU235 (cm−3) 3.79×1020 5.69×1020 7.58×1020

NU238 (cm−3) 2.61×1022 2.59×1022 2.57×1022

fuel volume per region (cm3) 317.68
N(0)U235 1.2053×1023 1.8080×1023 2.4107×1023

N(0)U238 8.3034×1024 8.2359×1024 8.1684×1024

ΣU235
f (cm−1) 0.219 0.328 0.438

ΣU238
c (cm−1) 0.0714 0.0708 0.0702

Total core fissions to 10MWd/kgU 3.17120×1023

Example: The fission matrix to surrogate burnup model

To illustrate the burnup method, the result from the example calculation on p. 108 is used as
the basis for the calculation of the N f issile inventory after 10MWd/kgU, compared to the initial
fissile inventory (the amount of U235 in the four regions). This example uses values from Table
6.3.
The initial fissile inventory is assumed to be equal to the number of U235 atoms in the fuel:

N f issile(0) = 1.81×1023 +2.41×1023 +1.81×1023 +11.21×1023

= 7.23×1023

To calculate the fissile inventory at the end after 10MWd/kgU, the following steps are carried
out. First, the relative eigenvector result, which has a vector magnitude of 1, should be scaled to

120 Fission Matrix Loading Pattern Model

have an element sum of 1.

T̂ ∝

(
0.700 0.588
0.377 0.149

)
⇒

(
0.700/1.814 0.588/1.814

0.377/1.814 0.149/1.814

)
=

(
0.386 0.324
0.208 0.082

)

The fluence that corresponds to the fission map can be estimated according to Equation 6.13.
Although the recoverable energy differs slightly between U235 and Pu239, a fixed value of of
200MeV per fission is used to estimate the fluence.

Φi, j =
3.17120×1023 × T̂i, j

577×10−24 ×N(0)U235
i, j

Φ =

(
1.54×1022 1.16×1022

1.05×1022 7.05×1021

)
Then for a burnup of 10MWd/kgU, Equation 6.14 is used. The objective of a high fissile
inventory is considered equivalent to a longer cycle length for the experiment:

−N f issile(BUcore = 10) = 4.81207×10+23

This model does not use the value of ke f f (the parameter that actually controls cycle length),
which means that the fissile inventory might not be physically realisable. However, the aim is to
optimise an objective that correlates with the cycle length. The geometry is not changing and
the enrichment is only varied over a small range. Therefore, it assumed to be unlikely that large
changes in the physical location of the fissile inventory due to conversion of U238 to Pu239
will occur.

6.7 Results

In a procedure that is now familiar, Figure 6.7 shows the side-by-side DSO and SMO results,
and Figure 6.8 compares the NDF results of the SMO and the DSO. Figure 6.8, shows the
results together, with the red line representing the NDF of the DSO and the orange circles
representing the Serpent results of the SMO’s final NDF. Note that the surrogate model results
are shown on the scales of PPF and −N f issile, an estimate of the total fissile inventory at 10
MWd/kgU. The DSO results and the Serpent simulation of the NDF compares PPF and cycle
length.

6.7 Results 121

Figure 6.8 shows that the NDF of the SMO does not exhibit good correlation between
predicted and directly simulated values for this seed value. Although one solution is shared
between the DSO and SMO NDFs, the results do not readily form an interpretable trend. The
SMO results appear to perform fairly closely to the DSO results, although the DSO strictly
dominates the results. However, examination of the actual LPs generated by both the DSO
and the SMO shown in Figure 6.9, shows that while many of the results appear be rational LP
designs, a small portion of solutions have unexpectedly high, or low cycle lengths. This may
be due to stochastic noise causing instability in the burnup simulation, if this is the case, then
the DSO will actively select for outliers.

Evolution of DSO on PPF and -Cycle Length

Initial DSO population
Final DSO population

-1 * cycle length (MWd/kg U)

(a) DSO, ∼ 1500 cpu hrs, (HPC)

Evolution of NSGA2 on PPF and burnup using a Fission Matrix SMO

x10^23

(b) Fission matrix SMO, < 0.083 cpu hrs, (laptop)

Fig. 6.7 Examples for DSO and SMO initial and final population results.

Stochastic Noise and Multiobjective Optimisation

As previously considered in Section 4.2.3, stochastic noise causes problems for iterative
multiobjective optimisation algorithms. This is due to the fact that, if the NDF is not clearly
defined, the population cannot easily converge on any one set of solutions. In this thesis, the
approach has been to fix the seed value of the Monte Carlo simulation and to use appropriate
simulation parameters to establish a low level of stochastic noise. However, it is possible for
the DSO to find solutions that benefit artificially by having outlier stochastic noise for the seed
value used, whereas the surrogate models do not have stochastic noise.

In July 2020, Rojas Gonzalez et al. [190] proposed the application of SMO as a significant
technique for solving this problem. By optimising a stochastic-noise-free surrogate model,
solutions closer to the true NDF can be established. Stochastic noise dependence is likely to be
larger in the burnup calculations and this phenomenon might explain the increased performance

122 Fission Matrix Loading Pattern Model

P
P

F

-1 * cycle length (MWd/kg U)

x10^24

Fig. 6.8 NDF LP for the fission matrix SMO evaluated in Serpent.

of the NDF for the DSO in this experiment and Experiment 3 of Chapter 5 (p. 93). If this is
correct, this results do not invalidate these experiments for this seed. However, the opportunity
exists for further work to validate the true NDF using a deterministic code such as PANTHER
[156].

6.8 Discussion

The fission matrix has a number of attractive features as a surrogate model. Conceptually, it has
the advantage of being an extremely simple model of neutron transport and is easily adaptable
to the inputs of the simple problems of fuel loading in this chapter. It has a physical basis in the
neutron transport equation, unlike the deep learning or Ising models1, which allays the fear that
the surrogate model may not reflect reality.

1The Ising model is the basis for Chapter 7 and is introduced in Section 7.2.1

6.8 Discussion 123

1.6 1.6 3.2

2.4 1.6 3.2

3.2 3.2 3.2

1.08990
8.49
1.52

1.6 1.6 3.2

2.4 2.4 3.2

3.2 3.2 3.2

1.10642
9.74
1.45

1.6 2.4 3.2

2.4 1.6 3.2

3.2 3.2 3.2

1.10902
9.82
1.54

1.6 2.4 3.2

2.4 2.4 3.2

3.2 3.2 3.2

1.12533
10.94
1.45

1.6 2.4 3.2

3.2 2.4 3.2

3.2 3.2 3.2

1.13974
15.04
1.65

1.6 2.4 3.2

3.2 3.2 3.2

3.2 3.2 3.2

1.15084
13.78
1.62

2.4 1.6 3.2

2.4 3.2 3.2

3.2 3.2 3.2

1.14022
11.99
1.65

2.4 2.4 3.2

2.4 3.2 3.2

3.2 3.2 3.2

1.15880
13.91
1.69

2.4 2.4 3.2

3.2 3.2 3.2

3.2 3.2 3.2

1.17287
14.94
1.78

2.4 3.2 3.2

3.2 3.2 3.2

3.2 3.2 3.2

1.18657
15.99
1.79

3.2 3.2 3.2

3.2 3.2 3.2

3.2 3.2 3.2

1.20668
13.28
2.07

 k :
Cycle Length (MWd/kgU):

PPF :

eff

 k :
Cycle Length (MWd/kgU):

PPF :

eff

(a) NDF LPs generated by a fission matrix SMO for the bottom right-hand quadrant of the microcore
(seed=3453412).

1.6 2.4 3.2 1.6 2.4 3.2

2.4 2.4 3.2 2.4 3.2 3.2

3.2 3.2 3.2 3.2 3.2 3.2

1.12533 1.13766
10.94 11.95
1.45 1.56

1.6 2.4 3.2

3.2 3.2 3.2

3.2 3.2 3.2

1.15136
13.79
1.62

1.6 3.2 3.2

3.2 3.2 2.4

3.2 2.4 3.2

1.15563
17.45
1.76

1.6 3.2 3.2

3.2 3.2 3.2

3.2 3.2 3.2

1.16429
14.86
1.63

2.4 2.4 3.2

2.4 3.2 3.2

3.2 3.2 2.4

1.15811
17.18
1.66

 k :
Cycle Length (MWd/kgU):

PPF :

eff

(b) NDF LPs generated by DSO for the bottom right-hand quadrant of the microcore (seed=3453425).

Fig. 6.9 Examples of DSO and fission matrix SMO LPs,

However, the implemented model has a number of remaining problems. In order to
develop a number of fission matrices, a high-fidelity simulation is required for each enrichment
used. This has been feasible for three enrichments of U235 only, but would quickly become
prohibitive under the combinatorial explosion of more realistic considerations, such as burnable
poisons and fuel histories in a multi-batch setup. The computational cost of these experiments
is summarised in Table 6.2.

The models used in these experiments appeared promising for the simple test patterns
evaluated in Experiment 1, but delivered unsuccessful results when applied to optimisation
problems for this implementation on these particular seeds. Significant simplifications have
been made, as described in Section 6.4.3. However, it appears that even this simplified model
allows for some level of transfer between the SMO and the DSO. The results presented here
show that, for the seed values used, the SMO results are generally less performant than the
example DSO, though it is not certain that the evolved SMO NDFs do not represent potentially
useful solutions.

A significant advantage of this model is that it is possible to express the fission matrix
equation in a form that can be shown to be equivalent to a Hamiltonian operator similar to
the Ising model. This could allow the model to be optimised on experimental and theoretical
quantum computers. Particularly, it has been proposed to develop this model for optimisation

124 Fission Matrix Loading Pattern Model

on machines using ‘polaritons’ to locate the global optimum of an objective, as introduced by
Berloff et al. [21]. The connection between LP optimisation and quantum computing will be
investigated further in the next chapter. However, at this time the fission matrix was not chosen
as a model of the system. 2

2 Code used in this section is available for audit, reproducibility and derived works. A copy can be obtained
from the repository under the permissive two-clause Berkeley Standard License [3]:

https://bitbucket.org/ajw287/chapter6-fission-matrix.git

Chapter 7

Extended Work: Quantum Annealing
Optimisation of a Heuristic Surrogate
Model

In this chapter, as an extension of the work with surrogate models, a heuristic surrogate model
is developed and executed, first on a simulated quantum annealer (SQA). Then, the model is
exported to an actual DW2000Q machine, which its manufacturers claim operates as a true QA
[2]. This demonstrates the application of present day quantum computers to solve nuclear fuel
loading problems using a simplified metaphorical surrogate model.1

7.1 Introduction

From 1965 to the early 2010s, computing power increased exponentially, with the number
of transistors per chip doubling every two years, a phenomenon predicted by Moore [155].
Enormous increases in computing power were achieved. Iterative optimisation as applied to the
fuel loading problem coincides with this change. Research such as that by Parks [173, 174] and
Ahn [7] coincides with, and utilises, this novel resource. However, the number of transistors
on a chip has stopped following this trend despite increasing investment by the semiconductor
industry in supporting it. In 2016, Waldrop commented:

“Moore’s law, the principle that has powered the information technology revolution
since the 1960s, is nearing its end.” [226]

1Work in Section 7.2 has been previously peer reviewed and accepted for the PHYSOR 2020 conference.
[234] it is reproduced here with some modifications to make the subject more tractable in the context of the thesis.

126 Extended Work: Quantum Annealing Optimisation of a Heuristic Surrogate Model

Interest is now returning to alternative methods of computation. Some, such as the digital
logic that forms the basis of Field Programmable Gate Arrays (FPGAs), have existed since
before modern digital computer architectures, while others, such as neural accelerator hardware,
Graphical Processing Units (GPUs) and quantum processors, are contemporary inventions.
The question now arises as to how to express nuclear engineering problems in a way that they
can be solved by these novel computing architectures.

One vision of a future HPC architecture is shown in Figure 7.1. Here, three different
alternative computing coprocessors – hardware neural accelerator such as a ‘Tensor Processing
Unit’ (TPU) [98], GPU and quantum computer architectures are available to support a classic
CPU node [23]. This chapter describes a method for expressing simple heuristic rules for
loading pattern generation into a type of processing device called a quantum annealer. The
encoding that is generated can be loaded in the simulated QA (that runs on a host CPU) or
submitted to an actual QA device [2].

Instructions

Main Memory

Data

Host CPU

Neural
Accelerator GPU

Quantum
Accelerator

Exchange Logic Control Logic Control Logic

G
PUIP
U

Q
-A

cc
el

GPU GPU

GPUGPU Q-bits

Error
Correction

Instruction
Memory

x1

y1

yM

xN

Fig. 7.1 A vision of a future HPC architecture, adapted from [23].

7.2 Adiabatic Optimisation using a Simple, Rule-based Surrogate 127

7.2 Adiabatic Optimisation using a Simple, Rule-based Sur-
rogate

In 1982, Feynman [62] initiated the field of quantum computing by suggesting that the inherent
complexity of quantum mechanics might be an efficient way to solve complex computational
problems. Despite significant research effort, it is only in recent years that quantum computers
have become available commercially.

In this section, heuristic rules, similar to those used in [71], will be encoded into a surrogate
model suitable for use by a QA [64], a present-day quantum computer, to generate PWR
LPs. QAs use a trick from quantum adiabatic theory, which allows a simple Hamiltonian
to be converted into a complex one, while keeping the system in the minimum energy state.
The following subsection describes how adiabatic theory permits the discovery of the global
optimum of a system. This has been utilised in adiabatic quantum computing and implemented
to some extent in QAs.

7.2.1 Adiabatic Quantum Computers and Quantum Annealing

Quantum adiabatic theory describes a technique for global optimisation. The theory applies to
a Hamiltonian that evolves in time t, from a simple system to a complex one over a time period
T , as described by:

H(t) = (1− t/T)H0 +(t/T)H1 (7.1)

H0 describes a simple Hamiltonian shown in Eq. (7.2), and H1 is an implementation of the
problem that we are looking to solve. In order for our problem to be solvable by an adiabatic
system, the problem must be expressed in terms of the classical Ising model, of the form shown
in Eq. (7.3).

H0 =−∑
i, j

σ
X
i σ

X
j (7.2)

H1 =− ∑
⟨i, j⟩

Ji jσ
Z
i σ

Z
j −µ ∑

i
hiσ

Z
i (7.3)

where: H is a Hamiltonian, a function representing the total energy of the system; ⟨i, j⟩ signifies
connected qubits i and j; J is an exchange constant, a matrix of strengths of connections
between qubits attracting them to similar or opposite states; σ signifies logical qubits, which
can have values −1 or +1 upon measurement; and h is a transverse field, an external field
strength applied to each qubit that biases its state.

Quantum adiabatic theory states that, if a system like the one above is in its ground state
and is evolved over time, then the system remains in its ground state unless the rate of energy

128 Extended Work: Quantum Annealing Optimisation of a Heuristic Surrogate Model

put into the system is enough to push it into a new state. While this may sound trivial, the
implications are important. So long as a ‘speed limit’ for t is not exceeded, then the system
will evolve from H0 to H1 while remaining in the global minimum energy state. Thus it is
possible to find the global optimum of a problem. However, for an adiabatic quantum computer
to optimise an objective function, it must be expressed in terms of the Ising model Hamiltonian,
Eq. (7.3).

Furthermore, existing quantum computers operate at around 10 mK above absolute zero,
which means that, although the system is expected to be in its ground state initially, this is not
guaranteed. Finally, the ‘speed limit’ is given by Eq. (7.4), where ∆ is the difference of energy
between the ground state and other states. Unfortunately, it may be more difficult to find the
difference between the global minimum and the second best minimum than to find the global
minimum in the first place [240].

tlimit ≈
1

(min(∆)× t)2 (7.4)

This leads to the implemented solution: quantum annealing. The system is the same, but
the system evolves from H0 to H1 at a practical speed, ignoring the speed limit. The process
is executed many times and the minimum solution found is taken to be the optimum. This
allows the problem to be solved in a realistic amount of time, while still identifying the global
optimum, assuming that at least one execution has evolved from the ground state of H0 to the
ground state of H1.

7.2.2 Methodology

Fig. 7.2 The operation stack of a quantum annealer (based on [64]).

A PWR reload core with three different fuel enrichments is used as an example problem.
The following assumptions have been made to simplify the problem:

7.2 Adiabatic Optimisation using a Simple, Rule-based Surrogate 129

1. Burnable poisons (BPs) are neglected.

2. Control rods and instrumentation are considered to be withdrawn.

3. Only the start-up core made up of fresh fuel is considered.

4. Scenarios with two fuel-type and three fuel-type reload cores will be considered.

Based on the software stack in Figure 7.2, the problem of fuel loading must be encoded into a
suitable Ising model. First, a two fuel-type reload core is considered. Each assembly in the core
is assigned a logical qubit as shown in Figure 7.3a. The qubits are named numerically according
to the image for regularity in the code, but only qubits that represent an actual assembly (blue
in the figure) are assigned. This means that only 193 logical cubits are required to describe the
system. Second, a three fuel-type reload core is considered: two qubits are assigned for each
assembly, as shown in Figure 7.3b, which enables the assignment of three meaningful states in
an Ising-type model.

(a) Two fuel-type core (b) Three fuel-type core

Fig. 7.3 Core representation in qubits

(a) (b)

Fig. 7.4 Transverse fields, h

In order to encode the kind of knowledge-based rules used by Galperin [71], the connectivity
of the qubits must be set up and interactions are defined by setting values of the transverse field,
h, and the exchange constant, J , for every connected i and j. Galperin’s example heuristic
rules are used as the basis for the rule set used in this study. They are as follows:

1. Fresh fuel assemblies should not be loaded into peripheral core positions.

2. Twice-burnt fuel assemblies should not be loaded into innermost core positions.

3. Two fresh fuel assemblies should not be loaded into adjacent positions unless one of
them is adjacent to a peripheral one.

4. Two twice-burnt assemblies with high accumulated burnup values should not be loaded
into adjacent positions.

130 Extended Work: Quantum Annealing Optimisation of a Heuristic Surrogate Model

In order to translate this rule set to the core design tasks in this chapter, the assumption is made
that the cycle number (burnup state) of the fuel is equated to enrichment. Thus, the highest
enrichment fuel is equated to fresh fuel in a batch system, and the lowest enrichment fuel is
equated to twice-burnt fuel. Rule 3 is then applied as is, while Rules 1 and 2 are inverted
compared to Galperin’s rules [71], due to a desire to be compliant with the reload core design
used in the BEAVRS benchmark [86].

In the Ising model, the transverse field, h, is a blocking force that overrides the connectivity
of qubits. In order to equate it to the heuristic rules, it is defined using one of the patterns
shown in Figure 7.4a and Figure 7.4b. This allows qubits to have a particular affinity for one
type of spin based on position in a particular region (defined radially here). This is used to
enforce Rule 1. The exchange constant, J , is then designed to ensure that the system obeys
Rule 3. This is achieved by creating a connection between each qubit and adjacent qubits. The
extension to 3 batches also connects qubits that are adjacent to the edges of the regions defined
in the transverse field.

In the next step, the connections defined in the logical qubits of the Ising model description
of the problem are translated to the actual architecture of a target QA. The Ising description
can connect any number of qubits together in any arrangement, and actual QAs must emulate
this functionality. The solution of this process is called the minor embedding. A common
arrangement of connections for physical qubits is called a chimera graph [239, p. 148]. The
box labelled ‘Minor graph embedding’ in Figure 7.2 shows a single group of eight qubits from
a chimera graph: the groups are locally interconnected and each qubit is connected to two
adjacent groups. In order to emulate a logical qubit’s connections, multiple actual qubits are
strongly coupled together until the correct connectivity is achieved.

7.2.3 Results

Patterns from Simulated Quantum Annealers

The results in this section were created using SQA [42] on conventional hardware. Nevertheless,
the algorithm used attempts to model the quantum annealing process accurately and the software
used is easily converted for use on an existing QA. The first result is that it is possible to
transcribe a set of rules for PWR LP optimisation into a real-world quantum computer. The
two fuel-type problem has a minor embedding that fits within a 16×16 chimera graph, as this
is the largest quantum computer at the time of writing. The three fuel-type problem has a
minor embedding that fits onto a 25×25 chimera graph, which is expected to be the largest
implementation at the time of submission [2].

7.2 Adiabatic Optimisation using a Simple, Rule-based Surrogate 131

(a) LP 1 (b) LP 2

Fig. 7.5 LP designs using SQA for a two fuel-type PWR.

Two fuel-type LPs optimised using an SQA are shown in Figure 7.5. The Figure 7.5a LP
was found when there is a bias for a large radial region with adjacent assemblies experiencing
an inverting force. The radial region is smaller for the Figure 7.5b LP, and an even split of
the fuel types is achieved. LPs found in the three fuel-type case are shown in Figure 7.6.
Rules 1 and 2 create the outer ‘blanket’ region, while Rule 3 generates the ‘checker-boarding’
effect. A start-up core LP from the BEAVRS benchmark [86] is shown in Figure 7.6c, for
comparison; in this, the highest w/o U235 correlates well with fresh fuel, the next w/o U235
with the once-burnt batch and the lowest w/o U235 with the twice-burnt batch. Note that the
BEAVRS start-up core does not exactly conform to Galperin’s rules.

(a) LP 1 (b) LP 2 (c) BEAVRS initial LP

Fig. 7.6 LP designs using SQA for a three fuel-type PWR compared and c) the initial core LP
in the BEAVRS benchmark [86].

Since the problems posed in this chapter are all symmetrical, the global optimum must also
be symmetrical. A simple metric for the effectiveness of the algorithm is needed to establish
proximity to the global optimum. The metric used was to calculate the degree of quadrant
difference, by comparing each quadrant rotated appropriately as follows:

R=
∑

4
N=2 ∑

w/2
x=0 ∑

h/2
y=0 Q1

x,y −QN
x,y

w×h
(7.5)

132 Extended Work: Quantum Annealing Optimisation of a Heuristic Surrogate Model

where: R is a measurement of quadrant rotational differences; Q1−4 are the rotated quadrants of
the output ‘core’ LP; x is the horizontal position coordinate; y is the vertical position coordinate;
w is the model width; and h is the model height.

This calculation produces a value in the range 0–1, with 0.03125 per non-similar output
for 15×15 arrays such as here. Although this does not effectively rank the solutions and has
other limitations, it gives an easy-to-calculate measurement of proximity to the global optimum
of the heuristic model, based on the assumption that all solutions are within a few pixels of
the global optimum and that optimum has order 4 rotational symmetry. This can be checked
by visual inspection of the results (examples shown in Figures 7.5 and 7.6). Table 7.1 shows
the results of this calculation for 30 runs for each of the configurations. Readers should note
that this code is only running on a single core and has not been optimised (see p. 201 for a
description of the laptop hardware used here).

Table 7.1 SQA results (mean of 30 runs), values to 4 s.f.

Cases Batches Quadrant Differences (R) Run Time (s)
mean σ mean σ

Figure 7.5a 2 0.1875 0.08860 547.1 9.510
Figure 7.5b 2 0.3521 0.07603 553.7 22.35
Figure 7.6a 3 0.09861 0.03414 787.2 20.23
Figure 7.6b 3 0.0 0.0 853.36 65.138

Validating Results in a Nodal Code Simulation

Although visual inspection of the results from the SQA process shows that the designs have
a regularity that would be expected of good results, the system is only optimizing heuristic
models developed according to a set of rules. To check whether these models have optimal
solutions with favourable characteristics in a simulated PWR, they were analysed using a
neutronics simulation. LPs from Figures 7.5 and 7.6 were selected and simulated using
a PANTHER/WIMS model of the BEAVRS benchmark [86, 82]. In order to evaluate the
LPs, octant core symmetry is applied, which is considered acceptable in this case since the
solutions exhibit a high degree symmetry and it is common in fuel loading pattern analysis (e.g.
[175, 71, 139, 60] and [75, p. 599]).

Some indicative statistics for a number of simulated cores are shown in Table 7.2. The cores
are labelled by the Figures 7.5–7.6 for two and three fuel-types, with Figure 7.6c representing
a simplified version of the BEAVRS initial LP and the core labelled “2.6 w/o U235” being a
uniformly loaded core with an intermediate enrichment. Although the latter is not a performant
LP in terms of EOC boron or PPF, it is included for comparison with the optimised LPs.

7.3 Extension: LPs from the DW2000Q Quantum Annealer 133

The WIMS/PANTHER BEAVRS model used in this study has shown good agreement with
the benchmark data [82]. Since the heuristic surrogate model used here does not attempt to
consider BPs, a simplified version of the initial LP was generated (Figure 7.6c) for comparison.
Although the PANTHER results for Figure 7.6c show significant divergence from actual
BEAVRS results, the differences are most pronounced at beginning of cycle (BOC). This
implies that these discrepancies are due to the removal of BPs, which act to reduce the initial
reactivity and the PPF.

The results for three fuel-type LPs are promising. The SQA solution for three fuel-types
and a smaller radial region (Figure 7.6b) has improved PPF values compared to the Figure 7.6c
design, albeit at a shorter cycle duration, as indicated by the end of cycle (EOC) boron
concentration. While the two fuel-type LPs are less optimal than the three fuel-type ones, they
are superior to the single fuel-type core (2.6 w/o U235) in all aspects except final PPF.

Table 7.2 Results for LPs burned up to 13593 MWd/tonne in PANTHER

Core BOC PPF EOC PPF BOC boron (ppm) EOC boron (ppm)

Figure 7.5a 1.854 1.299 1816 100
Figure 7.5b 2.849 1.247 1682 132
Figure 7.6a 1.760 1.127 1345 −41
Figure 7.6b 1.866 1.188 1518 71
BEAVRS - model
(Figure 7.6c)

1.462 1.173 961 −32

BEAVRS - actual 1.438 – 975 0
2.6 w/o U235 2.158 1.163 1888 213

7.3 Extension: LPs from the DW2000Q Quantum Annealer

In light of these promising results, minor embeddings, such as those shown in Figure 7.7,
were submitted to a D-Wave QA, the DW2000Q_5 machine, through the web interface [2].
Access time to these machines is limited, so care is taken when selecting the embedding.
Although minor embeddings were attempted for the three fuel-type case, no solutions were
found that embed the problem of 449 logical qubits within the 2038 real qubits, so experiments
concentrated on two fuel-type cases, which only require 224.

Initial results from the default values of the QA yielded highly degraded results. So a study
was carried out, varying ‘chain strength’, ‘anneal time’, and ‘number of reads’. However,
results were inconclusive. Eventually, this was found to be due to the algorithm used to recreate
the minor embedding for each test. The embedding used is optimised by a separate iterative

134 Extended Work: Quantum Annealing Optimisation of a Heuristic Surrogate Model

Fig. 7.7 An example of a minor embedding for the algorithm for two fuel-types in an idealised
‘chimera graph’

optimiser, and the resulting variation has a larger effect on the output than the other variables
investigated.

The algorithm is pushing the boundaries of present-day DWave QAs. This means that the
‘minor embedding’ forms very long chains in order to simulate ‘virtual qubits’. These chains
can become uncoupled during the simulation, so the algorithm needs to be carefully tuned. In
the end, over 2500 runs were made and the minor embedding with the shortest maximum chain
length was recorded. This yielded a minor embedding with a maximum chain length of 8.

Examples of the results achieved in August 2019 with the DWave DW2000Q_5 QA are
shown in Figures 7.8a and 7.8b. Visual inspection shows that the results are nowhere near as
good as the SQA results. Although the time taken to find these results is significantly faster
(Table 7.3) than for the SQA process (Table 7.1), no increase in speed justifies incorrect results
However the technology is not yet mature and improvements are ongoing. Figure 7.8a and
7.8b were generated in August 2019, when this study was carried out. Upon review of the the
code for release, a possible improvement in accuracy. This can be seen in the same results
generated in July 2020 on the DW2000Q_6, as shown in Figures 7.8c and 7.8d and estimated
quantitatively in R in Table 7.3.

7.4 Discussion 135

Table 7.3 Results on the DW2000Q_5 in August 2019 and DW2000_6 in July 2020 QAs (mean
of 5 runs), values to 4 s.f.

Outer Machine Batches Quadrant Differences (R) Run Time (s)
Region mean σ mean σ

Figure 7.4a
DW2000Q_5 2 0.5792 0.05135 0.06551 0.0000
DW2000Q_6 2 0.5292 0.1302 0.02716 0.000015287

Figure 7.4b
DW2000Q_5 2 0.5063 0.08979 0.06552 0.0000
DW2000Q_6 2 0.4479 0.04480 0.02715 0.00001654

(a) LP 1 (b) LP 2

(c) LP 1 (d) LP 2

Fig. 7.8 Example LPs generated using QAs; a) and b) were generated in August 2019 on a
DW2000Q_5 QA. c) and d) were generated in July 2020 on a DW2000Q_6 QA.

7.4 Discussion

This chapter presents promising results of an initial study of the suitability of present-day and
near-present-day quantum computers for optimisation of fuel arrangements in nuclear power
plants. The exciting conclusion is that, using this technique, a shortcut around the combinatorial
explosion might be found.

The two fuel-type implementation gives results that can be seen by inspection to adhere
to the simplified rules extracted from Galperin [71]. The three fuel-type solutions shown in
Figure 7.6 compare well with the arrangement of different fuels in a start-up core from the
BEAVRS benchmark (Figure 7.6c). Some differences can be noted as coming from Rule 3 used
to guide the optimisation. Note that the annealer is not using symmetry to generate these LPs;

136 Extended Work: Quantum Annealing Optimisation of a Heuristic Surrogate Model

symmetry arises from the minimum energy solution to the surrogate model. The generated LPs
were then simulated using a nodal reactor physics code to estimate their actual performance.
The results show that the LPs found for three fuel-types are promising when compared with the
start-up core designed for a commercial reactor.

Experiments on the actual D-Wave quantum computer have enabled insights into the process
of generating a minor embedding for a real-world problem, and a study of the effects of the
parameters involved shows that the quality of the minor embedding is the most important
variable for getting good results in this case. Example results on the DW2000-Q, Figure 7.8,
show that the results from the D-Wave machine are not very reliable. This is thought to be due
to the large chain length of the embeddings that break with a probability proportional to the
length. SQA does not suffer from chain breakages since there is no need to embed the system
in real hardware.

The timing results in Tables 7.1 and 7.3 show that quantum annealing is more than 8350
times faster than SQA. Much of this speed-up is due to the architecture of the machine
being specifically designed for optimisation of Ising-type problems (in the same way as
FPGA designs of an algorithm can achieve results in a single clock cycle whereas standard
processor architectures performing the same algorithm sequentially may take thousands of
clock cycles[237, p. 3]). From of this study, it is apparent that the SQA consistently delivers
better results than a QA at this time. One possibility that has been suggested is that SQA can
outperform ‘classical’ simulated annealing for problems with many local optima due to the
simulation of quantum tunnelling effects [45]. If true, SQA may be a good fit for developing
LPs, since LPs are generated on a scale of months to years, so a slow but accurate algorithm is
acceptable.

This study is by no means a complete investigation of fuel loading optimisation with
quantum annealing techniques. Future work should look to encode physical aspects of the
neutron transport into the problem and to generate more realistic scenarios. There is potential
to express a fission matrix in the Ising model form. Thus QA shows significant future promise
for solving complex nuclear engineering problems. While this initial study gives promising
conceptual results, limitations are acknowledged. These include: the list of assumptions on
p. 128; the simplicity of the heuristics–though knowledge-based, they are much simpler than
the actual interactions of components in a nuclear reactor; and the lack of consideration of
specific histories (as is normal for a multi-batch core). Although the encoding does not enforce
that equal numbers of assemblies of each fuel-type (batch) are used, careful design of the J

and h fields can ensure that the minimum energy Hamiltonian is not biased towards a particular
fuel category. The QAs used in this chapter are a specialised hardware architecture that is
specifically designed for optimisation of Ising-type problems. They are very fast because they

7.5 Conclusions 137

use a physical system to optimise, and they have also benefited from a great deal of investment.
It follows that they operate much quicker than conventional computer hardware simulating the
same physical system. However, this does not demonstrate a ‘quantum speed-up’, and there
is an ongoing discussion as to whether there is actually a ‘quantum’ advantage to quantum
annealing in the current implementation [197, 35]. At this time the consensus appears to be
that there is some advantage [101], but it has been noted that the quantum entanglement used in
the D-wave machines used in Section 7.3 is of a form that is easily simulated on conventional
computers [161]. An interesting foreseeable outcome may be that although quantum annealing
can be shown to be superior to simulated annealing, it does not benefit from ‘quantum speed-up’.
This would mean that SQA offers the same advantages as the existing generation of QAs [45],
albeit at an architectural and time overhead due to the design of current conventional computers.
Furthermore, some questions are still unanswered within the quantum computing community
about quantum annealing in the current implementations, due to the finite temperatures at which
real systems necessarily operate [8].

Despite the questions surrounding present day implementations, it is known that the technol-
ogy is rapidly developing [182], and insights may be gained through an understanding of this
new technology. For example, it has been shown that the size of the difference ∆ in Eq. (7.4) of
the Ising model scales linearly with the number of variables [161]. This fact might enable an
understanding of the search space; if it were possible to accurately define a nuclear optimisation
in Ising terms, then it would be possible to infer the size of minimum ∆ for that problem.

This chapter has shown experimental evidence of the utility of alternative simulation
approaches, to encourage the utilisation of the technology of quantum computers within the
nuclear industry. The implementations of the algorithm in this paper apply to real and simulated
and adiabatic quantum computers. Due to the concerns raised above, the data generated by the
DW2000 should be considered tentative.

7.5 Conclusions

This chapter has described a method of encoding relatively simple rule sets in order to optimise
a full-core LP at the assembly level using a simulated quantum annealer. Although there is a
great deal of work still to be done to create a useful tool for PWR fuel management, the basic
building blocks of the technique have been presented and the results show promise. Further
work should look at ways to transfer real physics connectivities into the Ising simulation, as
well as ways to transfer burnup histories and gradients into the fuel. Quantum computer qubit
density is currently increasing at a rate comparable to Moore’s Law [182], which means that it

138 Extended Work: Quantum Annealing Optimisation of a Heuristic Surrogate Model

is expected that it will be possible to achieve significantly more advanced calculations in the
near future.

The technology of adiabatic quantum computing and quantum annealing have been intro-
duced, with a start-up core loading pattern problem. A mapping of heuristic rules into an Ising
model is created, and the steps to generate the actual embodied solution are carried out: the
model is converted from the Ising model to a minor embedding and solved using SQA and on
an existing QA. This represents a novel approach to LP generation.2

2 Code used in this section is available for audit, reproducibility and derived works. A copy can be obtained
from the repository under the permissive MIT license:

https://bitbucket.org/ajw287/chapter7-quantum-annealing.git

Chapter 8

Discussion and Conclusions

8.1 Insights into Surrogate Model Development

This thesis describes the development of a software framework for evaluation of SMO strategies,
as proposed in Section 1.3. The framework has been carefully designed to maximise the
likelihood of success of the surrogate models and then used to support development and
systematic testing of three different surrogate models. The capacity of the framework to
evaluate fuel management scenarios has been demonstrated by implementing a series of
experiments for a number of different fuel LP scenarios and surrogate models.

The concerns of the thesis remain grounded in the real engineering problem of fuel loading
optimisation in PWRs. However, due to the highly commercially sensitive nature of fuel loading
pattern optimisation, it has been necessary to develop the method of SMO on hypothetical
models. While it is important to acknowledge the limitations of the simplified models used in
this thesis, they have proved a fertile experimental apparatus for the development of method-
ological experiments for loading pattern optimisation. For optimisation of computationally
expensive objective functions, this thesis identifies the following situations where surrogate
model optimisation should be considered:

• When the optimisation will be carried out routinely, since the investment of resource
in creating the model is justified compared to the saving over many optimisations (see
Figure 5.21). This is true for PWR fuel management.

• When the objectives are unclear, a model such as a CNN, may be used to generate basic
outputs that allow investigation of a number of objectives (see pp. 84–93). Due to the
different business groups involved in PWR fuel management (see Figure 1.1), this may
apply.

140 Discussion and Conclusions

• When the objectives are subject to stochastic noise, a surrogate model can be generated
that is deterministic (see Section 6.7). This is true for simulations using the Monte Carlo
method, a popular approach for neutron transport analysis.

• When there is a hardware advantage to optimise a surrogate problem. Either in terms
of increased parallelism (see Section 5.8) or in terms of specialised hardware (see
Section 7.3). This has been shown to be possible for LPs in Chapter 7.

These criteria can also be seen in a wide variety of other engineering problems.
Three forms of surrogate model have been presented: deep learning models in Chapter 5,

a statistical ‘black box’ model based on fission matrices in Chapter 6, and the solution of
a heuristic model is carried out by converting the problem to a form that works on QAs in
Chapter 7.

In each of these exploratory studies, a model of the nuclear reactor is generated that does not
solve the neutron transport equation explicitly. In the deep learning and fission matrix models,
a function approximation is generated from samples made on a neutron transport simulation. In
the heuristic approach, rules are generated by expert observers based on their knowledge of
results from simulated and real reactors and an understanding of the underlying physics.

8.1.1 Deep Learning

The investigation of two different established topologies of deep learning models in Chapter 5
demonstrates the flexibility of the surrogate model framework. Deep MLP and CNN types of
network were applied to solving simple nuclear fuel LP problems in what is among the first
applications of deep learning to the field of nuclear engineering. The CNN appears to slightly
outperform the MLP; this is probably due to the CNN’s specialism for spatially structured data,
which two dimensional LPs are.

It has been demonstrated that the training set can be generated for a relatively low computa-
tional cost and with the highest level of parallelism. The use of Sobol sequences as the basis
for the training set is demonstrated to outperform a uniform random training set. This can be
notionally explained by considering the effects of the central limit theorem (demonstrated in
Appendix B.1). The central limit theorem biases multiple random inputs towards the mean.
In the case of the nine dimensional (or higher) input space used in Chapter 5, this becomes a
significant effect. Thus, a surrogate model trained on a random training set is biased towards
predicting results with a mid-range mean and these are also the initial conditions of the optimi-
sation. The entire NDF is unlikely to be found at the initial conditions of the optimisation, so
as soon as the population of solutions iterates, it is likely to move away from the specialisation
of this surrogate model. In contrast, the Sobol sequence is roughly evenly spaced across the

8.1 Insights into Surrogate Model Development 141

input space. In keeping with the results in Section 5.3, Sobol trained deep networks are less
performant at predicting values on a random test set, but they appear to be more robust for use
as a surrogate model in SMO.

The novel application of CNNs to predict core parameters is a significant development. It
has been shown in this work that they can be used to generate results for small cores with
quadrant rotational symmetry. However, it is important to recognise that these limitations are
only due to the implementation. This thesis demonstrates the value of a technique which could
efficiently generate predictions for whole-core optimisation, on a pin-by-pin basis. Established
techniques used with CNNs, such as transfer learning [250], allow training data from this
thesis to be used directly as the basis for initial training of larger problems such as whole-core
analysis.

Two out of four experiments in the initial study achieve weakly dominating solutions in
the SMO NDFs, while the other two experiments generate results that are closer to the NDF
than the initial random population in NSGA2. This points to a conclusion that deep learning
surrogate models can be efficiently used to augment the solution of DSO. The primary approach
investigated in this thesis is by running the SMO in parallel to a DSO – to search for alternative
non-dominated solutions. Alternatively, the results of the SMO could potentially be fed into
the initial population of the DSO in a ‘hybrid’ optimisation – to try to reduce the number of
generations required using the direct simulation.

8.1.2 Fission Matrix

The investigation of the fission matrix further demonstrates the flexibility of the software
architecture. Well-defined software modules have allowed different surrogate models to be
easily changed without significant code rework. The results found in the experiments showed
that the fission map generated by combining fission matrices appears to correlate statistically
with test patterns. It is then successfully able to generate a number of loading patterns that are
relatively close to the results generated by the DSO in terms of performance. The fission matrix
surrogate model represents a novel use of the fission matrix and displayed performance that
was competitive with deep learning methods in terms of computational resource. Unlike most
mathematical modelling, models for SMO do not need to make extremely accurate predictions,
but the correlation of the surrogate models and the objective functions must be good in order
for the optimisation algorithm to find NDF solutions that correlate closely with solutions that
are non-dominated in the objective space.

As mentioned in Section 6.8, a major potential advantage of the fission matrix form was
to express a surrogate model in a form that is compliant with the Hamiltonian of a polariton
condensate, a form of quantum computer proposed by Berloff et al. [21] (cf. Equation 6.1 and

142 Discussion and Conclusions

Equation 7.3). Development of the fission matrix model is ongoing; however, at the time of
writing, the model in Chapter 6 was not mature enough to be applied successfully in a polariton
simulator. Consequently, heuristic rules were used to create the Ising model that was used as
the surrogate model in Chapter 7.

8.1.3 Quantum Annealing

A simple optimisation scheme has been demonstrated for a full 193 assembly PWR start-up
core, without reliance on symmetry. This demonstrates a major advantage of quantum annealing
– that it potentially avoids the curse of dimensionality. The curse of dimensionality limits the
number of degrees of freedom a problem can have, if it is to be solved on classical computers.
This is because the number of permutations of inputs grows exponentially with the number
of variables. The implication of this strategy is that it could be possible to generate solutions
to real running reactors, where a variety of factors, such as limited stock, ‘early retirement’
of a fuel assembly or operational sensor observations, lead to considerations that make the
assumption of eighth core symmetry sometimes impractical.

A simple set of heuristic rules were encoded into a form that is compatible with an Ising
model. This enables the optimisation of the entire core of the PWR without reliance on
symmetry. It has been shown that the methodology for generating the encoding creates
solutions in simulated quantum annealing that perform comparably to a simplified version of a
commercial reactor start-up loading pattern from the BEAVRS benchmark. This is a promising
result for two main reasons. Firstly, it shows that the approach is well suited for the very large
number of degrees of freedom that realistic problems must consider. Secondly, it shows for the
first time that SQA can be used to generate loading patterns, and demonstrates (with limited
performance) the same algorithm running on a DWave DW2000 hardware QA.

8.1.4 Trends in Computational Optimisation

Advances in computational optimisation of nuclear fuel LPs have coincided with the revolution
in digital computers. As a result, the techniques developed in nuclear fuel optimisation utilise
and are synergistic with state-of-the-art in computing at the time.

Early attempts began by creating simple rule-based strategies [81]. These solutions are
guided by the human expert and create reasonable solutions but rely on the knowledge of
the human designer. As digital computers with suitable power started to become available to
researchers, approaches such as SA and evolutionary algorithms were popularised by researchers
such as Parks and Ahn [173, 7]. These techniques are still computationally expensive today and
represent the most advanced methods of searching nuclear fuel loading pattern optimisation

8.1 Insights into Surrogate Model Development 143

landscapes. At the same time, the alternative method of optimisation with heuristic rules has
been developed by Galperin and Nissan [72]. This has the advantage of explicitly embodying
the physics of the problem into the heuristic rules, but the disadvantage that the step between
the physics and the heuristic rules is in the mind of the designer.

This thesis has been developed as fundamental changes in the advancement of computers
occur (primarily the end of Moore’s law [226]) and are again causing fundamental changes
in the way that researchers and industry will solve problems using computers. A significant
opportunity now exists for the nuclear research community, which led the adoption and de-
velopment of numerical and simulation techniques [170, p. 2], to be at the forefront of these
developments.

At the start of this work, deep learning was positioned to have a great impact on nuclear
academic research and industrial development. At that time, breakthroughs in deep learning
technology opened the field to new applications. Simultaneously, open APIs were breaking
down the barriers to application of these technologies and significant investment in deep
learning hardware was being made by the world’s largest companies. Three years later there is
now significant interest in applying this technology in the field of nuclear engineering. The
experiments in Chapter 5 demonstrate some of the significant advantages. Today there is a
great deal of hype around the developments of quantum computing. Table 8.1 references
and compares the state of deep learning in 2017 and quantum computing technologies today.
These technologies are fundamentally different, so it is is wrong to assume that the research
trajectories will be parallel. However, it would also be a mistake to ignore these significant
indicators that quantum computing is going to progress significantly, since this technology may
provide opportunities to the nuclear industry.

Table 8.1 Enabling factors for the technologies of deep learning in 2017 and quantum computing
in 2020.

Deep learning in 2017 Quantum Computing in 2020

Fundamental research
breakthroughs

CNNs [117], deep learning
[123]

Quantum Supremacy [15],
Adiabatic Quantum Anneal-
ing [100]

Free, accessible APIs Tensorflow [6], Theano [20],
Keras [37]

Quiskit, Forest, Dimod [42]

Investment from large
corporations

Google, Facebook IBM, AT&T, Alphabet

Novel hardware devel-
opments

Tensor Processors [98] and
others [48]

Bristlecone [105], DWave [2]

144 Discussion and Conclusions

8.2 Recommendations for Future Research

The experiments presented in this thesis are fundamental research experiments and each of
them poses more questions than are answered. However, from this thesis, a scaffolding for
further research can be envisaged. In keeping with the growing trend for open data in science
and best practices in the field of nuclear engineering, the author makes the code and data
available under the permissive MIT and Berkeley licenses. This means that other researchers
can directly pick up the code of the framework or use the training datasets as the basis for
further research and commercial work without financial obligations.

The deep learning models using CNNs are novel experiments and represent fundamental
research. The experiments in this thesis have demonstrated a proof-of-concept of the application
of these technologies to the generation of loading patterns. However, many opportunities exist
to extend this work. Contrasting the results of this thesis made using Serpent with solutions
using deterministic methods would enable a consideration of the benefit of SMO when working
on a stochastic objective function.

The research in this thesis also enables further fundamental research avenues. For example,
transfer learning [214], which is a common technique used with CNNs, can augment a novel
training set with results from datasets in this thesis. The resulting CNN can outperform a model
generated with only the novel data. There are a number of applied research projects which
could extend the work carried out in order to prepare this technique for commercial readiness.
These include the consideration of more complex scenarios, particularly multi-batch burnup
operation, burnable poisons, and other fuel types which may be required. Using techniques
from transfer learning, it should be possible to directly adapt models from this thesis and retrain
them reusing the code to apply to more complex scenarios. The concept of extending surrogate
models based on CNNs to full core analysis is a very exciting prospect. The prospect of a
pin-for-pin optimisation of a PWR could potentially inform the out-of-core purchase of fuel
for the predicted core loading pattern. This would be a solution to Turinsky and Parks’ ‘grand
challenge’ of nuclear fuel management [220]. Applying further constraints (fuel inventory, early
retirement of single assemblies, fuel costing) to the code framework would be advantageous to
make this a commercially ready tool for engineers operating in the field.

The fission matrix surrogate model in Chapter 6 demonstrates interesting results in terms
of the simple burnup model used. However, in the experiments in this thesis, inaccuracies are
seen in the estimate of PPF. It may be of interest to reconsider the fission matrix model with a
view to improving the PPF prediction. Extending these experiments to contrast the DSO in
Serpent with results from a deterministic neutron transport solver would help to ensure that the
NDFs found by optimisation on Serpent was not unfairly advantaged by stochastic noise.

8.2 Recommendations for Future Research 145

Significant further work that builds on the fission matrix model in this thesis would be to
establish an improved version that could be applied in larger and multi-batch loading pattern
problems. A major advantage of the fission matrix approach is that it can be expressed in a
form that permits its interpretation as an Ising model (see Section 7.2.1). This would mean that
further research using this model could potentially be converted to a form that can be executed
on quantum computing hardware [98].

Chapter 7 considers the use of QA applied to established heuristic rules for nuclear loading
pattern generation in the context of the changing landscape of computer hardware which
has coincided with this work. Extending this work directly by expressing more complex
representations of nuclear systems into forms that are amenable to alternative computational
co-processors will be of increasing importance as the rate of development of CPU technology
slows. Incidentally, considering the implications of quantum accelerators or deep learning
hardware technology such as TPUs [98] may yield significant advantages for neutronics and
CFD simulation methods.

This thesis has focused on the computational advantage of SMO. Although deep learning
surrogate models cannot replace DSO, they can significantly augment it – by running in
parallel. Further research should extend the studies in this thesis, to confirm whether SMO
reliably delivers solutions for a wider variety of fuel management scenarios, to reinforce the
advantages of running SMO in parallel. However, it is possible that SMO could bring other
advantages as part of a ‘hybrid’ optimisation (see Section 8.1.1). It is likely that the optimisation
algorithm responds differently to the surrogate model and qualitative advantages might be
accomplished. For example, neural network models are usually generated from continuous
activation functions when the direct simulation may have discontinuities. It would be of great
interest to modify the framework to initialise the DSO with the results of many runs of SMO.
Significant computational cost could be saved by starting the DSO closer to the NDF, which
might be achieved by using the outputs of SMO runs. The danger of this approach is that, if
the SMO somehow biases the optimisation, then significant results might be missed. Hence,
interesting fundamental research might be undertaken investigating the implications of this
kind of ‘hybrid’ approach.

A fascinating but highly complex frontier of fundamental research in optimisation is
exposed by the NFL theorem from Wolpert and MacReady (see Section 1.2.2), which shows
us that, within the set of all problems, no strategy outperforms any other. This troubling
theorem appears to leave us with no handle on the efficient search of complex spaces, yet
real-world problems are routinely solved efficiently. In this thesis, an explicit method for
addressing the problems of the NFL theorem is developed. By embedding an approximation
to the objective function into the optimisation algorithm, the resulting optimisation will be

146 Discussion and Conclusions

biased towards the objective function. This principle has been implemented in a number of
different experiments. However, the fact that iterative optimisation algorithms reliably work,
hints towards some level of universal structure in real-world problems. Universality is currently
an active area of mathematical endeavours [52] and can be observed in the well known central
limit theorem, which demonstrates the universality of the Gaussian distribution. It would be
a significant achievement to show that there is an optimal search approach for the subset of
‘realistic problems’, even if this is just the set of problems that adhere to some fairly basic
universal principles. This subject is of interest to mathematicians, but it would inevitably be
relevant to surrogate model implementations by giving insights on the most basic assumptions
that can be applied across engineering problems.

8.3 Conclusions

The problem of in-core fuel management is known to be a complex and highly nonlinear
problem [71]. However, investigating this engineering problem quickly reveals lines of inquiry
that transcend the specific engineering problem. Developments in optimisation, such as the NFL
theorem (Section 1.2.2), inspired the decision in this thesis to generate optimisation strategies
that utilise aspects of the topology of the objective function and insights from theoretical
physics to augment the optimisation algorithm. This thesis, therefore, has investigated the
philosophical landscape of optimisation in general and SMO in particular, while remaining
faithful to the practical implementation of LP optimisation schemes, albeit for a number of
simplified start-up cores.

In Chapter 5, Experiment 1 (Section 5.4) demonstrates the advantage of using Sobol
sequences for training deep learning models. This counter-intuitive result is interesting because
it demonstrates the benefit of a global view of the objective for these example experiments
and the emergence of form via the central limit theorem in random inputs. Experiment 2
(Section 5.5) shows that deep learning SMOs can generate solutions that dominate an equivalent
DSO. Experiment 3 (Section 5.6) extends this investigation to a single batch burnup scenario
and Experiment 4 applies a deep learning surrogate model to a small SMR core.

The fission matrix model is developed and applied in Chapter 6. Experiment 1 (Section 6.4)
considers the fission matrix model for a number of loading patterns, concluding that it works
most effectively for loading patterns that the resemble the flux distribution of the original
‘training’ loading patterns. Experiment 2 (Section 6.5) looks at the application of the developed
model for optimising the enrichment of fuel and PPF. Experiment 3 (Section 5.6) attempts to
generate a simple burnup scheme that is compatible with this model. The fission matrix model
was developed with a view to implementation on a QA.

8.4 Significant Contributions to the Field 147

In Chapter 7, the conceptual advantage promised by QAs is introduced and the framework
of code is adapted to optimise a simplified heuristic model of a 193 assembly PWR core. These
novel technologies promise the possibility of finding global optima to some degree of certainty
and are naturally adept at solving problems with a very high number of input variables. This
is shown to be the case by optimising the full core without reliance on symmetry for both
two-enrichment and three-enrichment LP scenarios. Firstly, optimal LPs for these heuristic
rules are found using an SQA running on standard computational hardware. Then, as an
extension, the code is executed on a DWave machine, which has been claimed to operate as a
hardware QA.

SMO introduces an application for a method of optimisation where the original objective is
replaced with an alternative model. This must be used to benefit the optimisation, whether it is
to reduce the computational budget, counteract problems caused by stochastic noise or to allow
operation on specific hardware. It has been demonstrated that significant computational benefit
can be achieved. Furthermore, in some experiments, the resulting solutions of the SMO uncover
aspects of the original objective that are not found by equivalent runs of the DSO, proving that
the SMO can effectively augment results found by traditional iterative optimisation studies.

8.4 Significant Contributions to the Field

The author has worked on surrogate models of nuclear processes at a time when surrogate
modelling has received a great deal of interest. This thesis has implemented and applied
two techniques that have been created in other fields of research and applied them to nuclear
engineering for the first time. These are deep learning CNNs and quantum annealing, which have
been applied to fuel loading pattern design in simplified PWRs by the author with interesting and
promising results. The fission matrix model, developed and applied in Chapter 6, demonstrates
another novel contribution to the field, albeit with only limited success.

Three notable contributions to the field that were uncovered during this thesis are sum-
marised here. Firstly, training sets based on Sobol sequences generate deep learning surrogate
models that, on average, outperform random training sets for optimisation (despite relatively
poor performance on random test sets). Secondly, CNNs can be created using relatively small
training sets to optimise fuel LPs, generating pin-by-pin power maps that can successfully
predict objective parameters during SMO. Thirdly, QA can be applied to a simplified heuristic
surrogate model of a full reactor core, potentially generating globally optimal solutions to
fuel loading problems without reliance on symmetry, and potentially overcoming the curse of
dimensionality.

148 Discussion and Conclusions

Appendix B includes a numerical study of the effects of NSGA2 hyperparameters on the
optimisation of microcore initial conditions. This could be used to simplify the selection of
parameters in other studies.

Deep MLPs have been applied to loading pattern optimisation in Chapter 5 and also
FHR fuel design in Appendix C, demonstrating the versatility of the code developed and the
computational advantages of SMO.

References

[1] (2018). Proceedings of PHYSOR 2018, Illinois. ANS.

[2] (2019). Press Release: D-Wave previews next-generation quantum computing platform.
https://www.dwavesys.com/press-releases/d-wave-previews-next-generation-quantum-
computing-platform. Accessed: 2020-07-30.

[3] (2020). The Berkeley Standard License.
ftp://ftp.cs.berkeley.edu/pub/4bsd/README.Impt.License.Change. Accessed: 2020-07-30.

[4] (2020). NIST/SEMATECH e-handbook of statistical methods.
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm. Accessed: 2020-07-30.

[5] (2020). Proceedings of PHYSOR 2020, Illinois. ANS.
https://www.physor2020.com/proceedings, Accessed: 2020-10-22.

[6] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., et al. (2015). TensorFlow: Large-scale machine learning on
heterogeneous systems.
http://tensorflow.org. Accessed: 2020-07-30.

[7] Ahn, D. and Levine, S. (1985). Automatic optimized reload and depletion method for a
pressurised water reactor. Nuclear Technology, 71:535–547.

[8] Albash, T., Martin-Mayor, V., and Hen, I. (2017). Temperature scaling law for quantum
annealing optimizers. Physical review letters, 119(11):110502.

[9] Aleksander, I. (1989). Neural Computing Architectures: The Design of Brain-like Machines.
North Oxford Academic Publishing Co Ltd.

[10] Anderson, H., Davidon, W., Glicksman, M., and Kruse, U. (1955). Scattering of positive
pions by hydrogen at 189 mev. Physical Review, 100(1):279.

[11] Antonov, I. A. and Saleev, V. (1979). An economic method of computing lp-τ-sequences.
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 19(1):243–245.

[12] Areva (2013). Areva design control document rev. 5 - tier 2 chapter 04 - reactor. Technical
report, United States Nuclear Regulatory Commission.

[13] Ariva and EDF (2011). UK EPR™ - Generic design assessment. Technical report, Ariva.

[14] Arnold, T. B. and Emerson, J. W. (2011). Nonparametric goodness-of-fit tests for discrete
null distributions. R Journal, 3(2):34–39.

150 References

[15] Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo,
S., Brandao, F. G., Buell, D. A., et al. (2019). Quantum supremacy using a programmable
superconducting processor. Nature, 574(7779):505–510.

[16] Ayoub, A. F. A., McMahon, M. V., and Driscoll, M. J. (1996). Ultralong cycle length
for pwrs: Physics and fuel aspects. Transactions of the American Nuclear Society, pages
347–348.

[17] Bae, I. H., Na, M. G., Lee, Y. J., and Park, G. C. (2008). Calculation of the power peaking
factor in a nuclear reactor using support vector regression models. Annals of Nuclear Energy,
35(12):2200 – 2205.

[18] Bennet, D. J. and Thomson, J. R. (1989). The Elements of Nuclear Power. Longman.

[19] Berg, H. C. (1993). Random Walks in Biology. Princeton University Press.

[20] Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pascanu, R., Delalleau, O., Desjardins,
G., Warde-Farley, D., Goodfellow, I., Bergeron, A., et al. (2011). Theano: Deep learning on
gpus with python. In NIPS 2011, BigLearning Workshop, Granada, Spain, volume 3, pages
1–48.

[21] Berloff, N. G., Silva, M., Kalinin, K., Askitopoulos, A., Töpfer, J. D., Cilibrizzi, P.,
Langbein, W., and Lagoudakis, P. G. (2017). Realizing the classical xy Hamiltonian in
polariton simulators. Nature materials, 16(11):1120–1126.

[22] Berry, J. (2018). 2015 RECS survey data. Technical report, U.S. Energy Information
Administration, 1000 Independence Ave., Washington, DC 20585.

[23] Bertels, K., DiCarlo, L., Geresdi, A., Scappucci, G., Taminiau, T., Vandersypen, L.,
Veldhorst, M., Wimmer, M., and Criger, B. (2019). Delftx: Qtm2x the building blocks of a
quantum computer: Part 1.
https://courses.edx.org/courses/course-v1:DelftX+QTM2x+2T2018a/course/. Accessed:
2020-07-30.

[24] Bishop, C. M. (1996). Neural Networks for Pattern Recognition. Clarendon Press.

[25] Box, G. E. P. and Draper, N. R. (1987). Empirical Model-building and Response Surfaces.
John Wiley & Sons, London.

[26] Box, G. E. P. and Wilson, K. B. (1951). On the experimental attainment of optimum
conditions. Journal of the Royal Statistical Society. Series B (Methodological), 13(1):1–45.

[27] Bratley, P. and Fox, B. L. (1988). Algorithm 659: Implementing Sobol’s quasirandom
sequence generator. ACM Transactions on Mathematical Software (TOMS), 14(1):88–100.

[28] Brown, F. B., Carney, S. E., Kiedrowski, B. C., and Martin, W. R. (2013). Fission matrix
capability for MCNP, part I - Theory.

[29] Bui, L. T., Abbass, H. A., and Essam, D. (2005). Fitness inheritance for noisy evolutionary
multi-objective optimization. In Proceedings of the 7th Annual Conference on Genetic
and Evolutionary Computation, pages 779–785, New York. Association for Computing
Machinery.

References 151

[30] Carney, S., Brown, F., Kiedrowski, B., and Martin, W. (2014). Theory and applications of
the fission matrix method for continuous-energy Monte Carlo. Annals of Nuclear Energy,
73:423–431.

[31] Carney, S. E., Brown, F. B., Kiedrowski, B. C., and Martin, W. R. (2012). Fission matrix
capability for MCNP Monte Carlo. Technical report, Los Alamos National Lab.(LANL),
Los Alamos, NM, US.

[32] Chapot, J. L. C., Da Silva, F. C., and Schirru, R. (1999). A new approach to the use of
genetic algorithms to solve the pressurized water reactor’s fuel management optimization
problem. Annals of Nuclear Energy, 26(7):641–655.

[33] Charles, A. J. and Parks, G. T. (2017). Mixed oxide LWR assembly design optimization
using differential evolution algorithms. Number Paper 67936, New York, NY. ASME.

[34] Cheng, P., Pan, J.-S., Guoqing, L., Tang, Y., and Huang, C. (2010). A survey of perfor-
mance assessment for multiobjective optimizers. In Automation Science and Engineering
(CASE), volume 0, pages 341–345, New York. IEEE.

[35] Cho, A. (2014). Quantum or not, controversial computer yields no speedup. Science,
344:1330–1331.

[36] Cho, N. Z. (2000). Benchmark problems in reactor and particle transport physics. Tech-
nical report, KAIST Department of Nuclear and Quantum Engineering Nuclear Reactor
Analysis and Particle Transport Lab.

[37] Chollet, F. et al. (2015). Keras, a deep learning API.
https://github.com/fchollet/keras. Accessed: 2020-07-30.

[38] Chorley, R. J. and Haggett, P. (1965). Trend-surface mapping in geographical research.
Transactions of the Institute of British Geographers, pages 47–67.

[39] Chrisman, L. (2014). Latin hypercube vs. Monte Carlo sampling.
www.lumina.com/blog/latin-hypercube-vs.-monte-carlo-sampling. Accessed: 2020-10-22.

[40] Christou, M. and Konstantinidou, M. (2012). Safety of offshore oil and gas opera-
tions: Lessons from past accident analysis. Joint Research Centre, European Commission,
Luxembourg.

[41] Collins, K. B., Sankar, L. N., and Mavris, D. N. (2013). Application of low-and high-
fidelity simulation tools to helicopter rotor blade optimization. Journal of the American
Helicopter Society, 58(4):1–10.

[42] Condello, A. and contributors (2018). Dimod, a shared API for binary quadratic samplers.
https://github.com/dwavesystems/dimod. Accessed: 2020-07-30.

[43] Corsini, A., Cervi, F., and Ronchetti, F. (2009). Weight of evidence and artificial neural
networks for potential groundwater spring mapping: An application to the Mt. Modino area
(Northern Apennines, Italy). Geomorphology, 111(1):79 – 87.

[44] Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22(3):239–252.

152 References

[45] Crosson, E. and Harrow, A. W. (2016). Simulated quantum annealing can be exponen-
tially faster than classical simulated annealing. In 2016 IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS), pages 714–723, New York. IEEE, IEEE.

[46] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals and Systems, 2(4):303–314.

[47] Dario, I. (2018). Pygmo 2 documentation.
https://esa.github.io/pagmo2/. Accessed: 2020-07-30.

[48] Davison, A. J. (2018). Futuremapping: The computational structure of spatial AI systems.
arXiv preprint arXiv:1803.11288. Accessed: 2020-07-30.

[49] de Lima, A. M., Schirru, R., da Silva, F. C., and Medeiros, J. A. C. C. (2008). A nuclear
reactor core fuel reload optimization using artificial ant colony connective networks. Annals
of Nuclear Energy, 35(9):1606–1612.

[50] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2):182–197.

[51] DeChaine, M. D. and Feltus, M. A. (1995). Nuclear fuel management optimization using
genetic algorithms. Nuclear Technology, 111(1):109–114.

[52] Deift, P. (2006). Universality for mathematical and physical systems. arXiv preprint
arXiv:0603038v2. Accessed: 2020-07-30.

[53] Delalleau, O. and Bengio, Y. (2011). Shallow vs. deep sum-product networks. In
Advances in Neural Information Processing Systems 24, pages 666–674. Neural Information
Processing Systems Foundation, Inc., San Diego.

[54] Dennett, D. (1997). Kinds of minds : towards an understanding of consciousness. Phoenix,
London.

[55] Eberhart, R. and Kennedy, J. (1995). A new optimizer using particle swarm theory. In
MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, pages 39–43.

[56] Eberhart, R. C. and Dobbins, R. W. (1990). Neural Network PC tools. Academic Press
Inc, Boston.

[57] England, T. R. and Rider, B. F. (1995). Evaluation and compilation of fission product
yields 1993 (la-sub–94-170). Technical report, Los Alamos National Lab., US.

[58] Esquivel-Estrada, J., Ortiz-Servin, J. J., Castillo, J. A., and Perusquía, R. (2011). Azcaxalli:
A system based on ant colony optimization algorithms, applied to fuel reloads design in a
boiling water reactor. Annals of Nuclear Energy, 38(1):103–111.

[59] Fagerland, M. W. and Sandvik, L. (2009). The Wilcoxon–Mann–Whitney test under
scrutiny. Statistics in Medicine, 28(10):1487–1497.

[60] Faria, E. F. and Pereira, C. (2003). Nuclear fuel loading pattern optimisation using a
neural network. Annals of Nuclear Energy, 30(5):603–613.

References 153

[61] Fasano, G. and Franceschini, A. (1987). A multidimensional version of the Kolmogorov–
Smirnov test. Monthly Notices of the Royal Astronomical Society, 225(1):155–170.

[62] Feynman, R. P. (1982). Simulating physics with computers. International journal of
theoretical physics, 21(6):467–488.

[63] Fincham, J. and Friswell, M. (2015). Aerodynamic optimisation of a camber morphing
aerofoil. Aerospace Science and Technology, 43:245–255.

[64] Fingerhuth, M., Babej, T., and Wittek, P. (2018). Open source software in quantum
computing. PLoS ONE, 13(12)(e0208561).

[65] Fiorina, C., Scolaro, A., Siefman, D., Hursin, M., and Pautz, A. (2020). Artificial neural
networks as surrogate models for UQ and data assimilation in 2-D/3-D fuel performance
studies. In Proceedings of PHYSOR 2020, Illinois. ANS.

[66] Forrester, A. and Keane, A. J. (2007). Multi-variable geometry repair and optimization
of passive vibration isolators. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, page 1923, Reston, VA. AIAA.

[67] Forrester, A., Sóbester, A., and Keane, A. J. (2008). Engineering Design via Surrogate
Modelling: A Practical Guide. Wiley, London.

[68] Forsberg, C., Richard, J., Pounders, J., Kochendarfer, R., Stein, K., Shwageraus, E., and
Parks, G. (2015). Development of a fluoride-salt-cooled high-temperature reactor (FHR)
using advanced gas-cooled reactor (AGR) technology. Transactions of the American Nuclear
Society, 112:566–570.

[69] Forsberg, C., Wang, D., Shwageraus, E., Mays, B., Parks, G. T., Coyle, C., and Liu,
M. (2019). Fluoride-salt-cooled high-temperature reactor (FHR) using british advanced
gas-cooled reactor (AGR) refueling technology and decay heat removal systems that prevent
salt freezing. Nuclear Technology, pages 1–16.

[70] François, J. and Lopez, H. (1999). SOPRAG: a system for boiling water reactors reload
pattern optimization using genetic algorithms. Annals of Nuclear Energy, 26(12):1053–1063.

[71] Galperin, A. (1995). Exploration of the search space of the in-core fuel management
problem by knowledge-based techniques. Nuclear Science and Engineering, 119(2):144–
152.

[72] Galperin, A. and Nissan, E. (1988). Application of a heuristic search method for generation
of fuel reload configurations. Nuclear Science and Engineering, 99(4):343–352.

[73] Gass, S. and Saaty, T. (1955). The computational algorithm for the parametric objective
function. Naval Research Logistics (NRL), 2(1-2):39–45.

[74] Giraud-Carrier, C. and Provost, F. (2005). Toward a justification of meta-learning: Is
the no free lunch theorem a show-stopper. In Proceedings of International Conference on
Machine Learning (ICML), pages 12–19, New York. Association for Computing Machinery.

[75] Glasstone, S. and Sesonske, A. (2004). Nuclear Reactor Engineering: Reactor Systems
Engineering: v. 2. Litton Educational Publishing inc., New York.

154 References

[76] Glaz, B., Friedmann, P. P., and Liu, L. (2009). Helicopter vibration reduction throughout
the entire flight envelope using surrogate-based optimization. Journal of the American
Helicopter Society, 54(1):12007–12007.

[77] Gomez-Fernandez, M., Higley, K., Tokuhiro, A., Welter, K., Wong, W.-K., and Yang, H.
(2020). Status of research and development of learning-based approaches in nuclear science
and engineering: A review. Nuclear Engineering and Design, 359:110479.

[78] Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms.
IEEE Transactions on Systems, Man, and Cybernetics, 16(1):122–128.

[79] Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., and Seung, H. S.
(2000). Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature, 405(6789):947.

[80] Hahnloser, R. H. and Seung, H. S. (2001). Permitted and forbidden sets in symmetric
threshold-linear networks. In Advances in Neural Information Processing Systems, pages
217–223, San Diego. Neural Information Processing Systems Foundation, Inc., Neural
Information Processing Systems Foundation, Inc.

[81] Haling, R. K. (1964). Operating strategy for maintaining an optimum power distribution
throughout life. UNT Libraries Government Documents Department.

[82] Harrison, R., Startin, G., Lindley, B., Powney, D., Parks, G., and Hutt, P. (2016). Validation
of WIMS/PANTHER PWR fuel reactivity depletion using the BEAVRS benchmark flux
map data. In Proceedings of Physor 2016, volume 5, pages 2833–2846, Illinois. ANS.

[83] Herlihy, M. and Shavit, N. (2012). The Art of Multiprocessor Programming, Revised
Reprint. Morgan Kaufmann.

[84] Hill, N. J. and Parks, G. T. (2015). Pressurized water reactor in-core nuclear fuel
management by tabu search. Annals of Nuclear Energy, 75:64 – 71.

[85] Hinton, G. and Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural
networks. Science, 313(5786):504 – 507.

[86] Horelik, N., Herman, B., Forget, B., and Smith, K. (2013). Benchmark for evaluation and
validation of reactor simulations (BEAVRS), v1.0.1. In Proc. Int. Conf. Mathematics and
Computational Methods Applied to Nuc. Sci. & Eng., Illinois. ANS.

[87] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861.

[88] Hu, X., Chen, X., Parks, G. T., and Yao, W. (2016). Review of improved Monte Carlo
methods in uncertainty-based design optimization for aerospace vehicles. Progress in
Aerospace Sciences, 86:20–27.

[89] Hunter, J. S. (1989). Let’s all beware the latin square. Quality Engineering, 1(4):453–465.

[90] International Organisation for Standardization (ISO) (2017). ISO/IEC 14882:2017 Pro-
gramming Languages C++. Technical report, International Organization for Standardization.

References 155

[91] Intl. Atomic Energy Agency (IAEA) (2017). Power Reactor Information System (PRIS).
https://www.iaea.org/PRIS/WorldStatistics/OperationalReactorsByType.aspx. Accessed:
2020-10-22.

[92] Izzo, D. (2012). Pygmo and pykep: Open source tools for massively parallel optimization
in astrodynamics (the case of interplanetary trajectory optimization). In Proceedings of the
Fifth International Conference on Astrodynamics Tools and Techniques, ICATT, Paris. ESA.

[93] Izzo, D., Ruciński, M., and Biscani, F. (2012). The generalized island model. In Parallel
Architectures and Bioinspired Algorithms, pages 151–169. Springer, Berlin.

[94] Jaeggi, D., Parks, G., Dawes, W., and Clarkson, J. (2008). Robust multi-fidelity aerody-
namic design optimization using surrogate models. In 12th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, page 6052, Reston, VA. AIAA.

[95] James, G. (2004). Advanced Modern Engineering Mathematics. Pearson Prentice Hall,
Harlow, third edition.

[96] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,
and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In
Proceedings of the 22nd ACM International Conference on Multimedia, pages 675–678,
New York. ACM.

[97] Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13(4):455–492.

[98] Jouppi, N. (2016). Google supercharges machine learning tasks with TPU custom chip.
https://cloud.google.com/blog/products/gcp/google-supercharges-machine-learning-tasks-
with-custom-chip. Accessed: 2020-07-30.

[99] Kaggle inc. (2014). Kaggle cats vs. dogs competition.
https://www.kaggle.com/c/dogs-vs-cats. Accessed: 2020-07-30.

[100] Kaminsky, W. M. and Lloyd, S. (2004). Scalable Architecture for Adiabatic Quantum
Computing of Np-Hard Problems, pages 229–236. Springer US, Boston, MA.

[101] Katzgraber, H. G., Hamze, F., Zhu, Z., Ochoa, A. J., and Munoz-Bauza, H. (2015).
Seeking quantum speedup through spin glasses: The good, the bad, and the ugly. Physical
Review X, 5(3):031026.

[102] Keane, A. J. (2003). Wing optimization using design of experiment, response surface,
and data fusion methods. Journal of Aircraft, 40(4):741–750.

[103] Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., and Murthy, K. R. K. (2001). Im-
provements to Platt’s SMO algorithm for SVM classifier design. Neural Computation,
13(3):637–649.

[104] Keller, P. and Turinsky, P. (1996). FORMOSA-P multiple adaptive penalty function
methodology. Transactions of the American Nuclear Society, 75:341–342.

[105] Kelly, J. (2018). A preview of Bristlecone, Google’s new quantum processor.
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html. Accessed:
2020-07-30.

156 References

[106] Khurana, M., Winarto, H., and Sinha, A. (2009). Airfoil optimisation by swarm algorithm
with mutation and artificial neural networks. In 47th AIAA Aerospace Sciences Meeting
including the New Horizons Forum and Aerospace Exposition, page 1278, Reston, VA.
AIAA.

[107] Kim, H. G., Chang, S. H., and Lee, B. H. (1993a). Pressurized water reactor core
parameter prediction using an artificial neural network. Nuclear Science and Engineering,
113(1):70–76.

[108] Kim, H. K., Lee, S. H., and Chang, S. H. (1993b). Neural network model for estimating
departure from nucleate boiling performance of a pressurized water reactor core. Nuclear
technology, 101(2):111–122.

[109] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
eprint arXiv:1412.6980.

[110] Kipouros, T., Molinari, M., Dawes, W. N., Parks, G. T., Savill, M., and Jenkins, K. W.
(2007). An investigation of the potential for enhancing the computational turbomachinery
design cycle using surrogate models and high performance parallelisation. pages 1415–1424,
New York. ASME.

[111] Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies.
Journal of statistical physics, 34(5-6):975–986.

[112] Knowles, J., Thiele, L., and Zitzler, E. (2006). A tutorial on the performance assess-
ment of stochastic multiobjective optimizers. 214, Computer Engineering and Networks
Laboratory (TIK), ETH Zurich, Switzerland.

[113] Kolda, T. G., Lewis, R. M., and Torczon, V. (2003). Optimization by direct search: New
perspectives on some classical and modern methods. SIAM review, 45(3):385–482.

[114] Kothe, D. B. (2010). CASL: the consortium for advanced simulation of light water
reactors. Bulletin of the American Physical Society.

[115] Krauth, W. (2016). Statistical mechanics: Algorithms and computations.
https://www.coursera.org/learn/statistical-mechanics. Accessed: 2020-10-22.

[116] Krige, D. G. (1951). A statistical approach to some mine valuation and allied problems
on the Witwatersrand. PhD thesis, University of the Witwatersrand, Johannesburg.

[117] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, San Diego. Neural Information Processing Systems Foundation, Inc.

[118] Kropaczek, D. and Turinsky, P. (1995). In-core nuclear fuel management optimization
for pressurized water reactors utilizing simulate annealing. Nuclear Technology, 95:9–32.

[119] Kruskal, W. H. and Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis.
Journal of the American statistical Association, 47(260):583–621.

[120] Lattarulo, V., Lindley, B. A., and Parks, G. T. (2014). Application of the MOAA for the
optimization of CORAIL assemblies for nuclear reactors. IEEE Congress on Evolutionary
Computation (CEC).

References 157

[121] Laurenceau, J., Meaux, M., Montagnac, M., and Sagaut, P. (2010). Comparison of
gradient-based and gradient-enhanced response-surface-based optimizers. AIAA Journal,
48(5):981–994.

[122] LeCun, Y. and Bengio, Y. (1995). Convolutional networks for images, speech, and
time-series. In Arbib, M., editor, The Handbook of Brain Theory and Neural Networks. MIT
Press.

[123] LeCun, Y., Bengio, Y., and Hinton, G. (2005). Deep learning. Nature, 521:436–444.

[124] LeCun, Y. et al. (2015). Lenet-5, convolutional neural networks.
http://yann.lecun.com/exdb/lenet/. Accessed: 2020-07-30.

[125] Lehmann, E. L. (1997). Testing statistical hypotheses. Springer texts in statistics.
Springer, New York ; London, 2nd ed. edition.

[126] Leniau, B., Mouginot, B., Thiolliere, N., Doligez, X., Bidaud, A., Courtin, F., Ernoult,
M., and David, S. (2015). A neural network approach for burn-up calculation and its
application to the dynamic fuel cycle code class. Annals of Nuclear Energy, 81:125 – 133.

[127] Leppänen, J. (2015). 2D PWR pin cell burnup example.
http://serpent.vtt.fi/mediawiki/index.php/Collection_of_example_input_files. Accessed:
2020-07-30.

[128] Leppänen, J., Pusa, M., Viitanen, T., Valtavirta, V., and Kaltiaisenaho, T. (2015). The
Serpent Monte Carlo code: Status, development and applications in 2013. Annals of Nuclear
Energy, 82:142–150.

[129] Lewis, E. E. (2008). Fundamentals of nuclear reactor physics. Elsevier, Boston.

[130] Li, H. and Zhang, Q. (2009). Multiobjective optimization problems with complicated
pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation,
13(2):284–302.

[131] Li, J., Gao, Z., Huang, J., and Zhao, K. (2013). Aerodynamic design optimization of
nacelle/pylon position on an aircraft. Chinese Journal of Aeronautics, 26(4):850–857.

[132] Li, X. (2003). A non-dominated sorting particle swarm optimizer for multiobjective
optimization. In Genetic and Evolutionary Computation — GECCO 2003, pages 37–48,
Berlin, Heidelberg. Springer Berlin Heidelberg.

[133] Li, Z., Jun, S., Chunlin, W., Zhe, S., and Qian, X. (2020). Research on the cross-section
generating method in htgr simulator based on machine learning methods. In Proceedings of
PHYSOR 2020, Illinois. ANS.

[134] Lian, Y. and Liou, M.-S. (2005). Multiobjective optimization using coupled response
surface model and evolutionary algorithm. AIAA Journal, 43(6):1316–1325.

[135] Lindley, B., Newton, T., Hosking, J., Smith, P., Powney, D., Tollit, B., and Smith, P.
(2015). Release of wims10: A versatile reactor physics code for thermal and fast systems.
In ICAPP 2015, Vienna. IAEA.

158 References

[136] Lloyd, S. (2002). Computational capacity of the universe. Nature,
Phys.Rev.Lett.88:237901.

[137] Lysenko, M. G., Wong, H.-I., and Maldonado, G. I. (1999). Neural network and pertur-
bation theory hybrid models for eigenvalue prediction. Nuclear science and engineering,
132(1):78–89.

[138] MacCormack, A., Rusnak, J., and Baldwin, C. Y. (2006). Exploring the structure
of complex software designs: An empirical study of open source and proprietary code.
Management Science, 52(7):1015–1030.

[139] Mahlers, Y. (1994). Core loading pattern optimization for pressurized water reactors.
Annals of Nuclear Energy, 21(4):223 – 227.

[140] Maldonado, G. I. (2005). Optimizing lwr cost of margin one fuel pin at a time. IEEE
transactions on nuclear science, 52(4):996–1003.

[141] Manring, C. A. and Hawari, A. I. (2020). Development of neural thermal scattering
(nets) modules for reactor multi-physics simulations. In Proceedings of PHYSOR 2020,
Illinois. ANS.

[142] Manteufel, R. (2000). Evaluating the convergence of Latin hypercube sampling. AIAA,
Reston, VA.

[143] Marklund, P.-O. and Nilsson, L. (2001). Optimization of a car body component subjected
to side impact. Structural and Multidisciplinary Optimization, 21(5):383–392.

[144] Martín-del Campo, C., François, J. L., Avendaño, L., and González, M. (2004). Devel-
opment of a bwr loading pattern design system based on modified genetic algorithms and
knowledge. Annals of Nuclear Energy, 31(16):1901–1911.

[145] Massaro, A., D’Andrea, A., and Benini, E. (2011). Multiobjective-multipoint rotor blade
optimization in forward flight conditions using surrogate-assisted memetic algorithms. In
37th European Rotorcraft Forum.

[146] Matheron, G. (1962). Traité de géostatistique appliquée. 1 (1962), volume 1. Editions
Technip, Paris.

[147] Mathur, V. K. (1991). How well do we know pareto optimality? The Journal of
Economic Education, 22(2):172–178.

[148] Mathworks inc. (2019). Global optimisation toolbox documentation.
https://uk.mathworks.com/help/gads/surrogate-optimization-algorithm.html. Accessed:
2020-07-30.

[149] Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation, 8(1):3–30.

[150] McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). A comparison of three
methods for selecting values of input variables in the analysis of output from a computer
code. Technometrics, 21(2):239–245.

References 159

[151] Mhaskar, H., Liao, Q., and Poggio, T. (2016). Learning functions: When is deep better
than shallow. arXiv preprint arXiv:1603.00988.

[152] Michalewicz, Z. (1998). Genetic Algorithms plus Data Structures = Evolution Programs.
Springer-Verlag GmbH, Berlin.

[153] Modro, S. M., Fisher, J. E., Weaver, K. D., Reyes Jr., J. N., Groome, J. T., Babka, P., and
Carlson, T. M. (2003). Multi-application small light water reactor final report, INEEL/EXT-
04-01626. Technical report, Idaho National Engineering and Evnironmental Laboratory,
Idaho National Engineering and Environmental Laboratory, Bechtel BWXT Idaho, LLC.

[154] Montgomery, A. A., Peters, T. J., and Little, P. (2003). Design, analysis and presentation
of factorial randomised controlled trials. BMC Medical Research Methodology, 3(1):26.

[155] Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics
38 (8): 114–117. found in "Proceedings of the IEEE, vol. 86, No. 1, 1998".

[156] Morrison, E. A. (2003). PANTHER User Guide E/REP/BB-
DB/0015/GEN/03ED/PANTHER/UG/5.5. British Energy Generation Limited, Engineering
Division, Gloucester GL4 3RS.

[157] Murray-Rust, P. (2008). Open data in science. Serials Review, 34(1):52–64.

[158] Na, M. G., Shin, S. H., Lee, S. M., Jung, D. W., Lee, K., and Lee, Y. J. (2004). Estimation
of axial dnbr distribution at the hot pin position of a reactor core using fuzzy neural networks.
Journal of nuclear science and technology, 41(8):817–826.

[159] Naft, B. and Sesonske, A. (1971). Pressurized water reactor optimal fuel management.
Nuclear Technology, 14:123–132.

[160] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of International Conference on Machine Learning (ICML).

[161] Neven, H., Denchev, V. S., Rose, G., and Macready, W. G. (2012). QBoost: Large scale
classifier training with adiabatic quantum optimization. In JMLR: Workshop and Conference
Proceedings, pages 333–348, Singapore. ACML.

[162] Nissan, E. (2019). An overview of AI methods for in-core fuel management: Tools for
the automatic design of nuclear reactor core configurations for fuel reload, (re)arranging
new and partly spent fuel. Designs, 3:1–45.

[163] Noda, H., Yamamoto, A., Nagasawa, Y., Murao, H., and Kitamura, S. (1997). Core
burnup calculations using neural networks. In Proc. Topl. Mtg. Advances in Nuclear Fuel
Management II, pages 20–39.

[164] Nonbøl, E. (1996). Description of the advanced gas cooled type of reactor (AGR).
Technical report, Nordisk Kernesikkerhedsforskning.

[165] Nowacki, H. (1980). Modelling of design decisions for CAD. In Computer Aided Design
Modelling, Systems Engineering, CAD-Systems, pages 177–223. Springer.

160 References

[166] Nowak, K., Märtens, M., and Izzo, D. (2014). Empirical performance of the approxima-
tion of the least hypervolume contributor. In Parallel Problem Solving from Nature – PPSN
XIII, pages 662–671, Cham. Springer International Publishing.

[167] NuScale llc. (2011). NuScale power, llc. and Fluor corporation team up.
https://newsroom.nuscalepower.com/press-releases/news-details/2011/NuScale-Power-
LLC-and-Fluor-Corporation-Team-Up/default.aspx. Accessed: 2020-07-30.

[168] NuScale llc. (2019). NuScale design certification application, final safety analysis report
(FSAR). Technical report, US Nuclear Regulatory Commission.

[169] NuScale llc. (2020). NuScale submits vendor design review.
https://newsroom.nuscalepower.com/press-releases/news-details/2020/NuScale-Submits-
Phase-1-and-2-Combined-Pre-Licensing-Vendor-Design-Review-to-Canadian-Nuclear-
Safety-Commission/default.aspx. Accessed: 2020-07-30.

[170] Oberkampf, W. L. and Roy, C. J. (2010). Verification and Validation in Scientific
Computing. Cambridge University Press.

[171] Ortiz, J. J. and Requena, I. (2004). An order coding genetic algorithm to optimize fuel
reloads in a nuclear boiling water reactor. Nuclear Science and Engineering, 146(1):88–98.

[172] Palar, P. S., Tsuchiya, T., and Parks, G. T. (2016). A comparative study of local search
within a surrogate-assisted multi-objective memetic algorithm framework for expensive
problems. Applied Soft Computing, 43:1–19.

[173] Parks, G. T. (1988). Optimal in-core nuclear fuel cycles under integral constraints. PhD
thesis, University of Cambridge, Cambridge.

[174] Parks, G. T. (1990). An intelligent stochastic optimization routine for nuclear fuel cycle
design. Nuclear Technology, 89(2):233–246.

[175] Parks, G. T. (1996). Multiobjective pressurized water reactor reload core design by
nondominated genetic algorithm search. Nuclear Science and Engineering, 124(1):178–187.

[176] Parks, G. T. (2017). 4M17: Practical optimisation lecture notes. University of Cam-
bridge.

[177] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch. In Advances in
Neural Information Processing Systems, San Diego. Neural Information Processing Systems
Foundation, Inc.

[178] Peacock, J. A. (1983). Two-dimensional goodness-of-fit testing in astronomy. Monthly
Notices of the Royal Astronomical Society, 202(3):615–627.

[179] Poggio, T. and Girosi, F. (1990). Regularization algorithms for learning that are equiva-
lent to multilayer networks. Science, 247(4945):978–982.

[180] Poon, P. and Parks, G. (1993). Application of genetic algorithms to in-core nuclear
fuel management optimization. In Proceedings of the Joint International Conference
on Mathematical Methods and Supercomputing in Nuclear Applications, volume 1, page
777–786., Vienna. IAEA.

References 161

[181] Porwal, A., Carranza, E. J. M., and Hale, M. (2003). Artificial neural networks for
mineral-potential mapping: A case study from Aravalli province, Western India. Natural
Resources Research, 12(3):155–171.

[182] Prati, E., Rotta, D., Sebastiano, F., and Charbon, E. (2017). From the quantum Moore’s
law toward silicon based universal quantum computing. In 2017 IEEE International Confer-
ence on Rebooting Computing (ICRC), pages 1–4, New York. IEEE.

[183] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2003). Numerical
Recipes in C++: The Art of Scientific Computing. Cambridge University Press, Cambridge,
second edition.

[184] Prometeus GmbH (2019). TOP500 supercomputers - University of Cambridge, ‘Cumu-
lus’ HPC ranking.
https://www.top500.org/system/179577. Accessed: 2020-07-30.

[185] Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., and Tucker, P. K.
(2005). Surrogate-based analysis and optimization. Progress in Aerospace Sciences, 41(1):1–
28.

[186] Radaideh, M. I., Price, D., and Kozlowski, T. (2020). Modelling nuclear data uncertain-
ties using deep neural networks. In Proceedings of PHYSOR 2020, Illinois. ASN.

[187] Rauand, A. and Walters, W. (2019). Applications of Serpent’s fission matrix capability.
http://montecarlo.vtt.fi/mtg/2019_Atlanta/. Accessed: 2020-07-30.

[188] Razavi, S., Tolson, B. A., and Burn, D. H. (2012). Review of surrogate modeling in
water resources. Water Resources Research, 48(7).

[189] Robinson, G. M. and Keane, A. J. (2001). Concise orthogonal representation of super-
critical airfoils. Journal of Aircraft, 38(3):580–583.

[190] Rojas Gonzalez, S., Jalali, H., and Van Nieuwenhuyse, I. (2020). A multiobjective
stochastic simulation optimization algorithm. European Journal of Operational Research,
284(1):212 – 226.

[191] Rummelhart, D., Hinton, G., and Williams, R. (1986). Learning representations by
back-propagating errors. Nature, 323:533–536.

[192] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and analysis of
computer experiments. Statistical Science, pages 409–423.

[193] Scandpower (now Studsvik Nuclear AB) (1989). (not located by author) User Manual
CM-Presto 9. Version CM914B. Scandpower, SE-611 82 Nyköping.

[194] Schryen, G. and Kadura, R. (2009). Open source vs. closed source software: Towards
measuring security. In Proceedings of the 2009 ACM Symposium on Applied Computing,
SAC ’09, page 2016–2023, New York. ACM.

[195] Seshadri, P. and Parks, G. T. (2017). Effective-quadratures (EQ): Polynomials for
computational engineering studies. The Journal of Open Source Software, 2(11):166.

162 References

[196] Shafer, J. and Fate, T. (2007). Coring and core analysis: Challenges of offshore ultra
deep water reservoirs. In International Symposium of the Society of Core Analysts, Calgary.

[197] Shin, S. W., Smith, G., Smolin, J. A., and Vazirani, U. (2014). How ‘quantum’ is the
D-Wave machine? arXiv preprint arXiv:1401.7087.

[198] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556.

[199] Singer, D. A. and Kouda, R. (1996). Application of a feedforward neural network in
the search for Kuroko deposits in the Hokuroku district, Japan. Mathematical Geology,
28(8):1017–1023.

[200] Skinner, S. and Zare-Behtash, H. (2018). State-of-the-art in aerodynamic shape optimi-
sation methods. Applied Soft Computing, 62:933 – 962.

[201] Smith, K. S. (2016). Nodal diffusion methods: Understanding numerous unpublished
details. In Proceedings of PHYSOR 2016, PHYSOR. ANS.

[202] Smola, A. J. and Schölkopf, B. (2004). A tutorial on support vector regression. Statistics
and Computing, 14(3):199–222.

[203] Smola, A. J., Schölkopf, B., and Müller, K.-R. (1998). The connection between regular-
ization operators and support vector kernels. Neural Networks, 11(4):637–649.

[204] Šmuc, T., Pevec, D., and Petrović, B. (1994). Annealing strategies for loading pattern
optimization. Annals of nuclear energy, 21(6):325–336.

[205] Sobes, V., Hiscox, B., Popov, E., Delchini, M., Archibald, R., Hauck, C., Laiu, P., Betzler,
B., and Terrani, K. (2020). Artificial intelligence design of nuclear systems empowered by
advanced manufacturing. In Proceedings of PHYSOR 2020, Illinois. ANS.

[206] Sóbester, A., Leary, S. J., and Keane, A. J. (2005). On the design of optimization
strategies based on global response surface approximation models. Journal of Global
Optimization, 33(1):31–59.

[207] Sobol, I. M. (1979). On the systematic search in a hypercube. SIAM Journal on
Numerical Analysis, 16(5):790–793.

[208] Stacey, W. M. (2007). Nuclear Reactor Physics. Wiley VCH Verlag GmbH.

[209] Stevens, J., Smith, K., Rempe, K., and Downar, T. (1995). Optimization of pressur-
ized water reactor shuffling by simulated annealing with heuristics. Nuclear Science and
Engineering, 121(1):67–88.

[210] Szames, E., Ammar, K., Tomatis, D., and Martinez, J. M. (2020). Few-group cross
sections modeling by artificial neural networks. In Proceedings of PHYSOR 2020, Illinois.
ANS.

[211] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2818–2826, New York. IEEE.

References 163

[212] Tabachnick, B. G. and Fidell, L. S. (2000). Using Multivariate Statistics (4th Edition).
Allyn & Bacon, Boston.

[213] Tabatabaei, M., Hakanen, J., Hartikainen, M., Miettinen, K., and Sindhya, K. (2015). A
survey on handling computationally expensive multiobjective optimization problems using
surrogates: Non-nature inspired methods. Structural and Multidisciplinary Optimization,
52(1):1–25.

[214] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018). A survey on deep
transfer learning. In Artificial Neural Networks and Machine Learning – ICANN 2018, pages
270–279, Cham. Springer International Publishing.

[215] Tang, B. (1993). Orthogonal array-based Latin hypercubes. Journal of the American
Statistical Association, 88(424):1392–1397.

[216] Tano, M. and Ragusa, J. C. (2020). Using artificial neural networks to accelerate transport
solves. In Proceedings of PHYSOR 2020, Illinois. ANS.

[217] Telgarsky, M. (2015). Representation benefits of deep feedforward networks. arXiv
preprint arXiv:1509.08101.

[218] TIOBE Group (2020). TIOBE index for ranking the popularity of programming lan-
guages.
https://www.tiobe.com/tiobe-index/. Accessed: 2020-07-30.

[219] Turinsky, P. J. (2005). Nuclear fuel management optimisation: A work in progress.
Nuclear Technology (American Nuclear Society).

[220] Turinsky, P. J. and Parks, G. T. (1999). Advances in nuclear fuel management for light
water reactors. In Advances in Nuclear Science and Technology, volume 26, pages 137–165.
Springer, Cham.

[221] Ulam, S. M. (1961). Monte Carlo calculations in problems of mathematical physics,
pages 261–281. McGraw-Hill, New York.

[222] U.S. Atomic Energy Commission (1955). The Reactor Handbook, volume 1: Physics.
McGraw-Hill, New York.

[223] Van Rossum, G. (1995). Python tutorial, cs-r9526. Technical report, Centrum voor
Wiskunde en Informatica (CWI), Amsterdam.

[224] Vidal, J.-M., Eschbach, R., Launay, A., and Binet, C. (2012). CESAR5. 3: an industrial
tool for irradiated nuclear fuel and waste characterisation, with an associated qualification-
59080. In ICEM 2011: 14. International conference on Environmental Remediation and
Radioactive Waste Management.

[225] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al. (2020). SciPy 1.0: Fundamental
algorithms for scientific computing in python. Nature Methods, 17:261–272.

[226] Waldrop, M. M. (2016). The chips are down for Moore’s law. Nature News,
530(7589):144.

164 References

[227] Wang, G. G. and Shan, S. (2007). Review of metamodeling techniques in support of
engineering design optimization. Journal of Mechanical Design, 129(4):370–380.

[228] Wang, J., Wang, Q., and Ding, M. (2020). Review on neutronic/thermal-hydraulic
coupling simulation methods for nuclear reactor analysis. Annals of Nuclear Energy,
137:107165.

[229] Weihermiller, W. and Allison, G. (1979). LWR nuclear fuel bundle data for use in fuel
bundle handling. Technical report, Battelle Pacific Northwest Labs.

[230] Werbos, P. J. (1994). The roots of backpropagation: from ordered derivatives to neural
networks and political forecasting. John Wiley & Sons, London.

[231] Weyland, D. (2015). A critical analysis of the harmony search algorithm—how not to
solve sudoku. Operations Research Perspectives, 2:97 – 105.

[232] Whitley, D. and Watson, J. P. (2005). Complexity Theory and the No Free Lunch
Theorem, pages 317–339. Springer US, Boston, MA.

[233] Whyte, A. (2020). Figures for PHYSOR 2020.
Zenodo: DOI10.5281/zenodo.3446287. Accessed: 2020-07-30.

[234] Whyte, A. and Parks, G. (2020a). Quantum annealing optimization of a heuristic
surrogate model for pwr fuel loading. In Proceedings of PHYSOR 2020, Illinois. ANS.
(engrxiv.org/xzmby).

[235] Whyte, A. and Parks, G. (2020b). Surrogate model optimization of a ‘micro core’ pwr
fuel assembly arrangement using deep learning models. In Proceedings of PHYSOR 2020,
Illinois. ANS. (engrxiv.org/xzmby).

[236] Whyte, A., Xing, Z., Parks, G., and Shwageraus, E. (2019). Design of a deep learning
surrogate model for the prediction of fhr design parameters. In Proc. Int. Conf. Mathematics
and Computational Methods Applied to Nuc. Sci. & Eng., Illinois. ANS. ISBN: 978-0-
89448-769-9.

[237] Wilson, P. R. (2020). Design Recipes for FPGAs. Elsevier, Oxford.

[238] Winston, P. (2010). 6.034 Artificial Intelligence, MIT OpenCourseWare.
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-
intelligence-fall-2010/##. Accessed: 2020-10-22.

[239] Wittek, P. (2016). Quantum Machine Learning: What Quantum Computing Means to
Data Mining. Elsevier, San Diego.

[240] Wittek, P. (2019). Quantum computing and artificial intelligence.
https://www.edx.org/course/quantum-machine-learning. Accessed: 2020-07-30.

[241] Wolpert, D. and Macready, W. (1997). No free lunch theorem for optimization. IEEE
Transactions on Evolutionary Computation, 1:467–482.

[242] Wu, X., Kozlowski, T., and Meidani, H. (2018). Kriging-based inverse uncertainty
quantification of nuclear fuel performance code BISON fission gas release model using time
series measurement data. Reliability Engineering & System Safety, 169:422–436.

References 165

[243] Xing, Z. (2019). Design Space Exploration for Salt Cooled Reactor Systems. PhD thesis,
University of Cambridge, Cambridge.

[244] Xing, Z. and Shwageraus, E. (2017). Design space exploration studies of an FHR
concept leveraging AGR technologies. In ICAPP 2017, Vienna. IAEA.

[245] Xing, Z. and Shwageraus, E. (2018a). Investigation into reactivity feedback of FHR
designs with alternative coolants. In ICAPP 2018, Vienna. IAEA.

[246] Xing, Z. and Shwageraus, E. (2018b). Molten salt coolant reactivity feedback in
alternative FHR designs. In Proceedings of PHYSOR 2018, Illinois. ANS.

[247] Yamamoto, A. (1997). A quantitative comparison of loading pattern optimization
methods for in-core fuel management of pwr. Journal of Nuclear Science and Technology,
34(4):339–347.

[248] Yang, R. J., Wang, N., Tho, C. H., Bobineau, J. P., and Wang, B. P. (2005). Metamod-
eling development for vehicle frontal impact simulation. Journal of Mechanical Design,
127(5):1014–1020.

[249] Yoshiaki, O. and Kiguchi, T., editors (2014). Nuclear Reactor Design: An Advanced
Course in Nuclear Engineering. Springer, Tokyo.

[250] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features
in deep neural networks? In Advances in neural information processing systems, pages
3320–3328, San Diego. Neural Information Processing Systems Foundation, Inc.

[251] Zhang, Q. and Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based
on decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–731.

[252] Zhang, Q., Zhang, J., Liang, L., Li, Z., and Zhang, T. (2020). A deep learning based
surrogate model for estimating the flux and power distribution solved by diffusion equation.
In Proceedings of PHYSOR 2020, Illinois. ANS.

[253] Zitzler, E. and Thiele, L. (1998). Multiobjective optimization using evolutionary algo-
rithms—a comparative case study. In International conference on parallel problem solving
from nature, pages 292–301, New York. Springer.

Appendix A

Neutron Transport Equation and Fission
Matrix

A.1 Derivation of the Fission Matrix from Neutron Trans-
port

In this section a brief discussion of the derivation of the fission matrix from the neutron transport
equation is presented. This derivation is based on the explanations in [30] and [31] although the
use and recognition go back further. This derivation will use the following nomenclature:

E is the neutron Energy (MeV)
r⃗ is the cartesian position vector
Ω̂ is the direction vector (radians)
ΣT the absorption cross-section (barns)
ΣS The scattering cross-section
ΣF The fission cross-section
Ψ is the angular neutron flux (n/(cm2sradian))
ν mean number of neutrons per fission event
K the effective multiplication factor
χ fission emission spectrum
δ the Dirac-delta function (an infinitely short unit impulse at t0)
F The fission matrix

The neutron transport equation is a balance equation describing the flux of neutrons, in terms
of gains and losses. For a multiplicative medium with no external source, it will be generated

168 Neutron Transport Equation and Fission Matrix

from a ‘loss operator’, defined as follows:

M·Ψ(⃗r,E,Ω̂)= Ω̂ ·∇Ψ(⃗r,E,Ω̂)︸ ︷︷ ︸
leakage

+ΣT (⃗r,E)Ψ(⃗r,E,Ω̂)︸ ︷︷ ︸
absorption

−
∫∫

dE ′dΩ̂
′
ΣS(⃗r,E ′ → E,Ω̂′ → Ω̂)Ψ(⃗r,E ′,Ω̂′)︸ ︷︷ ︸

scattering

and a ‘source term’, which can be defined as :

S(⃗r) =
∫∫

dE ′dνΩ̂
′
ΣF (⃗r,E ′)Ψ(⃗r,E ′,Ω̂′)︸ ︷︷ ︸

f ission

(A.1)

This allows the neutron transport equation to be expressed as:

M ·Ψ(⃗r,E,Ω̂) =
1
K

χ(E)
4π

S(⃗r) (A.2)

Where the source has an impulse response H()

H (⃗r0 → r⃗) =
∫∫ ∫∫

dEdΩ̂dE0dΩ̂0ν ∑
F
(⃗r,E) · χ(E0)

4π
G(⃗r0,E0,Ω̂0) (A.3)

and Ψ’s impulse response, G()

M ·G(⃗r0,E0,Ω̂0 → r⃗,E,Ω̂) = δ (⃗r− r⃗0)δ (E −E0)δ (Ω̂− Ω̂0) (A.4)

then by superposition

Ψ(⃗r,E,Ω) =
1
K

∫∫∫
d⃗r0dE0dΩ̂0

χ(E0)

4π
·S(⃗r0)G(⃗r0,E0,Ω̂0 → r⃗,E,Ω̂) (A.5)

For the fission matrix the problem is split into regions, and integrated over each region. The
region of origin is J whose boundary condition is r⃗0εVJ and the region of absorption is I, with
limit r⃗εVI .

SI =
1
K

N

∑
J−1

FI,JSJ (A.6)

where
FI,J =

∫
r⃗εVI

d⃗r0
S(⃗r0)

SJ
H (⃗r0 → r⃗) (A.7)

SJ =
∫

r⃗′εVJ

S(⃗r′)d⃗r′ (A.8)

A.1 Derivation of the Fission Matrix from Neutron Transport 169

So the full matrix form of the fission matrix is:

S⃗t1 =
1
K

FS⃗t0 (A.9)

Appendix B

Supporting Technical Studies

B.1 Generating a Sampling Plan that Maximises the Vari-
ance of Means

When training surrogate models on sampled data of a multivariate system, the central limit
theorem explains why non uniform distributions of mean arise, as mentioned in Section 2.2.1.
In this subsection an attempt is made to control the input values such that the mean is as
uniformly varied as possible. Note that the reason that the mean of uniform variables tends to a
Gaussian distribution is that the density of solutions is higher in the centre of the distribution.

In this example nine sample values are selected in the range 0.8 to 5.0 in discrete steps
of 0.2 to form an experiment. This range and discretisation of the sample set is analogous to
the range of discrete enrichments used in Section 4.4, where nine values will be sampled per
experiment. Mean value of the samples might affect the system response, for example mean
enrichment is known to affect cycle length, the aim of the sampling plan is to create a set of
random samples that maximises the variance of the mean.

Just as the Fourier transform converts an arbitrary function into a sum of weighted sine
waves, the Weierstrass transform converts a function into a set of weighted Gaussians. In
this section, a Rectangular function (Π(x)) is used. Π(x) is a function similar to the uniform
distribution, but is defined at all points. The rectangular function, defined as

Π(x) =


0.0 if |x|> 0.5

0.5 if |x|= 0.5
1.0 if |x|< 0.5

(B.1)

172 Supporting Technical Studies

will be converted into the expected range by translation and scale

f (y) = Π

(
y−2.9

4.4

)
(B.2)

thus

f (y) =


0 if y < 0.7
0 if y > 5.1

0.5 if y = 0.7∪ y = 5.1
1 if y > 0.7∩ y < 5.1

(B.3)

The aim of the experiment is to to sample them to obtain a net distribution of mean values with
maximum range. Equation B.3 is transformed using the Weierstrass transform into a sum of
Gaussians, the basis function with the largest magnitude are then used as the scaling factors for
the constituent basis functions of the distribution.

W(x) =
1√
4π

∫
∞

−∞

f (y)e−
(x−y)2

4 dy (B.4)

W(x) =
1√
4π

∫
∞

−∞

f (x− y)e−
(y)2

4 dy

W(x) =
1√
4π

(
0+
[

2xe−
y2
4 +2e−

y2
4

]5.1

0.7
+2∗0.5

)

W(x) =
1√
4π

([
2xe−6.5025 +2e−6.5025

]
−
[

2xe−0.1225 +2e−0.1225
]
+1
)

W(x) = 0.50170425075x−6.26176906068

In Figure B.1 we can see the results of combining three random distributions, to generate
a set of randomly selected experiments with a roughly flat frequency of mean values. The
system uses three distributions in a ratio of 0.3 : 0.4 : 0.3, based on the first positive values of
the Gaussian domain function. Triangular random distributions to select the samples for the
outer sets of experiments are used, since they are selecting 9 values. The results approximate a
Gaussian with a mean at lower and upper intervals (µ ≈ 2.1 and µ ≈ 4.7 respectively). The
central distribution is a Gaussian with a standard deviation of one. The result is a random
set that has a similar frequency for a wide range of mean values. The problem of repeated
patterns is most obvious when considering the highest and lowest mean values (in this case 9
samples at 5, or 9 samples at 0.8). Here there is only one permutation of the design; the next
value µ = 4.97̇,orµ = 0.833̇, have only 9 permutations; however, this quickly explodes. As
the permutations increase the chance of a repeated a experiment decreases, however the density
of experiments decreases with respect to the number of permutation at that mean input vector.

B.1 Generating a Sampling Plan that Maximises the Variance of Means 173

Note from Figure B.2 that a very small number of experiments are repeated (0.00094%) due to
the high dimensionality of the problem.

Combined Random sampling to maximise variance of mean
(1.0E7 experiments)

Fig. B.1 Combining Gaussian and triangular random distributions to create a set of inputs that
has a high mean variance.

Consideration of the experiment and number of permutations at, and close to, the limits of
the mean of the input vector should confirm to the reader that the statistics shown in Figure B.2
are representative despite the high level of stochastic noise.

Despite efforts to fight the central limit theorem, only a small deviation is achieved for nine
independent random variables. For this reason, the approach is not used in further work. One
approach is to accept the central limit theorem and expect that training sets will have uniform
random samples for each input variable and a normally distributed sum, or to use the Sobel
sequence and achieve a known space coverage.

174 Supporting Technical Studies

total mean freq.

Frequency of repeated experiments
in the mean variance sampling plan (1E7 experiments)

repeated sets

Fig. B.2 Checking the frequency of repeated sample plans in the combined Gaussian and
triangular random distributions.

B.2 NSGA 2 Parametrisation Study for the 6×6 Microcore

B.2.1 NSGA2 studies in literature

The author examined work by Deb et al. [50] Li and Zhang [130] and Latterulo et al,[120].
The parameters from these studies and the Pagmo2 API’S default values are shown in in

table B.1 A fully exhaustive study of the parameter variation with respect to every value was

Table B.1 NSGA2 parameters

Parameter Description Pagmo default NSGA2 references
[50] [130] [120]

P Size of the population - 100 300 a 100
N Number of generations - 250 500 3, 12, 16, 20
cr Crossover probability 0.95 0.9 0.1-1.0 -
m Mutation probability 0.01 1/nvars - 1/nvars

seed Seed of internal RNG clock - - -
a 595 used for three objectives

not possible. However, based on an investigation of the parameter values used in the other

B.2 NSGA 2 Parametrisation Study 175

scientific literature. A simplified ‘compass search’ style method was used to maximise the
mean hypervolume parameter over a number of runs with adjacent seed values. Although
the origin of compass search is unclear, an early use in digital computers was by Fermi and
Metropolis to establish scattering cross sections (see Anderson et al, [10] found in Kolda et
al[113])

In order to compare the efficacy of a multiobjective optimisation runs the hypervolume
parameter is used. Nowak et al. [166] attribute hypervolume parametrisation of multiobjective
optimisation to Zitzler et al. [253].

Firstly, the population size, P and number of generations, N were identified as the most
computationally expensive variables to investigate and were varied first with the other variables
set to the Pagmo default values. Once suitable values of this had been established from this
study the other variables were tested for the chosen population and number of generations.

Table B.2 Parameters used in this study

Parameter Candidate Values
N 1 - 100
P 20, 32, 40, 60, 80, 100, 120
cr 0.7, 0.8, 0.9, 0.95, 0.9999
m 0.001, 0.01, 0.05, 0.1

seed(selection): 3453412-6
seed(population): 3453213-7

B.2.2 Number of generations

The first test ran a population of 20 individuals, for 100 generations. At such a small popula-
tion size, the system is unlikely to converge to the global optimum, however the aim of the
experiment is to establish how quickly the algorithm converges when acting on this problem.
For this reason Figure B.3 shows the percentage increase of the hypervolume parameter as the
metric for improvement while Figure B.4 shows the actual values.

The hypervolumes plotted in figure B.3, show that for this problem, the NSGA2 algorithm
running for 40 generations, has an average hypervolume indicator that is 97.735% to 3d.p.
of the maximum hypervolume achieved after a further 60 generations, furthermore figure B.4
shows that there is a full correlation between low rate of convergence runs and poor overall
performance, which is significant since the end goal of an optimisation problem is simply the
absolute best solution found, rather than the mean solution found. These results are used to
justify the investigation of subsequent optimisation problems for at least 40 generations.

176 Supporting Technical Studies

Fig. B.3 Relative hypervolume indicator plot for NSGA2 over generations.

B.2.3 Populations size

The next test investigates the size of the population, this was tested for 40 generations for a
population size (pop) over a range of 20 to 120 individuals, due to constraints of the NSGA2
algorithm, only population numbers divisible by 4 are possible, so the values chosen were:
20,32,40,60,80,100,120. Although 120 individuals is still less than that of Li et al. [130],
it is similar to other studies and represents a vast improvement in terms of number of total
simulations compared to other studies.

Population size has the primary effect of decreasing the likelihood of the final solution
being in a local optima. This means that while the actual mean hypervolume indicator achieved
is important the variance of the results are also significant.

For this reason the results shown in Figure B.5 plot the average value of hypervolume
relative to the overall average on the dashed line, then two volumes represent the mean value
above the line and below the line and the max values achieved.

B.2 NSGA 2 Parametrisation Study 177

Fig. B.4 Absolute hypervolume indicator plot for NSGA2 over generations.

From this graph it can be seen that there is a positive correlation between the number of
individuals in the population, P, and the value of the final hypervolume. However, the number
of individuals has a large effect on the final computational budget and the gains achieved
decrease as the population size goes up. The effect of population size increases is very small, of
the order of 0.1% in this problem. For this reason, a population size of 50 is chosen for further
experiments.

B.2.4 Population P and generations N

It should be noted that for each of the parameters so far there have been two implicit considera-
tions. Namely that the use of more generations and larger populations cost computational time,
the aim of this study is to establish the lowest cost that is effective with the NSGA2 algorithm
applied to the kind of problems that are being investigated. Although the results of the previous
section show that a larger population produces a larger expected hyperparameter, the increase

178 Supporting Technical Studies

Fig. B.5 Relative final hypervolume indicator vs population size B.4.

is very small, with this in mind it becomes unfair to compare NSGA2 with a surrogate model
in terms of cost, when using a very large populations size for the direct NSGA2 simulations,
since we know that the expected gains will be small and the cost large.

Furthermore, due to the stability of the Monte Carlo simulations ≈ 0.1% of simulations fail.
This means that as N and P increase the number of simulations required increases at N ×P.
Eventually it becomes cumbersome to run simulations that must be repeatedly restarted.

The subsequent variables do not have these implicit costs, and so can be varied without
‘knock on’ effects of the choices.

B.2.5 Crossover cr and mutation rate m

From the study of crossover values it can be seen that lower crossover values result in a
larger range of hypervolumes, this is attributed to the low rate of crossover causing higher
specialisation in the optimisation algorithm (Figure B.6)). Based on this result, the default
value of 0.095 is selected for use in the rest of the study, since this gives a low range of results
in the test, while still giving a large value for average evolved hypervolume.

Figure B.7 shows the effect that mutation rate has upon the average hypervolume evolved
from the study. While there is a clear correlation between the mutation rate and the hypervolume
evolved, and the range of the hypervolumes evolved reduces with the increase in mutation rate,
however it is about ten times smaller than the total range of hypervolume evolved. Due to the

B.2 NSGA 2 Parametrisation Study 179

small effect, the default mutation rate of 1% is chosen for moving forwards, this is considered
acceptable, since the range of hypervolume change due to mutation is less than 0.1%

Fig. B.6 Hypervolume indicator vs Crossover rate.

Fig. B.7 Hypervolume indicator vs mutation rate.

180 Supporting Technical Studies

B.2.6 Review

The conclusion of this section is that the NSGA2 algorithm is robust to a wide variety of
hyperparameter changes. That is to say that it is impossible to argue that the algorithm is
particularly tuned to the SMO and detuned to the DSO. This is significant because it allows the
evaluation side by side evaluation of the SMO and DSO. The NSGA2 algorithm was expressly
designed to be robust to a wide variety of problems [50].

Another aim this study has been to find the parameters that represent the fairest set of
parameters for use of the NSGA2 algorithm as a control optimisation method, to compare
DSO with SMO. This puts the author into a state of moral hazard for parameters that have a
computational cost associated with them, e.g. number of generations and population size, where
a greater value yields better hypervolume performance, but at an increased computational cost.
It would be legitimate but misleading to argue that the NSGA2 algorithm requires exceptionally
large populations or extended number of generations, the argument could then easily be made
that surrogate model methods represent a huge improvement on this classical algorithm.

The opposite position has been taken, to select parameters for the NSGA2 algorithm
parameters that represent a realistic choice. This has been based on asking what an engineer
might choose were they working with a limited budget for computational cost.

This basic ‘compass search’ in four dimensions, has required more than 236, 000 CPU
hours (equivalent to twenty six years, and eight months of time on a single CPU time) and more
than four months of continuous calender time queueing jobs on the Cambridge university HPC
(ranked 75 in world HPCs at the time of this study [184]). The choice to act frugally towards
the computational budget immediately makes proving the advantages of SMO more difficult,
but hopefully lends credibility to the conclusion.

Crucially the study has shown that there is only a small increase in performance for NSGA2
on this problem between a population of forty and a population of one hundred and twenty.
In this range, for a given computational budget, it is equivalent to run more simulations on a
smaller population then to optimise with larger populations.

The conclusion of this study is that most of the hyperparameters make very little difference
to the results in terms of average hypervolume of the optimisation for this problem.

Table B.3 is used to recapitulate the selected values of the parameters used in this study.

B.3 Kolmogorov-Smirnov Test

A Kolmogorov-Smirnov (K-S) Test has been carried out for the DSO and SMO NDFs in section
5.5. In order to use the K-S Test, modifications are made to establish a bivariate investigation.

B.3 Kolmogorov-Smirnov Test 181

Table B.3 Optimal parameters used in further work

Parameter Preferred Value(s)

N ⩾ 60
P ⩾ 40
cr 0.95
m 0.01

This was carried out according Peacock [178] and investigated and shown to be applicable for
practical purposes without assumptions about the distribution by Fasano and Franceschini [61].

Table B.4 K-S Test for DSO and SMO, against the rest of the runs and ensemble of runs vs
categories.

K-S Test DSO SMO
p-value p-value

run vs ensemble 0.260419 0.570637
0.995971 0.772541
0.004182 0.854263
0.536309 0.737902
0.619042 0.863347

mean 0.4831846 0.759738
mean DSO vs SMO: 0.3170356

B.3.1 Review

The K-S Test is introduced in Section 1.2.4, was expected to be a useful measure of the
difference of statistical results. Table B.4 shows the ‘p-value’ output of the K-S Test, this is the
likelihood that the two sets of statistics were generated by the same distribution, regardless of
the distribution. There is significantly more correlation between the NDF sets with multiple
runs than between the DSO and SMO. However, in this application, the correlation is too low to
be a useful test, as noted by Fasano and Francheschini [61], significant error is evolved when
the correlation is low. Also, the results show a high variance.

The K-S test also does not apply to categorical systems with a high likelihood of repeated
solutions [4]. Although the search space for this experiment is ≈ 5.12×1011 combinations of
inputs, the true NDF of this space is much smaller, and the likelihood of repeated values in this
space is potentially high. This is noted to be a problem by [125, p. 584] and is proposed as an
explanation for the low correlation of iterations of the same method, in the results.

182 Supporting Technical Studies

B.4 PPF or pin power variance

In an initial version of Chapter 5, experiment 3 (p. 93), pin power variance was used as an
objective variable. Variance has reduced error when calculated using a Monte Carlo method
compared to PPF which has an error dependent on the peak power pin. PPF is in fact a
proxy variable used in optimisation to represent DNBR, since the plant can be operated to a
point where the peak pin departs from nucleate boiling (with a safety margin). Other reasons
why a nuclear engineer might be interested in the variance of the pin powers would be if the
uniformity of the coolant outlet temperature. However due to the ambiguity of the value of the
pin power variance, it is presented in the appendix rather than the chapter.

An initial investigation of pin power variance from indicates that PPF and variance in
random LPs had a broad correlation, while at the NDF the correlation was very good, as shown
in Figure B.8b. This lead to the study of pin power variance as an objective. When pin power
variance is used as an objective, as shown in Figure B.8a, the resulting pin power variance is
on the low side of the correlation. From this data we can see that PPF correlates well with
variance at the NDF, and the NDF of the variance study implies relatively low PPF.

Following the same template as the other studies in Chapter 5, it can be seen that the MLP
surrogate model produced creates solutions with significantly larger EOC burnup at over 17
MWd/kgU.

(a) Correlation based on data from Experiment 2 (b) Correlation based on data from Experiment 3

Fig. B.8 Correlation of PPF and pin power variance.

B.5 Required Neutron Population for Fission Matrix 183

(a) DSO, ∼ 4000 cpu hrs, (hpc) (b) MLP SMO, < 0.0019 cpu hrs, (laptop)

Fig. B.9 Examples for DSO and SMO initial and final population results.

1.8 2 3.6 1.8 2 3.6 1.8 1.4 4.6 1.8 3.6 3.6 3 3 0.8

1.6 2.2 2.8 1.6 2.2 3.8 1.6 2.2 2.8 2.2 2.2 4 2.2 2.2 4

3.2 3 5 3 3 5 2.8 4.6 5 1.2 4.2 4.8 3.2 4.6 4.6

3 3 2.8 1.8 1.2 2.2 1.8 1.2 4.6 1.8 1.4 4.6 1.8 1.2 4.6

1.6 2.2 2.4 2.2 4.2 3.8 3.4 2.2 4 3.4 2.2 3.6 3.4 2.2 4

3.2 4.6 5 3 4.6 5 2.8 3.4 5 2.8 4.6 5 3.2 5 5

(a) Performant LP arrangements generated by a CNN SMO (seed=3454312)

1.8 1.4 4.6 1.8 1.6 4.6 1.8 1.6 4.6 1.8 1.6 4.6 2 1.6 4.6 3 1.6 4.6

1.8 2.6 4.2 1.8 2.2 4.2 2 2.2 4.2 2 2.2 4.2 1.8 2.2 4.2 1.8 2.6 4.2

2.8 4.6 4.6 3.8 4.6 3.4 2.8 4.6 4.6 3.8 4.6 4.6 2.8 4.6 4.6 2.8 2 4.4

(b) DSO LP arrangements generated for the bottom righthand quadrant of the microcore (seed=3454321)

Fig. B.10 Examples for DSO and SMO LPs, maximising burnup and minimising pin power
variance

B.5 Required Neutron Population for Fission Matrix

In order to establish the correct number of neutrons to be used to generate fission matrices, the
stochastic noise, νn of the fission matrix is estimated by using equation B.5. This assumes that
the scattering is isotropic. The results for simulations carried out with a number of different
population sizes are shown graphically in Figure B.12.

νnn = |abs(F −FT)| (B.5)

184 Supporting Technical Studies

Fig. B.11 NDF LP for the CNN SMO simulated in serpent.

B.5 Required Neutron Population for Fission Matrix 185

0 200000 400000 600000 800000 1000000
0

0.0005

0.001

0.0015

0.002

0.0025

f(x) = 0.07 x^-0.38
R² = 0.80

Population vs fission matrix diagonal similarity

Population

m
ea

n
ab

so
lu

te
(F

-
F'

)

Fig. B.12 Mean difference between fission matrix and its transpose for a number of simulations

Appendix C

Application of the SMO Framework to
FHR Fuel Technology

This work was produced in conjunction with Zhiyao Xing, Dr Eugene Schwageraus and Dr
Geoffrey Parks and has been previously submitted to the M & C 2019 conference. [236]. It is
reproduced here with some modifications to make the subject more tractable in the context of
the thesis.

C.1 Introduction

Advanced Gas-cooled Reactors (AGRs) have a number of highly desirable design attributes,
such as high coolant outlet temperature and online refuelling capabilities [164]. These attributes
lead to high thermal efficiency and long continuous operation times. There is potential to
create designs that exploit these features for Fluoride-salt-cooled High-temperature Reactors
(FHRs) [69]Although FHRs differ from AGRs in that they are salt-cooled, they have attributes
in common, being graphite-moderated, high-temperature reactors with a prismatic block fuel
design. Figure C.1 (a) shows the essential elements of an AGR fuel element. A central tie bar
is surrounded by 36 fuel pins, with a 0.4 mm steel cladding. Coolant flows around the pins
and is contained within an inner graphite sleeve. It has been proposed by Forsberg et al. [68]
that utilization of the knowledge gained from the design of AGR fuel assemblies might be
advantageous in the design of FHRs. As well as being commercially proven, AGR fuel designs
have the advantages of many years of operational experience, applied use of graphite at high
temperature, and benefit from developed manufacture and spent fuel management techniques
and infrastructure. Xing and Shwageraus [244] advanced this idea with an investigation of the
design space for a number of parameters.

188 Application of the SMO Framework to FHR Fuel Technology

Homogenized mixture of graphite and
coolant salt with Salt Fraction, (SF)

0.4mm Steel Cladding

UO2 pellet enriched to 2.75% U235

P

D

Fig. C.1 (a) AGR fuel elements are encased by graphite moderator blocks and keys (based on
Nønbol [164]), and (b) An example solid pin model used in this paper.

In their investigation, as well as extended studies by Xing [243], [246], a significant amount
of data was generated for fuel cell models. Single pin simulations were carried out within a
homogenized moderator/coolant with reflected boundary conditions, as shown in Figure C.1
(b). Each of three types of pin (solid, annular and plates) were simulated for three different
coolant salts (NaF-ZrF4, FLiBe, FLiNaK) at two coolant temperatures (900 K, 1000 K), over
a range of enrichments and salt-to-moderator volume ratios. Furthermore, for each type of
pin, specific parameters were varied: in solid pins, the pitch and diameter were simulated for a
range of values; in annular pins, inner and outer diameters and pitch were varied; in plate-type
fuel, a variety of thicknesses and pitch sizes were explored.

The design choices in previous work [244] were made by manually selecting design samples
from a uniform grid in the input design space. At each stage of fine tuning of these design
parameters, more neutronic simulations were required. This gave rise to the incentive to develop
a fast computational tool that can replace computationally expensive neutronic solvers and
speed up the design optimization process. The FHR design variables showed combinatorial
complexity, and previous simulations saw highly nonlinear neutronic performance in the output
space. Simple interpolation schemes struggle to deliver accurate results across the searched
space. Deep Multi Layer Perceptrons (MLPs), which have been shown to efficiently represent
complex problems [217], are used in this study to develop a surrogate model of the FHR system.
The model simulates neutronic parameters of interest (k∞, Coolant Temperature Coefficient
(CTC), Doppler Coefficient (DC), discharge burnup (BU)) of the unit cell FHR models from

C.1 Introduction 189

input data such as geometric information (pin pitch, diameter), fuel type (uranium carbide (UC),
Fully Ceramic Micro-encapsulated (FCM) fuel), and coolant salt. This allows the functionality
of a fuel design to be evaluated in hundreds of microseconds, as opposed to minutes or hours,
as expected in deterministic or Monte Carlo solutions of the neutron transport equation. The
models developed in this study can be employed in future FHR preliminary design work to
quickly narrow down the design spaces to optimized regions.

C.1.1 Simulation Experimental Set-up

In a previous study [243], eleven FHR families covering three fuel forms (solid, annular and
plate-type fuel), two fuel materials (UC and FCM) and two salts (FLiBe and NaF-ZrF4) were
explored, out of which four were selected for further analysis. First, solid UC fuel with
FLiBe coolant was identified as the best overall neutronic design. Second, the best FCM fuel
model, the FLiBe-cooled solid pin was chosen, because of the robustness of the fuel form and
associated safety benefits. Third, the best annular fuel design, the annular FCM FHR cooled
with FLiBe was selected, because it showed promising thermal-hydraulic performance and
allows higher power uprate [245]. Finally, the best performing NaF-ZrF4 design, the solid UC
pin with NaF-ZrF4 coolant is selected as a backup option to the mainstream FLiBe-cooled
FHRs, because it does not produce tritium. The neutronic data collected for these four design
streams have been used in this study to train the surrogate models. The numbers of data samples
corresponding to each design stream are summarised in Table C.1. A total sample population
of 33,119 is used in the Beginning Of Life (BOL) experiments, and a total of 270 samples were
used in the depletion experiments.

For the first part of this study, the BOL neutronic data of the eleven design families were
used to train surrogate models. After proving the concept on these results, a subset of the four
selected design families, which had been found to demonstrate the best neutronic performance,
were brought forward for depletion analysis, the results of which were used to train new models
incorporating depletion information.

In the neutronic data, three geometric inputs were varied: (1) lattice pitch to fuel rod
diameter ratio (P/D), assuming an AGR fuel diameter [164]; (2) Salt mass Fraction (SF) in
the salt and carbon homogeneous mixture in the simplified unit cell model (shown in Fig.
C.1(b)); and (3) the enrichment of U235 in the fuel. P/D represents the geometrical envelope
and heterogeneity of the model; it is varied from 1.2 to 8 in 0.4 increments to ensure both
sufficient cooling of the fuel and reasonably high power densities. SF represents the measure
of salt and carbon content in the core, and is varied from 20% to 100% with 20% increments.
Fuel enrichment is varied from 2.5 wt% to 20 wt% with 2.5 wt% increments. Two temperature
states (900 K and 1000 K) were covered for each design.

190 Application of the SMO Framework to FHR Fuel Technology

Table C.1 Simulation data summary totals.

Fuel, geometry Coolant Total samples BU samples

UC, solid
NaF-ZrF4 1260 45

FLiBe 980 156
FLiNaK 1260

UC, annular
NaFZrF 2800
FLiBe 2799

FCM, solid
NaF-ZrF4 911

FLiBe 910 57

FCM, annular
NaFZrF4 6075

FLiBe 6075 71

FCM, plate
NaF-ZrF4 9743

FLiBe 306

For the first part of this study, a new model was created and trained for each category shown
in Table C.1. The data for the category was split by random selection into 80% training data
and tested on the remaining 20% for its ability to accurately predict k∞. The test set is not
used in training, so it is considered an unbiased evaluation of the performance of the network.
These models could be used by a system designer using the AGR framework for the design
of FHR fuel elements, to guide the designer to find optimal arrangements of pins, pin sizes
and to investigate design options without iteratively carrying out computationally expensive
simulations.

C.2 Neuro-Surrogate Model Development

Design simplicity was favoured in order to allow the efficient development of a functional
surrogate model. However, considerable optimization is possible on neural network models
that is beyond the scope of this study.

C.2.1 Neural Network Architectural Investigation

Neural networks have previously been used in nuclear engineering to predict core parameters,
e.g. for burnup predictions by Noda et al. [163] and in optimization of core loading patterns
by Faria and Pereira [60] and Kim et al. [107]. An Artificial Neural Network, such as the
one shown in Fig. C.2, is usually set up with low random initial weights between nodes so
that differentials for the error values can be established. Then error is minimized by adjusting
weights (w1,w2,w3).

C.2 Neuro-Surrogate Model Development 191

w2
22

x2

g()

g()

Σg()

Σg()

Σg()

Σg()w2
11

input hidden 1 hidden 2 output

x1

w2
12

w2
21

w1
22

w1
11

w1
12

w1
21

Σg()

w3
21

w3
11

 y

yerror, ϵ

Fig. C.2 A simple feed-forward, MLP-type neural network.

Although myriad network topologies exist, relatively early work in neural networks showed
that three-layer networks could act as universal function approximators [46], so work con-
centrated on shallow networks until the recent interest in deep learning began, summarised
concisely by LeCun et al. [123]. Deep learning networks showed a marked improvement on
shallow networks. Telgarsky [217] showed in 2015 that there are, in fact, functions that cannot
be represented efficiently by shallow networks, and that a large set of functions are more easily
represented in deep learning networks. A great deal of progress has been made in the last ten
years, including novel topologies and efficient algorithm implementations [37, 6]. In 2016,
Mhaskar et al. [151] described the kind of problems for which deep or shallow learning is
advantageous. They show that, for complex problems, orders of magnitude of improvement
in error performance is achieved with three or more hidden layers. Even on only moderately
complex problems, performance is shown to be better with deep learning networks.

When training networks, a pseudo-random number generator, the Mersenne Twister [149],
is used to generate the initial weights connecting each node (neuron) prior to training. All
models are trained for 250 epochs, each with a batch of 35 data samples. The neuron activation
function used is one that has gained popularity recently, called Rectified linear units (Relu)
[79, 80], mathematically represented as:

f (x) =

x, if x ≥ 0

0, otherwise

Relu simplifies the computational task for each neuron while still performing the function of
stopping neuron weights from tending to infinity, which can happen if two weights cancel each

192 Application of the SMO Framework to FHR Fuel Technology

other out and the back-propagation algorithm modifies them in opposite directions. Compared
to the traditional sigmoid function, Relu can often allow quicker learning of deep neural
networks on large and complex sample spaces. The loss function uses root mean square (RMS)
error to quantify the error of the network. Lastly, the ‘Adam’ optimizer [109] is used instead of,
as is traditional, stochastic gradient descent to back-propagate the errors and update the weight
of the neurons. Adam combines the advantages of two forms of gradient descent algorithm,
namely the Adaptive Gradient Algorithm and Root Mean Square Propagation, to allow better
performance on noisy data samples and large datasets with many input parameters [109].

Since a large corpus of data was already available for this study, it is relatively simple to
use it for iteratively testing a variety of neural network topologies.

Predicting k-infinity from Geometric Data

N
um

be
r

of
 H

id
de

n
L

ay
er

s

Neurons per Hidden Layer

Error Scale (percent, %)
2

Fig. C.3 Error heatmap for different sized networks; this data guides the choice of network size
used in Table C.2.

To establish a suitable network topology, tests were carried out on a range of networks.
The performance of tested topologies is illustrated by the heatmap shown in Fig. C.3, with
RMS error characterised by the colour scheme transitioning from yellow to dark blue, with
the darker shades representing better accuracy. Each pixel represents the prediction error of
a dense, rectangular, feed-forward network, with an input layer of 50 neurons and between
1 and 20 hidden layers and from 1 to 100 neurons per hidden layer in the network. The
problem is ‘embarrassingly parallelizable’ [83, p 14] and can be run relatively quickly without
requiring substantial computational resource. From the heatmap, it can be seen that with a
small number of neurons per hidden layer and/or a larger number of (∼20) hidden layers, the
model performs poorly. With a small number of total nodes, the level of complexity of the
problem cannot be effectively represented by the network. If the network has too many layers,
the back-propagation of errors across many layers of weights becomes impossible.

The network is, at this point, trained using BOL data only. How the physics changes as a
result of depletion has not yet been examined; without this, prediction of the reactor’s economic

C.2 Neuro-Surrogate Model Development 193

and safety performance would be incomplete and unconvincing. The discharge burnup of
the reactor, which represents the revenue from reactor operation, has not been incorporated
into the database. Also, how reactivity feedbacks change with depletion is important for the
multi-batch/on-load refuelling management scheme. To incorporate burnup characteristics into
the surrogate model, depletion calculations are carried out for well-performing samples from
the four selected design families. Exercising the network architectural investigation using the
depletion data, the heatmap for the prediction error shown in Fig. C.4 is produced. In this
experiment, dense, feed-forward networks, with an input layer of 150 neurons and between 1
and 20 hidden layers and from 1 to 100 neurons per hidden layer in the network, are trained
and tested. In this case, it appears that there are no longer sufficient samples to fully train the
networks up to the limits of the back-propagation algorithm. Shallower networks have superior
results, implying that there are not enough samples to propagate errors back through deeper
networks.

Fig. C.4 Error heatmap for depletion study of solid pin designs

C.2.2 Evaluation of Accuracy of Deep Learning Networks

In order to establish the accuracy of the deep learning networks at predicting k∞ from the
experimental input data, scripts were written that automatically tested the training of the
networks over a range of random number generator seed values. Adjacent random seeds are
used to study the variation of the results. The RMS error and standard deviation, σ , of the
model on the test set were recorded. For stochastic algorithms, it is standard to test over 30 (or
more) seed values. As before, 80% of the data was used for training and 20% for testing. This
was repeated for each random seed – meaning that a new random subset of the hypercube data
was used for each test set.

194 Application of the SMO Framework to FHR Fuel Technology

C.3 Results

C.3.1 Beginning of Life k∞ Prediction

This study shows that a deep MLP will accurately predict k∞ for a variety of proposed fuel pin
designs. Table C.2 presents a summary of the results achieved using a sequential architecture
deep learning network to predict k∞ for a particular set of design parameters. Based on
the results in Fig. C.3, a network size of 10 layers of 50 neurons was selected for further
experiments. This can be seen to be reasonably far from the high error regions for this problem.
Le Cun et al. [123] suggest 5 to 20 hidden layers define a deep network, but it is now common
to define networks with more than one hidden layer as deep, e.g. [53].

Table C.2 Prediction accuracy (averaged over 30 runs) of sequential networks trained and tested
on fuel pin design data.

Fuel, geometry coolant RMS k∞ error / pcm k∞ σ RMS k∞ error / pcm k∞ σ

UC, solid
FLiBe 655.31 223.73

482.08 187.05NaF-ZrF4 823.74 298.08
FLiNaK 749.49 249.94

UC, annular
NaF-ZrF4 701.97 262.46

559.26 214.49
FLiBe 711.77 344.43

FCM, solid
NaF-ZrF4 552.81 181.71

534.84 180.84
FLiBe 725.81 187.07

FCM, annular
NaF-ZrF4 617.60 221.79

319.95 125.17
FLiBe 887.85 354.39

FCM, plate
NaF-ZrF4 371.96 135.92

381.92 155.16
FLiBe 624.63 208.72

Columns 3 and 4 of Table C.2 show a summary of the results achieved when a new network
was instantiated for each type of fuel and salt. Columns 5 and 6 show the results for networks
that used the salt as an input and were trained on a single set of data created by merging data for
the same fuel type and different salts. Somewhat surprisingly these networks out-perform the
more specialised networks. This is thought to be due to the extra learning opportunity gained
by merging these datasets and allowing these networks to train on more samples.

Experiments show that these pre-trained feed-forward sequential networks evaluate input
data to deliver an estimate of k∞ in 320 microseconds on standard PC hardware. The speed and
accuracy of these results make the approach significant for iterative optimization strategies and
for initial exploration of the design space. For example, the test set of 270 simulations required
∼1.1 cpu hours per burnup step, totalling 2970 cpu hours, whereas the neural networks used in

C.3 Results 195

this section are able to approximate the results in < 1 second on a single core of a commercial
laptop PC.

C.3.2 Prediction of Discharge Burnup and Reactivity Coefficients Over
Depletion

After demonstrating that the surrogate models can predict BOL neutronic performance of FHRs
with reasonable accuracy, depletion analysis is performed for the selected design space up to a
burnup of 80 MWd/kgHM. To incorporate fuel cycle economic considerations into the analysis,
the discharge burnup to enrichment ratio (BU/e) is adopted as an output of the surrogate model
to replace BOL k∞ as an indicator. The ratio represents the amount of economic gain from the
reactor’s electricity production (proportional to burnup) per unit of fuel cost (approximately
proportional to fuel enrichment) and should therefore be maximized. The discharge burnup
of the reactor is calculated as twice that of a once-through fuel cycle, assuming the use of an
on-load refuelling scheme for the FHR. The assembly (represented by unit cell models) CTC
and DC are obtained at various stages during the depletion. Core-average reactivity coefficients
are calculated assuming a three-batch refuelling scheme, to give an approximation of on-load
refuelled core-average reactivity coefficients, in case they become less negative or even positive
with burn up. Both reactivity coefficients, which are also treated as outputs of the surrogate
models, should be kept below zero throughout the cycle to assure stability and favourable
behaviour in transients. Using the depletion data, the surrogate models were able to generate
performance levels as summarised in Table C.3.

Table C.3 Prediction percentage error (%) to 3 significant figures of sequential networks trained
and tested on depletion data for fuel pins.

Fuel, geometry coolant BU/e CTC DC BU/e CTC DC

UC, solid
FLiBe 7.51 7.38 8.54

5.53 5.43 5.50
NaF-ZrF4 17.8 17.5 17.6

UC, annular FLiBe 12.5 16.1 17.7
FCM, solid FLiBe 7.52 7.38 8.55

Greater errors are evident in this exercise compared with the previous models trained on
BOL data. This is partly because significantly less depletion data was available to the networks
during training and also because the uncertainty on the training data is higher in reactivity
coefficients. It also explains the greater errors reported in Table C.3 for the NaF-ZrF4 and the
annular fuel design families, which had much less data compared with the other cases, as shown

196 Application of the SMO Framework to FHR Fuel Technology

in Table C.1. Again, by merging two UC solid pin neutronic datasets, the network produced
more accurate predictions. Absolute RMS error from the surrogate model is, for example,
0.131 pcmK−1 for core average CTC in UC solid pins, whereas statistical uncertainties from
the Monte Carlo Serpent calculations were found to be around 0.1 pcmK−1 for CTC.

The surrogate models’ errors range from 5.4% to 17.8% in BU/e, giving absolute errors of
the order of 1 MWd/kgHM. The original For the preliminary design purpose as a fuel cycle
economics indicator, this is considered reasonably acceptable. The two reactivity coefficients
must be kept negative and can be used as either optimization objectives or constraints. The
errors from the surrogate models require an additional margin to be put on the two parameters
if used as optimization constraints.

For the entire depletion design space covered in this study, BU/e values ranging from 0.07
to 27.13 MWd/kgHM were obtained, with an average value of 8.6 MWd/kgHM. Imposing a
constraint of −0.2 pcm/K on both reactivity coefficients and an upper bound of 200 MWd/kgHM
on reactor discharge burnup, the current data space produced a best design that can reach a BU/e
of 15.4 MWd/kgHM. Compared to in-service LWRs, which have BU/e of ∼10 MWd/kgHM,
the AGR-like FHR shows great potential in terms of reactor economics. For future study, the
surrogate models can be coupled to optimization algorithms to identify optimized design spaces.
More depletion data can be accumulated to specifically target these design spaces, which can,
in turn, be fed to the network to further improve its predictive power.

C.4 Conclusions

A neural network regression analysis has been applied to a collected body of FHR design data,
showing that it is possible to interpolate the data and effectively predict neutronic performance
parameters despite a highly nonlinear system response. Initial work shows that it has been
possible to reach an expected prediction accuracy for k∞ of ∼675 pcm and that a more
generalised model incorporating more results within a single model performs better, achieving
an expected accuracy for k∞ of ∼456 pcm. The network thereafter demonstrated acceptable
performance when trained on a much smaller sample space that incorporated depletion data.
These results rely on the availability of a training set; therefore, this method is significant
when iterative simulations are expected anyway. Although a neuro-surrogate model is unable
to out-perform Monte Carlo or deterministic transport codes in terms of the accuracy, the
sub-millisecond calculation speed of a pre-trained network compared to the relative expense
of iteratively running neutronics simulations justifies the investment of seconds of cpu time
to train an advanced regression method like a deep learning network, especially for initial
studies, before a neutronics code is employed, and for design and optimization purposes, where

C.4 Conclusions 197

the fast evaluation of approximate results is desirable. Further testing will show whether
meta-parameters can be used to train a network, allowing the creation of a system that could be
used to predict the performance of geometries that have not been explicitly simulated.

Code for the surrogate models is available under the permissive MIT license and can be
cloned from the repository: https://ajw287@bitbucket.org/ajw287/fhr-surrogate-mandc.git

Appendix D

Technical details

Good results for SMO have been achieved in this thesis on entry level hardware, but in order
to verify this DSO simulations were required to be carried out on a number of more advanced
research machines.

The results have been carefully tested to ensure that what is presented is not strongly
hardware dependent. In fact, results have shown remarkable robustness across diverse systems,
such as the laptop hardware used for SMO, HPCs and the ‘Lise’ blade server used for neutronics
and the phd server used for scheduling and managing optimisation tasks while submitting jobs
to the HPC or Lise.

This section includes details relevant but incidental to this thesis, although the hardware is
expressly not the focus of the thesis, it is important that the hardware be recorded in order to
ensure reproducibility. Since systems of multiple machines were applied during the research, it
is advantageous to keep track of software version numbers since it was not always possible to
install the same version across all of the systems being used.

Table D.1 shows abridged output of the command lscpu when run on each of the machines
used, while Table D.2 shows the output of the software version numbers and data libraries used
for simulations and optimisation.

Typically the entry level laptop hardware was used for surrogate model optimisation, while
DSO optimisation and the scheduling of training set generation was run on the phd server,
which was able to be continually connected to the internet and was therefore able to submit
neutronics simulation jobs onto the HPC and Lise blade server.

200 Technical details
D

.1
Te

ch
ni

ca
lI

nf
or

m
at

io
n

on
C

om
pu

te
r

E
qu

ip
m

en
t:

Ta
bl

e
D

.1
Th

e
C

am
br

id
ge

H
ig

h
Pe

rf
or

m
an

ce
C

om
pu

te
r(

H
PC

),
a

de
pa

rtm
en

ta
lb

la
de

se
rv

er
(L

is
e)

,a
la

pt
op

(la
pt

op
)a

nd
a

de
sk

to
p

PC
(p

hd
)w

er
e

us
ed

in
th

is
th

es
is

.T
he

ls
cp

u
re

su
lts

fo
re

ac
h

ar
e

su
m

m
ar

is
ed

be
lo

w
.

H
PC

(p
er

no
de

)
‘L

is
e’

bl
ad

e
PC

la
pt

op
‘p

hd
’s

er
ve

r

A
rc

hi
te

ct
ur

e:
x8

6_
64

x8
6_

64
x8

6_
64

x8
6_

64
C

PU
op

-m
od

e(
s)

:
32

-b
it,

64
-b

it
32

-b
it,

64
-b

it
32

-b
it,

64
-b

it
32

-b
it,

64
-b

it
B

yt
e

O
rd

er
:

L
itt

le
E

nd
ia

n
L

itt
le

E
nd

ia
n

L
itt

le
E

nd
ia

n
L

itt
le

E
nd

ia
n

C
PU

(s
):

32
32

8
8

V
en

do
rI

D
:

G
en

ui
ne

In
te

l
G

en
ui

ne
In

te
l

G
en

ui
ne

In
te

l
G

en
ui

ne
In

te
l

C
PU

fa
m

ily
:

4
4

6
6

M
od

el
:

85
85

14
2

26

M
od

el
na

m
e:

In
te

l®
X

eo
n®

G
ol

d
61

42
C

PU
@

2.
60

G
H

z
In

te
l®

X
eo

n®
G

ol
d

61
30

C
PU

@
2.

10
G

H
z

In
te

l®
C

or
eT

M

i5
-8

25
0U

C
PU

@
1.

60
G

H
z

In
te

l®
C

or
eT

M
i7

C
PU

95
0

@
3.

07
G

H
z

B
og

oM
IP

S
52

00
42

00
36

00
61

34

D.1 Technical Information on Computer Equipment: 201
Ta

bl
e

D
.2

So
ft

w
ar

e
us

ed
,v

er
si

on
nu

m
be

rs
an

d
co

m
pi

le
rw

he
re

po
ss

ib
le

H
PC

‘L
is

e’
(b

la
de

PC
)

la
pt

op
‘p

hd
’s

er
ve

r

W
IM

S
Ve

rs
io

n
10

.a
10

.a
–

–
cr

os
s-

se
ct

io
ns

‘w
10

j2
2v

3.
da

t’
‘w
10

j2
2v

3.
da

t’
Se

rp
en

t2
(s
ss

2
-v

er
si

on
)

2.
1.

30
(F

eb
ru

ar
y

14
,

20
18

)
2.

1.
30

(F
eb

ru
ar

y
14

,
20

18
)

–
–

cr
os

s-
se

ct
io

ns
[5

7]
[5

7]
Py

th
on

Ve
rs

io
n

(‘
sy

s.
ve

rs
io

n’
)

3.
6.

7
|A

na
co

nd
a,

In
c.

|
(d

ef
au

lt
,

Oc
t

23
20

18
,

19
:1

6:
44

)
[G

CC
7.

3.
0]

3.
6.

9
(d

ef
au

lt
,

No
v

7
20

19
,

10
:4

4:
02

)
[G

CC
8.

3.
0]

3.
7.

7
(d

ef
au

lt
,

Ma
r

10
20

20
,

13
:1

8:
53

)
[G

CC
9.

2.
1

20
20

03
06

]

3.
7.

5
(d

ef
au

lt
,

No
v

2
20

19
,

22
:5

4:
58

)
[G

CC
6.

3.
0

20
17

05
16

]

Te
ns

or
Fl

ow
Ve

rs
io

n
(t
f.

__
ve

rs
io

n_
_)

–
–

1.
13

.1
–

Py
gm

o
Ve

rs
io

n
(p
g.

__
ve

rs
io

n_
_)

–
–

2.
11

2.
11

	Table of contents
	List of figures
	List of tables
	Nuclear Terms:
	Optimisation Terms:
	Mathematical Nomenclature:
	1 Introduction: Optimisation and PWR Fuel Management
	1.1 PWR Fuel Management
	1.1.1 Operation and Fuel Reloading
	1.1.2 In-core Reactor Physics
	1.1.3 PWR Data Sources
	1.1.4 `Full Sized' PWRs
	1.1.5 `Small' PWRs

	1.2 Optimisation in Nuclear Power Plants
	1.2.1 Multi Objective Optimisation
	1.2.2 The NFL Theorem
	1.2.3 Surrogate Model Optimisation
	1.2.4 Evaluating the Performance of Multiobjective Optimisation
	1.2.5 Understanding Fuel Management Problems in terms of Dimensionality

	1.3 Aims and Objectives
	1.4 Guide to the Thesis
	1.5 Summary

	2 Surrogate Model Optimisation Techniques
	2.1 Introduction
	2.1.1 Surrogate Model Definition
	2.1.2 Surrogate Modelling Methods

	2.2 Sampling Plans
	2.2.1 Types of Sampling Plan
	2.2.2 Prediction-based Exploitation

	2.3 Evaluating Accuracy of Estimates
	2.4 Surrogate Model Construction
	2.4.1 Polynomial Models
	2.4.2 Radial Basis Function Models
	2.4.3 Kriging
	2.4.4 Support Vector Regression
	2.4.5 ANN

	2.5 Summary of Methods

	3 Surrogate Model Optimisation, Deep Learning and PWR Fuel Management
	3.1 Applications of Surrogate Models
	3.1.1 Mechanical Engineering
	3.1.2 terms:cfd and Aerospace Design
	3.1.3 Meteorology and Physical Geography
	3.1.4 Mineral Prospecting and Mining

	3.2 Surrogate Models in Nuclear Engineering
	3.3 Deep Learning Surrogate Models
	3.3.1 Deep Learning Model Architecture

	3.4 PWR Fuel Design and Management

	4 Framework and Methodology for Surrogate Model Optimisation
	4.1 A Simplified Structure for SMO Fuel Loading Optimisation
	4.2 Software Architecture
	4.2.1 Python
	4.2.2 C++
	4.2.3 Simulation of the Neutron Transport Equation
	4.2.4 Deep Learning Frameworks
	4.2.5 Multi Layer Perceptrons
	4.2.6 Convolutional Neural Network
	4.2.7 Optimisation
	4.2.8 Approaches to Parallelism in Optimisation
	4.2.9 Dimod

	4.3 Parallel and Serial Optimisation Algorithms
	4.3.1 NSGA-2 Algorithm Modified for PaGMO2/PyGMO2

	4.4 A 66 Microcore with Rotational Symmetry
	4.5 Summary

	5 Deep Learning Surrogate Models
	5.1 Introduction
	5.2 Surrogate Model Optimisation
	5.2.1 Optimisation Tasks
	5.2.2 Optimisation Algorithm
	5.2.3 Training Sets
	5.2.4 MLP based Surrogate Model
	5.2.5 CNN based Surrogate Model

	5.3 Design of Deep Learning Surrogate Models
	5.3.1 Method
	5.3.2 Results

	5.4 Experiment 1: BOL PPF vs Position of Hot Pin
	5.4.1 Method
	5.4.2 Results

	5.5 Experiment 2: BOL PPF vs Mean Enrichment
	5.5.1 Method
	5.5.2 Results

	5.6 Experiment 3: EOC Burnup vs PPF
	5.6.1 Method
	5.6.2 Results

	5.7 Experiment 4: SMR Core
	5.7.1 Method
	5.7.2 Results

	5.8 Summary

	6 Fission Matrix Loading Pattern Model
	6.1 Introduction
	6.2 Fission matrix for the 66 Microcore
	6.3 A Fission Matrix Surrogate Model
	6.4 Experiment 1: Powermap Prediction
	6.4.1 Method
	6.4.2 Results
	6.4.3 Limitations of a Fission Matrix Model

	6.5 Experiment 2: BOL PPF and Mean Enrichment
	6.5.1 Method
	6.5.2 Results

	6.6 Experiment 3: PPF vs Cycle Length
	6.6.1 Method

	6.7 Results
	6.8 Discussion

	7 Extended Work: Quantum Annealing Optimisation of a Heuristic Surrogate Model
	7.1 Introduction
	7.2 Adiabatic Optimisation using a Simple, Rule-based Surrogate
	7.2.1 Adiabatic Quantum Computers and Quantum Annealing
	7.2.2 Methodology
	7.2.3 Results

	7.3 Extension: LPs from the DW2000Q Quantum Annealer
	7.4 Discussion
	7.5 Conclusions

	8 Discussion and Conclusions
	8.1 Insights into Surrogate Model Development
	8.1.1 Deep Learning
	8.1.2 Fission Matrix
	8.1.3 Quantum Annealing
	8.1.4 Trends in Computational Optimisation

	8.2 Recommendations for Future Research
	8.3 Conclusions
	8.4 Significant Contributions to the Field

	References
	Appendix A Neutron Transport Equation and Fission Matrix
	A.1 Derivation of the Fission Matrix from Neutron Transport

	Appendix B Supporting Technical Studies
	B.1 Generating a Sampling Plan that Maximises the Variance of Means
	B.2 NSGA 2 Parametrisation Study
	B.2.1 NSGA2 studies in literature
	B.2.2 Number of generations
	B.2.3 Populations size
	B.2.4 Population P and generations N
	B.2.5 Crossover cr and mutation rate m
	B.2.6 Review

	B.3 Kolmogorov-Smirnov Test
	B.3.1 Review

	B.4 PPF or pin power variance
	B.5 Required Neutron Population for Fission Matrix

	Appendix C Application of the SMO Framework to FHR Fuel Technology
	C.1 Introduction
	C.1.1 Simulation Experimental Set-up

	C.2 Neuro-Surrogate Model Development
	C.2.1 Neural Network Architectural Investigation
	C.2.2 Evaluation of Accuracy of Deep Learning Networks

	C.3 Results
	C.3.1 Beginning of Life k infinity Prediction
	C.3.2 Discharge Burnup and Reactivity Coefficients Over Depletion

	C.4 Conclusions

	Appendix D Technical details
	D.1 Technical Information on Computer Equipment:

