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Preface. Approximately 70% of global municipal solid waste is lost to landfills or the 7 

environment each year, an emblem of our increasingly unsustainable economic system in 8 

which materials and energy are produced, used and promptly discarded. Photoreforming is a 9 

sunlight-driven technology that can help disrupt this linear model by simultaneously reclaiming 10 

the value in waste and contributing to renewable hydrogen production. This Review examines 11 

the advantages and challenges of photoreforming of real waste streams. By reviewing 12 

literature on photoreforming and conducting basic techno-economic and life cycle 13 

assessments, we identify key pathways for enhancing the impact of photoreforming for a 14 

carbon-neutral future.   15 
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Today’s industrialised economies feature a linear “take-make-waste” model of resource 16 

extraction, consumption and disposal.1 Although this linear system has financial incentives, 17 

our increasingly urgent need to preserve finite resources and minimise greenhouse gas 18 

emissions will require a rapid transformation of the production and use of materials and 19 

energy. For example, the energy sector (electricity, fuel, heat and transportation) accounts for 20 

55% of anthropogenic greenhouse gas emissions.2 Renewables (solar, wind, hydro, and 21 

bioenergy) play an increasing role in electricity generation, but their intermittency and inability 22 

to produce fuel or heat keeps their contribution to global energy production below 10%.3 23 

Hydrogen (H2) could bridge this gap by serving as an energy carrier. H2 is light, storable and 24 

has a high specific energy density, making it ideal for applications ranging from emissions-25 

free fuel and heating, to industrial synthesis of fertilisers and other chemicals.4 However, 96% 26 

of H2 (~70 million tonnes per year) is currently produced by steam reforming of fossil fuels, 27 

resulting in 830 million tonnes of CO2 emissions per year.4 Renewable production methods 28 

are thus necessary before H2 can contribute to a sustainable energy system. 29 

The remaining 45% of anthropogenic greenhouse gas emissions are linked to industrial 30 

goods production and agriculture.2 Waste is one contributor to these emissions, with an 31 

estimated 21 billion tonnes of material lost during industrial processes1 and an additional 2 32 

billion tonnes of municipal waste generated by consumers each year.5 This issue is 33 

compounded by the direct disposal of 60-80% of all waste without recycling, composting or 34 

reuse.1,5 Improving industrial processes, redesigning products and changing consumer 35 

behaviour can help reduce waste in the future, but finding value in waste that has already 36 

been produced or cannot otherwise be reused is also necessary.  37 

Photoreforming (PR) utilises waste as a feedstock for H2 production, and is one 38 

approach for addressing contemporary waste and energy challenges. This simple process 39 

employs a photocatalyst to absorb the energy in sunlight, enabling the breakdown of waste 40 

and water into small organic molecules and H2 gas. First reported in the 1980’s,6–8 the majority 41 

of PR research has since relied on “model waste” substrates such as ethanol, glycerol or 42 

simple sugars.9 In this Review, we focus specifically on PR of real waste, which increases the 43 
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process complexity, but also improves its economics and sustainability. Different waste 44 

streams are first analysed for their compatibility with PR. The environmental impact and 45 

techno-economic feasibility of PR are then assessed, and future research recommendations 46 

are provided. By exploring the current advantages and limitations of waste PR, we aim to 47 

demonstrate that this technology can contribute to a future carbon-neutral society by 48 

simultaneously generating clean H2, mitigating waste and producing bulk chemicals for a 49 

sustainable chemical industry. 50 

 51 

Scientific principles of photoreforming 52 

PR is an intermediate process between solar water splitting and organic photoredox catalysis. 53 

Water splitting is a nonspontaneous chemical reaction (DG0 = +237 kJ mol−1 at 25 °C) involving 54 

the reduction of H2O to H2 and the oxidation of H2O to O2.10 It is typically limited by the 55 

energetically- and kinetically-demanding O2 evolution reaction, which researchers often 56 

circumvent by introducing costly and unsustainable sacrificial electron donors.10,11 In contrast, 57 

organic photo-oxidation (a subset of photoredox catalysis) usually describes a spontaneous 58 

reaction in which O2 is reduced to radical species that subsequently oxidise organic molecules 59 

to CO2, H2O and/or other products.9 60 

PR combines water reduction with organic oxidation on a semiconductor material called 61 

a photocatalyst. Under anaerobic conditions, electrons in the photocatalyst are excited by 62 

sunlight to the conduction band (CB) and reduce the protons in H2O to H2. The holes remaining 63 

in the photocatalyst valence band (VB) then oxidise an organic substrate (CxHyOz) to CO2 or 64 

intermediate products (Fig. 1, Eq. 1). In order for PR to proceed, the incident photons must be 65 

of higher energy than the semiconductor band gap, the CB must be more negative than the 66 

reduction potential of H+ to H2 (0 V vs. NHE at pH 0), and the VB must be more positive than 67 

the oxidation potential of the substrate to a given oxidation product (substrate-dependent).12 68 

More detailed mechanistic discussions of PR can be found elsewhere.9,12,13 69 
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The overall PR process is nearly energetically neutral. For example, PR of glucose (a 71 

biomass component) or ethylene glycol (a component of the plastic polyethylene 72 

terephthalate) has a standard Gibbs free energy change of ΔG0 = −84.7 kJ mol−1 or ΔG0 = 73 

+9.2 kJ mol−1,9,14 respectively, both of which compare favourably to water splitting. PR of 74 

freely-available waste feedstocks can thus be powered by a large portion of incident sunlight, 75 

making it an attractive candidate for sustainable H2 production. 76 

Figure 1. Diagram of the waste photoreforming process. The conduction band (CB) position of the 77 
semiconductor material (photocatalyst) is given versus the reversible hydrogen electrode (RHE). 78 

 79 

Waste as a feedstock for photoreforming 80 

Typical PR substrates are oxygenated organic molecules of the form CxHyOz, although 81 

nitrogen, phosphorus and sulphur can be incorporated as well.7 Studies with simple molecules 82 

have shown that PR favours substrates with low complexity,9,12 high polarity/hydrophilicity,15,16 83 

water solubility, and functional groups that adsorb to the photocatalyst surface (e.g. hydroxyl 84 

groups).17 An ideal feedstock for PR should incorporate as many of these chemical features 85 

as possible while simultaneously being derived from waste streams that are otherwise non-86 

reusable or non-recyclable. In this section, we examine global waste generation and determine 87 

which components can and have been used as substrates for PR. 88 

Available waste feedstocks 89 

70% of global municipal solid waste (MSW) is landfilled or openly dumped each year (Fig. 2a, 90 

outer ring).5 Up to eighteen times more waste is produced industrially than municipally, but 91 

due to the scarcity of data on global industrial waste composition and disposal,5 we focus 92 

primarily on MSW unless stated otherwise. While MSW management strategies vary between 93 

countries of different income levels, recycling rates still only reach a maximum of 29% in high 94 

income countries, with rates dropping below 4% in low income countries (Fig. 2a, inner rings).5 95 
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This lack of adequate waste management directly impacts public health and the environment: 96 

it is predicted that global greenhouse gas emissions could be reduced by 15-20% by 97 

incorporating strategies for waste prevention and promoting recovery and recycling.18 98 

The average global composition of MSW is dominated by food and biomass (46%), 99 

paper and cardboard (17%) and plastic (12%), with glass, metal, rubber, and other waste 100 

accounting for the remaining 25% (Fig. 2b, outer ring).5 High income countries tend towards 101 

paper and cardboard (25%) and plastic (13%), whereas low income countries generate more 102 

food and biomass waste (57%, Fig. 2b, inner rings).5 Of these components, some biomass, 103 

food, plastic, paper and cardboard are composed of oxygenated organic molecules, making 104 

69-77% (region dependent) of MSW potentially usable for PR (Supplementary Table 1).  105 

Of the waste components suitable for PR, inedible biomass is the most plentiful: nearly 106 

4 billion tonnes of biomass residues are produced annually by agriculture and industry (Fig. 107 

2c).19 Biomass is made of lignocellulose, a combination of cellulose fibrils cross-linked by 108 

hemicellulose and lignin polymers.11 Both cellulose and hemicellulose consist of long chains 109 

of sugars (C6H12O6 or C5H10O5) that can be relatively easily photoreformed due to their polarity 110 

and high hydroxyl group content.9 Lignin, on the other hand, is a complex, hydrophobic 111 

polymer that is challenging to photoreform.8,20–22 In addition to these raw biomass components, 112 

paper (i.e. processed biomass) also contains 10-25 wt% mineral fillers and pigments that 113 

cannot be photoreformed.23 Depending on the exact type of biomass selected, the total 114 

chemical content currently accessible for PR is 55-95 wt%, although this number could 115 

increase with the ongoing development of photocatalysts capable of reforming lignin. 116 

The chemical composition of food waste varies greatly (Fig. 2c). For example, cereals 117 

contain 70-80% carbohydrates (good substrates for PR),24 whereas meat consists primarily of 118 

proteins (10-20%) and fats (2-50%).25 Proteins are made of long chain(s) of amino acid 119 

residues and should undergo PR to a certain extent,7,26 depending on the quantity of oxidisable 120 

functional groups and the complexity of the three-dimensional protein structure. Fats are more 121 

challenging to utilise in water-based PR due to their hydrophobicity and (typically) chemically 122 

inert hydrocarbon chain. The accessible chemical content of food waste could therefore vary 123 
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between as low as 10% for meat, fish or dairy to as high as 80% for cereals, potentially making 124 

it difficult to maintain a consistent H2 output from PR. 125 

Finally, synthetic polymers (plastics) comprise a relatively small portion of global waste 126 

(302 million tonnes per year),27 but are of particular concern due to their non-biodegradability 127 

and accumulation in the environment. The majority of plastics are hydrocarbon chains27 – such 128 

as polyethylene (C2H4)n and polypropylene (C3H6)n – which are currently difficult to reform 129 

because of their highly stable C-C bonds.28 However, the remaining ~16-17%27 of plastics are 130 

oxygenated, polar and contain esters that can facilitate PR.14,29 Examples include polyethylene 131 

terephthalate (C10H8O4)n and polyurethane (C12H14N2O4)n, with 32 and 16 million tonnes of 132 

waste generated annually, respectively.27 Biodegradable plastics such as polylactic acid 133 

(C3H4O2)n could also be used. If the above biomass, food and plastic components were all 134 

utilised for PR, a theoretical maximum of 310-650 million tonnes of H2 could be produced each 135 

year (the equivalent of ~6-13% of annual global energy consumption).  136 

Figure 2. Municipal waste (a) disposal methods and (b) composition. Outer rings are world averages, 137 
second rings upper income countries, third rings middle income countries and inner rings low income 138 
countries (data from ref. [5]). (c) Composition breakdown of the global waste streams usable for 139 
photoreforming (data from ref. [19,27,30,31]). Inaccessible fractions are based on current photocatalytic 140 
performance, and will likely decrease with future developments. See Supplementary Table 1 for details. 141 

Waste pre-treatment 142 

Before utilisation in PR, waste must undergo sorting and pre-treatment. For example, wet 143 

density separation – in which materials are separated by weight32 – could be used to isolate 144 

biomass, food and polar plastics suitable for PR from other mixed waste components that 145 

cannot be reformed or could potentially poison the photocatalyst. The waste feedstock would 146 

next be crushed, shredded or otherwise mechanically treated to produce smaller particles.33 147 

Chemical pre-treatment could then be employed to solubilise the sorted waste, thereby 148 

facilitating contact between the photocatalyst and substrate during PR and increasing the H2 149 

evolution rate. Several studies have explored this concept and reported enhanced PR 150 

following waste hydrolysis and solubilisation under alkaline7,14,21,22,26,29 or acidic34,35 conditions, 151 
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after steam explosion (high-pressure saturated steam) treatment,36 in metal salt hydrate 152 

solutions,37 or following treatment with enzymes capable of hydrolysing cellulose 153 

(cellulases).35,38,39 Chemical pre-treatment for PR is rarely researched in detail, likely due to a 154 

historic focus on PR of simple molecules (e.g. sugars and alcohols) that do not require 155 

solubilisation. Many of the reported methods therefore have limitations, such as corrosive 156 

chemicals (acids or bases), high temperatures and pressures (steam explosion), or enzymes 157 

that may be difficult or expensive to produce in bulk. Future research would benefit from the 158 

development of milder waste pre-treatments that are compatible with PR photocatalysts.  159 

State of the art waste photoreforming 160 

PR with real waste was first reported in 1981, when platinised TiO2 was used to generate H2 161 

from a range of plastic (polyethylene, polyvinyl chloride, Teflon), biomass (rice plant, grass, 162 

wood, flowers, seaweed), food (sweet potato, olive oil) and other (cockroach, excrement) 163 

waste under both neutral (H2O) and alkaline (5 M NaOH) conditions.7,8 Several oxidation 164 

intermediates such as ethanol, acetate, acetone and acetaldehyde were detected in addition 165 

to the expected final product CO2.8 PR performance is typically reported as rate of H2 166 

production per photocatalyst mass (μmol gcat−1 h−1) and H2 yield per substrate mass (μmol 167 

gsub−1), but it should be noted that these metrics are difficult to compare directly when using 168 

different photocatalysts or reaction conditions (e.g. substrate concentration, reactor volume, 169 

irradiation type).40 The majority of subsequent PR studies have also used TiO2|Pt 170 

photocatalysts to photoreform alfalfa,41 bamboo,39 corn stover,42 grass,38,39,43 paper,34 rice,39,41 171 

wood,35,37 swine sewage,44 and olive mill,45 brewery46 and dairy46 wastewaters (see Tables S2-172 

S6 for a literature survey). Despite the prevalence of TiO2, the efficiency and up-scalability of 173 

this photocatalyst are limited by its ultraviolet-only absorption (~4% of the solar spectrum) and 174 

need for expensive H2 evolution co-catalysts (usually Pt). 175 

CdS has emerged as an alternative to TiO2 due to its visible-light absorption (band gap 176 

of 2.4 eV, λ < 515 nm) and ability to operate without a precious metal co-catalyst. A 177 

LaMnO3/CdS catalyst was first used to photoreform sewage sludge,36 and CdS quantum dots 178 
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in aqueous alkaline solution (10 M KOH or NaOH) were next employed to photoreform 179 

biomass,21 plastics29 and food waste26 with activities of up to 9350 μmolH2 gcat−1 h−1 (for 180 

cheese). The formation of a variety of oxidation products, typically organic acids such as 181 

formate, was also reported.21,26,29 Although this system was highly efficient, the use of toxic 182 

cadmium and large quantities of base are unlikely to be feasible on a larger scale. 183 

Carbon nitride (CNx) photocatalysts have recently been explored as a visible-light-driven 184 

(band gap of 2.7 eV, λ < 460 nm), non-toxic and inexpensive alternative to CdS. Biomass PR 185 

was achieved over cyanamide-functionalised CNx (NCNCNx) coupled with a molecular Ni 186 

bis(diphosphine) catalyst at pH 4.5, with an activity of 7.6 μmolH2 gcat
−1 h−1 for wood.22 This 187 

efficiency was improved by 64% when the wood was solubilised in a LiBr metal salt hydrate 188 

solution prior to reforming with NCNCNx|Pt.37 PR of plastic14 and food waste26 was also 189 

accomplished with NCNCNx or CNx coupled with a nickel phosphide (Ni2P) co-catalyst. While 190 

alkaline conditions (1 M KOH) were necessary to solubilise plastic,14 PR of food, mixed and 191 

municipal wastes proceeded at neutral pH following a simple heat treatment at 80 °C.26 The 192 

oxidation half-reaction yielded a range of substrate-dependent products, with formate, acetate 193 

and CO2 observed for most waste inputs.14,26 PR of polyester microfibers with NCNCNx|Ni2P 194 

was also up-scaled from 2 to 120 mL with no loss in efficiency.14 See Supplementary Tables 195 

2-8 for an exhaustive literature survey of waste PR.  196 

The H2 evolution half-reaction of PR is well understood: photo-excited electrons migrate 197 

to the photocatalyst surface, transfer to a metal co-catalyst and reduce aqueous protons to H2 198 

gas. The mechanism of the oxidation half-reaction, on the other hand, is more elusive. 199 

Substrate oxidation has been suggested to proceed by either OH• radicals41,43 or direct hole 200 

transfer.14,21 In brief, highly oxidising photo-generated holes in catalysts such as TiO2 can 201 

produce OH• radicals from H2O, which subsequently diffuse to and oxidise a substrate.41,43 202 

Alternatively, a substrate adsorbed onto the photocatalyst can be oxidised by direct hole 203 

transfer, which has been proposed for CdS and CNx.14,21 Oxidation has been suggested to be 204 

rate-limiting for PR due to poor interaction between the photocatalyst and substrate, the large 205 
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number of holes required to fully oxidise certain substrates, and photocatalyst deactivation by 206 

the adsorption of harmful intermediate products.21,35,47 These latest advances in fundamental 207 

mechanistic understanding, as well as in photocatalyst and system design as described 208 

above, will enable more sustainable and scalable PR. They also highlight the need for 209 

improvements in currently under-researched areas, such as the enhancement of substrate-210 

catalyst contact and the development of more efficient, stable and inexpensive photocatalysts.  211 

Product separation 212 

Product extraction and storage will be required as the final step of an industrially-relevant PR 213 

system. H2 purification is traditionally accomplished by pressure swing adsorption, cryogenic 214 

distillation or membrane separation,48 although low-cost alternatives such as twin-reactors 215 

(membrane incorporated into a photoreactor) are also being developed.49,50 This step is 216 

expected to be relatively straightforward, as H2 produced by PR would only need to be 217 

separated from the carrier gas N2 and, in some cases, the oxidation product CO2. In contrast, 218 

the extraction of dissolved organic products could prove challenging as PR often yields a 219 

mixture of different oxidation intermediates. Potential extraction methods could include 220 

distillation, solvent-mediated phase separation, membrane separation, adsorption processes, 221 

or a combination thereof, but these strategies become more energetically demanding when 222 

products are mixed, at low concentrations and/or miscible with H2O,51 all characteristics of 223 

current PR processes. One strategy could be the design of selective oxidation co-catalysts 224 

capable of producing higher value molecules such as arabinose (£17 kg−1) or resorcinol (£14 225 

kg−1) rather than the inexpensive acids currently formed (e.g. formate at £0.50 kg–1, 226 

Supplementary Table 9); this exciting field of research requires further development. 227 

 228 

Feasibility of photoreforming 229 

Many benefits of PR have been reported: use of renewable solar energy, simplicity, and 230 

multiple profit streams from waste use and production of H2.9,11,26 However, there have been 231 
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only limited attempts to quantify these benefits in techno-economic and life cycle analyses.26 232 

In this section, we assess the feasibility of up-scaled waste PR in comparison to other waste-233 

to-fuel technologies. 234 

Economic and environmental analyses 235 

A PR pilot plant capable of treating 100-300 kg of MSW per day was modelled and used to 236 

estimate the H2 production cost (£ kgH2
−1), carbon footprint (gCO2 MJH2

−1) and energy returned 237 

on invested (EROI), all established metrics for determining the economic and environmental 238 

feasibility of a process (Fig. 3a). Based on reported ratios,14,26 processing this quantity of waste 239 

requires 4000 L of H2O, 12 kg of photocatalyst and 400 m2 of irradiation area assuming a 240 

reactor depth of 1 cm (a low reactor depth-to-area ratio is typical for sunlight-driven 241 

processes52,53). The waste is pre-treated overnight at 40-80 °C, purged with N2 and then 242 

pumped through the flat panel photoreactors. The produced H2 is collected, compressed and 243 

stored, while the used solution is sent to water treatment or waste disposal. Plant capital, 244 

construction, operation and consumables are included, but the transportation of consumables 245 

(MSW, water, N2, etc.) and H2, as well as “negative” emissions from avoiding the landfilling of 246 

waste, are not considered (Supplementary Table 10, Supplementary Figure 1, Supplementary 247 

Methods). Calculations are based on PR with CNx|Ni2P in H2O; PR under alkaline conditions 248 

is only explored in cases labelled “NaOH reuse.” 249 

The results for a “base case” H2O PR pilot plant (200 kgwaste day−1, 14.4 kgH2 day−1) are 250 

£11.80 kgH2
−1, 81.0 gCO2 MJH2

−1 and EROI of 0.98 (black vertical lines in Fig. 3b, also see 251 

Supplementary Tables 11-13). The cost is high in comparison to H2 sale targets54 of £3-5 kg−1 252 

and predictions for H2 produced by photocatalytic (£1-3 kg−1)55 and photoelectrochemical 253 

(£8-9 kg−1)55,56 water splitting, although these calculations are for plants 500-2000 times larger 254 

than our PR model so direct comparisons are difficult. A rough estimate with the 0.6 scaling 255 

rule57 indicates that the PR plant would need to be at least thirty times larger (12,000 m2) in 256 

order to reach £3 kgH2
−1 under “base case” conditions. The EROI of “base case” PR is also 257 
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lower than the breakeven point of one. However, both cost and EROI are expected to improve 258 

with further scaling as capital and operational expenses tend to be high for pilot plants.57 259 

Future government initiatives for green H2 could influence economics as well. The carbon 260 

footprint of PR is already promising: “base case” PR emits 20% fewer greenhouse gases than 261 

H2 produced by steam methane reforming (100 gCO2 MJH2
−1 without carbon capture),58 and 262 

40% fewer (168 gCO2 kgwaste−1 with credits for energy production) than waste disposal by landfill 263 

(290 gCO2 kgwaste−1).59  264 

The change in total H2 production cost, carbon footprint and EROI of the pilot PR plant 265 

were next explored by varying individual parameters between low and high estimates (Fig. 3b, 266 

see Supplementary Table 11 for details). The parameters with the widest bars in Fig. 3b – 267 

photocatalyst reuse, photocatalyst efficiency, sunlight intensity, waste concentration and 268 

daylight hours – result in the most significant changes in cost, footprint and EROI, and will 269 

therefore have the highest impact on PR feasibility. A catalyst lifetime of at least one year is 270 

essential, especially if a more expensive material (TiO2|Pt, open circles) is used. If a new 271 

photocatalyst supply were used for each 24 h PR cycle, the material would dominate the cost, 272 

carbon footprint and EROI of plant operation unless it were significantly less expensive (<£10 273 

kg−1) and more environmentally-friendly (<10 kgCO2 kg−1, <75 MJ kg−1) than currently available 274 

photocatalysts. PR efficiency also plays a significant role: adjusting the H2 evolution rate from 275 

0.002 to 0.008 molH2 gsub
−1 h−1 decreases H2 production cost by 76% and improves EROI by 276 

four times. Note that the “base case” H2 production rate (0.004 molH2 gsub
−1 h−1) is 50-50,000 277 

times higher than efficiencies reported in the literature for PR of real waste in H2O, but as little 278 

as ten times higher than PR coupled with enzymatic38,39 or alkaline29 pre-treatment, and only 279 

two times higher than PR with simple molecules like methanol9. Photocatalytic efficiency is 280 

also dependent on light intensity, and adjusting the available sunlight from 0.1 to 2 sun thus 281 

has a marked impact on PR feasibility. Additional beneficial measures include utilising higher 282 

waste concentrations, constructing the plant in a location with long days (e.g. Arizona, USA, 283 

with an average of 11 h of sunlight per day), extending plant lifetime to 20 years, and adjusting 284 



12 
 

the waste pre-treatment to use renewable energy sources such as solar heating. Water reuse 285 

has the least effect on PR feasibility, although this will likely be location-dependent. 286 

The impact of conducting PR in 1 M NaOH was also investigated. As mentioned above, 287 

alkaline conditions are often employed to enhance waste solubilisation and PR efficiency. 288 

Disposal of highly corrosive solutions is nonetheless problematic, and accounts for 86-95% of 289 

operating cost, carbon footprint and embodied energy of PR in NaOH (Supplementary Figure 290 

1). Even if the NaOH is recycled 60 times, the cost and EROI of the system fail to reach those 291 

of “base case” PR in H2O (Fig. 3b). It is therefore unlikely that PR in NaOH will ever be 292 

economically, environmentally or energetically favourable, unless it is coupled to waste 293 

streams that are already highly alkaline (e.g. paper mills). 294 

While carbon footprints can estimate process sustainability, other indicators should also 295 

be assessed for a more holistic overview. For a water-based and sunlight-driven technology 296 

like PR, water and land usage are of interest. PR currently requires a large excess of water: 297 

~140 LH2O kgH2
−1 for the “base case.” While this may improve to 15-20 LH2O kgH2

−1 in an 298 

optimistic scenario, the water footprint is still high in comparison to steam reforming (~4-5 LH2O 299 

kgH2
−1) or electrolysis (~10 LH2O kgH2

−1).4 Access to abundant and sustainable water sources 300 

will be crucial for a PR plant, unless seawater proves to be a viable solvent. The land usage 301 

of PR is more competitive, producing 160 W m−2 in the base case. While this value varies 302 

between 3-250 W m−2 depending on PR efficiency, it is still comparable to photovoltaics (4-13 303 

W m−2) and the lower end of natural gas combustion (100-1500 W m−2).60 All of these metrics 304 

– cost, carbon footprint, water footprint, land use and EROI – and their potential trade-offs 305 

must be kept in mind when optimising parameters in order to develop a PR process that is 306 

both economically-viable and environmentally-friendly. 307 

The analysis thus far has not considered the extraction or sale of organic chemicals, as 308 

it is difficult to assume a given product purity and concentration when current PR research has 309 

yet to demonstrate selective oxidation to value-added chemicals. However, it is still important 310 

to understand the role that oxidation products might play in a future PR process. Fig. 3c shows 311 
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the energy content of an organic product versus the energy required to separate it by 312 

conventional distillation at different PR conversion rates (% of hydrogen available in the 313 

system that is released as H2 gas each day) and substrate concentrations. Once this ratio 314 

passes one, it becomes worthwhile to extract the chemical. For a lower energy content 315 

molecule such as formic acid, the breakeven point is only surpassed at high substrate 316 

concentrations (>0.35 kg L−1, ~10 times higher than that used in the previous analysis) and 317 

conversions (>30% per day). While distillation of higher energy content molecules like ethanol 318 

can be achieved more easily (waste concentration >0.075 kg L−1, conversion >8% per day), 319 

significant improvements in oxidation selectivity, as well as substrate solubilisation and 320 

catalyst efficiency, must still be made for product extraction from PR to be viable. If the overall 321 

PR rate remains low, high value chemicals such as pharmaceutical components would need 322 

to be produced in order to reap significant economic benefits (Fig. 3d). For example, oxidising 323 

biomass to 3-hydroxybutyrolactone (3-HBL), a precursor for chiral drugs, could reduce the 324 

cost of H2 production to £3 kg−1 at PR conversions as low as 0.2% per day (not considering 325 

chemical extraction and purification costs). The generation of aqueous oxidation products 326 

would also reduce the carbon footprint by up to 58% for “base-case” PR in H2O, as the 327 

chemicals act as a carbon sink to prevent the release of CO2 into the atmosphere. Although 328 

selectively producing complex molecules may prove difficult given the variability of real waste 329 

streams, it could greatly enhance overall PR viability. 330 

Figure 3. Feasibility of pilot scale photoreforming. (a) Model photoreforming pilot plant capable of 331 
processing 4000 L of solution and 100-300 kg of waste per day over 12 kg of CNx|Ni2P in 400 m2. (b) 332 
Sensitivity analysis of H2 production cost, carbon footprint and energy returned on invested (EROI) upon 333 
variation of individual parameters between low (blue) and high (red) estimates. The round circles in 334 
“catalyst reuse” show the effect of utilising a more expensive photocatalyst (TiO2|Pt). Calculations are 335 
based on PR in H2O; PR in 1 M NaOH is only studied in the final entry “NaOH reuse”. See 336 
Supplementary Tables 10-13 and Supplementary Methods for further details. (c) The ratio of energy 337 
contained within an organic product versus energy required for its distillation at different photoreforming 338 
conversion efficiencies and waste concentrations. (d) Price of the organic product needed to reduce H2 339 
cost to £3 kg−1 at different daily conversions and substrate-to-product molar ratios; energy required for 340 
product extraction is not taken into consideration.  341 
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Comparison to alternative technologies 342 

Comparison to other waste-to-fuel technologies highlights some of the advantages and 343 

disadvantages of PR (Table 1, Supplementary Table 14, Supplementary Discussion). 344 

Although incineration is used to generate energy from 22% of MSW in high income countries,5 345 

it will not be discussed here as we focus specifically on the production of fuels and value-346 

added chemicals. Of the available waste-to-fuel technologies, gasification and pyrolysis are 347 

already used industrially. These endothermic processes use high temperatures to convert 348 

biomass, plastic or municipal waste into a gas mixture (syngas, gasification) or synthetic crude 349 

oil (pyrolysis).61,62 The incoming waste feedstock must be relatively dry (<15% moisture),33 350 

and additional steps are needed to upgrade syngas into H2 or other fuels, or to further process 351 

the crude oil.61,62 Although PR cannot currently compete economically with gasification or 352 

pyrolysis, it benefits from low energy requirements that can be supplied by sunlight, 353 

compatibility with wet waste, minimal purification of H2, non-production of high global warming 354 

potential gases like CH4, and a comparatively simple reactor setup. 355 

Fermentation is a low-temperature, bio-based technology that uses microorganisms to 356 

metabolise biomass or food waste (plastics are not compatible).63 Although fermentation is 357 

already used industrially for biogas or ethanol production, H2 generation is still in the up-scaling 358 

phase.63 The H2 price is resultantly high, and comparable to that predicted for a pilot-scale PR 359 

plant. Fermentation is also increasingly used to generate fine chemicals such as levulinic acid 360 

or succinic acid from biomass or food waste.64,65 Fermentation and PR rely on similar process 361 

conditions – low temperatures, slow reaction rates, aqueous medium, production of both 362 

gaseous and liquid chemicals – and lessons learned during up-scaling of fermentation may 363 

be applicable to PR. 364 

As with all components of a carbon-zero future, successfully recapturing the energetic 365 

and chemical value in waste will require a combination of different technologies working in 366 

synergy. The relatively simple setup and versatility of PR could be particularly beneficial for 367 

small-scale, decentralised applications in which the waste feedstock and H2 application are 368 
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specifically tailored to customer needs. With this in mind, it is important that future researchers 369 

and engineers develop PR as a complete system – waste collection, pre-treatment, 370 

photocatalysis, liquid disposal or recycling, and product distribution – rather than focussing 371 

exclusively on the photocatalytic step. 372 

Table 1. Comparison of photoreforming to alternative waste-to-fuel technologies. MSW = municipal 373 
solid waste. See Supplementary Table 14 and Supplementary Discussion for more details.  374 

 Gasification Pyrolysis Fermentation Waste-to-
chemical Photoreforming 

Feedstock Biomass, mixed 
plastic, MSW 

Biomass, mixed 
plastic, MSW Biomass, food  Biomass, food 

Biomass, polar 
plastic, food, 

MSW 
Temp. (°C) 600-1000 300-900 25-70 37-220 10-60 

Products 
(and side 
products) 

H2 
(CH4, CO, CO2, 

ash, tar) 

Bio/synthetic 
crude oil 

(ash, char) 

H2 
(CH4, CO2, NH3, 
organics, solids) 

Levulinic acid 
(formic acid) or 
succinic acid 
(liquid waste) 

H2 
(CO2, organics) 

Price  
(£ / GJ product) 9-42 1-31 11-380 1.3-6.5 / kg acidic 

product 
60-290 

(pilot scale) 

Carbon 
Footprint  
(g CO2-eq) 

13-124 / 
MJ H2 

10-85 / 
MJ crude 

28-5000 / 
MJ H2 

-800-5300 /  
kg acid 

35-125 / 
MJ H2 

TRL (1-9) 6-8 5-8 5-6 7-8 3-4 

Advantages 

§ Fast 
§ High yields 
§ Industrial scale 

§ Compatible with 
many wastes 

§ Product 
compatible with 
existing fuel 
infrastructure 

§ Bio-based and 
low energy use 

§ Compatible with 
wet waste 

§ Low capital cost 

§ High yields of 
high-value 
products 

§ Fast 

§ Compatible with 
mixed and wet 
wastes 

§ Sunlight-driven, 
low temperature 

§ Pure H2 stream 
§ Simple setup 

Disadvantages 

§ High 
temperature 

§ Needs dry waste 
§ Post-treatment 

to purify gas 
§ High capital cost 

§ High 
temperature 

§ Different wastes 
yield different oil 
compositions 

§ Post-treatment 
to purify oil 

§ Not compatible 
with plastic or 
mixed waste 

§ Pilot-scale 
§ Slow 

§ Needs well-
defined waste 
streams 

§ Plastic waste is 
less studied 

§ Still lab-scale 
§ Low yields 
§ Slow 

References 66–75 62,76–83 63,84–89 64,65,90–93 this work 

 375 

Future research directions 376 

Five key areas for future PR research can be identified from this feasibility analysis (Fig. 4). 377 

First, solubilisation of the waste feedstock can greatly improve efficiency. However, the 378 

alkaline pre-treatments commonly reported for PR are unlikely to be feasible on a large scale 379 

due to the cost and environmental impact of NaOH purchase and disposal. High temperature 380 

treatments (>50 °C) are also undesirable unless they have short durations or utilise renewable 381 

methods such as solar heating. Higher feedstock concentrations (ideally >0.1 kg L−1) could 382 

increase the volumetric H2 production rate, make organic chemical extraction more feasible, 383 
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and reduce the water impact and capital costs of PR. Less chemically and energetically 384 

demanding pre-treatments that can process higher waste concentrations must be developed.  385 

Second, more efficient and durable photocatalysts should be designed. H2 evolution 386 

rates must improve by at least fifty times (rates of >0.004 molH2 gsub
−1 h−1, conversions of >50% 387 

per day, and external quantum yields of > 50%) in order for large-scale PR to be economically 388 

and environmentally feasible. Efficiencies could be enhanced through various techniques, 389 

such as extending visible light absorption, reducing charge recombination, or increasing 390 

reaction temperatures with concentrated sunlight or plasmonic materials. Catalyst design for 391 

waste PR is limited, with only TiO2, CNx and CdS reported, but researchers could draw upon 392 

water splitting photocatalyst literature.94,95 The photocatalyst must also be durable – with a 393 

lifetime of at least one year – and either recyclable from solution or affixed on a panel that can 394 

be directly used in a photoreactor. Catalyst reusability is especially important when precious 395 

metal co-catalysts are included. Methods for preventing catalyst deactivation, such as 396 

minimising the formation of oxidation intermediates that block catalytic active sites or removing 397 

those products in a regeneration procedure, should be investigated. 398 

Photoreactor development will be crucial for up-scaling of PR. This is not a trivial task, 399 

as both light absorption and photocatalyst-substrate interaction must be optimised. Two of the 400 

most common configurations for photocatalytic processes are flat panel reactors and 401 

concentrating reactors (which use parabolic mirrors to concentrate sunlight onto a transparent 402 

tube).53 Flat panel reactors are simple to design and construct but often have lower 403 

efficiencies, whereas concentrating reactors are more complicated but offer enhanced 404 

irradiation.53 The photocatalyst can be dispersed in solution or immobilised on one of the 405 

reactor surfaces; the latter will be beneficial for catalyst reuse as mentioned above. All pilot 406 

scale photoreactor setups have been designed for photocatalytic water purification, and the 407 

largest examples of photocatalytic H2 production range from 1-100 m2.96,97 While these 408 

reactors can be adapted for PR, care must be taken to ensure that they are gas-tight and 409 

compatible with tri-phasic flow (liquid water, solid waste particles, H2 gas). 410 
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The half-reaction of PR currently yields either CO2, which increases the carbon footprint 411 

of the process, or a mixture of small organic molecules, which act as carbon sinks but are 412 

difficult to extract from solution. Ideally, a future PR process would selectively produce a single 413 

high-value oxidation product. There are already several examples of photocatalytic conversion 414 

of biomass into value-added chemicals,98–100 and PR can learn from and adapt these 415 

approaches. Oxidation co-catalysts should also be explored, as these materials could facilitate 416 

charge separation and act as reaction sites for the selective transformation of different waste 417 

streams. Feedstock variation and product selectivity are not always compatible, and thus there 418 

will need to be some degree of compromise between maintaining the versatility of PR and 419 

selectively producing organic chemicals. 420 

Finally, PR has currently been used exclusively for H2 production, but it has potential as 421 

a diverse platform for other useful chemical processes. In theory, PR could be coupled with 422 

CO2 reduction to CO or other fuel building blocks, nitrogen fixation in ammonia, or even the 423 

reduction of metals in wastewaters or electronic waste. 424 

Figure 4. Recommended future research areas for waste photoreforming.  425 

 426 

In summary, nature regenerates unneeded materials into energy and nutrients, and humanity 427 

can adopt this strategy to chemically recycle waste and develop a circular economy. Most 428 

waste is rich in energy and chemical composition and should be considered an attractive 429 

feedstock, which has motivated its use in photoreforming. Photoreforming can transform many 430 

components of waste – especially biomass, food and plastic – into H2 fuel and organic 431 

chemicals using sunlight as the sole energy input. Preliminary techno-economic and life cycle 432 

assessments of photoreforming indicated that its carbon footprint is already lower than or 433 

comparable to existing methods for H2 production, waste-to-fuel conversion and waste 434 

management, although the production cost and energy balance require further improvement 435 

before industrial application can be envisaged. Major contributors to the economic and 436 

environmental feasibility of photoreforming were identified, namely substrate pre-treatment 437 
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and concentration, photocatalyst efficiency and durability, water usage and organic chemical 438 

production. Reactor design and the coupling of photoreforming with alternative reduction 439 

reactions were also recommended as future areas of research. With continued technological 440 

developments and application in tandem with other renewable technologies, photoreforming 441 

has the potential to not only generate clean fuels and mitigate waste, but also contribute to 442 

the circular and sustainable flow of materials and energy in a carbon-zero future. 443 
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