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Abstract

Nuclear stellar clusters are common in the center of galaxies. We consider the possibility that their progenitors
assumed to be globular clusters may have formed elsewhere, migrated to, and assembled near their present
location. The main challenge for this scenario is whether globular clusters can withstand the tidal field of their host
galaxies. Our analysis suggests that provided the mass-density distribution of background potential is relatively
shallow, as in some galaxies with relatively flat surface brightness profiles, the tidal field near the center of galaxies
may be shown to be able to compress rather than disrupt a globular cluster at a distance from the center much
smaller than the conventionally defined “tidal disruption radius” rt. To do so, we adopt a previously constructed
formalism and consider the secular evolution of star clusters with a homogeneous mass-density distribution. We
analytically solve the secular equations in the limit that the mass density of stars in the galactic center approaches a
uniform distribution. Our model indicates that a star cluster could travel to distances much smaller than rt without
disruption, thus potentially contributing to the formation of the nuclear cluster. However, appropriate numerical N-
body simulations are needed to confirm our analytic findings.

Unified Astronomy Thesaurus concepts: Globular star clusters (656); Moving clusters (1076); Star clusters (1567);
Stellar astronomy (1583)

1. Introduction

Gaia data reveal the prevalence of stellar streams in the
Galaxy (Deason et al. 2018; Helmi et al. 2018; Koppelman
et al. 2018; Myeong et al. 2018, 2019; Necib et al. 2019).
Similar structures are also found in M31 (Guhathakurta et al.
2006; Gilbert et al. 2009). They are thought to be the debris of
tidally disrupted stellar clusters or dwarf galaxies (Johnston
et al. 1995). In the context of the ΛCDM scenario of galaxy
formation, their progenitors are building blocks that converge
to form larger galaxies surrounded by dark matter potential
(White & Rees 1978; Blumenthal et al. 1984; Davis et al. 1985;
Navarro et al. 1995, 1996, 1997). Along the course of their
coalescence, loosely bound substructures are subjected to tidal
disruption (Ibata et al. 1994; Oh et al. 1995; Newberg &
Carlin 2016) and their debris streams contribute to the
dynamical structure of the merger byproducts (Lynden-Bell
& Lynden-Bell 1995). Some compact systems may withstand
the tidal perturbation due to the galactic potential and be
retained as globular clusters (Fall & Rees 1977). The
conventional stability boundary is the “tidal disruption radius”
rt where the intruding or satellite systems’ average mass density
is comparable to that contributed to the galactic potential. If
these systems can preserve their integrity on their way to the
central regions of galactic conglomerates, they could also lead
to the development of cusps versus cores (Tremaine et al. 1975;
Tremaine 1976a; Dekel et al. 2003a, 2003b).

Today, there are several stellar clusters, including the
Archies and Quintuplet clusters, in the vicinity of the Galactic
center (Kobayashi et al. 1983; Nagata et al. 1995; Cotera et al.

1996). These clusters have much higher internal density and
contain many more massive stars than all the known globular
clusters in the Galaxy (Figer et al. 1999; Espinoza et al. 2009).
Ideally, these clusters could have undergone orbital decay from
a few kiloparsecs away to their present location within the
Hubble time (Gerhard 2001). But the brief (a few megayears)
lifespan of massive main-sequence stars contained in them
casts a strong limit on the distance over which they may have
migrated. Moreover, the intense tidal perturbation by the
Galactic potential poses a challenge to their protracted
sustainability (Portegies Zwart et al. 2002; Gürkan &
Rasio 2005). Based on these considerations, it has been
suggested that these clusters were formed close to their present-
day location (Figer & Morris 2002).
Within 1 pc from the very center of the Galaxy, a nuclear

cluster with 107 stars surrounds an MSMBH;4.2×106Me
black hole commonly dubbed as Sgr A* (Genzel et al.
1997, 2010; Ghez et al. 1998). Although stars in the nuclear
cluster are predominantly low mass and mature (Do et al.
2009), there is a population of young OB and Wolf–Rayet stars
(Ghez et al. 2003). While the young stars may be formed
(Goodman 2003; Levin & Beloborodov 2003; Nayakshin et al.
2007) or rejuvenated (Artymowicz et al. 1993) in situ within
the past few Myr, the old star could have migrated to this
confined central region if they were once members of some
progenitor clusters that preserved their dynamical integrity
during the course of their orbital evolution (Gerhard 2001;
Madigan et al. 2014).
Many nucleated dwarf galaxies are found in the central

regions of galaxy clusters (Sandage & Binggeli 1984). Nuclear
clusters are also commonly found in other Milky Way–type
disk galaxies (Kormendy & Ho 2013). Their contribution to the
surface brightness distribution is conspicuous in their Sérsic
profiles (Böker et al. 2002; Misgeld & Hilker 2011). At the
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center of the more massive early-type elliptical galaxies,
unresolved point sources of light are ubiquitous (Ferrarese &
Ford 2005) without significant, if any, contribution from
nuclear clusters. Highly variable sources that outshine their
host galaxies over multiwavelength are dubbed as active
galactic nuclei (AGNs). They are thought to be powered by
disk accretion onto massive black holes (Lynden-Bell 1969).

The luminosity of the nuclear clusters and massive black
holes can be distinguished from that of the host-galaxy
background through the decomposition of the Sérsic and cusp
photometric surface brightness distribution. The velocity
dispersion of the host galaxies’ bulge can be obtained
independently with spectroscopic measurements. Despite the
dichotomy between the mass and morphological classification
of their host galaxies, surveys indicate that the mass Mc of both
nuclear clusters and massive black holes are correlated with the
velocity dispersion σ in the bulge of their host galaxies
(Ferrarese & Merritt 2000; Gebhardt et al. 2000). They have
similar power-law Mc–σ relationships (Ferrarese et al. 2006);
albeit for intermediate-mass galaxies (such as the Milky Way)
that contain both populations, the nuclear clusters are on
average a few times more massive than the massive black holes
(Kormendy & Ho 2013).

These tantalizing general scaling laws signal the possibility
of some links between the dynamics of nuclear clusters during
the evolution from relatively low mass to massive galaxies. If
the merger tree is the pathway for galactic assembly, nuclear
clusters and central massive black holes would coagulate
together with the host building block galaxies (Pfeffer et al.
2014). After their orbits are virialized, relatively massive
entities may undergo further orbital decay due to the effect of
dynamical friction (Tremaine 1976b; Just et al. 2011;
Neumayer et al. 2020). One important issue is under what
condition can dense stellar clusters survive tidal disruption on
their way to the center of galactic bulge (Fellhauer & Lin 2007;
van der Marel et al. 2007).

The smallest and most common dwarf galaxies represent a
microcosm of such an evolutionary pathway (Ferguson &
Sandage 1991). Some dwarf galaxies contain multiple globular
clusters. For example, the nearby Fornax dwarf spheroidal
galaxy (dSph) hosts six globular clusters (Wang et al. 2019),
and their orbital decay timescale, due to dynamical friction, has
been estimated to be less than 1 Gyr (Hernandez &
Gilmore 1998). These clusters remain in the field of Fornax
due to the tidal stirring by the Galactic halo potential (Oh et al.
2000). In contrast, many nucleated dwarf galaxies are found
inside the much larger core radius (on megaparsec scales) of
some galaxy clusters (Binggeli & Cameron 1991). These
nucleated dwarfs are characterized by central cusps in their
surface brightness distribution. Moreover, some of these
nucleated dwarfs also nest globular clusters (Miller &
Lotz 2007). Their nucleated structure, including that of
ultracompact dwarf galaxies (Drinkwater et al. 2003), may be
byproducts of merging globular clusters (Goerdt et al. 2008). In
order to account for the dichotomy between multiple floating
globular clusters in the Fornax dSph and the omnipresence of
nucleated dwarf galaxies in the central cores of galaxy clusters,
Oh & Lin (2000) suggest that the tidal perturbation from the
cluster of galaxies is compressive due to its shallow density
slopes (Navarro et al. 1996). Similar processes may also play a
role in the formation of the Sérsic surface brightness profile
found in most elliptical galaxies (Emsellem & van de

Ven 2008), heating of disk galaxies in the center of galaxy
clusters (Valluri 1993), and globular clusters during their
crossing of the Galactic disk (Ostriker et al. 1972).
As dwarf galaxies coalesce into larger entities, nuclear

clusters on different branches of the merger tree also converge.
After the postmerger virialization, the nuclear clusters’ ability
to undergo orbital decay and to survive against tidal disruption
determine the Mc and σ values for their amalgamated
byproducts. The accumulation of multiple nuclear clusters in
confined regions may also promote the emergence of massive
black holes (Capuzzo-Dolcetta 1993). Finally, preexisting
massive black holes in the center of elliptical galaxies may
maintain their local dominance by tidally disrupting incoming
nuclear clusters (Gerhard 2001) at rt comparable to or larger
than the massive black holes’ radius of dynamical influence (
i.e., ∼GMSMBH/σ

2). Similarly newly arriving massive black
holes may also disrupt preexisting nuclear clusters. This effect
may account for the exclusion of nuclear clusters around
massive black holes in the center of elliptical galaxies.
In galaxies with a highly peaked central mass concentration

and a steep declining surface brightness gradient, the critical
condition for tidal disruption of a globular cluster is similar to
that of stars around supermassive black holes (SMBHs) or
planets around stars. An entity with a mass M0, radius R0, an
average density ρ=3M0/4πR0, and a parabolic orbit undergo
tidal disruption around a point mass MG when their periastron
distance between them is smaller than a few times the tidal
disruption radius rt=(MG/ρ)

1/3 or, equivalently, when the
“average density” associated with the point-mass potential
r p= M r3 4G G t

3 is ρ (Frank & Rees 1976). A similar tidal
limiting radius also applies to self-gravitating entities on a
circular orbit (Chandrasekhar 1969). But around the central
regions of some galaxies where the density is a weakly
declining function of distance from them, this condition is
modified by the additional gravity from the background stars in
the concentric shells that sandwich the satellite system.
Qualitatively, around a homogeneous background, stars farther
away from the center of the bulge accelerate more rapidly than
those closer to the center. This effect leads to a tidal
compression (Oh & Lin 2000; Masi 2007).
In this paper, we provide a quantitative analysis to verify the

possibility that a compressive rather than a disruptive tidal field
could preserve the integrity of globular clusters orbiting around
a spherically symmetric distribution of mass at distances much
smaller than rt. In Section 2, we consider an idealized analytic
model to examine the condition for tidal stability of a stellar
cluster following the work of Mitchell & Heggie (2007), which
itself is based on the model of so-called Freeman
(1966a, 1966b, 1966c) bar. This model has the advantage that
the cluster immersed in a stationary tidal field maintains a
uniform distribution of its mass density, ρ, and has the shape of
a general ellipsoid with unequal semimajor axes. This approach
greatly simplifies analytic analysis of the model. Then, we
formulate equations describing secular evolution of the model
proceeding when its orbit that is assumed to be circular shrinks
as a result of dynamical friction. In Section 3, we discuss
solutions to the secular equations. These solutions describe the
adiabatic adjustment in the phase-space distribution subjected
to changes in the external tidal fields. At first, we consider the
strong tidal limit and determine the critical tidal disruption
condition for power-law density distribution for the back-
ground galaxy, ρG∝R− k, under the assumption that the

2
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density in the galactic background decreases with radius
gradually, and accordingly, k is small. We show that in this
case, as expected in the bulge of some galaxies, these clusters
are practically indestructible by the tidal perturbation of the
background galaxy. Later in this section we show that the
cluster in our model remains spherically symmetric in the
formal limit k=0 corresponding to the homogeneous density
distribution for any strength of tidal field and that its radius, a,
is described by a solution to a quartic equation. We take into
account a nonzero, but formally small, value of k in the
framework of a perturbation theory and show how the critical
semimajor axes of the cluster as well as its density depend on
the strength of the tidal field. We note that clusters with a
centrally concentrated density profile are more likely to survive
tidal disruption than the homogeneous model we have adopted.
Therefore, our criteria for clusters’ preservation in a relatively
shallow background potential are robust. We explore some
astrophysical applications based on the King model, several
commonly used parameterized models, the empirical Sérsic
model for galactic bulges and elliptical galaxies, and a
composite model for the Milky Way galaxy in Section 4. We
summarize our results and discuss their limitations and
implication in Section 5. Additionally, in Section 5 we provide
a qualitative argument, which allows us to suggest that at least
some more realistic models of star cluster evolution in a tidal
field of a galaxy corresponding to nearly homogeneous mass
density of galactic matter could behave similarly to our
idealized toy model.

2. An Analytic Model of a Star Cluster in a Compressive
Tidal Field

For mathematical convenience, we adopt the boundary
conditions that (1) the density of the background galaxy is
spherically symmetric, (2) the cluster is on a circular orbit
around the center of the galaxy, and (3) the mass density inside
the cluster is homogeneous. Under these conditions, we
consider (1) the gravitation potential in terms of a triaxial
ellipsoid (Section 2.1), (2) the solutions of the equation of
motion for stars in the frame that is comoving with the cluster
and corotating with its orbital frequency (Section 2.2), and (3)
normal modes, frequencies of stellar motion, and adiabatic
invariants in terms of action variables associated with the
normal modes. These quantities enable us to extrapolate the
density and shape adjustments to gradually increase in the tidal
potential (Section 2.3). Physically, this approximation repre-
sents the slow decay of the cluster’s nearly circular orbit to the
proximity of the galactic center, starting from very large
galactic distances where the external field is negligible and the
stellar cluster is spherical symmetric.

2.1. Basic Definitions and Relations

We adopt the same noninertial right-handed Cartesian
coordinate system as in Bertin & Varri (2008) with x-, y-,
and z-axes directed outward from galactic center, in the orbital
plane, and perpendicular to it, respectively. In this system
equations of motion of stars take the form

̈ ̈

̈ ( )

 g- W +
¶F
¶

- = + W +
¶F
¶

=

+
¶F
¶

+ W =

x y
x

x y x
y

z
z

z

2 0, 2 0,

0, 1

2

2

where the dot stands for the time derivative, Ω is the angular
frequency of orbital motion assumed to be circular:

( )W =
¶
¶

F
R R

1
, 2G

2

R is the distance from galactic center, and ΦG is the
gravitational potential of a galaxy. The quantity γ can be
expressed in terms of Ω and epicyclic frequency, κ, as

g k= W - = F - F4
R

d

dR G
d

dR G
2 2 2 1 2

2 . For a spherically sym-
metric distribution of galactic mass density, ρG, assumed from
now on we can express Ω and γ in terms of ρG as

( )ò ò
p

r g
p

rW = = -
G

R
R dR

G

R
R dR

d

dR

4
,

4
, 3G G

2
3

2 2
3

3

where G is the gravitational constant. Note that the latter
equation yields γ2>0.
Physically, the sign of γ2 is determined by interplay between

tidal and centrifugal forces acting in the x direction, relative to
the cluster center. Although it is easy to show that the tidal
force is attractive, when γ2<Ω2 the centrifugal is always
repulsive with its absolute value always larger than that of tidal
force. Thus, the combination of two forces is always repulsive
when γ2>0, and neutral when γ2=0, which corresponds to a
homogeneous density of galactic stars.
The gravitational potential of stars in the cluster Φ obeys the

Poisson equation

( )p rDF = G4 , 4

where Δ is the Laplace operator and ρ is the mass density of
the stars.
Equations (1) have the well-known Jacobi integral

( )= + F + FE
v

2
, 5ext

2

where v is the absolute value of velocity of a star and

( )g
F =

W
-

z x

2 2
6ext

2 2 2 2

is the sum of potentials of tidal and centrifugal forces.

2.2. Equations of Motion in Canonical Form for a Model with
Homogeneous Density Distribution

In what follows we are going to use a model of a star cluster
proposed in Mitchell & Heggie (2007), which is related to the
Freeman (1966a, 1966b, 1966c) models for uniform density
rotating bars. Although the model is rather artificial it has the
advantage that the stellar density of the cluster is homogeneous
and the cluster has the form of an ellipsoid. This allows for an
analytic treatment of the problem on hand.
We use below the fact that the gravitational potential of an

ellipsoid having a uniform density ρ has the quadratic form

( )åp rF =
=

G A x , 7
i

i i
1,3

2

where we set to zero the unimportant constant part and the
indices 1, 2, and 3 stand for x, y, and z, respectively. The
dimensionless quantities Ai can be expressed in terms of two
angles, θ and f, determined by ratios of ai. Namely, let us
arrange the axes ai in ascending order amin�aint�amax and

introduce θ and f according to the relations q = -
-

sin a a

a a
max
2

int
2

max
2

min
2

3
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and f =cos a

a
min

max
. It may be then shown that Ai can be

expressed in terms of incomplete elliptic integrals; see, e.g.,
Chandrasekhar (1969). For our purposes, however, it is more
convenient to use the equivalent explicit expressions

( )
( )

( )ò
f q f

f
f

f
q f

=
D

¢
¢
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f
A d

2 cos ,

sin

sin

,
, 81

1 2

3 0

2

1 2

( )
( )

( )ò
f q f

f
f

f
q f

=
D

¢
¢

D ¢

f
A d

2 cos ,

sin

sin

,
, 92

1 2

3 0

2

3 2

where Δ(θ, f)=1−sin2θ sin2f, and we take into account
that å ==

= A 2i
i

i1
3 , and therefore ( )= - +A A A23 1 2 .

Using the expression (7) Equation (1) can be brought in a
standard form by introducing three new frequencies:

( )
w p r g w p r w p r= - = = +WG A G A G A2 , 2 , 2 .

10
1
2

1
2

2
2

2 3
2

3
2

We have

̈ ̈ ̈
( )

 w w w- W + = + W + = + =x y x y x y z z2 0, 2 0, 0.
11

1
2

2
2

3
2

It is seen that motion in the vertical direction corresponds to a
simple oscillator having the energy ( ) w= +E z z3

1

2
2

3
2 2 . It is

well known that the so-called action variable

( )w=I E 123 3 3

is an adiabatic invariant, which stays constant when parameters
of the problem change slowly.

The “horizontal” coordinates x and y are coupled by Coriolis
force. Accordingly, motion in the horizontal direction corre-
sponds to a two-dimensional rotating oscillator. In order to
introduce the action variables I1 and I2 for such an oscillator we
are going to introduce a canonical change of variables bringing
the systems to the form of two decoupled linear oscillators.

For that, at first we integrate the first two Equations of (11)
representing the general solution in the following form:

˜ ˜ ˜ ˜ ( )a a= + = +x x x y y y, , 131 1 2 1 2 2

where

˜ ˜ ( )= Y = Yx D y Dcos sin , 141,2 1,2 1,2 1,2 1,2 1,2

sY = + Yt1,2 1,2 1,2
0 , Di and Yi

0 are arbitrary constants, while
eigenfrequencies σi can be found as solutions of a biquadratic
equation

(
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and

( )a
s

w s
=

W
-

2
, 16i

i

i i
2 2

where the indices i=1, 2.
It is convenient to represent equations of motion in the

horizontal direction in the canonical form introducing the
corresponding Hamiltonian

( ) ( ) ( ) ( )w w=
+ W

+
- W

+ +H
P y P x

x y
2 2

1

2
, 171

2
2

2

1
2 2

2
2 2

where P1 and P2 are canonical conjugates of x and y,
respectively.
Now one can prove by a direct substitution that when new

coordinates, q̂i, and momenta, P̂i, are introduced according to
the rule

˜ ˆ ˜ ˆ ˜ ˆ ˜ ˆ

( )

s s
= = - = =y
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f
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f
P y

f
q
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,
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2
1 2 2 2

2

2
1 2 2

where

( )
( )

( )
s s s

s w
=

-

-
f , 19i

i i j

i i

2 2 2

2 2

where ¹i j, the coordinate transformation (13) and (18)
together with corresponding transformation of the momenta

( ) ˜ ( ) ˜ ( )a s s a= - + W - + WP y y , 201 1 1 1 2 2 2

( ) ˜ ( ) ˜ ( )s a a s= + W + W +P x x 212 1 1 1 2 2 2

provide a canonical transformation, which brings Hamiltonian
(17) to the diagonal form

( ˆ ˆ ) ( )s= + = + =H E E E P q f D,
1

2

1

2
. 22i i i i i i1 2

2 2 2 2

Accordingly, the quantities

( )
s s

= =I
E

f D
1

2
23i

i

i i
i i

2

are the action variables. Therefore, they are adiabatic
invariants.

2.3. Equations for Secular Evolution of a Star Cluster with a
Homogeneous Stellar Density

Following Mitchell & Heggie (2007), we use the simple
expressions for the gravitational potential discussed above. It is
assumed that, initially, at a moment of time t=t0, the cluster is
situated far from galactic center and the tidal effects as well as
the ones due to the presence of Coriolis force can be neglected.
Also, we assume that initially the cluster has the form of a
sphere of radius r0 and mass M, and its initial density is
r =

p
M

r0
3

4 0
3 . Therefore, at t=t0 we can set in Equations (10)

Ω=γ=0. Due to the assumption of spherical symmetry
A1=A2=A3, it is easy to see from (10) that

( ) ( ) ( )w w w w= = ºt t t1 0 2 0 3 0 0, where

( )w r= pG . 240
4

3 0

This quantity is used as a normalization factor in Section 3.1.
The orbit of the cluster assumed to be circular shrinks with

time and, therefore, at later times the tidal and Coriolis effects
should be taken into account. The frequencies (10) are, in
general, different from each other; the main axes of ellipsoid,
a1, a2, and a3 are different from r0; and the stellar density ρ
differs from ρ0.
It is the purpose of this section to find equations for the

evolution of the main axes and density under the assumption of
the slowness of change of the cluster orbit provided that
initially their values are equal to r0 and ρ0, respectively. We
consider the so-called β-model of Mitchell & Heggie (2007)
where the amplitude D2 defined in (14) is equal to zero for all
stars retained by the cluster. Additionally, it was shown in

4

The Astrophysical Journal, 904:171 (11pp), 2020 December 1 Ivanov & Lin



Mitchell & Heggie (2007) that, for self-consistency, the relation

∣ ∣ ( )a =
a

a
, 251

1

2

where α1 is defined in (16), should be satisfied for all times.
This relation stems from the following arguments. The solution
to Equation (11) describing vertical motion of a star can be
written in the form = Yz D cos3 3, where wY = + Yt3 3 3

0, D3,
and Y3

0 are constants of motion. Obviously, a star attains the
maximal value of z=D3 when Y =cos 13 . At these moments
of time the orbit must touch the boundary of the ellipsoid, and

accordingly, there should be + + = 1x

a

y

a

z

a

2

1
2

2

2
2

2

3
2 . From (13) and

(14) it follows that this condition can be rewritten in the form
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1
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1

2
2

3
2

3
2

Equation (26) must be satisfied for all values of Ψ1, which is
possible only when Equation (25) is valid. In this case from
(26) it follows that

( )+ =
D

a

D

a
1. 271

2

2
2

3
2

3
2

From Equation (27) it is seen that the maximal value of D1 is a2
and the maximal value of D3 is a3.

Now we express the adiabatic invariants I3 and I1 given by
Equations (12) and (15) through a2 and a3 assuming that the
former invariant is evaluated for a trajectory with the maximal
D3 and D1=0, while the latter one is evaluated for a trajectory
with the maximal D1 and D3=0. Since these quantities stay
approximately constant during the evolution of our system they
can be evaluated twice, for the initial moment of time and for
some arbitrary time, thus linking values of the quantities of
interest to the initial ones. We have

( )w s a w s
= = = w

w
a

f
r a

f
r a r

2
,

2
, . 281

0 1 1
2

1
0 2

0 1

1
0 3 0

0

3

Note the factor 2 in the first and second expressions in (28). It
appears because wf 21 0 in the limit W  0; see
Equation (45).

Additionally, from the law of mass conservation we obtain
the obvious relation

( )r
r

=
r

a a a
. 290 0

3

1 2 3

Equations (28) and (29) are the evolution equations of our
model. In general, they must be solved numerically, since
values of main axes enter the right-hand side implicitly,
through the dependency of the coefficients A1, A2, and A3 on
them. Note that the solutions should be different from the
solutions of an analogous incompressible model. This differ-
ence stems from the fact that the analog of pressure, velocity
tensor á ñv vi j , where brackets stand for averaging with a
distribution function in phase space, is not zero at the surface
in the stellar dynamical model.

3. Solutions of the Secular Equations

Based on the above formalism, we examine the condition
under which the tidal perturbation from the galactic potential is
compressive. Around a point-mass potential, a cluster would be
tidally disrupted if its galactic orbital frequency ω is larger than
its characteristic internal frequency ω0. However, around a
galaxy with a shallow density distribution, a cluster may
preserve its integrity deep in the galactic potential where
ω?ω0. We first consider an idealized case of negligible γ2

that corresponds to a homogeneous density distribution of
galactic stars. We show that the compression by the galactic
tide preserves the spherical shape of the cluster. When the first-
order contribution of a small γ2 is taken into account, we
identify the condition for tidal disruption in terms of the ratio
between γ2 and angular frequency Ω2 (Section 3.2). We
introduce a idealized power-law density for the galaxy and
estimate the critical radius rt outside which a cluster would
withstand tidal disruption (Section 3.3). In the limit of small γ2,
we show that the tidal perturbation from a background potential
due to a relatively flat density distribution is predominantly
compressive (Section 3.4). For the Milky Way, we suggest the
disk contribution to the tidal field, if dominant, can ensure the
survival of migratory stellar cluster (Section 4.3).

3.1. Natural Units

In what follows it it convenient to express all quantities of
the dimension of a frequency entering the problem apart from
γ, such as σi, ωi, and Ω in units of ω0; semimajor axes ai in
units of r0; and density in units of ρ0. This will be implicitly
implied hereafter.
We also introduce the ratio of γ to angular frequencies of the

cluster’s orbit around the galaxy,

˜ ( )g gº W. 30

For a point-mass galactic potential, it is 3 . But we are
considering potentials for galaxies with relatively shallow
density distribution. In this case, g̃ can be treated as a small
parameter, and a simple analytic solution of the secular
equations is possible.

3.2. The Limit of a Strongly Compressed Star Cluster

First, let us consider a star cluster situated deep within the
potential well of a galaxy assuming that Ω?1. Note that the
condition Ω>1 may be used as the tidal disruption condition
in the standard situation when g̃ ~ 1. We assume, however,
that g̃ is small and may be neglected in the leading
approximation. In this limit Equation (15) tells us that
σ1≈2Ω and σ2≈0. In this case it is seen from
Equations (16) and (19) that we have α1≈−1 and
f1≈4Ω2. Using Equation (25) we find that a1≈a2, while
Equations (28) tell us that » » »

W
a a a1 2 3

1 . In summary, in
the leading approximation a strongly compressed star cluster
maintains its spherical form with both f and θ being small and

( )rº » W » W-a a , . 31i
1 2 3 2

The next-order corrections taking into account effects of
nonzero g̃ and self-gravity can be easily found using the fact
that, for a spherical cluster, all Ai in Equation (10) are equal to
2/3, and that we can can use these and the expressions (31)
when considering ωi in Equation (15), since these characteristic
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frequencies are assumed to be much smaller than Ω. We obtain

from (10) ( )s » W + w w+2 11 8
1
2

2
2

. Equations (25) and (28) can
be used again to find the corrected values of ai and ρ. Since
calculations are straightforward we show only the following
results:

⎛
⎝⎜

⎞
⎠⎟

˜ ( )g
=

W
-

W
+a

1
1

1

4 16
, 321 1 2 1 2

2

⎛
⎝⎜

⎞
⎠⎟

˜ ( )g
=

W
-

W
+a

1
1

1

4

3

16
, 332 1 2 1 2

2

⎜ ⎟⎛
⎝

⎞
⎠ ( )=

W
-

W
a

1
1

1

4
, 343 1 2 1 2

⎛
⎝⎜

⎞
⎠⎟

˜ ( )r
g

» W +
W

-1
3

4 4
. 353 2

1 2

2

From the above equations, it is seen that the corrections are
small when g̃ < 1 and Ω?1, and that a1<a2, i.e., the
cluster elongation in the direction of motion is larger than the
one in the direction of the galactic center. This orientation is
orthogonal to that of the analogous incompressible fluid model,
where the axis is elongated in the direction of the galactic
center.

Although the corrections get smaller with an increase of Ω
when it gets sufficiently large ω1 defined in Equation (10)
becomes imaginary, which results in runaway of stars from the
cluster and its disruption. Equating ω1 to zero and using
A1=2/3 and the expressions (31) we find a very simple
criterion of tidal disruption of a cluster in our model—the
cluster is disrupted when

˜ ( )g gº W > W- . 361 4

3.3. A Simple Model of Galactic Tidal Field

As an example of distribution of galactic density let us
consider a power-law dependence

( ) ( )r r= -R R , 37G
k

0 0

noting that it is normally expected that a cluster would be
disrupted at R∼R0. From Equation (3) it follows that in case
of distribution (37) we have

⎜ ⎟⎛
⎝

⎞
⎠˜ ˜ ( )g = W =

-
-k

k
R,

3

3
, 38k1 2

1 2
2

where ˜ =R R R0. From our criterion for tidal disruption (36) it
follows that the cluster is disrupted when R<RT, where

⎜ ⎟⎛
⎝

⎞
⎠ ( )=

-
R

k
k R

3

3
. 39T

k
k

1
4

0

It is very interesting to note that according to the criterion (39)
the cluster is practically indestructible even when k is not very
small (see Figure 1). Say, when k=0.5 we have
RT≈6×10−3R0.

3.4. An Analytic Solution of the Secular Equations in the Limit
of Small g̃

Equation (35) tells that when the g̃ = 0 cluster remains
spherical in the limit of strong compression Ω?1. On the

other hand, it is obviously spherical when the tidal field is
absent and Ω=0. This suggests that it is reasonable to assume
that it is spherical when γ=0 for any value of Ω. We are
going to show that this is indeed the case and consider the
following ansatz for the axis ai and the frequencies ωi:

( )

( )

d w

w

= - = + D

= + D + W

-

-

a a a

a

1 , ,

, 40

i i0 1,2
2

0
3

1,2

3
2

0
3

3
2

where it is implied that both δi and Δi are small being
proportional to g̃2. Substituting the expressions for the
frequencies into (10) and (69) and taking into account (29)
we get

( )

( ) ( )

d d d g

d d d

D = + + -

D = + +

a

a

3

5
3 ,

3

5
3 . 41

1
0
3 2 2 1

2

2,3
0
3 1,2 3,1 2,3

Now we substitute (41) in (15) to obtain

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )s w

w w
=  W +

D + D
 W

1
4

, 421,2
2 2 1 2

*
* *

where

( )w = W + -a . 432
0

3
*

Note that when g̃ = 0 ω*=ω3.
We substitute (41) in (16) and (19). From (16) we get

( )
( )a

w
= +

D - D
W + W

1
2

, 441
2 1 2

*
and from (19) we get

⎛
⎝⎜

⎞
⎠⎟( )

( )s
w w w

= +
D - D
W + W

-
D + D

f

2 1
1

4 4
. 451

1

2 1 1 2
2

* * *

Note that in the limit W  0 we have s w w,1 0* and,
therefore, wf 21 0. This explains the factor 2 in (28). From
the expression for ω3 and the definition of Δ3 we
get ( )w w= +

w
D13 2

3
2* *
.

Now we substitute the expressions above into the secular
Equation (28). All Equations (28) result in only one zero-order

Figure 1. The dependence of Rt on k given by Equation (39).
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equation for the quantity a0

( )
w

= =
W + -

a
a

1 1
. 460

2

2
0

3
*

This justifies our assumption that when g̃ = 0 the cluster
remains spherical for all values of Ω. It is obvious that (46)
results in a quartic equation for a0 with coefficients depending
only on Ω. The physically acceptable solution of this equation
is shown in Figure 2 as a solid line. As a dashed line we show
the corresponding asymptotic solution in the limit of large Ω,
a0≈Ω−1/2, and as a dotted line the approximate solution in
the limit of small Ω, a0≈1−Ω2, is shown.

The perturbed part of the secular equations can be compactly
written introducing new variables δ±=δ1±δ2 and
Δ±=Δ1±Δ2. We have

( )
( )d

w
d

w
=

D
=

D
W + W

+
+

-
-

4
,

4
. 473,

3,
2
* *

We substitute (41) into (47) to obtain

( )

( )

d
d

d
d

=
W + W +

= -
+

- +
- +

a a a

a

a a
,

1

1
,

48

2
0
4

0
2 3

10 0

9

10 0

21

20 0
9

40 0
2

* *

( )
˜ ( )d

d
d

g
w

= -
- +

=
W

a a

3

20 1
, where

4
. 493 21

20 0
9

40 0
2

2 2

2
*

*
*

The original quantities can be easily recovered from the
obvious relations ( )d d d= + -1,2

1

2
. When considering the

limit W  ¥ it is possible to show that the expressions (48)
and (49) give corrections proportional to g̃2, which are in
agreement with the previous result (35).

It is seen from (46), (48), and (49) that the ratios ˜d gi
2 are

functions of Ω only. We represent them in Figure 3 for δ1, δ2,
and δ3 shown as solid, dashed, and dotted lines, respectively.
One can see from this figure that all δi are negative. Thus, the
presence of a nonzero, but small γ always leads to a small
expansion of the cluster as expected. It is also seen that the
absolute value of δ3 is larger than that of δ2 when
Ω�Ω*≈0.46. When W  ¥ d  03 .

4. Applications to Some Empirical Galaxy Models

4.1. Parametric Model Potentials

In the analysis of observational data for the central regions of
galaxies, a frequently used prescription is the modified Hubble
profile (Côté et al. 2006) in which the density at R<2RK can
be approximated as

( )
( )

( )r r
r

=
+

R
R R1

, 50G K
c

K
2 2 3 2

where s p r=R G9 4K c
2 is the King radius and ρc and σ are

the central density and velocity dispersion (Binney &
Tremaine 2008). Since ρK is approximately homogeneous
and k∼0, the tidal perturbation in compressive. But in the
outer regions of the King model, ρK(R)∝R−3 and the tidal
perturbation is disruptive.
For the bulge of disk galaxies and elliptical galaxies, the

classical Jaffe (1983) potential is generated from a density
distribution

( )
( ) [ ( ) ]

( )r r
r

= =
+

R
R R R R1

, 51G J
B

B B
2 2

where ρB is a normalized density and RB is the scaling
parameter. For R=RB ρJ(R)∝R−2 and k=2 the tidal
perturbation is disruptive.
Another frequently used Hernquist (1990) potential is

generated from a density distribution

( )
( )[ ( )]

( )r r
r

= =
+

R
R R R R1

, 52G H
H

H H

0
3

where ρH0 is a normalized density and RH is the scaling
parameter. For R=RH ρH(R)∝R−1 and k=1 the tidal
perturbation is disruptive.
A more general η potential (Tremaine et al. 1994) arising

from the associated density distribution is determined by

( )
( ) [ ( )]

( )

r r
hr

h= =
+

<h
h

h
h

h
h- +

R
R R R R1

, 0 3,

53

G
0

3 1

where ρη0 is a normalized density, Rη is the scaling parameter,
and η is a power index parameter. For R=Rη, ρη (R)∝R η−3

and k=η−3 such that it is reduces to the King, Herquist, and

Figure 2. The result of the solution of Equation (46) together with the
corresponding approximate expressions. See the text for a description of the
different curves.

Figure 3. We show solutions (48) and (49) of Equation (47). See the text for a
description of different curves.
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Jaffe model with η=3, 2, and 1, respectively. Moreover,
contribution from the point-mass potential of the SMBH can be
added to the η potential. Depending on the value of η, the tidal
perturbation can be both compressive and disruptive.

4.2. Empirical Sérsic Models

The surface brightness I of elliptical galaxies and the bulge
of spiral galaxies is commonly modeled (Kormendy et al.
2009) in terms of an empirical Sersic (1968) profile with

( ) [ ( ) ]= -I I b D R0 exp n S
n1 , where I(0) is central surface

brightness, D is the projected distance from the center, RS is the
scaling radius, bn=2n−0.324, and 1�n�15 is the fitting
power index. For a spheroid, the associated density at a
distance r from the galactic center can be approximated
(Prugniel & Simien 1997; Terzić & Graham 2005) by

( ) ( ) [ ( ) ] ( )r r r= = --R R R b R Rexp , 54G S S S
p

n S
n

0
1n

where ρS0 is a normalization constant. The power index can be
approximated as = - +p n n1 0.6097 0.05563n

2 for
0.6�n�10 and 10−2�R/RS�103. Observational fits
(Graham & Driver 2005) show that the magnitude of n
increases from 0.5 to 10 for a galaxy mass in the range of
107–1012Me. At the low-mass end k∼0 and the tidal
perturbation is compressive, whereas for the massive elliptical
galaxies (with n approaching 10), ρS(R)∝R−1 near the center
so that the tidal perturbation is disruptive. We thank an
anonymous referee for noting to us that the trend of the Sérsic
index most likely applies to the outer slopes, not the inner
regions, and more massive galaxies may have cores with lower
central densities. This correlation may account for the
dichotomy between the presence of nuclear clusters around
galaxies with comparable or less mass than the Galaxy and
their absence in massive elliptical galaxies.

4.3. Galactic Potential

There are several empirical prescriptions for the gravitational
potential of the Galaxy. In general, contribution to ΦG is
considered to be the sum of that due to the central SMBH
(ΦSMBH), the Galactic bulge (ΦBULGE), the Galactic disk
(ΦDISK), and the halo (ΦHALO) (Gnedin et al. 2005; Widrow &
Dubinski 2005), where

( )F = F + F + F + F , 55G SMBH bulge disk halo

( )F = -GM R, 56SMBH SMBH

( ) ( )F = - +GM R R , 57bulge bulge bulge

[( ( ) ) ] ( )vF = - + + +GM z b a , 58disk disk
2 2 2 2 1 2

( ) ( )F = - +GM R Rln 1 , 59halo halo halo

where R, ϖ, and z are the total distance, in the disk radius, and
distance above the disk; Rbulge (=0.6 kpc), a (=5 kpc), b (=0.3
kpc), and Rhalo (=20 kpc) are the scaling length for the bulge,
disk, and halo, respectively; MSMBH (=4×106Me) is the mass
of the SMBH; Mbulge (=1010Me), Mdisk (=4×1010Me), and
Mhalo (=1012Me) are the mass scaling factor for the bulge,
disk, and halo, respectively (Miyamoto & Nagai 1975;
Hernquist 1990; Navarro et al. 1997; Dehnen & Binney 1998;
Yu & Madau 2007). Various values of these model parameters
are summarized in Kenyon et al. (2008).

From the Poisson equation, we find the corresponding
density that contributes to these components of the potential:

( )
( )

( )r
p

=
-

+

M

R

R R

R R4

1

1
, 60bulge

bulge

bulge
3

bulge

bulge
3

[ ( ) ]
( )r

p v
=

+ + +

M

a b z4
, 61disk

disk

2 2 2 2 3 2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( )
( )

( )
( )

( )
( )

( )

v

v

r
p

+
+

+ +

+ + +

-
+ +

+ + +

=
+

+
- +

a

b z

a b z

a b z

z a b z

a b z

M

R

R R R

R R

R

R

3

3 1
,

4

2
ln 1 . 62

2 2

2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

halo
halo

3
halo

halo
2

halo

Deep in the galactic potential where R, ϖ, and z are relatively
small compared with other scaling parameters, ρbulge∝R−1,
ρdisk ∼constant, and ρHALO∝R−2. Only the density asso-
ciated with the disk potential becomes a slowly varying
function of R and z with k=1, γ=Ω, and compressive tidal
perturbation. This contribution is negligible over most regions
of the Galaxy including the proximity of Sgr A*. In most
regions of the present-day Galaxy, the dominant tidal
perturbation from other components (SMBH, bulge, and halo)
is disruptive. Nevertheless, during the galactic infancy, after the
formation of the disk and prior to the formation of a substantial
bulge or central black hole, it is possible for stellar clusters to
retain their integrity on their migratory routes to the galactic
center.

4.4. An Estimate of Inspiral Timescale in the Case of Galactic
Centers with Shallow Density Profiles

Nuclear clusters arrive in the galactic center under the action
of dynamical friction. In this subsection, we estimate the
clusters’ typical inspiral timescale TDF. For the galactic
background potential, we use a general power-law density
distribution (37), which, as follows from the previous section,
can be used to describe many expected density profiles in inner
parts of galaxies. To find TDF we use the expression (8.9) in
Binney & Tremaine (2008) to determine the absolute value of
force appearing due to the effect of dynamical friction, F̃ .
Whereas the original calculation is appropriate for the case of
k=2, we modify F̃ for a generalized power-law density
distribution such that

˜ ( )
r

» LF
G M

V
5.38 ln , 63G

2 2

2

where, to be consistent with the notation in other sections, M is
the cluster mass, lnΛ is the column logarithm, and V=ΩR is
the cluster’s orbital velocity. Note that the orbit is assumed to
be nearly circular during the whole orbital evolution. This
assumption may not actually be valid for the shallow density
profiles, since in this case the orbital eccentricity may grow
(Polnarev & Rees 1994; Vecchio et al. 1994). However, we
neglect this effect here assuming that it would not significantly
change our order-of-magnitude estimates.
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In the above expressions, the representative density for the
cluster (ρ) is formally less than that of the galactic background
(ρG) at location <R R0 (where they are equal). However, the
total stellar density within the volume occupied by the clusters’
stars is the sum of bound cluster stars and that of the galactic
stars that merely pass through the cluster. Physically, ρ
represents an overdensity, and accordingly, mass M is the
mass excess.

In order to estimate the dynamical friction timescale,

˜ ( )~T
MV

F
, 64DF

we need to specify the mass and spatial scales for both the
cluster and its host galaxy. For galaxies with density profile
(37), we scale ρ0 in terms of a reference mass MG at a given
radius R*. For galaxies similar to the Milky Way (Kenyon et al.
2008), we scale MG and R* by dimensionless parameters

M9=MG/10
9Me and R2=R*/10

2 pc. Typical values of M9

and R2 are of the order unity. We also scale the cluster’s mass
M and radius r0 by dimensionless parameters m5=M/105 Me

and r1=r0/10 pc, respectively. In the scaling in physical
units, r0 corresponds to the half-mass–radius of realistic
clusters. Using the above notations, the density profile (37)
can be represented as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )r

p
=

- -

R
k M

R

R

R

M
10

3

4 pc
, 65G

k
3 9

2
3 3

*

and the typical internal dynamical timescale associated with the
cluster

⎛
⎝⎜

⎞
⎠⎟ ( )w = » ´- R

GM

r

m
1.4 10 yr. 660

1 0
3

6 1
3

5

1 2

We substitute (63) and (65) in (64) and take into account
(38) to obtain

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

»
´
L -

-

T R
M
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R

M

R

R

1.75 10 3

3
yr,

67

k

DF

8

20

9

5

2
3

9

1 2 3 2

*

where we assume that a typical value of Λ is of the order of
( ) ~ln 10 209 and Λ20=Λ/20. Equation (67) tells us that the

dynamical friction time is reasonably fast for the considered
values of numerical parameters, but it sharply grows with R.

It is of interest to compare our tidal disruption radius RT

given by (39) with R*. Since the condition ρG(R)=ρ0 defines
the characteristic radius R0, we find

⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )=

-
R

k M

m

r

R
R10

3

3
. 68

k

0
9

5

1
3

2
3

1

*

Substituting (68) in (39), we have

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )=R k
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m

r

R
R10 . 69T

k
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1
3

2
3

1

*

Thus, the condition RT<R* results in

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )< »k

m R

M r

m R

M r
0.1 0.56 . 70

1
4

5 2
3

9 1
3

1
4 5 2

3

9 1
3

1
4

This condition rather weakly depends on the ratio of typical
densities of the cluster and galaxy. For the considered model
parameters, it is typically satisfied. For example, if we adopt the
nominal values of these scales with k=0.5, we would find
RT≈0.4R*≈40 pc.

5. Summary and Discussions

It has long been assumed that tidal perturbation on satellites
(including individual stars or stellar clusters) by an external
gravitational field is disruptive. However, the conventional
tidal disruption radius is derived for a point-mass background
potential. This approximation may not be appropriate for a
general mass distribution.
In this paper, we examine the tidal stability of stellar clusters

in a background gravitational potential with a power-law
density distribution. In order to gain some physical insight, we
construct an analytic formalism with some idealized assump-
tions. We consider a cluster with a homogeneous internal
density and a circular orbit around an spherically symmetric
slowly varying background galactic potential. This approx-
imation is analogous to the classical theory of uniform
ellipsoidal figures under tidal perturbation of a companion
(Chandrasekhar 1969). The advantage of this approach is that it
enabled us to analytically obtain the shape of the cluster and the
stellar orbits inside it. We also use these analytic solutions to
identify adiabatic invariants that can be used to extrapolate the
cluster’s adiabatic response from negligible to strong tidal
fields through slow (compared with the cluster’s internal
dynamical timescale) evolution. A similar approach has been
used by Young (1980) in his consideration of the adiabatic
black hole growth; a similar problem was also recently
considered in Jingade et al. (2016) for Sérsic models of
elliptical galaxies.
With this method, we calculate the condition under which

the stellar orbits become unstable. We show that if the galactic
density distribution is a weakly decreasing power-law function
of radius, the cluster can preserve its integrity at radii much
smaller than the conventional tidal radius, i.e., the cluster can
survive deep in the gravitational potential of the galaxy.
Although the density inside the survivable clusters is compar-
able to that of the galactic background, we suggest their
accumulation can lead to the gradual buildup of the nuclear
clusters.
There are several potential observational tests. The effect of

tidal compression enables the clusters to retain their internal
velocity dispersion as they undergo orbital decay toward the
center of their host galaxies. (1) The nuclear clusters formed
along this channel are likely to preserve their velocity
dispersion and it is generally smaller than that of the
surrounding field stars. (2) When multiple clusters reach the
galactic nuclei, the peak of their composite surface density may
be slightly displaced from the galactic center. Both of these two
dynamical effects have already been suggested and shown
through some preliminary simulations by Oh & Lin (2000). (3)
If the progenitors of the nuclear clusters originated from the
galactic halo with subsolar heavy element abundance, similar to
that of the Galactic globular clusters, their convergence at the
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galactic centers would enhance the nuclear clusters’ metallicity
dispersion in contrast to that of the surrounding field stars.
However, old and metal-deficient stars transported by the
preserved stellar clusters may be outshone by the recently
formed young and metal-rich stars, especially in AGNs
(Artymowicz et al. 1993).

Our results also show that if background density falls off
faster than r−1, the classical tidal radius may still apply. This
disruptive effect would occur if the tidal field is dominated by
the point-mass potential of SMBHs or possibly by that of
galactic bulges. We speculate this dichotomy may be the cause
of (1) mutual exclusion between nuclear clusters and SMBHs
in the center of massive elliptical galaxies and (2) the
dominance of nuclear clusters over black holes in galaxies
where they coexist, as in the case of the Milky Way.

Our analytic approach is particularly useful to highlight the
basic physical effects. Nevertheless, it is based on idealized
models of stellar clusters and adiabatic extrapolation. These
models may suffer from many potential instabilities. It is not
clear4 whether these instabilities are physically generic or
reflect the very simplified nature of our approach. Although it is
technically challenging to extend the analytic analysis to more
realistic models with a similar approach, there is a simple
argument that enables us to postulate that such models may
behave qualitatively in a similar way. Namely, when g̃ is small
and the cluster is deep within the potential well of a galaxy so
that Ω ? 1, the cluster’s dynamics should be determined by
only this frequency. In particular, an orbital period of a
“typical” star should be of the order of Ω−1, and accordingly,
its energy (per unit of mass) and the corresponding “typical”
action should be E∼a2Ω2 and I∼a2Ω, respectively, where a
is a characteristic size of the cluster. Since the action is
conserved we have a∼Ω−1/2. Now, from Equation (1) it
follows that the condition that the combination of tidal and
centrifugal forces in the x direction exceeds self-gravity force
can be approximately formulated as g̃ W > Gm

a
2 2

3 , where we
temporarily restore the physical units. Going back to the natural
units and substituting a=Ω−1/2 in the condition we have
again our tidal disruption criterion (36). Note that, perhaps, this
argument can be obtained in a more rigorous way using the
formalism based on the virial relations; see, e.g., Osipkov
(2006) for the formulation of the problem on hand.

The analytic results presented here verify, in an idealized
limit, those of some preliminary numerical simulations by Oh
et al. (2000). Those simulations were carried out for several
clusters with a more centrally concentrated density distribution
(i.e., a King model with C=1.8) embedded in one set of
background potential (a King potential with C=0.5 for a
dwarf galaxy). Follow-up numerical simulations are needed to
verify that centrally concentrated clusters are more tightly
bound by their self-gravity and are more resilient to external
tidal perturbation. Although such simulations have been carried
for a galactic halo potential (Oh & Lin 1992; Oh et al.
1992, 1995), follow-up investigations will be useful to explore
the effects of tidal compression for centrally condensed clusters
subjected to orbit decay due to dynamical friction in a more
general galactic potential. These investigations will be reported
elsewhere.
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