SINGLE-MOLECULE LOCALIZATION MICROSCOPY RECONSTRUCTION USING
NOISE2NOISE FOR SUPER-RESOLUTION IMAGING OF ACTIN FILAMENTS

Joél Lefebvre*, Avelino Javer,
Mariia Dmitrieva, Jens Rittscher'

Big Data Institute
Institute of Biomedical Engineering
University of Oxford, UK

ABSTRACT

Single-molecule localization microscopy (SMLM) is a super-
resolution imaging technique developed to image structures
smaller than the diffraction limit. This modality results in
sparse and non-uniform sets of localized blinks that need to
be reconstructed in order to obtain a super-resolution repre-
sentation of a tissue. In this paper, we explore the use of
the Noise2Noise paradigm to reconstruct the SMLM images.
Noise2Noise is an image denoising technique where a denois-
ing neural network is trained with only pairs of noisy realiza-
tions of the data (N2N) instead of using pairs of noisy/clean
images (N2C). In this paper, we have adapted Noise2Noise
to the 2D SMLM reconstruction problem, exploring different
pair creation strategies (fixed and dynamic). The approach
was applied to synthetic data and to real 2D SMLM data
of actin filaments. This revealed that N2N can achieve re-
construction performances close to the Noise2Clean training
strategy, without having access to the super-resolution im-
ages. This could open the way to further improvement in
SMLM acquisition speed and reconstruction performances.

Index Terms— Single-Molecule Localization Microscopy,
Image Reconstruction, Self-supervision, Actin

1. INTRODUCTION

SMLM is a super-resolution imaging technique developed
to image structures smaller than the diffraction limit. Many
SMLM modalities exist[1], including peptide-PAINT. This
approach uses short-peptide strands functionalized with flu-
orescent dyes that selectively bind to biological structures of
interest. The binded peptide then emits short burst of photons
that appear as isolated blinks on the recording camera. The
sub-pixel blink positions can be extracted using a variety of
fitting methods[2]. Blinking positions are accumulated until
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enough events are collected to visualize the tissue structure.
PAINT-based imaging relies on sparse blinking density in
order to achieve precise localization.

A recent technique that has tackled the SMLM reconstruc-
tion problem, where a clean image needs to be obtained from
a non-uniform and sparse set of localized blinks, is ANNA-
PALM [3]. It uses an artificial neural network to reconstruct
super-resolution representations of microtubules, nuclear
pores, and mitochondria using two orders of magnitude less
data than the conventional methods. The authors used a
convolutional neural network (CNN) that was trained in a
fully supervised setting (Noise-to-Clean, N2C). The training
task was to predict the super-resolution reconstruction im-
age from a small fraction of the localization data. Although
the authors of this paper have shown that ANNA-PALM
provides significant improvements in acquisition speed and
reconstruction quality, the acquisition of high-density data is
not always possible. An alternative to the N2C approach is
Noise2Noise (N2N) [4]. In this configuration, a denoising
network is trained by only using pairs of noisy images of
the same signal. The authors have shown that given enough
iterations, networks trained with N2N will learn to restore the
clean images, achieving close to state-of-the-art denoising
performance without ever using clean images that are often
hard or impossible to obtain.

In this paper, we explore the use of the Noise2Noise
paradigm to tackle the SMLM reconstruction problem in a
2D setting using only sparse localization data. We have im-
plemented the N2N method using a CNN inspired by U-Net
[5], an encoder-decoder network with skip connections. We
have explored two approaches to generate pairs of sparse im-
ages used to train the network: fixed and dynamic, where the
fixed pairs are generated prior to training, and the dynamic
pairs are generated on-the-fly during training. The technique
was tested using both synthetic data and 2D SMLM data
of actin filaments. Our experiments indicate that the N2N
approach achieves results close to those obtained with the
N2C training strategy, without requiring the super-resolution
images to train the reconstruction model.



2. METHODOLOGY

2.1. SMLM Reconstruction

The reconstruction model is based on Noise2Noise [4].
Briefly, lets consider pairs of sparse images (x;1,%;2) ob-
tained from two random subsets A; j selected from the set
B; of all localized blink positions for a given SMLM ex-
periment. These subsets are mutually exclusive, such that
Ai,l n ALQ = @, and Ai,l U ALQ S Bl Then the N2N
learning task consists in minimizing the following equation:

arg;ninZL(fG(Ii,l)axi,Q) (1)

where fy is the reconstruction model, # are its parame-
ters and L is a loss function. The original Noise2Noise paper
has shown that given enough data and for unclipped Gaussian
noise, the minimization converges to the unobserved clean
target y,. This training approach was also shown experimen-
tally to give good results even for other noise distributions,
such as Poisson noise, multiplicative Bernoulli noise and oth-
ers. For the SMLM problem, the reconstruction uncertainty
comes from blink localization errors, from non-uniform sam-
pling, and from data sparsity.

For this paper, we used a U-Net inspired architecture as
the reconstruction model [5]. In this network, each convolu-
tion is followed by a leaky ReLU with a negative slope of 0.1,
and without any batch normalization. All the convolutions
use a 3x3 kernel except for the initial block where a 7x7 ker-
nel is used. The downstream encoder consists of four blocks
each with two convolutions with 48 filters followed by a max
pooling. The upstream decoder consists of four blocks each
with a 2x upsampling by nearest neighbours and the corre-
sponding downstream block concatenation followed by two
convolutions with 48 filters. Finally, the output is reduced to
one channel using a convolution with linear activation. We
used the smooth L1 loss (Huber loss) as the minimization cri-
terion, wherein a L2 or L1 loss is used based on the element-
wise error magnitude. This loss was chosen because it is less
sensitive to outliers, while retaining the L2 criterion proper-
ties for small magnitude element-wise errors. To train the
network, we used the Adam optimizer with learning rate =
le-4 and weight decay = 0.0. The batch size was 128, and
the training patch size was 64x64 pixels. The training was
performed until a total of 1M samples were presented to the
network. The epoch size in term of minibatch was 100k.

2.2. Synthetic Data Generation

In order to develop and validate the N2N-based reconstruc-
tion method, we created a simple 2D SMLM simulator akin
to one used for the 3D SMLM localization challenge [2]. The
simulator is organized in three steps. First, a set of geometri-
cal primitives (B-splines, lines, circles, ellipses and rings) are

generated by randomly selecting their parameters (e.g. po-
sition, size, thickness, etc.). Then, an image of the under-
lying ground truth structure is reconstructed from the prim-
itives given a field of view size and a simulation resolution
(r = 2 mm). The third step is blink position generation.
This is done by randomly selecting emitter positions within
the ground truth image, and by modifying the blink position
by a random Gaussian noise representing the localization er-
ror. Figure 1 represents a synthetic 2D SMLM image gener-
ated with our 2D simulator.
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Fig. 1. Synthetic data reconstruction with various train-
ing strategies. GT: ground truth with color-coded geomet-
rical primitives, LD: Low density, HD: High density, N2C:
Noise2Clean, N2N - Fixed: N2N with fixed image pairs, N2N
- Dynamic: N2N with dynamic image pairs.

2.3. Super-resolution Acquisitions of Actin

We have also applied the N2N-based reconstruction to real
2D SMLM data. In this study we used fluorescently la-
belled LifeAct (Cy3b-MGVADLIKKFESISKEE-acid) as a
peptide-PAINT probe for visualization of the f-actin struc-
tures in drosophila follicular epithelium. LifeAct is a short
17-amino acid peptide that transiently binds f-actin structures
with a high specificity [6]. In order to visualize the actin
cytoskeleton, we fixed and permeabilized drosophila ovaries
(W18 flies) and mounted them on microscope slides with
the labeling solution. The flies were fattened two days be-
fore dissection and kept at 25°C. Dissection of the ovaries
was performed directly into 38°C warm Fixation Buffer (4%
formaldehyde, 2% Tween 20 in Hypotonic Buffer). Samples
were fixed for 20 min at room temperature with rotation.
Later, samples were washed and permeabilized 3x 10min
with 0.2% PBST. The ovaries were dissected on the slide,
muscle sheet was separated from egg chambers and an excess
of water was removed using pipette and tissue. Approxi-
mately 40! of Labelling Solution (5-10nM LifeAct in PBS
with 1% Catalase and 0.25% Glucose Oxidase) was added



on top of egg chambers. Microscope slides were sealed with
spacers in between using two-compound silicone glue and
kept in the dark for 5-10 min until the glue solidified.

All actin super-resolution imaging was performed on
a custom built confocal slit scanning microscope centered
around an Olympus IX-83 microscope base. In brief, 546 nm
CW laser light was coupled into a single mode optical fiber.
Light emitted from the fiber was collimated and directed thru
a cylindrical lens subsequently focusing the light into a line
on a galvo scanning mirror conjugated to the back pupil plane
of an objective lens (Olympus, 100X UPlanSApo, 1.35NA,
silicon immersion). At the sample, the line of focused excita-
tion laser light was diffraction limited in one dimension and
20 pm in length in the orthogonal direction. The galvo mirror
scanned the excitation line across the sample at a rate corre-
sponding to the camera frame rate. Fluorescence emission
was collected by the same objective lens and imaged onto
an sSCMOS camera with a 256 x 256 image format and an
effective pixel size of 98 nm. The employed field of view was
20 x 20 wm. As the excitation line was scanned across the
sample, the sCMOS camera (Hamamatsu, Orca Flash 4.0 V2)
was operated in so-called light-sheet mode to create an effec-
tive electronic confocal slit. Thus, out of focus background
was reduced. Camera frames were acquired and subsequently
analyzed with previously published software tools to localize
the blinks positions to be used for the N2N reconstruction [7].

2.4. Training Approaches

We experimented with various training approaches to investi-
gate their effect on the reconstruction performance. We have
tested 3 data pairs creation methods: (1) low and high den-
sity image pairs (N2C), (2) fixed low density image pairs
(n2n-fixed), and (3) dynamic low density image pairs (n2n-
dynamic). The difference between the fixed and dynamic
pairs is that the blinks positions are either used to create pairs
of images before training, or used to create new pairs of im-
ages during training at each iteration. For n2n-dynamic, at
each iteration the blink positions were augmented using ran-
dom crops, rotations, and vertical and horizontal flips on the
blink localization space. The resulting transformed coordi-
nates were then randomly sampled to only keep 95% of the
data. The image pairs were generated by randomly splitting
the data in two subsets and assigning each blink to its closest
neighbour in a 10 nm resolution grid. The reconstruction per-
formance was evaluated with the structural similarity (SSIM)
and the peak signal-to-noise ratio (PSNR) between the recon-
structed image and its high-density counterpart. The clean
images were synthesized with the simulator by setting blink
density to a much higher value (2M blinks/um?) compared
to the low density regime (10k blinks/zm?). Also, to enable
the comparison between fixed and dynamic image pairs, the
blink positions that were generated by the simulator for n2n-
fixed were joined into a single point-cloud that was used by

n2n-dynamic during training.

3. RESULTS AND DISCUSSION

3.1. Evaluation on synthetic data

The first reconstruction experiments were performed with
the 2D SMLM simulator directly. The simulator was inte-
grated to the training loop to generate new pairs of synthetic
images on-the-fly for every learning iteration. This effec-
tively replicates the behaviour of training n2n-dynamic with
a large dataset. We trained the reconstruction network by
setting the localization error to 5 nm and the blink density to
10k blinks/pum?. After training, we tested the reconstruction
performance by using the same simulator, but by generat-
ing new images with varying blink densities and localization
errors (Fig 2A). This analysis shows that the n2n-dynamic
approach is able to reconstruct good estimates of the high
density image with less data. Both SSIM and PSNR increase
as the input image density increases, until it reaches the same
blink density as the one used for training. The reconstruction
quality then stabilizes (SSIM at 0.8 and PSNR between 17
and 18) for larger blink densities'. The reconstructed images
are only surpassed by the input data when it reaches blink
densities above 100k/FOV. This is the level above which both
the SSIM and PSNR of the input images are higher than the
reconstructed images from these inputs when compared to
the target. This indicates that for the synthetic data, the N2N
paradigm can achieve similar performances with one order
of magnitude less data (10k vs. 100k detections per FOVs to
predict the high density image). For the localization error, the
SSIM metric is maximum when reconstructing images gener-
ated with the same localization error as the ones used during
training, although this effect is smaller than blink density
effect on reconstruction performance. This indicates that the
reconstruction method and the blink localization algorithm
have orthogonal effects on the super-resolution reconstruction
quality. Future developments to further improve SMLM im-
age reconstruction should thus consider both the localization
algorithms and the reconstruction methods in an integrated
framework.

o

o
®

0.70

o
@

<
=
N

0.65

Structural Similarity (SSIM)
~

°
N
N
\,
.

0.60

10% 10° 10° 10°

Blink Density [#/um?] n2c-fixed

n2n-fixed n2n-dynamic

Fig. 2. Reconstruction performances with the synthetic data.

!Only SSIM is illustrated in the figure, as PSNR exhibited similar trends



The second experiment with the synthetic data was per-
formed to evaluate the effect of the training approach (N2C
vs. N2N) and the effect of the data pairs type (fixed vs. dy-
namic) on the reconstruction performance. This experiment
was performed with a dataset of 64 synthetic images of size
256x256px generated with our custom simulator. All other
model and training parameters were kept the same between
experimental units. To evaluate the effect of selection bias
with this data, a 4-fold cross-validation with random selection
was performed for each training configuration. The training
and test losses were evaluated at the end of training. This re-
vealed low variance between the CV folds for both the train-
ing and test losses (between 0.8% and 2.5%), indicating a
low selection bias for the synthetic dataset. The reconstruc-
tion was then evaluated on a separate set of validation im-
ages (N=64) and is reported in fig.1 and fig.2B. This revealed
that the n2n-fixed approach leads to lower SSIM values than
the N2C approach, but the n2n-dynamic leads to an increased
SSIM compared to the supervised method. We hypothesize
this is due in part to the fact that the dynamic pair genera-
tion acts as an additional regularization that creates smoother
reconstruction compared to directly learning a mapping from
sparse to dense super-resolution images. For this experiment,
the training approaches did not result in statistically differ-
ent PSNR values (tested with 2-sample Student’s T-test with
a = 0.005).

Fig. 3. Example of actin image reconstruction: sparse input
(A), the average reconstruction (B) and the average absolute
deviation from the mean reconstruction (C). Note that the in-
tensity calibration bars are different between B and C, and
that the scale bar is of size 1 um.

3.2. Evaluation with 2D actin data

Lastly, our reconstruction method using N2N with dynamic
pairs generation was tested with a real actin dataset to show
that this technique can be used in an experimental setting.
The dataset consisted in the localized blinks positions for 10
peptide-PAINT acquisitions of fixed actin filaments in devel-
oping drosophila eggs, as summarized in the section 2.3. The
average blink density for this dataset was (1.9 £ 0.35) x
103 blinks/m?, and the reconstruction resolution was set to
10 nm. We trained the U-Net using 10-fold cross-validation
with random subsets. We then evaluated the reconstruction
performance on an additional validation image that was not

used during training (Figure 3). As the blink density was 5x
smaller for the actin dataset compared to the synthetic data,
this resulted in loss curves that were significantly noisier. De-
spite this, the deviations of each image from the average re-
construction was on average less than 10% of the average
pixel intensity, and this deviation affected mostly the image
texture and not the underlying reconstructed actin filaments
structure. Thus, using self-ensembling during inference and
reducing texture variability with additional regularization or
using different reconstruction model could be beneficial in fu-
ture improvements of this method.

4. CONCLUSION

In this study, we have investigated the use of the Noise2Noise
paradigm to reconstruct super-resolution images from 2D
SMLM datasets. Our experiments with synthetic data showed
that this approach can achieve similar or better reconstruction
performances than traditional Noise2Clean method, depend-
ing on the pairs generation method (fixed vs dynamic). These
are promising results, as training a reconstruction model
directly from sparse SMLM acquisitions requires less acqui-
sition time and resources than the conventional supervised
approaches.
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