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Vı́ctor M. Eguı́luz1, Konstantin Klemm1,2

1IFISC (UIB-CSIC) Instituto de Fı́sica Interdisciplinar y Sistemas Complejos,
Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain

2Bioinformatics, Department of Computer Science, University Leipzig
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Abstract

Many processes and models –in biological, phys-
ical, social, and other contexts– produce trees
whose depth scales logarithmically with the
number of leaves. Phylogenetic trees, describ-
ing the evolutionary relationships between bio-
logical species, are examples of trees for which
such scaling is not observed. With this moti-
vation, we analyze numerically two branching
models leading to non-logarithmic scaling of the
depth with the number of leaves. For Ford’s
alpha model, although a power-law scaling of
the depth with tree size was established analyt-
ically, our numerical results illustrate that the
asymptotic regime is approached only at very
large tree sizes. We introduce here a new model,
the activity model, showing analytically and nu-
merically that it also displays a power-law scal-
ing of the depth with tree size at a critical pa-
rameter value.

1 Phylogenetic branching and
models

Although most modern studies on complex net-
works [Albert & Barabási, 2002; Boccaletti
et al., 2006] consider situations in which nodes
are connected by multiple paths, the case of
trees, i.e. graphs without closed cycles, is rele-
vant to describe many natural and artificial sys-
tems. Branching in real trees [Stevens, 1974],
in blood vessels [West et al., 1997], in river
networks [Rodriguez-Iturbe & Rinaldo, 1997] or
in computer file systems [Klemm et al., 2005,
2006] produce complex tree patterns worth to
be described and understood. Trees are the

outcome of classifications algorithms [Jain &
Dubes, 1988] and of branching processes [Har-
ris, 1963] and they also arise when computing
community structure [Guimerà et al., 2003] or
as a backbone (for example a minimum span-
ning tree) for more connected networks [Gar-
laschelli et al., 2003; Hernández-Garcı́a et al.,
2007; Rozenfeld et al., 2008].

Evolutionary processes leading to speciation
are also summarized in phylogenetic trees
[Cracraft & Donoghue, 2004]. In these trees the
leaves represent living species and each inter-
nal node represents a branching event in which
an ancestral species diversified into daughter
species. Every internal node is thus the root of
its associated subtree which consists of all its de-
scendant nodes. Phylogenetic tree topology en-
codes information on evolutionary mechanisms
which is beginning to be scrutinized [Burlando,
1990, 1993; Ford, 2006; Blum & François, 2006;
Hernández-Garcı́a et al., 2007; Herrada et al.,
2008].

The earliest mathematical model of evolu-
tionary branching was proposed by Yule [1925].
Apart from the distinction he introduced be-
tween genera and species diversification, the
model is equivalent to the Equal Rates Markov
(ERM) model [Harding, 1971; Cavalli-Sforza &
Edwards, 1967]: starting from a single ances-
tral species, one among the tree leaves exist-
ing at the present time is chosen at random,
bifurcating into two new leaves. Then this op-
eration is repeated for a number of time steps
or, equivalently, until the tree reaches a de-
sired size. The topological characteristics of the
constructed trees are surprisingly robust, being
shared by apparently different models such as
the coalescent and others [Aldous, 2001]. Essen-
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Figure 1: Mean depth 〈d〉 of trees in TreeBASE
(circles) as a function of number of leaves n.
Squares are obtained from computer simula-
tions of the ERM model, behaving as Eq. (1) for
large n. At large sizes, the depth in the real phy-
logenetic trees scales with the number of leaves
faster than the ERM behavior. For both real
phylogenies and model, depth values for each
tree size are obtained by logarithmic binning of
the depth of all trees and subtrees with that size.

tially what is needed is that different branches
at a given time branch independently and with
the same probabilities. When extinction is taken
into account, the same topology is recovered
when considering only the lineages surviving at
the final time. One of the characteristics of this
type of branching is a distribution of subtree
sizes A scaling at large sizes as A−2, an out-
come robustly observed in many natural and ar-
tificial systems and in classification schemes, in-
cluding taxonomies [Burlando, 1990; Caldarelli
et al., 2004; Capocci et al., 2008]. Another im-
portant characteristic is that the mean depth of
the tree 〈d〉 (i.e. the average distance, measured
in number of links, from the leaves to the root)
scales logarithmically with the number of leaves
n:

〈d〉 ∼ log n . (1)

It is worth noting that these results apply not
only to many random branching models, but also
to the simple deterministic Cayley tree, in which
all internal nodes at a given level split in a fixed
number of daughter nodes.

In view of this generality it was surprising
to find that the topology of observed phyloge-
nies does not agree with any of these predictions
[Herrada et al., 2008]. In fact, it was known
since some time ago that real phylogenies are

a) b)

c) d)

Figure 2: Examples of trees with 32 leaves, gen-
erated from several models. a) Tree generated
with the ERM model, which is equivalent to the
alpha model with α = 0. b) The completely un-
balanced tree, which is equivalent to the alpha
model with α = 1. c) A tree generated with the
alpha model for α = 0.5. d) A tree generated
with the activity model for p = 0.5. The trees
in c) and d) display an imbalance intermediate
between a) and b).

substantially more unbalanced than predicted
by the ERM and similar models [Aldous, 2001;
Blum & François, 2006]. This means that some
lineages diversify much more than others, in a
way that is statistically incompatible with the
ERM predictions. Figure 1 compares data [Her-
rada et al., 2008] compiled from TreeBASE, a
public repository containing several thousands
of empirical phylogenetic trees corresponding to
virtually all kinds of organisms in Earth, with
the predictions of the ERM model. For the phy-
logenetic trees at large sizes the mean depth
scales with the number of leaves faster than the
ERM behavior in Eq.(1).

The breakdown of the ERM behavior indicates
that evolutionary branching should present cor-
relations either in time or between the differ-
ent branches. Mechanisms producing trees with
non-ERM scaling for the depth have been iden-
tified, as for example the situation of critical
branching [De Los Rios, 2001; Harris, 1963]
or optimization of transport processes [Banavar
et al., 1999]. In the phylogenetic context models
of this type have been proposed [Aldous, 2001;
Pinelis, 2003; Blum & François, 2006; Ford,
2006], although most of them lack a clear inter-
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pretation in biological terms.
In the following we present results for two

branching models showing asymptotically non-
ERM, i.e. non-logarithmic, scaling for the depth.
Their study is motivated, on the one hand, by
the empirical results above from real phyloge-
netic trees. On the other, they pertain to the
small set of available models with non-ERM
scaling which are defined dynamically (i.e. by a
set of rules that are applied to the present state
of a growing tree to find the state at the next
time step) rather than being characterized glob-
ally by statistical or optimization prescriptions.
The first model we present, Ford’s alpha model,
is a simple example for which the non-trivial
asymptotic scaling (of the power law type) has
been analytically identified. We analyze it nu-
merically to confirm this prediction and to dis-
play the behavior at finite sizes. We introduce
later a new model, the activity model, which also
leads to non-logarithmic depth scaling at a crit-
ical parameter value.

2 Ford’s alpha model

Ford [2006] introduced a model for recursive
tree formation: At a given step in the process
the tree is a set of leaves connected by terminal
links to internal nodes, which are themselves
connected by internal edges until reaching the
root (the root itself is considered to have a single
edge, which we count as internal, joining to the
first bifurcating internal node; with this conven-
tion a tree of n leaves has n − 1 internal edges).
Then, a probability of branching proportional to
1−α is assigned to each leaf, and proportional to
α to each internal edge. By normalization these
probabilities are, respectively, (1 − α)/(n − α),
and α/(n−α). When a leaf is selected for branch-
ing, it gives birth to a couple of new ones, as in
the ERM model. But when choosing an internal
edge, a new leaf branches from it by the inser-
tion in the edge of a new internal node. For α = 0
we have the standard ERM model. For α = 1 the
completely unbalanced comb tree, in which all
leaves branch successively from a main branch,
is generated. Intermediate topologies are ob-
tained for α ∈ (0, 1). Figure 2 shows examples
of trees generated for different values of α.

By considering the effect of the addition of
new leaves on the distances between root and
other nodes, Ford [2006] derived exact recur-

rence relationships which, when written in
terms of the average depth, lead to:

〈d〉n+1 =
n

n− α
〈d〉n +

2n(1− 2α)
(n + 1)(n− α)

. (2)

〈d〉n is the mean depth of the leaves of a tree
with n leaves. By assuming a behavior 〈d〉n ∼ nν

at large n, and expanding Eq. (2) in powers of
1/n, we get ν = α, so that

〈d〉n ∼ nα , if 0 < α ≤ 1 . (3)

If α = 0 the standard ERM behavior, Eq. (1), is
recovered.

Figure 3 shows numerical results for the
depth of trees generated with this model. Note
that the predicted asymptotic behavior is at-
tained but only at very large tree sizes, in gen-
eral sizes much larger than the tree sizes of the
examples shown in Fig. 2 and of the available
empirical phylogenies. As analytically demon-
strated [Ford, 2006] depth statistics of subtrees
of given size extracted from a large tree behave
as data from trees of that size directly generated
by the alpha model algorithm.

While the Ford model gives a simple mecha-
nism for scaling in trees with a tunable expo-
nent, the dynamical rule of posterior insertion
of inner nodes is hard to justify in the context of
evolution (although one can think on the mod-
elling of errors arising in phylogenetic recon-
struction methods when incorrectly assigning
a splitting to a non-existing ancestral species).
This motivates the introduction of a new model
described in the next section.

3 Activity model

In this section we show that tree shapes distinct
from the ERM model may also result from a
memory in terms of internal states of the nodes.
The activity model proposed here is conceptu-
ally similar to the class of models suggested
by Pinelis [2003]. However, the present model
distinguishes only between active and inactive
nodes and has a single parameter controlling
the spread of activity.

Starting from a single node (the root), a bi-
nary tree is generated as follows. At each step,
a leaf i of the tree is chosen and branched into
two new leaves. Each of the two new leaves, in-
dependently of the other, is set active with prob-
ability p or inactive with probability 1 − p. The
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Figure 3: Depth statistics vs tree size for the alpha model. Symbols indicate the mean depth of leaves
from root, averaged over the 100 trees generated for each size (2k, k = 3, 4, ..., 15), and the error bars
are the corresponding standard deviations. The points in the rugged lines come from each subtree
of all trees generated. The dashed segments indicate the analytic predictions [Ford, 2006] for the
scaling at large n. The inset highlights the logarithmic scaling of the α = 0 case.

branching leaf i is chosen at random from the
set of active leaves if this set is non-empty. Oth-
erwise, i is chosen at random from the set of
all leaves. Figure 4 shows that for p = 1/2 the
model generates trees with mean depth growing
as the square root of tree size (note the log-log
scale). Figure 2 displays a small-size example of
such trees. For values of p below or above 1/2,
〈d〉 seems to increase logarithmically with n.

Here we give a simplified argument to under-
stand the observed exponent 1/2 of the distance
scaling with system size in the case p = 1/2. At
the time the growing tree has n leaves in total,
let Da(n) be the expected sum of distances of ac-
tive leaves from the root, and Db(n) the anal-
ogous quantity for the inactive leaves. When a
randomly chosen active leaf –at distance da from
root– branches, the expected increase of Da(n) is

∆Da(n) ≡ Da(n + 1)−Da(n) =
p2(da + 2) + 2p(1− p) · 1 + (1− p)2(−da)

= (2p− 1)da + 2p . (4)

Here the three terms of the second line are for
the activation of two, one and zero of the new

leaves, respectively. This expression is appro-
priate as far as the number of active nodes is
not zero. Simultaneously, the expected change
in Db(n) during the same event is

∆Db(n) =
p2 · 0 + 2p(1− p)(da + 1) + (1− p)22(da + 1)

= 2(1− p)(da + 1) . (5)

We now average ∆Da(n) over the different
choices of the particular active leave that has
been branched. This amounts to replacing da in
the above formulae by 〈da〉n, the average depth
of the active leaves in a tree of n leaves. Writ-
ing Di(n + 1) = Di(n) + ∆Di(n), for i = a, b,
one would get a closed system for the quanti-
ties Di(n) provided 〈da〉n is expressed in terms
of them. This can be done by writing 〈da〉n =
Da(n)/a(n), where a(n) is the expected number
of active leaves in a tree of n leaves. This ex-
pected value is used here as an approximation
to the actual number of active leaves.

The recurrence equations for Di(n) are spe-
cially simple in the most interesting case p =
1/2, since the dependence in 〈da〉n disappears
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Figure 4: Average depth versus size for the activity model for various values of the activation prob-
ability p. Data points displayed by symbols give the average distance of leaves with respect to the
root. Error bars give the standard deviation taken over different realizations (1000 trees per data
point). Data in the rugged curves are for all subtrees of trees with size 221 = 2097152. The dashed
line represents a power law scaling with exponent 1/2, corresponding to the scaling of the p = 0.5
curve, as discussed in the text.

from one of the equations:

Da(n + 1) = Da(n) + 1 (6)
Db(n + 1) = Db(n) + 〈da〉n + 1 . (7)

The solution (with initial condition Da(1) = 0) of
Eq. (6) is simply:

Da(n) = n− 1 . (8)

Since the probabilities of an increment or decre-
ment (by one unit) of the number of active leaves
are the same and time-independent for p = 1/2,
the number of active nodes performs a symmet-
ric random walk with a reflecting boundary at
0 (this last condition arises from the prescrip-
tion of setting active one node when the number
of active nodes has reached zero in the previous
step). For such random walk the expected value
of active leaves a(n) increases as the square root
of the number of steps. Since a new leaf is added
at each time step, this leads to:

a(n) ∼ n1/2 . (9)

Combining (8) and (9) we obtain the average
distance of active nodes from root at large tree

sizes:

〈da〉n ≈
Da(n)
a(n)

∼ n1/2 . (10)

Now we can plug this result into Eq. (7),
which can be solved recursively:

Db(n) = Db(1) +
n−1∑

t=1

(〈da〉t + 1) ∼
n−1∑

t=1

t1/2 ∼ n3/2 .

(11)
The totally averaged depth 〈d〉n, which counts
both the active and the inactive leaves, is

〈d〉n =
Da(n) + Db(n)

n
∼ n1/2 + n3/2

n
∼ n1/2 ,

(12)
which explains the asymptotic behavior ob-
served in Fig. 4 for p = 1/2.

We note that the growth dynamics presented
here may be mapped to a branching process
[Harris, 1963], with the difference that here the
death (inactivation) of a node does not lead to its
removal from the tree. The special case p = 1/2
corresponds to a critical branching process.
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4 Discussion

We have presented and studied two simple mod-
els which lead to non-logarithmic scaling of
the tree depth. In contrast with many of the
available models having this behavior [Banavar
et al., 1999; Aldous, 2001; Blum & François,
2006; Ford, 2006] they are formulated as dy-
namical models involving growing trees, so that
rules are given to obtain the tree at the next
time step from the present state. Their study
has been motivated by data from phylogenetic
branching, and they are interesting additions to
our present understanding of complex networks
and trees.

A recent analysis of several evolutionary mod-
els including species competition [Stich & Man-
rubia, 2008] indicates that in these models cor-
relations are finally destroyed by mutation pro-
cesses and persist only for a finite correlation
time. Thus sufficiently large trees would have
a scaling behavior closer to the asymptotic ERM
predictions. Since the largest phylogenies in
databases such as TreeBASE have only some
hundreds of leaves, it is possible that the ob-
served imbalance and depth scaling is a finite-
size regime. Nevertheless models going beyond
the ERM scaling are needed at least to explain
this finite-size regime, and also to elucidate the
true asymptotic scaling behavior. Here, we have
also observed large finite-size transients in the
alpha model of Sect. 2.

The different types of scaling of depth with
size can be interpreted as indicating different
values of the (fractal) dimensionality of the
trees. This is so because 〈d〉 is a measure of
the diameter of the tree, and because for a bi-
nary tree the total number of nodes is simply
twice the number of leaves. Since the simplest
definition of dimension D of a network [Eguı́luz
et al., 2003] is given by the growth of the num-
ber of nodes as the diameter increases, n ∼ 〈d〉D,
power law scaling of the type 〈d〉 ∼ nν indi-
cates that the tree can be thought as having a
dimension D = 1/ν. The logarithmic scaling
in the ERM model is an example of the small-
world behavior common to many network struc-
tures [Albert & Barabási, 2002], which is equiv-
alent to having an effective infinite dimension-
ality, whereas the power law scaling reveals a
finite dimension for the tree, which implies a
more constrained mode of branching. The al-
pha model produces trees with tunable dimen-

sion from 1 to ∞, and the critical activity model
gives two-dimensional trees.

The final aim of the modelling of phylogenetic
trees is to provide biological mechanisms ex-
plaining the branching topology of the Tree of
Life. In this direction, the branching of inter-
nal edges in the Ford model has no obvious bi-
ological interpretation. The activity model puts
the mechanisms of birth-death critical branch-
ing [Harris, 1963] within a framework of tran-
sitions between node internal states similar in
spirit to the approach of Pinelis [2003]. The
need to tune a parameter to attain the non-ERM
critical behavior is however a limitation for its
applicability. Much additional work is needed
to identify the proper biological mechanisms be-
hind evolutionary branching and adequate mod-
elling of them.
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