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Abstract

A transcriptome-wide association study (TWAS) attempts to identify disease associated genes

by imputing gene expression into a genome-wide association study (GWAS) using an eQTL

dataset and then testing for associations with a trait of interest.

Regulatory processes may be shared across related tissues and one natural extension of

TWAS is harnessing cross-tissue correlation in gene expression to improve prediction accuracy.

Here, we studied multi-tissue extensions of lasso regression and random forests (RF), joint lasso

and RF-MTL (multi-task learning RF), respectively. We found that, on our chosen eQTL

dataset, multi-tissue methods were generally more accurate than their single-tissue counterparts,

with RF-MTL performing the best. Simulations showed that these benefits generally translated

into more associated genes identified, although highlighted that joint lasso had a tendency to

erroneously identify genes in one tissue if there existed an eQTL signal for that gene in another.

Applying the four methods to a type 1 diabetes GWAS, we found that multi-tissue methods

found more unique associated genes for most of the tissues considered. We conclude that

multi-tissue methods are competitive and, for some cell types, superior to single-tissue

approaches and hold much promise for TWAS studies.
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1 Introduction 1

Genome-wide association studies (GWAS) have been hugely successful over the last decade, 2

transforming genetic association testing into a reproducible science (Kraft, Zeggini, & Ioannidis, 3

2009) and identifying tens of thousands of variants associated with more than a thousand traits 4

(Buniello et al., 2019). However, lack of interpretability remains a criticism of GWAS (Visscher, 5

Brown, McCarthy, & Yang, 2012)—most disease-associated variants lie in regulatory regions 6

(Hindorff et al., 2009; Castel et al., 2018) but have not yet been convincingly linked to the genes 7

they regulate. It has been noted that eQTLs are over-represented among trait-associated SNPs 8

uncovered by GWAS (Nica et al., 2010; Nicolae et al., 2010). This has motivated development of 9

different methods to link GWAS variants to genes by integrating GWAS and eQTL datasets 10

(H. Guo et al., 2015; Zhu et al., 2016; Marigorta et al., 2017), and one promising approach, 11

referred to as transcriptome-wide association study (TWAS), is to use an eQTL dataset to learn 12

rules with which to impute gene expression in GWAS samples. Predicted gene expressions can 13

then be used in place of genotypes within the standard GWAS framework, enabling gene-based 14

instead of variant-based, case-control comparisons (Gamazon et al., 2015). 15

Previously proposed approaches for learning the imputation rules are based on regularized 16

linear models (Gamazon et al., 2015; Gusev et al., 2016; Fromer et al., 2016; Mancuso et al., 17

2017), polygenic risk scores (Gamazon et al., 2015) and using the top SNP to predict expression 18

levels (Gusev et al., 2016). However, the machine learning literature has shown that alternative 19

approaches such as random forests (RF), which allow naturally for non-linear and non-additive 20

effects, can produce more accurate predictions of complex traits (Michaelson, Alberts, Schughart, 21

& Beyer, 2010; Xu et al., 2011; Sarkar, Rao, Meher, Nepolean, & Mohapatra, 2015). Recently, 22

Fryett, Morris, and Cordell (2020) conducted a comprehensive study comparing prediction 23

accuracy of RF and a number of linear approaches in the TWAS situation. They found Bayesian 24

sparse linear mixed model performed the best, followed by RF and the regularised regression 25

methods lasso and elastic net. RF and regularised regressions have the additional advantages of 26

being easily extensible to multi-task learning framework, and so we chose to explore the degree 27

to which incorporating information from multiple tissues could increase the power of TWAS. 28

A natural extension to TWAS is to take advantage of the fact that expression levels of a 29
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given gene in different cell types can be correlated by considering expression values across 30

multiple cell types simultaneously in a multi-task framework. This has been shown to improve 31

multi-trait predictions in yeast (Grinberg, Orhobor, & King, 2019) and in applications to real 32

and simulated data in marker-assisted selection for several related traits (Calus & Veerkamp, 33

2011; Hayashi & Iwata, 2013; G. Guo et al., 2014) or populations (Chen, Li, Miller, & Schenkel, 34

2014). Multi-trait approaches have also been used to analyse eQTL datasets (Flutre, Wen, 35

Pritchard, & Stephens, 2013; Hu et al., 2019). Whilst multi-tissue extensions to TWAS have 36

already been studied (Hu et al., 2019; Barbeira et al., 2019), to our knowledge, only linear 37

approaches have been considered. We decided to evaluate performance of a non-linear 38

multi-tissue approach. To do this, we adapted standard RF for this purpose and compared it to 39

the joint lasso of Dondelinger and Mukherjee (2018), as well as to a selection of linear methods 40

and RF trained on data from single tissue only. 41

2 Methods 42

2.1 Accuracy of predicting gene expression 43

We first evaluated the utility of single-task learning (STL) and multi-task learning (MTL) 44

models for predicting gene expression from genotype data using a train/test split of an eQTL 45

dataset from five immune cell types: B cells and (stimulated) monocytes from 430 individuals 46

(Fairfax et al., 2012, 2014) (Table 1). In contrast to a classical (STL) predictive model which 47

learns to predict just one target/output, an MTL model leverages similarities between targets of 48

several regression problems by learning these targets simultaneously (Caruana, 1997; Ben-David 49

& Schuller, 2003). It is known that many eQTLs are active across multiple cell types (Aguet et 50

al., 2017), so combining expression datasets of several related tissues can not only enhance 51

predictive models’ ability to uncover eQTL signals but also help to learn more about disease 52

aetiology when expression levels are imputed into a GWAS dataset. In our context, this means 53

building a gene expression prediction model using data for all available cell types. For an STL 54

approach (building a separate regression model for each cell type), we trained RF (Breiman, 55

2001) and three regularised regressions: elastic net (Zou & Hastie, 2005), lasso (Tibshirani, 1994) 56

and ridge (Hoerl & Kennard, 1970). For MTL we trained two models: joint lasso of Dondelinger 57

and Mukherjee (2018) and an MTL version of RF (we call it RF-MTL). 58

All expression values used in the STL models were standardised to have mean 0 and variance 59

1, individually for each cell type. For the MTL framework, for each eligible probe, we centred the 60
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expression values to have mean 0 (but did not standardise them) for each cell type individually. 61

For efficiency, the first step of our analysis was to filter probes with no genetic predictability. 62

Even though standard univariate eQTL association analysis, by virtue of its linearity, does not 63

show the full picture of relationships between SNPs and expression, it is fast and can help us to 64

gauge the strength of genetic signal for each probe. For each probe, SNP markers within 1 Mbp 65

of that probe (cis-SNPs) were used to train a predictive model for each cell type. Only probes 66

which have at least one cell type with a nominally associated cis-SNP (p-value < 10−7; see Fig 67

S1) were considered—4,288 probes resulting in 21,440 probe-cell regressions. The cut-off was 68

chosen by examining performance of the four predictive methods as a function of the p-value 69

threshold. The resulting Fig S1 indicates 10−7 to be a threshold around and above which ML 70

methods start producing models with reasonably high R2 (R-squared; see Section 2.1.5) on a 71

test set. Additionally, we excluded the HLA region (chr6:20mbp-40mbp). Probe positions, 72

originally on build 38 (GRCh38), were lifted over to build 18 (NCBI Build 36.1) to match the 73

genotypic data. Some probes could not be matched and were discarded. Hence, out of the 74

original 47,231 probes, 25,005 survived the liftovers, of which 4,288 passed the p-value 75

thresholding and were retained for analysis. 76

2.1.1 Elastic net 77

Lasso and ridge regressions are penalised regressions differing by their use of an L1 or L2
78

penalty parameter, respectively, with elastic net being a mixture of the two. Lasso and ridge 79

regression’s only tuning parameter is the complexity parameter λ. The cv.glmnet function from 80

the R package glmnet we used to fit these models chooses an appropriate sequence of λ values 81

by fitting a ‘master’ model using all the data and then finds an optimal value via an internal 82

10-fold cross-validation. Elastic net, being a mixture of the lasso and ridge, has an additional 83

parameter α ∈ [0, 1] with α = 1 corresponding to full lasso and α = 0 to full ridge. Usually, the 84

mixture parameter α is also tuned via cross-validation, but often a fixed value is chosen, e.g. 85

Gamazon et al. (2015) simply use α = 0.5. 86

2.1.2 Joint lasso 87

Joint lasso is a type of a linear regularised regression that handles multiple datasets 88

simultaneously by estimating different regression coefficients for different tissues while 89

encouraging coefficients of similar tissues to be closer. This is done by introducing an extra 90

regularisation term penalising difference between coefficients of different sub-groups (L1 or L2
91
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penalty) depending on how similar these sub-groups are with respect to a given dissimilarity 92

measure. 93

We opted for the L2 fusion version of the joint lasso as it requires less tuning compared to 94

the L1 fusion, and the original paper (Dondelinger & Mukherjee, 2018) reported a similar 95

performance for both. We tuned the L2 joint lasso for the fusion parameter γ (responsible for 96

encouraging similar parameter estimates for similar sub-datasets) via external 5-fold 97

cross-validation and for the general penalty parameter λ via an in-built cv.glmnet internal 98

10-fold cross-validation described above (i.e. within each iteration of the γ-tuning CV, lasso 99

would tune for λ via another cross-validation routine). The sequence of γ values was taken as in 100

the authors’ example code 101

(http://fhm-chicas-code.lancs.ac.uk/dondelin/SubgroupFusionPrediction). For any 102

probe and two tissues i and j we set group specific penalty τij to ρij/maxk 6=l{ρkl}, where ρij is 103

the correlation between expression in i and j in the Fairfax dataset. However, in (Dondelinger & 104

Mukherjee, 2018), authors remark that in practice using non-constant (unity) τ ’s didn’t improve 105

predictive performance of joint lasso. The joint lasso was implemented using the fuser package. 106

2.1.3 Random forest 107

RF is an ensemble tree-based non-parametric method and requires relatively little tuning: the 108

optimal number of trees is determined by assessing out of bag error as the forest is grown (we 109

grew 500 trees which was sufficient for convergence) whilst it has been suggested that regulating 110

depth of the trees (via minimum number of observations in terminal nodes) has limited benefits 111

(Hastie, Tibshirani, & Friedman, 2009; Segal, 2004). We incline to agree. We thus used the 112

default parameter values: minimum number of observations in terminal notes at 5 (resulting in 113

deep trees), and the number of random variables considered at each split at a 1/3 of all SNPs 114

(parameters min.node.size and mtry, respectively). We used the ranger function in the 115

ranger R package to fit RF. 116

2.1.4 RF-MTL 117

To implement multi-trait prediction in RF, we simply concatenated expression values for the five 118

tissue types into one long vector. Genotypic matrices were similarly stacked into one tall matrix 119

and an id variable indicating which tissue/dataset each point came from was added. Then, each 120

individual could have up to five associated sample points, treated as independent observations. 121

Since we are including approximately the same number of samples per individual, correlation 122

http://fhm-chicas-code.lancs.ac.uk/dondelin/SubgroupFusionPrediction
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between these sample points should not introduce imbalance/bias in the data and adversely 123

affect the algorithm. 124

The id variable was available for splitting at each iteration of the RF algorithm 125

(always.split.variables = "id" in the ranger function). This way, the size of the training 126

data was increased and subsets corresponding to different tissues could be separated or pulled 127

together (via tree branching) depending on their dissimilarity or similarity, respectively. For 128

genes with highly correlated expression values across different cell types, the id variable tends to 129

be less important (i.e. not used for splits), the whole dataset being treated as homogeneous. For 130

genes exhibiting less or no correlation across different cell types, the id variable would split 131

samples into different subsets forcing them into separate end nodes. 132

For RF-MTL, the pooled approach should cater for situations when the underlying 133

sub-datasets have a varying degree of similarity. Pooling completely homogeneous (or even 134

identical) datasets, should not adversely affect performance as the tissue id variable, although 135

available as a splitting variable at every split, does not have to be used if it does not help reduce 136

residual variance for a given tree. Strong differences between sub-groups, on the other hand, 137

should be handled by the use of the tissue id variable at various splits, effectively separating 138

samples into homogeneous subsets. Thus arguing, we of course assume that 139

similarities/dissimilarities between different sub-groups are reflected in 140

similarities/dissimilarities of their respective distributions over features. 141

2.1.5 Evaluation of methods 142

Models were trained on a training set and evaluated on a test set, comprising roughly 70% and 143

30% of the data, respectively. In order to avoid information leaking in the MTL set-up, all 144

samples from the same individual were designated to either the training or the test set. 145

We used R2 (R-squared) as a measure of predictive accuracy of different models. For a 146

predictive model f , R2 is informally known as the ‘proportion of the variance explained’ by f 147

and is defined as: 148

1−
∑

i(yi − f(xi))
2∑

i(yi − ȳ)2
≈ 1− MSE

σ̂2
,

where f(xi) is prediction at point xi, ȳ is sample mean of outcome y, σ̂2 is y’s sample variance 149

and MSE is mean square error. Note that the above fraction is a measure of how well f does 150

compared to the ‘base’ constant model g(xi) = ȳ, ∀i. One would expect a ‘good’ model to have 151
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small MSE compared to σ̂2, and hence larger R2. Conversely, a ‘bad’ model would have a larger 152

MSE and smaller R2, with a truly hopeless model performing en par with a constant mean 153

predictive function. Note also that, whilst the phrase ‘proportion of variance explained’ suggests 154

a value of R2 in the interval [0, 1], in reality the definition above does not put any such 155

restriction on R2. Indeed, a heavily overfitting model, or that trained and tested on data coming 156

from vastly different distributions, can produce large negative R2 values. 157

For two methods, m1 and m2, trained and validated on the same datasets with respective 158

R-squared, R2
m1

and R2
m2

, we say that m1 has an advantage over m2 if R2
m1

> 0 and 159

R2
m1

> R2
m2

. This advantage is quantified by R2
m1
−max{0, R2

m2
}. Average advantage of m1 160

over m2 is calculated over a set of regression problems to which both methods are applied and 161

m1 has an advantage over m2. In essence, average advantage indicates by how much on average 162

method m1 is more accurate than method m2 for problems where m1 does outperform m2. 163

2.2 Simulation study of utility of each prediction method for TWAS 164

We assessed performance of each eQTL prediction method for TWAS in a simulation framework. 165

Within each simulation, we simulated separate eQTL and GWAS datasets. For each dataset, we 166

first sampled independently 400 pairs of haplotypes from the 1000 Genomes EUR subset to 167

generate genotype data, and sampled causal variants independently from amongst the SNPs 168

according to the scenarios described in Fig 2. 169

For the eQTL (GWAS) datasets, 5 (1) quantitative traits were simulated respectively as 170

Gaussian variables with variance 1 and mean
∑

i βijGi where i indexes causal variants, j 171

indexes traits, and βij is the effect size of variant i on trait j and Gi the genotype vector at 172

variant i. To avoid too many simulations with small beta and non-significant effects, βi was 173

sampled as the maximum of 5 Gaussians with variance 0.04. The first expression trait was 174

assigned as the trait to be tested via TWAS, and the remainder as additional “background” 175

expression traits. Each expression trait was regressed against all SNPs, and the simulation 176

retained if the minimum p-value over all SNPs and expression traits was less than 10−7. 177

We secondly conducted TWAS with each of the 4 methods described above, following the 178

steps: 179

1. learn a predictive model in the eQTL dataset 180

2. predict values for the first expression trait into the GWAS dataset 181
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3. test association between the GWAS trait and the predicted expression trait in the GWAS 182

dataset using linear regression 183

and the p-value from this test retained. 184

The aim of TWAS is to associate genes and diseases. Although association can be thought 185

necessary for causation, it is not sufficient (Wainberg et al., 2017). We use colocalisation 186

analysis to determine whether, for a predicted gene expression with significant association to a 187

GWAS trait, the same genetic signal underlies the eQTL and a trait-association, or whether two 188

(or more) distinct signals exist in linkage disequilibrium (LD). The colocalisation test is expected 189

to preferentially filter out significant TWAS results that result from an eQTL variant distinct 190

from, but in LD with, a GWAS causal variant. We do this via testing for proportionality of SNP 191

regression coefficients for the two traits in question (Wallace, 2013). This alternative framing of 192

the null hypothesis differs from the more widely known enumeration method for colocalisation 193

(Giambartolomei et al., 2014) (where the null hypothesis is no association for either trait) and is 194

a more natural way to approach this question once a joint association has been found. Our 195

approach is thus related to the two-stage HEIDI/SMR approach proposed by Zhu et al. (2016). 196

Colocalisation validation was also used in (Fromer et al., 2016; Marigorta et al., 2017). However, 197

recently other methods of validating/fine-mapping TWAS signals have been proposed—Mancuso 198

et al. (2019), for example, extend probabilistic SNP-level fine-mapping approaches to create 199

credible sets of genes which explain a given TWAS signal with a given probability. 200

To reduce the degrees of freedom of the test, proportionality testing works by first finding 201

principal components (PCs) of the genotype matrix accounting for the majority of the variation 202

(usually 80%), and then regressing the two traits on these PCs. Finally, a null hypothesis that 203

the two sets of coefficients are proportional (there is a colocalisation) is tested (at 0.05 204

significance level). To reduce the number of PCs used, we only used SNPs with GWAS or eQTL 205

p-values< 10−4 and all the SNPs in their LD pockets (r2 > 0.2 with selected SNPs), and 206

selected the PCs accounting for at least 80% of the variation, or the first 6 PCs, whichever 207

number is the smallest. 208

We ran proportional filtering on each simulated dataset, and stored its p-value, pf . We 209

assessed TWAS performance according to the proportion of simulations that gave a TWAS 210

p-value < 0.05, before and after filtering at pf < 0.05. 211
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2.3 TWAS study of type 1 diabetes 212

To compare performance of the predictive methods in a real-world dataset, we retrained the 213

models on the whole eQTL data (as opposed to 70% training set) and used them to impute 214

(predict) gene expression into a large type 1 diabetes (T1D) GWAS cohort (Barrett et al., 2009); 215

see Table S1. For some probes no SNPs are shared between the GWAS and the eQTL dataset, 216

so out of the initial 4,288 probes, we are left with 4,103. GWAS genotypes are then fed into the 217

trained models to obtain predicted gene expression for GWAS individuals. Note that for the joint 218

lasso and the RF-MTL methods, only one model is needed for each probe, rather than one model 219

for each probe/cell pair. To obtain predictions for a particular cell type, genotypic data was fed 220

to the model together with the id variable indicating which tissue type we would like a prediction 221

for. We then tested for association between the imputed expression levels and the disease status 222

of the individuals in the GWAS dataset, to see which probes/genes are differentially expressed. 223

We used the Cochran-Armitage test (Clayton & Hills, 2013) with Mantel adjustment to 224

accommodate stratification in the GWAS design which involved two genotyping chips (Table S1). 225

Note that the same number of tests of association between predicted gene expression and T1D 226

status was performed for STL and MTL methods (i.e. one for each method/cell pair) despite 227

fitting fewer predictive models for MTL methods. To account for multiple testing, the resulting 228

p-values were adjusted using the Benjamini-Hochberg (Benjamini & Hochberg, 1995) method 229

(separately for each method and cell type). For the two lasso methods the total number of fitted 230

models, as opposed to just the non-null ones (a null model is one returning no non-zero 231

coefficients), were used for the p-values adjustment. This was done to avoid giving lasso and 232

joint lasso an unfair advantage over the two forest models. We define a TWAS-significant 233

association (or hit/gene) as a cell-probe-method triplet for which predicted expression has a 234

significant fold change, i.e. an FDR-adjusted Cochran-Armitage test p-value< 0.05. 235

We then passed all the TWAS-significant hits through the proportionality filter, described 236

above. 13 out of 224 TWAS-significant probe/cell pairs (corresponding to 6 probes) did not have 237

enough SNPs with sufficiently small p-values for the colocalisation procedure to be applied and 238

were dropped. We call TWAS-significant hits passing the proportionality filter SP-hits 239

(significant and proportional). 240
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3 Results 241

3.1 Random forests allow improved predictions of gene expression in 242

single tissues 243

We started by assessing single-tissue models. Amongst the linear methods, ridge regression 244

strictly underperformed compared to lasso and elastic net which performed similarly to each 245

other, with lasso slightly preferred (Fig S2 (a)), suggesting that eQTL prediction benefits from 246

sparsity introduced by the elastic net and lasso regression. Moreover, once sparsity is introduced, 247

varying the mixing parameter hardly affected performance of elastic net (Fig S2 (b)), which 248

agrees with the results of Fryett et al. (2020) who also found sparsity to be beneficial. We, 249

therefore, dropped ridge regression and elastic net from further analysis. 250

RF outperformed lasso in the overwhelming majority of regressions with mean advantage 251

(see Methods) of RF over lasso of 5.9%, compared to 3.5% of mean advantage of lasso over RF 252

(Fig 1). Moreover, for 1,927 out of 11,814 probe-cell pairs with any signal, RF beats lasso by 253

more than 10%. Points in the top left quadrant of the RF-lasso graph correspond to regressions 254

where RF has positive R2 but lasso fails to produce a useful model (negative R2). 255

3.2 Combining information from multiple cell types using multi-task 256

learning 257

We compared MTL extensions of lasso and RF to each other and to the reference models fitted 258

on individual tissue types (STL). We considered the same 4,288 probes for which at least one 259

cell type has a nominally associated cis-SNP p-value (p < 10−7), resulting in the same number 260

of regressions (each able to predict expression for five cell types). 261

Joint lasso outperforms standard lasso in the absolute majority of cases (Fig 1). However, 262

joint lasso significantly underperforms in a handful of cases, against lasso as well as RF and 263

RF-MTL. RF-MTL and RF are relatively evenly matched, although RF-MTL performs slightly 264

better in more regressions. RF-MTL outperforms joint lasso substantially more often than the 265

other way around (9,161 and 5,918 regressions, respectively) and tends to have a larger 266

advantage (5.4% compared to 2.9% on average). Overall, RF-MTL, on average, is the most 267

accurate predictive model for our eQTL dataset. Additionally, only one regression has to be 268

fitted to cater for all cell types instead of one per cell type. 269
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3.3 Simulation-based comparison of learning methods for TWAS 270

To assess the performance of the four methods as part of the complete two-stage TWAS 271

procedure, we simulated GWAS-trait and gene expression data for five cell types under several 272

genetic causal scenarios. Generally, when colocalised GWAS and eQTL signals were simulated, 273

multi-trait methods outperformed single-trait methods when eQTL variants were shared 274

between the test and background expression traits, and single-trait methods performed slightly 275

better when there was no sharing, though the difference was more pronounced in the former 276

versus the latter (Fig. 2, top panels). However, the situation was very different when 277

background expression traits shared a variant with the GWAS but the test expression trait did 278

not. Here, we might expect an increase in false positives due to occasional LD between 279

GWAS-trait variants and test-expression-trait variants, possibly explaining the higher false 280

positive rate for unfiltered RF-MTL compared to RF (0.14 and 0.10, respectively). However, 281

joint lasso performed particularly poorly in this scenario, with a false positive rate (at a 0.05 282

threshold) of 0.58 compared to 0.040 for single-task lasso. Testing proportionality was successful 283

at preferentially filtering out false positives, reducing type 1 error rates to at or below their 284

nominal value with the exception of the joint lasso case, where the false positive rate was only 285

reduced to 0.37. Proportionality filtering also removed between 7.5% and 10.5% of true 286

positives, fairly evenly across methods. 287

Overall, this suggests that the benefits of RF-MTL over RF, and of RF over lasso for 288

prediction transfer to TWAS. On the other hand, they warn that joint lasso may have a high 289

false positive rate if interpreted in a tissue specific manner. A more detailed comparison of 290

single-task RF and lasso showed that the effects of regularisation on lasso caused systematic 291

over-estimation of the causal effect of expression on the GWAS trait with lasso (Fig S5). 292

3.4 46 genes show predicted differential expression in T1D 293

In our application to T1D, 62 distinct TWAS-significant genes (adjusted p-value< 0.05, see 294

Methods) were identified by at least one of the four methods with joint lasso identifying the 295

most (see Table 2, column 4). Filtering for proportionality left 46 distinct genes (Table 2, Fig 3). 296

These are SP-hits (significant and proportional, see Methods). There is a substantial overlap 297

between the four methods but each also identified unique hits not discovered by the others (Fig 298

4 and S6). RF finds an equal or greater number of unique SP-hits than lasso in all but one cell 299

type. Likewise, RF-MTL finds at least as many or more unique SP-hits than single-tissue RF in 300
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three out of five tissue types. Joint lasso identifies the most TWAS-significant and SP-genes for 301

each cell type but these genes tend to be significant for three and more tissue types. Top of Fig 302

5 shows a heatmap of SP-genes (columns) for the four methods for each cell type (rows) and not 303

only the joint lasso portion of the heatmap is more populated than the ones corresponding to 304

the other methods, but we also notice multiple full vertical lines designating instances when a 305

gene is significant in all the cell types (see Discussion). Finally, we note that out of 46 unique 306

SP-hits 16 lie in the vicinity (within 106 Mbp) of a T1D GWAS SNP (p-value< 10−5); see Fig 5 307

for identity and location of these genes. Many of the other 30 relate to regions that did not 308

achieve nominal significance (p < 10−5) in this study, have been robustly associated with T1D in 309

other studies, including CLECL1 (Burton et al., 2007), RGS1 (Smyth et al., 2010), IKZF3 310

(Burren, Guo, & Wallace, 2014), IL7R (Todd et al., 2007) and CTSH (Cooper et al., 2008). 311

As the complete list of true T1D genes is not known, we decided to compare the results from 312

the different methods by passing the gene list to the Target Validation web analysis platform 313

(https://www.targetvalidation.org/) and searching for associated diseases, excluding 314

genetic association data from the data types included to avoid circular reasoning. We ranked the 315

diseases listed according to their relevance p-value, and found that the RF-based gene lists 316

ranked more obviously T1D-related diseases higher than lasso-based gene lists (Table S2). 317

Indeed, the term “type I diabetes mellitus” was the second ranked for RF and the third ranked 318

for RF-MTL, but only the 19th for lasso (19th) and 45th for joint lasso (45th), supporting that 319

RF-based TWAS was identifying disease-relevant genes identified by methods independent from 320

genetic association data. 321

4 Discussion 322

The current ubiquity of linear methods in eQTL studies reflects both the speed and flexibility of 323

these methods, but also the prevailing dogma that gene expression is influenced additively over 324

variants and over alleles at those variants. This expectation reflects the lack of evidence from 325

human studies directly targeting epistatic effects (Hemani et al., 2014; Brown et al., 2014; 326

Powell et al., 2013). However, this lack of evidence could also reflect a lack of power (Timpson, 327

Greenwood, Soranzo, Lawson, & Richards, 2018). While exploiting RF was not unreservedly a 328

more powerful method for TWAS, the fact the RF predictions were generally better than those 329

from lasso suggests that non-additive effects make an important contribution in gene expression. 330

Such non-linearity has been detected in detailed molecular studies of individual genes 331

https://www.targetvalidation.org/
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(Baeza-Centurion, Miñana, Schmiedel, Valcárcel, & Lehner, 2019), and in large scale studies of 332

model organisms (Celaj et al., 2020). It also motivates wider development and adoption of 333

methods that can exploit non-additivity where it exists, even in samples insufficiently large for 334

non-additivity to be robustly detected. 335

It is important to understand the reasons behind differences in performance of the four 336

methods, both in terms of predictive accuracy and the number of TWAS-significant hits 337

discovered. Both tree-based methods outperformed their linear counterparts on average, with 338

the RF-MTL being the most accurate overall. Clearly, whilst the lasso methods are competitive, 339

RF-based methods successfully exploit the supposed non-linear relationships in the data. For 340

T1D, however, this predictive advantage did not translate into more TWAS-significant hits 341

consistently across different tissue types. The reason for this may lie in the fundamental 342

differences in the properties of the two models. Lasso (and so, joint lasso) produces biased 343

solutions (unlike standard linear regression) with the resulting coefficients biased towards zero, 344

accepting this cost in order to generate predictions with lower variance. Random forest, on the 345

other hand, produces a low-bias model but higher variance predictions (see Fig S3 and S4). As a 346

consequence, even lasso predictions resulting in very small fold changes can lead to 347

TWAS-significant hits through incorporating few (sometimes just one) but important SNPs in 348

predictive models (i.e. highly biased but low variance predictions). This can be seen most 349

clearly comparing the shape of the volcano plots (Fig 3), where the expected dip in the middle is 350

not evident in lasso. Overall lower variance of RF-MTL predictions but similar size of predicted 351

fold change, as compared to RF, might also explain why RF-MTL does better in the TWAS 352

framework. 353

Multi-tissue methods demonstrated their applicability to TWAS both in terms of accuracy of 354

models constructed on the eQTL dataset and the number of unique TWAS-significant genes and 355

SP-genes associated to TID identified. Indeed, Hu et al. (2019) found that their multi-tissue 356

method UTMOST outperformed single-tissue elastic net, PrediXcan of Gamazon et al. (2015), 357

in both stages of the TWAS framework. Like joint lasso, the UTMOST predictive model is a 358

type of regularised regression with several penalty terms in addition to the standard least 359

squares loss. The two penalties used in UTMOST are: L1 for effect sizes within each tissue for 360

variable selection and effect size shrinkage, and L2 grouped lasso penalty for effect sizes across 361

tissues to encourage cross-tissue eQTLs. RF-MTL, on the other hand, uses expression data from 362

different tissues in a flexible non-parametric manner, exploiting similarities where they exist. 363

Various other MTL approaches exist and there is space for exploring their applicability to 364
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TWAS in future work. An ensemble tree method of gradient boosting machines (GBM; 365

(Friedman, 2001)) can for example be adapted for this purpose in the same way as RF. Random 366

effects models (Balasubramanian, Yu, & Zhang, 2013) (once again a linear sparse model) and 367

neural networks have also been adapted to multi-task learning. The latter is an especially 368

intriguing alternative, with a choice of a soft parameter sharing (Duong, Cohn, Bird, & Cook, 369

2015; Yang & Hospedales, 2017) (each task has its own hidden layers and parameters with the 370

distance between parameters regularised) and hard parameter sharing (Caruana, 1993) (each 371

task has individual hidden layers as well as layers shared between all the tasks). 372

The effects of regulatory variation have been shown to vary between cell types (Fairfax et al., 373

2012), and cell type specific chromatin accessibility has been used to associate multiple immune 374

cell types to autoimmune disease GWAS (Farh et al., 2015). Hence, for a given disease, it is 375

important not only to identify potential genes of interest but also the relevant tissue(s). 376

Simulations showed that the two multi-tissue methods we studied tend to “overborrow” 377

information across tissues, i.e. find significant hits for tissues without one if there is a real signal 378

in another tissue. This was mostly a problem suffered by joint lasso and, to a much smaller 379

extent, by RF-MTL. It is harder to identify this behaviour in real data. However, the number of 380

TWAS-significant hits identified by joint lasso in our T1D data and the fact that it was much 381

more likely to find signal in 3 or more tissues for a given gene than the other methods, suggests 382

similar behaviour. Moreover, calculated standard deviation of predicted fold change for different 383

cell types for each probe (for lasso methods, for probes with at least three cell types with 384

non-null predictions) reveal that joint lasso has the least variation in fold change predictions 385

between different tissue types (see Fig S7). Hence, whilst outperforming single-tissue lasso on 386

average in terms of prediction accuracy, joint lasso seems to suffer from lower prediction 387

specificity and, as a result, a higher rate of false positive TWAS-hits in the TWAS framework. 388

Colocalisation testing is an important part of the TWAS framework and provides an in silico 389

validation step for the identified associations. However, we note that associated genes filtered for 390

lack of proportionality would be expected to be differentially expressed in healthy individuals at 391

different risks of disease (those who carry greater or lesser burdens of disease-predisposing 392

variants). Thus, we might expect them to also be differentially expressed between cases and 393

controls in a hypothetical study in which expression is measured directly. Therefore, we suggest 394

such genes might be considered as biomarkers rather than red herrings. Even TWAS-hits 395

passing colocalisation tests can be validated only through practical lab-based experiments. 396

In this study, we demonstrated applicability of non-linear and multi-tissue methods in the 397
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TWAS framework. Both real data and simulation studies showed, in particular, that RF is at 398

least as competitive and, for some tissue types, superior to lasso. Similarly, RF-MTL is superior 399

to RF for some tissue combinations, whilst joint lasso identifies more unique SP-hits than lasso 400

for all the tissue types. Our results highlight the potential to exploit multiple tissue-eQTL 401

studies in TWAS but we expect this to be most useful when tissues are closely related, so that 402

information may be legitimately borrowed between tissues. 403

Data availability statement 404

Data used in this study can be obtained from its original sources. Gene expression data is 405

available through ArrayExpress: 406

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-945 and 407

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2232. 408

Genotyping data for the eQTL dataset is available from the European Genome-Phenome 409

Archive: http://www.ebi.ac.uk/ega/EGAD00010000144 and 410

http://www.ebi.ac.uk/ega/EGAD00010000520. 411

2000 T1D samples were genotyped as part of the WTCCC (and controls) - data access is 412

described https://www.wtccc.org.uk/info/access to data samples.html. An additional 413

4000 cases were genotyped by the T1DGC, available at https://www.ncbi.nlm.nih.gov/ 414

projects/gap/cgi-bin/study.cgi?study id=phs000180.v3.p2. 415

Software 416

All analysis was done in R using glmnet for lasso and elastic net, ranger for RF and RF-MTL, 417

and fuser and bespoke helper functions https://github.com/stas-g/fuser helper for the 418

joint lasso. coloc package was used for the post-hoc colocalisation analysis. All simulation code 419

is available from https://github.com/chr1swallace/twas-sims. 420
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Tables 688

Dataset Cell type Samples SNPs Probes

Fairfax et al

CD14+ 413

588,141
47,230CD14+ LPS2 260

CD14+ LPS24 321

CD14+ IFN 366

B cell 284 47,231

Table 1. Summary of the eQTL dataset used in this study. Expression data of Fairfax et al.
(2012, 2014) includes B cells and monocytes, unactivated and activated—response to
interferon-γ (IFN) and lipopolysaccharide after 2 (LPS2) and 24 (LPS24) hours.

Method Cell N TWAS-significant (unique) SP-hits (unique)
Lasso BCELL 1155 25 (18) 10 (8)
RF BCELL 4103 17 (10) 8 (6)
Joint lasso BCELL 3886 44 (36) 22 (19)
RF-MTL BCELL 4103 17 (11) 6 (5)
Lasso CD14+ 1962 14 (11) 8 (6)
RF CD14+ 4103 15 (12) 8 (6)
Joint lasso CD14+ 3485 32 (26) 19 (15)
RF-MTL CD14+ 4103 20 (15) 10 (7)
Lasso IFN 1919 14 (10) 5 (4)
RF IFN 4103 30 (24) 13 (11)
Joint lasso IFN 3494 40 (32) 22 (18)
RF-MTL IFN 4103 23 (18) 10 (9)
Lasso LPS2 1317 10 (8) 5 (3)
RF LPS2 4103 11 (10) 5 (4)
Joint lasso LPS2 3762 33 (29) 17 (15)
RF-MTL LPS2 4103 21 (16) 11 (9)
Lasso LPS24 1525 16 (13) 4 (3)
RF LPS24 4103 13 (11) 6 (5)
Joint lasso LPS24 3645 35 (31) 21 (19)
RF-MTL LPS24 4103 19 (15) 10 (9)
Total (unique) 449 (62) 220 (46)

Table 2. Table of results of the TWAS analysis. Non-null regressions (N) refer to the expression
prediction models taken through to the GWAS imputation state, i.e. lasso and joint lasso
models which identify no useful SNPs, and hence offer only constant predictions, are dropped.
TWAS-significant hits refer to predicted gene expressions passing the Cochran-Armitage test (5%
with Benjamini-Hochberg adjustment) for differential expression in T1D. Finally, last column is
the number of TWAS-significant hits passing the proportionality filter (at 5%)—SP-hits.

Figures 689
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T1DGC WTCCC Total
Cases 3999 3342 7341
Controls 3983 1930 5913
Total 7982 5272 13254

Table S1. T1D data of Barrett et al. (2009) comprising Wellcome Trust Case Control
Consortium (WTCCC) (Burton et al., 2007) and Type 1 Diabetes Genetics Consortium
(T1DGC) samples.

Method Disease Rank
Joint Lasso hematological measurement 1
Joint Lasso measurement 2
Joint Lasso large intestine disease 3
Joint Lasso intestinal disease 4
Joint Lasso musculoskeletal system disease 5
Joint Lasso type I diabetes mellitus 45
Joint Lasso diabetes mellitus 54
Joint Lasso Permanent neonatal diabetes mellitus 1139
Joint Lasso autoimmune type 1 diabetes 1254
Lasso type II hypersensitivity reaction disease 1
Lasso reproductive system or breast disease 2
Lasso carcinoma 3
Lasso epithelial neoplasm 4
Lasso autoimmune disease of endocrine system 5
Lasso type I diabetes mellitus 19
Lasso diabetes mellitus 29
Lasso Permanent neonatal diabetes mellitus 66
Lasso autoimmune type 1 diabetes 731
RF autoimmune disease of endocrine system 1
RF type I diabetes mellitus 2
RF small intestine disease 3
RF glucose metabolism disease 4
RF endocrine pancreas disease 5
RF diabetes mellitus 6
RF autoimmune type 1 diabetes 388
RF Permanent neonatal diabetes mellitus 558
RF-MTL ulcerative colitis 1
RF-MTL autoimmune disease of endocrine system 2
RF-MTL type I diabetes mellitus 3
RF-MTL autoimmune disease 4
RF-MTL glucose metabolism disease 5
RF-MTL diabetes mellitus 12
RF-MTL Permanent neonatal diabetes mellitus 248
RF-MTL autoimmune type 1 diabetes 415

Table S2. Target Validation analysis of TWAS genes by method. The top 5 diseases ranked by
relevance p-value, and the rank of four type 1 diabetes-related terms are shown.



27

Fig 1. Pairwise comparison of performance of the MTL and STL expression prediction
methods—R2 on a test set. Each point represents a probe-cell pair. Points above the blue line
show increased performance for the method to the left of each plot, while points below the blue
line show increased performance for the method underneath the plot. The three numbers
represent, clockwise: points with positive R2 above x = y line for the x-axis method, points with
positive R2 below the line for the y-axis method, points with negative R2 for both methods.
Numbers in brackets represent the corresponding advantage of one method over the other, in
terms of R2 (for this calculation negative R2 are taken to be 0). For example, comparing lasso
and RF, lasso outperformed RF in 2,148 regressions with an advantage of 3.5%, while RF
outperformed lasso in 9,667 with an advantage of 5.9%, and for 9,625 probe-cell pairs neither
method achieved a positive R2.
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Fig 2. Power of different methods to detect TWAS association. In the top row, the GWAS and
test eQTL traits share causal variant A, while the causal variant for the four background eQTL
traits varies (left-right) from none, to B to A. The bottom row is the same, except the GWAS
and eQTL-test causal variants are different. The total shaded column height is the proportion of
TWAS tests that pass p < 0.05, with lighter shading used to indicate the proportion of tests
which would be filtered out proportionality testing at p < 0.05.The horizontal dotted line is at
y = 0.05, the proportion of false positives expected in a well controlled testing procedure in the
bottom row.
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Fig 3. Volcano plots for testing association between the predicted gene expression and the T1D
status. Grey points are not TWAS-significant, blue points are TWAS- but not passing
proportionality test, and orange points are both TWAS- and proportionality-significant
(SP-hits).
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Fig 4. Unique TWAS-significant hits passing proportionality filtering, by method: lasso (13),
RF (21), joint lasso (36), and RF-MTL (18).
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Fig 5. A heatmap of genes identified by the four methods after proportionality filtering (top),
integrated with a Manhattan plot of T1D GWAS. Arrows point to GWAS peaks (red stars) in
the vicinity of which (1 Mbp either way) a gene (or several genes, grouped by a bracket) lies.
Vertical dotted lines indicate positions of genes; horizontal dotted line is at −logp = 5,
corresponding to a GWAS significant level of 10−5; green and purple colours in the Manhattan
plot designate alternating chromosomes. Note that the genes in the heatmap are ordered
according to their positions, so for any two genes (or groups of genes) an arrow from a leftmost
one would point to a peak left of the peak pointed at by the rightmost gene. Any intersection
between the arrows is due to the fact that they might point to peaks of vastly different heights.
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Fig S1. Identifying a p-value threshold for the eQTL analysis. Performance of the four
expression prediction methods, as assessed by R2 on a test set, plotted against the minimum
p-value of the eligible (cis) SNPs for each probe/cell pair on chromosome 22 (3040 regressions for
each method). The vertical dashed line is at x = 7 (i.e. minimum p-value = 10−7).
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(a) (b)

Fig S2. (a) Pairwise comparison of performance (R2 on a 30% test set) of elastic net for
α = 0, 0.5, 1. Each point represents a probe-cell pair. Points above the red line show increased
performance for the method to the left of each plot, while points below the red line show
increased performance for the method underneath the plot. The three numbers represent,
clockwise, starting top left: points with positive R2 for the x-axis method above the x = y line,
points with positive R2 for the y-axis method below the line, points with negative R2 for both
methods; average advantage in brackets. (b) Performance of elastic net for varying values of α,
evenly spaced between 0 and 1, on the eQTL dataset of Fairfax et al (R2 on a 30% test set).
Note that the values 0 and 1 correspond to the ridge regression and lasso, accordingly. Each
violin plot, with the embedded boxplot, aggregates all regressions for a given α. The purple and
orange lines are mean and median values of R2, respectively.
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Fig S3. Pairwise comparison of variance of imputed expression values for the four methods.
The blue dashed line is the x = y line. Numbers above and below the line correspond to the
number of regressions for which the y-axis method has larger variance for the imputed
predictions than the x-axis method and vice versa, respectively.
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Fig S4. Pairwise comparison of predicted fold change for the four methods. The blue dotted
line is the x = y line. In the positive, quadrant the numbers above and below the line designate
the number of regressions for which the y-axis has a larger predicted fold change than the x-axis
method, and vice versa. Likewise for the numbers in the negative quadrant, except here the
numbers relate to absolute fold change.
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Fig S5. Effects of lasso regularisation on TWAS. a Lasso-TWAS p-values amongst simulations
with shared eQTL/GWAS causal variants show a spike at p=1, and a longer tail than RF,
indicating that weaker effects are missed by lasso, but that stronger effects can show greater
significance compared to RF. b TWAS effect estimates (estimated causal effect of expression on
GWAS trait) are underestimated for weak effects for RF, tending to 1 for stronger effects. For
lasso, TWAS effect estimates are systematically over estimated, even for well-powered studies.
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Fig S6. Venn diagrams showing unique SP-genes identified by the four methods, by cell type.
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Fig S7. Violin plots (with inscribed boxplots) of standard deviations of predicted fold change
for different cell types for each probe, per method. For each method, only probes with
predictions for at least three cell types were considered.
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