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Abstract: Imaging plays a cardinal role in the diagnosis and management of diseases of the pulmonary
circulation. Behind the picture itself, every digital image contains a wealth of quantitative data,
which are hardly analysed in current routine clinical practice and this is now being transformed by
radiomics. Mathematical analyses of these data using novel techniques, such as vascular morphometry
(including vascular tortuosity and vascular volumes), blood flow imaging (including quantitative
lung perfusion and computational flow dynamics), and artificial intelligence, are opening a window
on the complex pathophysiology and structure–function relationships of pulmonary vascular diseases.
They have the potential to make dramatic alterations to how clinicians investigate the pulmonary
circulation, with the consequences of more rapid diagnosis and a reduction in the need for invasive
procedures in the future. Applied to multimodality imaging, they can provide new information to
improve disease characterization and increase diagnostic accuracy. These new technologies may be
used as sophisticated biomarkers for risk prediction modelling of prognosis and for optimising the
long-term management of pulmonary circulatory diseases. These innovative techniques will require
evaluation in clinical trials and may in themselves serve as successful surrogate end points in trials in
the years to come.
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imaging; blood flow imaging; AI and pulmonary vasculature; machine learning and pulmonary
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1. Introduction

The pulmonary circulation is a biologically complex high-flow and low-pressure circuit that works
in conjunction with the right ventricle and the various structural components of the lungs to form the
cardiopulmonary unit. Although these subsystems have inherent individual characteristics, they are
intractably linked and form an integrated metabolic unit that act in concert. As malfunction of one or
more of these components at any spatial scale can be detrimental to the cardiopulmonary unit as a whole,
it is imperative that imaging evaluation of pulmonary vascular diseases moves away from the traditional
macroscopic assessment to more sophisticated methodologies that integrate structure–function
relationships. The coupling of phenomenal parallel technical, engineering, and analytical advances
in imaging and computer science is redefining the radiological landscape and is the catalyst for
ushering in a new era of precision medicine with improved disease detection and characterisation,
risk stratification and prognostication, monitoring, and directing appropriate treatment followed by
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assessment of response to the instituted therapy. There is a visible shift in radiological practice from
the conventional model of visual observer-driven pattern recognition to the more frequent use of
semi-quantitative and quantitative objective imaging biomarkers. In this article, we will discuss the
evolving use of morphometric and ML tools in the imaging of the pulmonary circulation.

2. Pulmonary Vascular Morphometrics: Evolution from Castings to Imaging

Pulmonary morphometry is the science of understanding the quantitative anatomy of the lung,
and the correlation of anatomy with physiology. The morphometric data on vascular geometry, such as
the diameter, branch order and branch angles, elasticity, and connectivity matrix between the different
vessels, are used to compute the total cross-sectional areas, blood volumes, and fractal dimensions in
the pulmonary arteries and veins. The fundamental aim is to formulate a model for the hemodynamic
circuits in order to analyse the blood flow dynamics in the lungs. Pioneering work using resin or
silicone elastomer vessel casts of necropsy material led to the establishment of normal values for
the number and size of pulmonary vessels in humans [1–5]. However, the castings-based approach
to morphometry is arduous, requires a higher filling pressure compared to physiological pressures,
and is not conducive to studying vascular remodelling associated with adaption to various forms of
stress [6]. The lack of the surrounding microenvironment limits the applicability of the results with
other measurements that might affect the whole lung.

Non-invasive imaging techniques, such as computed tomography (CT) and magnetic resonance
imaging (MRI), can acquire high-fidelity images of the pulmonary vasculature with intact spatial
orientation and connectivity in vivo and are a practical alternative to castings. The imaging approach
also allows for rapid data collection under different experimental conditions with the added advantage
of digitisation. The multiplanar three-dimensional nature of CT and MR angiography is well suited to
provide quantitative morphometric information. Multidetector CT scanners are capable of acquiring
sub-millimetre isotropic images of the thorax in a few seconds. A good-quality CT can depict pulmonary
vessels down to diameters of about 1 mm [7], but manual vascular segmentation is prohibitively time
consuming given the large number of vessels and also the separation of the arteries from veins can
be challenging.

Vessel segmentation is the fundamental step in computer-aided processing of data generated
by three-dimensional (3-D) imaging modalities (Figure 1). Lesage et al. [8] offers a comprehensive
review of various vascular lumen segmentation models for CT and MR angiography. Highly accurate
pulmonary artery–vein segmentation on CT is often a necessary prerequisite as it allows the study of
both flow systems separately. This process has also evolved over the last few years and it is now feasible
to use a fully automatic deep learning algorithm that utilises a 3-D convolutional neural network
with minimal user interactions [9]. Advances in computational vascular morphometry can facilitate
complex CT volumetric assessments of intraparenchymal vascular morphology to provide different
vascular metrics that can be used to further our understanding of pulmonary vascular diseases [10].
A major advantage of automation is rapid tracking of large volumes in a shorter time frame and with
reduced bias. It is also easier to standardise and hence can be applied both in routine clinical practice
as well as for large imaged-based clinical studies.
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Figure 1. Representative computed tomography pulmonary angiography images in the coronal plane 
of a normal male subject with automated 3-D rendering of the intraparenchymal vasculature. The 
reconstruction with (panel A) and without lung overlay (panel B) demonstrates the ability of a good 
quality CTPA to depict subsegmental vessels. Volumetric reconstructions can be color-coded based 
on vessel radii and automated vessel segmentation can be used to create a blood volume distribution 
profile by measuring the vascular cross-sectional area in regions of interest. Image courtesy of Dr Wei 
Liao, Imaging Solutions, Bayer AG Engineering & Technology, Computer Vision Innovation. 

Reference values for the number, volume and tortuosity of pulmonary vessels determined from 
morphology readouts using a fully automated vessel separation algorithm applied to computed 
tomography pulmonary angiography (CTPA) datasets in healthy cohorts have been published [11]. 
However, it is well known that there is heterogeneity in the number, diameter, branch pattern, and 
wall composition of the different components of pulmonary circulation that may predispose for 
alterations under certain pathological conditions [12]. 

Clinical Applications of Morphometrics in Pulmonary Vascular Diseases 

Computer-based quantitative evaluation of the lung vessel morphology to derive imaging-based 
biomarkers has the potential to provide better insights into pulmonary vascular diseases (PVDs). A 
key pathological feature of PVD is the vascular remodelling that is characterised by cellular and 
structural alteration in the normal architecture of the pulmonary vessel wall. The remodelling is 
associated with a vicious cycle of increased pulmonary vascular resistance and intravascular pressure 
that eventually results in refractory right ventricular failure and death. New therapeutic approaches 
to PVDs require quantitative morphometric tools for correlation of vascular metrics with functional 
parameters. Given the heterogeneity of pathogenic factors associated with PVDs, it is necessary to 
choose the most relevant parameters in a specific disease setting that can then be analysed. 

2.1. Pulmonary Hypertension: Screening, Disease Detection, Disease Severity, and a Non-Invasive Measure 
of Mean PAP 

Imaging features that suggest vascular remodelling include pruning and loss of arterial 
branching [13]. Vascular tortuosity is also a frequent finding in PH. In a pilot study of 23 patients (18 
with PH due to different aetiologies), Helmberger and colleagues applied a vessel enhancement filter-
based automatic extraction algorithm to contrast enhanced thoracic CTs and demonstrated strong 
links between vascular tortuosity and mean pulmonary arterial pressure, pulmonary vascular 
resistance, and measurements of pulmonary gas exchange. The mean ‘distance metric’ that was used 
to gauge the vascular tortuosity showed a good discriminative power between patients with and 
without PH and hence could potentially be used in imaging-based PH screening [14]. The distance 
metric also demonstrated significant correlation with the WHO functional class and hence may be a 
reflector of disease severity. 

Figure 1. Representative computed tomography pulmonary angiography images in the coronal
plane of a normal male subject with automated 3-D rendering of the intraparenchymal vasculature.
The reconstruction with (panel A) and without lung overlay (panel B) demonstrates the ability of a good
quality CTPA to depict subsegmental vessels. Volumetric reconstructions can be color-coded based
on vessel radii and automated vessel segmentation can be used to create a blood volume distribution
profile by measuring the vascular cross-sectional area in regions of interest. Image courtesy of Dr Wei
Liao, Imaging Solutions, Bayer AG Engineering & Technology, Computer Vision Innovation.

Reference values for the number, volume and tortuosity of pulmonary vessels determined from
morphology readouts using a fully automated vessel separation algorithm applied to computed
tomography pulmonary angiography (CTPA) datasets in healthy cohorts have been published [11].
However, it is well known that there is heterogeneity in the number, diameter, branch pattern, and wall
composition of the different components of pulmonary circulation that may predispose for alterations
under certain pathological conditions [12].

Clinical Applications of Morphometrics in Pulmonary Vascular Diseases

Computer-based quantitative evaluation of the lung vessel morphology to derive imaging-based
biomarkers has the potential to provide better insights into pulmonary vascular diseases (PVDs).
A key pathological feature of PVD is the vascular remodelling that is characterised by cellular and
structural alteration in the normal architecture of the pulmonary vessel wall. The remodelling is
associated with a vicious cycle of increased pulmonary vascular resistance and intravascular pressure
that eventually results in refractory right ventricular failure and death. New therapeutic approaches
to PVDs require quantitative morphometric tools for correlation of vascular metrics with functional
parameters. Given the heterogeneity of pathogenic factors associated with PVDs, it is necessary to
choose the most relevant parameters in a specific disease setting that can then be analysed.

2.1. Pulmonary Hypertension: Screening, Disease Detection, Disease Severity, and a Non-Invasive Measure of
Mean PAP

Imaging features that suggest vascular remodelling include pruning and loss of arterial
branching [13]. Vascular tortuosity is also a frequent finding in PH. In a pilot study of 23 patients
(18 with PH due to different aetiologies), Helmberger and colleagues applied a vessel enhancement
filter-based automatic extraction algorithm to contrast enhanced thoracic CTs and demonstrated
strong links between vascular tortuosity and mean pulmonary arterial pressure, pulmonary vascular
resistance, and measurements of pulmonary gas exchange. The mean ‘distance metric’ that was used to
gauge the vascular tortuosity showed a good discriminative power between patients with and without
PH and hence could potentially be used in imaging-based PH screening [14]. The distance metric also
demonstrated significant correlation with the WHO functional class and hence may be a reflector of
disease severity.
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Using automated 3-D volumetry based on CT pulmonary angiography (CTPA), a high correlation
has been demonstrated between central pulmonary artery (PA) volumes and mean PA pressures in
patients with and without pulmonary arterial hypertension (PAH) [15]. In a study using a regression
model, the combination of main PA (MPA) volume and echocardiographically derived pulmonary
artery systolic pressure (PASP) provided superior diagnostic accuracy and could have the potential for
non-invasive prediction of mean pulmonary arterial pressure [16]

2.2. Interstitial Lung Disease (ILD): Disease Severity, Risk Stratification, and Monitoring

CALIPER (Computer-Aided Lung Informatics for Pathology Evaluation and Rating) is a software
tool developed by the Biomedical Imaging Resource Laboratory at the Mayo Clinic Rochester
(Rochester, MN, USA) to automatically identify and quantify changes in the lung parenchyma
based on high-resolution CT images of the thorax. The software can also quantify changes to the
small and large vessels by scoring them as a percentage of the volume of pulmonary vascular-related
structures. The pulmonary vascular volume correlates with the extent of ILD and could therefore be
a potential new index when assessing disease severity [17]. In a more recent publication, a baseline
CALIPER-derived ILD extent higher than 20% and pulmonary vascular-related structures score greater
than 5% was associated with worse prognosis [18]. This imaging biomarker could be a monitoring tool
with an objective endpoint in future clinical trials.

2.3. Chronic Obstructive Pulmonary Disease (COPD): Disease Severity

Pulmonary vascular alteration is a well-recognised feature of COPD, with studies linking it
to alterations in endothelial dysfunction. The development of PH is an important predictor of
mortality in COPD [19]. The in vivo relationship between pulmonary arterial pressure and small-vessel
morphology in emphysema was first evaluated on CT by Matsuoka et al. [20] using computer-assisted
semiautomated morphometric image-processing software. The relationship assessment between the
extent of emphysema and the percentage of total cross-sectional area (CSA) of sub-subsegmental
pulmonary vessels less than 5 mm2 demonstrated that % CSA < 5 had a negative inverse correlation
with mean PA pressures and emphysema severity.

The ratio of blood vessel volume in vessels <5 mm2 in cross-section (BV5) to total blood vessel
volume (TBV) can be used as measure of vascular pruning, with lower values indicating more pruning.
In smokers, the aggregate blood vessel volume in vessels less than 5 mm2 show the distal pruning of
the intraparenchymal blood vessels and disproportionate loss of non-vascular tissue [10]. Loss of small
vessel volume in CT imaging of smokers is associated with histological loss of vascular cross-sectional
area [21]. Furthermore, the arterial small vessel density also shows good correlation with morphometric
assessments of vessel remodelling in muscular pulmonary arteries.

2.4. Chronic Thromboembolic Pulmonary Hypertension: Disease Detection and Characterisation

The arterial abnormalities in chronic thromboembolic pulmonary hypertension (CTEPH) are well
documented in the literature. Elegant work by Rahaghi et al. [22] provides objective evaluation of
the vascular morphology on CT to facilitate lobar and global quantification. Aggregate plots of blood
vessel volume versus vascular cross-sectional area on CT show distal vascular pruning and increased
proximal arterial engorgement. These indices have the discriminatory power to distinguish CTEPH
from the control population. CTEPH cases also showed increased arterial tortuosity and differential
distribution of the volume between arterial and venous beds. These vascular metrics have the potential
to be used as imaging biomarkers that can complement haemodynamic data.

2.5. COVID-19: Insights into the Pathophysiology of Disease

There is emergent data linking the high mortality observed among patients with severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and pulmonary vascular involvement.
Increasing attention has been placed on the concept of microvascular thrombi and dysregulated
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hypoxic pulmonary vasoconstriction as possible explanations for the severe hypoxemia related to
COVID-19. Building upon previous work by Rahaghi et al. [22] outlined above, Lins and colleagues
were able to show the value of quantitative CT analysis for the evaluation of pulmonary vascular
dysfunction in 103 patients with COVID-19 [23]. Compared to healthy volunteers, COVID-19 patients
showed a significant reduction in the blood volume in small vessels and an increase of the blood
volume in the medium and large vessels (Figure 2). The authors postulate that this “redistribution”
of blood volume within the pulmonary vascular tree could be due to increased pulmonary vascular
resistance in the distal vessels that is below the resolution of CT to visualise by the naked eye. It must
also be pointed out that in addition to applying an automated blood vessel segmentation algorithm,
this work also used a fully convolutional deep learning model on part of the CT datasets to analyse
the effect that concomitant lung parenchymal changes of COVID-19 might have on the segmentation
algorithm (Lins et al.).
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West and colleagues first described the gravitational differences in pulmonary blood flow 
following administration of radioisotope [26]. Perfusion scintigraphy is now a mature and well-
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3. Pulmonary Perfusion

Assessment of lung perfusion can refine our knowledge about the pathophysiology of PVD.
Contemporary imaging modalities for evaluation of perfusion are technically different and hence may
provide a multitude of information that may not always be concordant. Hopkins et al. provided an
excellent summary of the confounding variables in the imaging-based perfusion measurements [24,25].

3.1. Nuclear Medicine

West and colleagues first described the gravitational differences in pulmonary blood flow following
administration of radioisotope [26]. Perfusion scintigraphy is now a mature and well-established
technique for evaluation of pulmonary perfusion. Intravenous administration of 99mTc-labeled
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macroaggregated albumin results in temporary trapping of the spheres in the pulmonary capillaries
in proportion to local blood flow. Hence, scintigraphic quantification is a measure of true perfusion,
as microspheres (10–150 µm) are distributed to small pulmonary arterioles and capillary beds and
are not located in large conduit vessels. The spatial and contrast resolution required for defining a
perfusion defect improves with the use of single photon emission computed tomography (SPECT) or
SPECT/CT compared to standard planar imaging. The addition of CT allows for attenuation correction
and improves the measurements of regional pulmonary perfusion, but it must be emphasised that
SPECT measures of perfusion are semiquantitative relative to the overall mean perfusion. First pass
pulmonary perfusion can be measured using 13N2-PET imaging, where the local concentration reflects
local perfusion [27]. This has been applied in clinical practice to demonstrate spatial heterogeneity of
lung perfusion in COPD and has the potential to become a vascular biomarker in airways disease [28].

Semiquantitative visual and quantitative volumetric scoring of SPECT data have numerous
advances over the qualitative interpretation of ventilation-perfusion (V/Q) scintigraphy (Figure 3).
Quantification may be useful for the management of patients with acute pulmonary embolism (PE)
as the extent of PE is an independent risk factor for recurrence. Based on the results of VQ SPECT
quantification and haemodynamic stability, a large proportion of patients with small- or medium-sized
PE with a low SPECT score can be safely managed in the outpatient setting [29,30].

In patients with CTEPH, SPECT quantification can be a potential biomarker for disease severity and
therapy monitoring. Derlin and colleagues demonstrated the correlation between the SPECT-derived
perfusion defect score and haemodynamic parameters like mean pulmonary artery pressure (mPAP)
and serum levels of N-terminal pro–B-type natriuretic peptide. Both perfusion lung volumes and
perfusion index decreased with an increase in mPAP [31]. Following on from this work, a quantitative
metric based on the difference in ventilation and perfusion volumes (V-P) has been used to identify
discordant defects on SPECT images in CTEPH before and after treatment [32].

In PAH, perfusion is patchy due to non-homogenous obstruction of the pulmonary vascular bed.
Quantification of this heterogeneity can be useful in understanding the pathophysiological sequalae
of pulmonary vascular obstruction. [33]. Additionally, the perfusion index measured from planar
imaging has been shown to have significant correlation with mean PAP and right ventricular ejection
fraction at baseline, with improvement in the index following vasodilator therapy in PAH patients [34].
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reconstruction, corrected for counts remaining from the ventilation study by subtraction; bottom row 
= 3-D V/Q ratio image created by dividing the ventilation counts by the perfusion counts for each 
voxel, displayed on a 0–6 scale. In the bottom row, red represents high V/Q values, indicating a 
mismatch, blue represents low V/Q values, indicating that ventilation and perfusion are matched in 
that region. (b) Normal and (c) Acute pulmonary embolism (same patients from (a)). Histograms of 
the V and Q voxel-wise frequency distributions (left hand side) and V/Q voxel-wise frequency 
distribution (right hand side) plotted against the V/Q ratio. The wider the peaks and the more 
different the V and Q frequency distribution curves, the higher the probability of PE. 

In patients with CTEPH, SPECT quantification can be a potential biomarker for disease severity 
and therapy monitoring. Derlin and colleagues demonstrated the correlation between the SPECT-

Figure 3. Lung VQ SPECT quantitative analysis and display from Hermes Medical Solutions’
Hybrid Viewer software. Objective analysis of SPECT scintigraphy has a high diagnostic accuracy
in patients with suspected pulmonary embolism. (a): Panel A: Normal. Panel B: Acute pulmonary
embolism (block arrows); Top row = ventilation SPECT reconstruction; middle row = perfusion
SPECT reconstruction, corrected for counts remaining from the ventilation study by subtraction;
bottom row = 3-D V/Q ratio image created by dividing the ventilation counts by the perfusion counts
for each voxel, displayed on a 0–6 scale. In the bottom row, red represents high V/Q values, indicating
a mismatch, blue represents low V/Q values, indicating that ventilation and perfusion are matched in
that region. (b) Normal and (c) Acute pulmonary embolism (same patients from (a)). Histograms of the
V and Q voxel-wise frequency distributions (left hand side) and V/Q voxel-wise frequency distribution
(right hand side) plotted against the V/Q ratio. The wider the peaks and the more different the V and Q
frequency distribution curves, the higher the probability of PE.
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3.2. Dual Energy CT, DECT

The concept of dual-energy CT was first introduced in the 1970s [35], but it is only since the
last decade that it has emerged as a promising tool for lung imaging. Spectral information for tissue
characterisation is obtained by simultaneous acquisition of two datasets at different tube voltages to
generate grey-scale images and color-coded overlays highlighting the locations of the imaging material
of choice (e.g., xenon or iodine). With the use of three-material decomposition algorithms, it is possible
to generate separate material-specific images [36]

DECT pulmonary angiography allows simultaneous evaluation of lung morphology, parenchymal
density, and pulmonary perfused blood volumes (PBVs). Images from the iodine maps and pulmonary
CT angiography (CTA) can be fused to provide morphologic and functional information from a single
examination (Figure 4). Although pulmonary perfusion is a dynamic process of blood flow over time,
a DECT-derived iodine map of the lung microcirculation represents blood volume measurement at
one predefined point and hence is only a surrogate marker of perfusion. Nevertheless, by revealing
the distribution of intravenously injected iodine contrast material in the parenchyma, PBV maps can
potentially act as biomarkers of pulmonary perfusion across a wide spectrum of PVD (Figure 5).

There is a mounting body of evidence to support the complimentary functional role of DECT in
the diagnosis of acute PE [37–41]. Subsegmental pulmonary emboli can be challenging to detect on
standard CTPA-images, but the advantage of DECT is that 3–5-mm-diameter subsegmental emboli can
create a 3–5-cm-diameter peripheral parenchymal perfusion defect [42] and hence the iodine maps
can improve the detection rate of subsegmental emboli [38]. DE-CTPA has a sensitivity/specificity of
100% and 100% for the diagnosis of acute PE-related perfusion deficits compared to SPECT/CT and
a per segment sensitivity/specificity of 83%/99% with a negative predictive value of 93% for DECT
when correlated with ventilation/perfusion scintigraphy [43]. Pulmonary perfusion deficit scores are
inversely correlated with thrombus load and signs of right heart strain [44]. Zhang and colleagues also
found a positive relationship between PBV scores and right heart dysfunction, and advocate DECT for
follow-up after institution of anticoagulation [45]. Automated quantification of pulmonary perfused
blood volume has been shown to predict intensive care unit admission [46]. Thus, DECT indices have
the potential for acting as a biomarker for PE severity, prognostication, and therapy monitoring.
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In chronic thromboembolic pulmonary hypertension, the DE-CTPA has a high diagnostic
accuracy with 100% sensitivity and 92% specificity [47]. Nakagawa and colleagues found good
concordance between DECT and perfusion scintigraphy, but the work by Renapurkar et al. showed
only modest inter-modality correlation in automated quantification between PBV maps and planar
scintigraphy [48,49]. In patients with chronic pulmonary vascular obstruction, bronchial collaterals
develop and may even participate in blood oxygenation. Whilst scintigraphy is a measure of
pulmonary circulation-mediated lung perfusion, DECT PBV maps cannot distinguish the contribution
from systemic circulation. Hence, it may be necessary to do dual-phase quantification as elaborated by
Koike et al., where the early phase PBV reflects pulmonary arterial contribution and the late-phase
PBV is the additive effect of pulmonary arterial and systemic collateral flow [50].

The extent of hypoperfusion on the colour-coded lung PBV maps may also be useful as a
non-invasive estimator of disease severity [51] (Figure 6). Lung PBV scores show significant correlation
with haemodynamic parameters, such as mean PAP and PVR [52,53]. Patients who have undergone
successful balloon pulmonary angioplasty had positive correlation between DECT and clinical and
haemodynamic parameters. Improvement in 6-min walking distance, PAP, and pulmonary vascular
resistance (PVR) were associated with concomitant improvement in DECT perfusion maps [54].
DECT thus has the potential to obviate the need for recurrent right heart catheterisations in long-term
follow-up of CTEPH patents as it can be used as a non-invasive monitoring tool to evaluate disease
severity and treatment response.

Automated quantification of DE-CTPA-derived pulmonary PBV can be used as a
reader-independent tool for the evaluation of global and regional pulmonary perfusion in emphysema.
Such objective evidence of reduced pulmonary perfusion can be helpful to assess the COPD severity [55].
The role of DECT-PBV as an imaging biomarker has also been used to evaluate vascular endothelial
dysfunction in smokers with emphysema. CT-derived pulmonary blood flow heterogeneity is greater in
smokers with visual evidence of centriacinar emphysema (CAE) on CT even if the PFTs are normal [56].
In a study of 17 PFT-normal current smokers with and without CAE, DECT-PBV images acquired
before and 1 h after administration of oral sildenafil demonstrated a statistically significant decrease in
PBV-CV (coefficients of variation; a measure of spatial blood flow heterogeneity) in smokers with CAE
but did not change in smokers without CAE. At baseline, the CAE group also showed higher arterial
volume and cross-sectional area (CSA) in the lower lobes suggestive of arterial enlargement due to
increased peripheral resistance and following sildenafil, there was a reduction in the arterial CSA.
This inverse correlation between PBV change and arterial volume was not present in the non-CAE
group. Thus, this work highlights the possibility of using DECT-PBV as a surrogate biomarker of
reversible endothelial dysfunction [57].
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Figure 6. Dual-energy CT in acute pulmonary embolism (PE).Top row: Panel A: Axial CT pulmonary
angiography with multiple acute PE (block arrows). Panel B: Corresponding coronal colour-coded
overlay of a pulmonary perfusion map with multifocal wedge-shaped perfusion defects (block arrows).
Bottom row: The numerical information corresponding to the perfused blood volume shows the lung
volume (cm3) and iodine perfusion (enhancement in Hounsfield Unit, HU). The right and left lobes of
the lung are visualised and evaluated independently. Both lobes of the isolated lung are subdivided
into upper, middle, and lower parts based on the volume of the segmented lobes. Image courtesy of
Dr Rahul D. Renapurkar, Departments of Thoracic and Cardiovascular Imaging, Imaging Institute,
Cleveland Clinic.

3.3. MR Perfusion

MR perfusion techniques have been available for more than 20 years, but despite the relative
ease with which it can be implemented on the modern MR platforms, pulmonary perfusion has been
under-utilised outside specialist centres. However, in recent times, MR-based perfusion imaging has
been gaining popularity due to emerging data regarding its widespread applicability in various forms
of pulmonary vascular disease, with the added potential for reproducible quantitative assessments
that can provide new insights into pathophysiological processes of the cardio-pulmonary unit.

The two main MR techniques to depict pulmonary perfusion are the non-contrast arterial spin
labelling (ASL) and time-resolved dynamic contrast-enhanced (DCE) technique. ASL is not routinely
used in clinical practice as it involves lengthy acquisition times and relatively low signal increase.
DCE-MR imaging consists of rapid multiphasic acquisition of the first pass of gadolinium contrast media
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through the heart and lungs following intravenous bolus injection. The baseline pre contrast images
can be subtracted from the peak intensity image to give a qualitative perfusion image. Quantitative
analysis is based on the indicator dilution theory, where the maximum signal intensity and the temporal
course of the signal change are used to measure tissue kinetics, such as regional pulmonary blood flow
(PBF), pulmonary blood volume (PBV), and mean transit time (MTT), within the entire lung on 3-D
sequences [58–60].

Focal areas of wedge-shaped perfusion defects allow for an indirect diagnosis of PE. In these areas
of decreased perfusion, the mean PBF and PBV are decreased, and mean MTT is prolonged [61,62].
The acute PTE index, defined as the ratio between the volume of perfusion defects and the total lung
volume as determined by DCE-MR, has been shown to correlate with clinical severity and has similar
accuracy to the right ventricular /left ventricular (RV/LV) diameter ratio for the prediction of outcome
after acute PE [63].

DCE-MR has a multifunctional role in CTEPH evaluation (Figure 7). It has a high diagnostic
accuracy that is similar to perfusion scintigraphy to exclude CTEPH and thus can be used as a screening
tool [64]. The pattern of perfusion defects permits distinguishing the focal defects seen in CTEPH from
the diffuse perfusion reduction in PAH [65]. Dynamic perfusion MR parameters outperformed MDCT
in the assessment of therapeutic response in patients with inoperable CTEPH [66]. In 20 patients with
operable CTEPH, Schoenfeld and colleagues were able to confirm surgical success by demonstrating
improvement in the PBV in the lower lobes and concomitant improvement in exercise capacity [67].
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Figure 7. MR perfusion with absolute quantification of perfusion parameters. Top row: CTEPH.
Bottom Row: Normal. From Left to Right: Maximum Intensity Projection (MIP) of MR pulmonary
angiography, Pulmonary Blood Volume (PBV), Pulmonary Blood Flow (PBF), and Mean Transit Time
(MTT). In chronic thromboembolic disease, there are focal areas (arrows) of wedge-shaped perfusion
defects. In these areas of decreased perfusion, the mean PBF and PBV are decreased, and mean MTT is
prolonged (colour maps).

DCE-MR perfusion has the potential to be used for PH screening, risk stratification, prognostication,
and monitoring response to treatment. Ohno and colleagues were the first to demonstrate that there
are significant differences in perfusion parameters between healthy subjects and PAH patients. In PAH,
there is a diffuse reduction in mean PBF and markedly prolonged MTT [68]. The first-pass clearance
curve and pulmonary transit time in PAH cases correlate well with haemodynamic prognostic indictors,
such as pulmonary vascular resistance and cardiac index [69,70]. Prolongation of perfusion parameters
is a predictor of mortality independent of age, gender, and WHO functional class. In connective tissue
disease-associated PH, there was significant correlation between PBF and PBV with mean PAP and
moderate correlation with PVR [71].
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The pulmonary perfusion in COPD is heterogeneously altered. Semiquantitative perfusion
measures, such as PBF and PBV, are significantly reduced and MTT is prolonged. These findings
show good correlation to the lung diffusing capacity [72]. In a small study of 18 patients with
combined pulmonary fibrosis and emphysema (CPFE), the prolongation of the MTT and time to peak
enhancement were significantly prolonged, with good correlation to haemodynamic parameters, such
as mPAP and PVR index [73].

There is currently an unresolved debate regarding the safety of gadolinium contrast media [74,75],
which has sparked an interest in the development of novel imaging sequences that can produce
ventilation and perfusion maps without any external contrast agent. An elegant work by Schönfeld
and colleagues showed perfusion-weighted Fourier-decomposition MRI to be a feasible alternative to
DCE-MRI for diagnosis of chronic thromboembolic disease without resorting to ionising radiation or
contrast agent [76].

Perfusion MR is a promising biomarker in the assessment of pulmonary vascular diseases. With the
ongoing improvements in image acquisition techniques and standardisation of post processing software,
it is likely to gain greater acceptance in routine clinical practice.

4. Blood Flow Imaging (BFI)

BFI refers to contemporary vascular techniques based on fluid-flow dynamics. The two main
approaches to BFI are measurement-based flow visualisation using non-invasive imaging, such as
echocardiography or MRI, and computational fluid dynamics (CFD) [77]. Non-invasive in vivo
imaging modalities provide actual quantitative measurements without disturbing the normal biological
environment. CFD is specialist area of applied mathematics that uses computer simulation programs
to resolve complex issues relating to blood flow and is increasingly being used as a modelling tool to
study a variety of cardiovascular conditions. Imaging techniques have limitations in temporal and
spatial resolution whilst the resolution in CFD can increase the computer’s memory limit.

It is clear from the emergent publications on pulmonary circulatory CFD modelling [78–82] that
the composite of high-performance computing, high-quality imaging data, and numerical modelling
can be successfully integrated to offer insights into the complex disease mechanisms in PH. Wall shear
stress (WSS) is a predictor of endothelial dysfunction and has been implicated in the transcriptional
events in vascular remodelling. WSS is reduced in PH compared to healthy subjects and also exhibits
a relationship with PH progression [80,81] A small proof-of-concept study in CTEPH showed the
potential of CFD to quantify pulmonary artery pressure gradients, WSS, and flow topology to assist
the decision-making process regarding surgical eligibility [83].

Phase-contrast magnetic resonance imaging (PC MRI) is a well-established technique for
measurements of blood flow and velocity. An excellent review by Reiter et al. [84] has summarised its
clinical utility in PH. Three-dimensional time-resolved multidirectional MR flow imaging (4-D-flow)
provides data regarding the temporal evolution of complex flow patterns to evaluate blood flow
topology, pulse-wave propagation, WSS, and energy kinetics in the pulmonary vasculature.

The flow characteristics in patients with PH are considerably different when compared with
healthy and normotensive controls. In PH, there is an early onset of retrograde flow and large-scale
flow vortices in the mPA (Figure 8, Video S1). These flow parameters have a linear relationship with
elevated mPAP [85,86]. Vortical blood flow in the MPA longer than 14.3% of the cardiac interval
corresponds to PH with 97% sensitivity and 96% specificity [85]. A case report of a patient with
CTEPH showed substantial late-systole vortex flow in the MPA with complete normalisation of the
flow patterns after successful balloon pulmonary angioplasty [87].
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Figure 8. Also has corresponding Video (avi file 1). 4-D flow MR. Left panel: Normal flow. Right
panel: Abnormal flow vortex (block arrow) in a patient with PH. There is a linear relationship between
tvortex and mean pulmonary artery pressure (mPA) that allows for diagnosis of PH. Images courtesy of
Dr Ursula Rieter, Department of Radiology, Medical University of Graz and Dr Gert Rieter, Research &
Development, Siemens Healthineers, Graz, Austria.

Similar to the CFD literature, a 4-D flow MR-derived WSS also shows a significant reduction
in the mPA in patients with PH [88,89] and can potentially be used as a biomarker to discriminate
PH patients from healthy subjects. There is a significant negative correlation between the 4-D flow
MR-derived reduction in WSS and invasive metrics, such as mPAP and PVR [90,91], as well as markers
of pulmonary artery stiffness [90].

Energy loss is a parameter of cardiac workload. Han et al. showed that when compared to healthy
controls, PAH patients have a significant increase in the RV kinetic energy work density and percent
viscous PA energy loss [92].

Most of the published work on 4-D flow MR and its applicability in the assessment of PH
is based on single-centre work on a small cohort of patients. Improving protocol standardisation
coupled with the increasing availability of commercial software packages for post processing should
facilitate prospective validation of the imaging-based vascular metrics in different PH groups and
larger patient cohorts.

5. Applications of Artificial Intelligence in Multimodality Imaging of the Pulmonary Circulation
and Right Ventricle

Emerging artificial intelligence (AI) approaches using biomedical imaging inputs are being used
to deliver a variety of tasks ranging from triaging to workflow, disease detection and characterisation,
and risk prediction modelling for prognostication and optimisation of the delivery of care to improve
outcomes. Machine learning (ML) algorithms (supervised or unsupervised) are fashioned to search
and extract patterns from data to provide maximum predictive ability [93,94]. Deep learning (DL) or
deep convolutional neural networks (CNNs) are a subclass of ML with more processing power to
perceive nonlinear structure within the data [95]. Multiscale AI modelling is apposite for non-invasive
assessment of pulmonary vascular disease, with the ostensible advantage of unbiased selection.

5.1. Computed Tomography Pulmonary Angiography (CTPA)

CTPA is the current diagnostic imaging standard in the evaluation of suspected acute PE [96].
However, as shown in a recent retrospective study involving 8449 patients, where 99% of the scans
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(CTPA or V/Q) done to exclude acute PE were negative [97], there is intemperate use of imaging.
This not only depletes limited resources in the healthcare system but also exposes patients to the
unwarranted effects of radiation and contrast medium. To circumvent this problem, there are several
risk prediction scores that can be used to make an informed decision about performing advanced
imaging in the evaluation of pulmonary vascular disease. Although these have the advantage of being
relatively easy to compute by clinicians at the point of care, most have not made any significant change
in the imaging yield [98]. ML is capable of leveraging large volumes of complex variables to identify
patterns and provide patient-specific risk scores. Objective scoring has higher discriminatory power
and hence can reduce inappropriate use of imaging, as demonstrated by Banerjee et al. in the use of
CTPA for the diagnosis of acute PE [99].

AI algorithms can be applied to improve parameters relating to image acquisition, contrast
medium injection, and radiation dose optimisation in the acquisition of thoracic CT [100].

Computer-aided detection (CAD) for automated diagnosis of acute PE on CTPA has evolved over
the last decade (Figure 9). Earlier efforts focusing on traditional feature engineering methodologies
required complex pre-processing and infrastructure [101–104]. Recently, deep learning approaches
have been used for PE detection and have outperformed the CAD algorithms. Using convolutional
neural networks, Tajbakhsh and colleagues reported 83% sensitivity for acute PE detection with 2 false
positives per volume [105]. Compared with human readers, CAD is more sensitive in the detection of
peripheral emboli, particularly for inexperienced readers [104,106]. CAD algorithms can also be useful
in PE risk stratification by automatic computation of the RV/LV ratio as a measure of right ventricular
dysfunction [107,108].
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Figure 9. Computer-aided detection (CAD) analysis and display from Philips Healthcare, Best,
The Netherlands. CT pulmonary angiographic 3-D data is displayed in three orthogonal views. A CAD
algorithm (an architecture of computer image analysis process) has been applied to this CTPA, resulting
in a yield of automated prompting (orange overlay) of foci suggestive of intraluminal pulmonary
arterial filling defects.

5.2. Nuclear Medicine

The use of artificial neuronal networks (ANNs) to detect acute PE using ventilation-perfusion
scintigraphy has been documented since the 1990s [109–112]. Holst and colleagues demonstrated
the use of ANN to develop a completely automated methodology for the interpretation of V/Q
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scintigraphy [110]. In recent years, ML has been used for quantitative assessment of myocardial
perfusion and blood flow, albeit for evaluation of coronary artery disease [113].

5.3. Echocardiography

Echocardiogram is often the first-line non-invasive screening tool in the work-up of patients with
suspected PH. In addition to confirming PH, echocardiography can evaluate the right ventricular
morphology and function and provide information on the PH aetiology, pathophysiology, and prognosis

ML can play a complementary role in enhancing the sensitivity and predictive accuracy of
echocardiography for PH prediction [114]. A breakthrough work by Zhang and colleagues [115]
applied a deep learning model to >14,000 echocardiograms to build a fully automated interpretation
tool that can be used for disease detection and quantification of cardiac structure and function.
The neural network algorithms were able to detect hypertrophic cardiomyopathy, cardiac amyloidosis,
and pulmonary arterial hypertension with C statistics of 0.93, 0.87, and 0.85, respectively. Sengupta et al.
demonstrated the feasibility of a cognitive ML approach to explore the multidimensional attributes of
speckle tracking echocardiography in the differentiation of restrictive cardiomyopathy and constrictive
pericarditis [116]. Unsupervised ML algorithms have been used in the diagnostic evaluation of
patients with heart failure with preserved ejection fraction (HFpEF) [117,118]. A recent publication
by Kusunose et al. underscores the possibility of using ML for automated diagnosis of regional wall
motion abnormalities on echocardiography [119].

5.4. Cardiovascular Magnetic Resonance (CMR)

CMR is the current non-invasive imaging standard of care for assessment of RV function.
DL algorithms have been used in the automatic detection and segmentation of the ventricular chambers
and provide accurate quantitative measurements of RV volumes and ejection fraction [120,121]
(Figure 10).

The availability of large-scale CMR data has promoted the applicability of cardiac atlases to
quantify morphometric scores [122]. In a recent publication, Mauger et al. used a large cohort of
4329 CMR studies from the UK Biobank [123] to demonstrate the relationships between biventricular
geometry and motion and common cardiovascular risk factors. Such AI-based characterisation of
complex RV shape analysis and biventricular interactions has the potential to evaluate pre-clinical
disease processes.

Geometric morphological features of the ventricles on CMR can also be used in PH prediction.
Swift and colleagues demonstrated the potential of a tensor-based ML approach that allows for
interrogation of CMR data without manual image segmentation [124]. This novel approach was able
to differentiate patients with and without PAH with high accuracy.

In a study involving 256 patients with PH, the integration of atlas-based segmentation of the
right ventricle and supervised ML of the patterns of cardiac motion was able to outperform the 4-year
survival prediction based on traditional mass and volume measurements (Figure 11). The recurring ML
patterns that enabled accurate outcome prediction were based on adverse structural remodelling [125].
Another ML classifier method based on MR indices has been shown to predict deterioration in patients
with previous repair of tetralogy of Fallot [126]. The identification of high-risk patients may be useful
for guiding surveillance frequency as well as the timing of planned intervention.
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Some of the AI imaging toolkits are already being used by radiologists in their current every-
day practice, but this may not be readily obvious to their clinical counterparts. Examples include AI-
based techniques to optimise the image acquisition process to improve image quality and reduce 
radiation, vascular and chamber segmentation, and extraction of quantitative features, such as 
calculation of ventricular function and cardiac output. These not only have the advantage of 
consistency and reproducibility but also have a tangible impact on the analysis time. The reporting 

Figure 11. Example of computational modelling for a patient with idiopathic pulmonary arterial
hypertension. A 3-D model at end-diastole and end-systole is used to determine the direction and
magnitude of systolic excursion at each corresponding anatomic point in the mesh by using a deformable
motion model. A machine learning algorithm was applied to identify recurring patterns that enabled
survival prediction. A reduction in both longitudinal basal motion and decrease in radial contraction
in the septum and free wall were found to be associated with poor outcome. RV: Right Ventricle.
LV: Left Ventricle. White Arrow: Marked RV hypertrophy. Black Arrow: Abnormal motion of
interventricular septum. Images courtesy of Dr Timothy Dawes, Honorary Clinical Lecturer in the
National Heart & Lung Institute, London, UK.
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6. Radiomics

An elegant article by Gilles et al. explores the fundamental premise that digital images are more
than pictures and their conversion to a mineable dataset is poised to become routine clinical practice [127].
Biomedical images are vast spatial data sets where every voxel is a measurement itself [128]. Radiomics is
the process of extracting quantitative spatial and textural features from the images to identify potentially
hidden computational biomarkers [129,130]. Such objective parameters derived using advanced
bioinformatic tools can be used to identify imaging phenotypes that can be linked to apposite biologic
characteristics. Radiomics is a young discipline and thus far, it has been mainly applied in the
field of oncology. The analysis of the “Redefining Pulmonary Hypertension through Pulmonary
Vascular Disease Phenomics (PVDOMICS)” multi-centre study that integrates a comprehensive omics
approach with deep ML algorithms to create wide-ranging molecular profiling [131] should further
our understanding of the potential place of radiomics in the large-scale panomics profiling of PVD.
Radiomics enriched with other ‘omics’ data (holomics) has the potential to be used in predictive or
prognostic modelling in PVD.

7. Extant AI-Based Pulmonary Vascular Imaging Techniques in Clinical Practice

Despite the surging popularity of AI as reflected by the exponential increase in the scientific
publications in the recent years, there are numerous well-acknowledged challenges that need to be
addressed. Although we are only at the beginning of a new wave of AI-fuelled enterprise, this industry
is growing at an augmented rate as evidenced by the escalation in the potential applications elaborated
in this article. This can be a daunting prospect to the medical profession.

Some of the AI imaging toolkits are already being used by radiologists in their current every-day
practice, but this may not be readily obvious to their clinical counterparts. Examples include AI-based
techniques to optimise the image acquisition process to improve image quality and reduce radiation,
vascular and chamber segmentation, and extraction of quantitative features, such as calculation of
ventricular function and cardiac output. These not only have the advantage of consistency and
reproducibility but also have a tangible impact on the analysis time. The reporting execution is also
streamlined by using AI techniques, such as automatic fetching of clinically relevant prior studies,
registration and fusion of different modalities, selection of an appropriate workflow, and integration
with supporting clinico-pathological information.

Some functionalities, such as CAD of acute PE, lung perfusion quantification on scintigraphy and
DECT, echocardiography, and MRI-derived ventricular function analysis, and certain aspects of 4-D
flow MR imaging can be readily performed using commercially available multivendor software whilst
others, such as metrics for vascular remodelling, quantification of MR perfusion and morphometry,
and computational flow dynamics, require proprietary software developed with in-house specialist
experience and therefore are not widely available for general usage. Thus, the appositeness of some
of the more complex highlighted applications is yet to be proven. Their pertinence, practicality,
and economic benefits will require large-scale multicentre validation.

Recent technological advances allow for seamless integration between smartphones and medical
devices. Mobile health (mHealth) apps could potentially be valuable tools in the future to overcome
some of the challenges associated with the diagnosis of diseases affecting the pulmonary circulation.
Given the huge potential for mobile intervention, there is a compelling need to develop high-quality
apps that will support AI-based model-informed precision diagnosis.

The lack of well-annotated public databases and the associated predicament of validation,
governance issues regarding patient-sensitive data, and regulatory restrictions need to be resolved
before the full potential of AI technology can be implemented in routine clinical practice.
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8. Conclusions

Imaging has a crucial and increasing role to play in the management of pulmonary vascular disease.
Imaging-based computing of pulmonary vascular physiology can enhance diagnosis and long-term
monitoring, reduce the need for invasive instrumentation, and also provide metrics that are not
visible to the naked eye. The inherently quantitative nature of multidimensional pulmonary vascular
morphometrics has the potential to be used as an imaging biomarker that can objectively inform on
vascular remodelling. Multimodality imaging of regional pulmonary perfusion facilitates capture of
the spatial and temporal heterogeneity of the pulmonary circulation. The efficacy of novel blood flow
imaging techniques and computational fluid dynamics must be demonstrated in multicentre clinical
trials, but it is clear that these techniques have the potential to change clinical practice. An auxiliary
diagnostic system has evolved with the exponential growth of sophisticated AI-based applications in
cardio-pulmonary imaging. Whilst it is important that both clinicians and radiologists embrace the
opportunities provided by AI, the challenges in incorporating these algorithms into routine clinical
workflow should not be underestimated.
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Abbreviations and Acronyms

AI Artificial Intelligence
ANN Artificial Neuronal Networks
ASL Arterial Spin Labelling
BFI Blood Flow Imaging
CALIPER Computer-Aided Lung Informatics for Pathology Evaluation and Rating
CFD Computational Fluid Dynamics
CAD Computed Aided Detection
CAE Centriacinar emphysema
CMR Cardiovascular Magnetic Resonance
CNN Convolutional Neural Network
COPD Chronic Obstructive Pulmonary Disease
CSA Cross Sectional Area
CT Computed Tomography
CTPA Computed Tomography Pulmonary Angiogram
CTEPH Chronic Thromboembolic Pulmonary Hypertension
DL Deep Learning
DECT Dual Energy Computed Tomography
DCE-MR Dynamic Contrast Enhanced Magnetic Resonance
HFpEF Heart Failure With Preserved Ejection Fraction
ILD Interstitial Lung Disease
ML Machine Learning
MPA Main Pulmonary Artery
MRI Magnetic Resonance Imaging
MTT Mean Transit Time

http://www.mdpi.com/2075-4418/10/12/1004/s1


Diagnostics 2020, 10, 1004 19 of 27

PAP Pulmonary Artery Pressure
PAH Pulmonary Arterial Hypertension
PASP Pulmonary Artery Systolic Pressure
PC-MRI Phase Contrast Magnetic Resonance Imaging
PE Pulmonary embolism
PH Pulmonary Hypertension
PET Positron Emission Tomography
PBF Pulmonary Blood Flow
PBV Pulmonary Blood Volume
PFT Pulmonary Function Test
PVD Pulmonary Vascular Disease
PVDOMICS Pulmonary Vascular Disease Phenomics
RV Right ventricle
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
SPECT Single Photon Emission Computed Tomography
TBV Total Blood Vessel Volume
WSS Wall Shear Stress
VQ Ventilation-Perfusion

References

1. Singhal, S.; Henderson, R.; Horsfield, K.; Harding, K.; Cumming, G. Morphometry of the Human Pulmonary
Arterial Tree. Circ. Res. 1973, 33, 190–197. [CrossRef]

2. Horsfield, K. Morphometry of the small pulmonary arteries in man. Circ. Res. 1978, 42, 593–597. [CrossRef]
[PubMed]

3. Horsfield, K.; Gordon, W.I. Morphometry of pulmonary veins in man. Lung 1981, 159, 211–218. [CrossRef]
[PubMed]

4. Yen, R.T.; Sobin, S.S. Elasticity of arterioles and venules in postmortem human lungs. J. Appl. Physiol. 1988,
64, 611–619. [CrossRef] [PubMed]

5. Huang, W.; Yen, R.T.; McLaurine, M.; Bledsoe, G. Morphometry of the human pulmonary vasculature.
J. Appl. Physiol. 1996, 81, 2123–2133. [CrossRef]

6. Hossler, F.E.; Douglas, J.E. Vascular Corrosion Casting: Review of Advantages and Limitations in the
Application of Some Simple Quantitative Methods. Microsc. Microanal. 2001, 7, 253–264. [CrossRef]

7. Resten, A.; Maitre, S.; Musset, D. CT imaging of peripheral pulmonary vessel disease. Eur. Radiol. 2005, 15,
2045–2056. [CrossRef]

8. Lesage, D.; Angelini, E.D.; Bloch, I.; Funka-Lea, G. A review of 3D vessel lumen segmentation techniques:
Models, features and extraction schemes. Med. Image Anal. 2009, 13, 819–845. [CrossRef]

9. Nardelli, P.; Jimenez-Carretero, D.; Bermejo-Pelaez, D.; Washko, G.R.; Rahaghi, F.N.; Ledesma-Carbayo, M.J.;
Estépar, R.S.J. Pulmonary Artery-Vein Classification in CT Images Using Deep Learning. IEEE Trans.
Med. Imaging 2018, 37, 2428–2440. [CrossRef]

10. Estepar, R.S.J.; Ross, J.C.; Russian, K.; Schultz, T.; Washko, G.R.; Kindlmann, G.L. Computational Vascular
Morphometry for the Assessment of Pulmonary Vascular Disease Based on Scale-Space Particles. In 2012
9th IEEE International Symposium on Biomedical Imaging (ISBI); IEEE: Barcelona, Spain, 2012; pp. 1479–1482.
[CrossRef]

11. Pienn, M.; Burgard, C.; Payer, C.; Avian, A.; Urschler, M.; Stollberger, R.; Olschewski, A.; Olschewski, H.;
Johnson, T.; Meinel, F.G.; et al. Healthy Lung Vessel Morphology Derived From Thoracic Computed
Tomography. Front. Physiol. 2018, 9, 346. [CrossRef]

12. Mühlfeld, C.; Wrede, C.; Knudsen, L.; Buchacker, T.; Ochs, M.; Grothausmann, R. Recent developments in
3-D reconstruction and stereology to study the pulmonary vasculature. Am. J. Physiol. Cell. Mol. Physiol.
2018, 315, L173–L183. [CrossRef] [PubMed]

13. Kulik, T.J.; Clark, R.L.; Hasan, B.S.; Keane, J.F.; Springmüller, D.; Mullen, M.P. Pulmonary Arterial
Hypertension: What the Large Pulmonary Arteries Tell Us. Pediatr. Cardiol. 2011, 32, 759–765. [CrossRef]
[PubMed]

http://dx.doi.org/10.1161/01.RES.33.2.190
http://dx.doi.org/10.1161/01.RES.42.5.593
http://www.ncbi.nlm.nih.gov/pubmed/639181
http://dx.doi.org/10.1007/BF02713917
http://www.ncbi.nlm.nih.gov/pubmed/7289655
http://dx.doi.org/10.1152/jappl.1988.64.2.611
http://www.ncbi.nlm.nih.gov/pubmed/3372419
http://dx.doi.org/10.1152/jappl.1996.81.5.2123
http://dx.doi.org/10.1007/S10005-001-0006-2
http://dx.doi.org/10.1007/s00330-005-2740-y
http://dx.doi.org/10.1016/j.media.2009.07.011
http://dx.doi.org/10.1109/TMI.2018.2833385
http://dx.doi.org/10.1109/ISBI.2012.6235851
http://dx.doi.org/10.3389/fphys.2018.00346
http://dx.doi.org/10.1152/ajplung.00541.2017
http://www.ncbi.nlm.nih.gov/pubmed/29644892
http://dx.doi.org/10.1007/s00246-011-9963-2
http://www.ncbi.nlm.nih.gov/pubmed/21455751


Diagnostics 2020, 10, 1004 20 of 27

14. Helmberger, M.; Pienn, M.; Urschler, M.; Kullnig, P.; Stollberger, R.; Kovacs, G.; Olschewski, A.; Olschewski, H.;
Bálint, Z. Quantification of Tortuosity and Fractal Dimension of the Lung Vessels in Pulmonary Hypertension
Patients. PLoS ONE 2014, 9, e87515. [CrossRef] [PubMed]

15. Rengier, F.; Wörz, S.; Melzig, C.; Ley, S.; Fink, C.; Benjamin, N.; Partovi, S.; von Tengg-Kobligk, H.; Rohr, K.;
Kauczor, H.-U.; et al. Automated 3D Volumetry of the Pulmonary Arteries Based on Magnetic Resonance
Angiography Has Potential for Predicting Pulmonary Hypertension. PLoS ONE 2016, 11, e0162516. [CrossRef]
[PubMed]

16. Melzig, C.; Wörz, S.; Egenlauf, B.; Partovi, S.; Rohr, K.; Grünig, E.; Kauczor, H.-U.; Heussel, C.P.; Rengier, F.
Combined Automated 3D Volumetry by Pulmonary CT Angiography and Echocardiography for Detection
of Pulmonary Hypertension. Eur. Radiol. 2019, 29, 6059–6068. [CrossRef]

17. Jacob, J.; Bartholmai, B.J.; Rajagopalan, S.; Kokosi, M.; Nair, A.; Karwoski, R.; Raghunath, S.M.;
Walsh, S.L.F.; Wells, A.U.; Hansell, D.M. Automated Quantitative Computed Tomography Versus Visual
Computed Tomography Scoring in Idiopathic Pulmonary Fibrosis: Validation against Pulmonary Function.
J. Thorac. Imaging 2016, 31, 304–311. [CrossRef]

18. Romei, C.; Tavanti, L.M.; Taliani, A.; De Liperi, A.; Karwoski, R.; Celi, A.; Palla, A.; Bartholmai, B.J.; Falaschi, F.
Automated Computed Tomography Analysis in the Assessment of Idiopathic Pulmonary Fibrosis Severity
and Progression. Eur. J. Radiol. 2020, 124, 108852. [CrossRef]

19. Opitz, I.; Ulrich, S. Pulmonary Hypertension in Chronic Obstructive Pulmonary Disease and Emphysema
Patients: Prevalence, Therapeutic Options and Pulmonary Circulatory Effects of Lung Volume Reduction
Surgery. J. Thorac. Dis. 2018, 10, S2763–S2774. [CrossRef]

20. Matsuoka, S.; Washko, G.R.; Dransfield, M.T.; Yamashiro, T.; San Jose Estepar, R.; Diaz, A.; Silverman, E.K.;
Patz, S.; Hatabu, H. Quantitative CT Measurement of Cross-Sectional Area of Small Pulmonary Vessel in
COPD. Acad. Radiol. 2010, 17, 93–99. [CrossRef] [PubMed]

21. Rahaghi, F.N.; Argemí, G.; Nardelli, P.; Domínguez-Fandos, D.; Arguis, P.; Peinado, V.I.; Ross, J.C.; Ash, S.Y.;
de La Bruere, I.; Come, C.E.; et al. Pulmonary Vascular Density: Comparison of Findings on Computed
Tomography Imaging with Histology. Eur. Respir. J. 2019, 54, 1900370. [CrossRef]

22. Rahaghi, F.N.; Ross, J.C.; Agarwal, M.; González, G.; Come, C.E.; Diaz, A.A.; Vegas-Sánchez-Ferrero, G.;
Hunsaker, A.; Estépar, R.S.J.; Waxman, A.B.; et al. Pulmonary Vascular Morphology as an Imaging Biomarker
in Chronic Thromboembolic Pulmonary Hypertension. Pulm. Circ. 2016, 6, 70–81. [CrossRef] [PubMed]

23. Lins, M.; Vandevenne, J.; Thillai, M.; Lavon, B.R.; Lanclus, M.; Bonte, S.; Godon, R.; Kendall, I.; De Backer, J.;
De Backer, W. Assessment of Small Pulmonary Blood Vessels in COVID-19 Patients Using HRCT. Acad. Radiol.
2020, 27, 1449–1455. [CrossRef] [PubMed]

24. Hopkins, S.R.; Wielpütz, M.O.; Kauczor, H.-U. Imaging Lung Perfusion. J. Appl. Physiol. 2012, 113, 328–339.
[CrossRef] [PubMed]

25. Hopkins, S.R.; Prisk, G.K. Lung Perfusion Measured Using Magnetic Resonance Imaging: New Tools
for Physiological Insights into the Pulmonary Circulation. J. Magn. Reson. Imaging 2010, 32, 1287–1301.
[CrossRef]

26. West, J.B.; Dollery, C.T.; Hugh-Jones, P. The use of radioactive carbon dioxide to measure regional blood flow
in the lungs of patients with pulmonary disease. J. Clin. Investig. 1961, 40, 1–12. [CrossRef] [PubMed]

27. Vidal Melo, M.F.; Layfield, D.; Harris, R.S.; O’Neill, K.; Musch, G.; Richter, T.; Winkler, T.; Fischman, A.J.;
Venegas, J.G. Quantification of Regional Ventilation-Perfusion Ratios with PET. J. Nucl. Med. 2003, 44,
1982–1991.

28. Vidal Melo, M.F.; Winkler, T.; Harris, R.S.; Musch, G.; Greene, R.E.; Venegas, J.G. Spatial Heterogeneity of
Lung Perfusion Assessed with 13N PET as a Vascular Biomarker in Chronic Obstructive Pulmonary Disease.
J. Nucl. Med. 2009, 51, 57–65. [CrossRef]

29. Olsson, C.-G.; Bitzén, U.; Olsson, B.; Magnusson, P.; Carlsson, M.S.; Jonson, B.; Bajc, M. Outpatient Tinzaparin
Therapy in Pulmonary Embolism Quantified with Ventilation/Perfusion Scintigraphy. Med. Sci. Monit. 2006,
12, PI9–PI13.

30. Elf, J.E.; Jögi, J.; Bajc, M. Home Treatment of Patients with Small to Medium Sized Acute Pulmonary
Embolism. J. Thromb. Thrombolysis 2014, 39, 166–172. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0087515
http://www.ncbi.nlm.nih.gov/pubmed/24498123
http://dx.doi.org/10.1371/journal.pone.0162516
http://www.ncbi.nlm.nih.gov/pubmed/27626802
http://dx.doi.org/10.1007/s00330-019-06188-7
http://dx.doi.org/10.1097/RTI.0000000000000220
http://dx.doi.org/10.1016/j.ejrad.2020.108852
http://dx.doi.org/10.21037/jtd.2018.07.63
http://dx.doi.org/10.1016/j.acra.2009.07.022
http://www.ncbi.nlm.nih.gov/pubmed/19796970
http://dx.doi.org/10.1183/13993003.00370-2019
http://dx.doi.org/10.1086/685081
http://www.ncbi.nlm.nih.gov/pubmed/27162616
http://dx.doi.org/10.1016/j.acra.2020.07.019
http://www.ncbi.nlm.nih.gov/pubmed/32741657
http://dx.doi.org/10.1152/japplphysiol.00320.2012
http://www.ncbi.nlm.nih.gov/pubmed/22604884
http://dx.doi.org/10.1002/jmri.22378
http://dx.doi.org/10.1172/JCI104222
http://www.ncbi.nlm.nih.gov/pubmed/13784580
http://dx.doi.org/10.2967/jnumed.109.065185
http://dx.doi.org/10.1007/s11239-014-1097-y


Diagnostics 2020, 10, 1004 21 of 27

31. Derlin, T.; Kelting, C.; Hueper, K.; Weiberg, D.; Meyer, K.; Olsson, K.M.; Thackeray, J.T.; Welte, T.; Bengel, F.M.;
Hoeper, M.M. Quantitation of Perfused Lung Volume Using Hybrid SPECT/CT Allows Refining the
Assessment of Lung Perfusion and Estimating Disease Extent in Chronic Thromboembolic Pulmonary
Hypertension. Clin. Nucl. Med. 2018, 43, e170–e177. [CrossRef]

32. Seiffert, A.P.; Gómez-Grande, A.; Pilkington, P.; Cara, P.; Bueno, H.; Estenoz, J.; Gómez, E.J.;
Sánchez-González, P. Automatic Diagnosis of Chronic Thromboembolic Pulmonary Hypertension Based on
Volumetric Data from SPECT Ventilation and Perfusion Images. Appl. Sci. 2020, 10, 5360. [CrossRef]

33. Sharma, K.T.; Lau, E.; Corte, T.; Celermajer, D.; Bailey, D.; Bailey, E.; Schembri, G. Quantitative Evaluation
of Ventilation-Perfusion Heterogeneity in Precapillary Pulmonary Hypertension with SPECT Scintigraphy.
In 4.3 Pulmonary Circulation and Pulmonary Vascular Disease; European Respiratory Society: Lausanne,
Switzerland, 2015; p. PA4570. [CrossRef]

34. Fukuchi, K.; Hayashida, K.; Nakanishi, N.; Inubushi, M.; Kyotani, S.; Nagaya, N.; Ishida, Y. Quantitative
Analysis of Lung Perfusion in Patients with Primary Pulmonary Hypertension. J. Nucl. Med. 2002, 43,
757–761.

35. Di Chiro, G.; Brooks, R.A.; Kessler, R.M.; Johnston, G.S.; Jones, A.E.; Herdt, J.R.; Sheridan, W.T. Tissue
Signatures with Dual-Energy Computed Tomography. Radiology 1979, 131, 521–523. [CrossRef] [PubMed]

36. Johnson, T.R.C. Dual Energy in Clinical Practice, 1st ed.; Springer: Berlin/Heidelberg, Germany; New York,
NY, USA, 2011; ISBN13 9783642017391.

37. Fink, C.; Johnson, T.; Michaely, H.; Morhard, D.; Becker, C.; Reiser, M.; Nikolaou, K. Dual-Energy CT
Angiography of the Lung in Patients with Suspected Pulmonary Embolism: Initial Results. Fortschr. Röntgenstr.
2008, 180, 879–883. [CrossRef]

38. Pontana, F.; Faivre, J.-B.; Remy-Jardin, M.; Flohr, T.; Schmidt, B.; Tacelli, N.; Pansini, V.; Remy, J. Lung Perfusion
with Dual-Energy Multidetector-Row CT (MDCT). Acad. Radiol. 2008, 15, 1494–1504. [CrossRef]

39. Thieme, S.F.; Becker, C.R.; Hacker, M.; Nikolaou, K.; Reiser, M.F.; Johnson, T.R.C. Dual Energy CT for the
Assessment of Lung Perfusion—Correlation to Scintigraphy. Eur. J. Radiol. 2008, 68, 369–374. [CrossRef]

40. Hoey, E.T.D.; Mirsadraee, S.; Pepke-Zaba, J.; Jenkins, D.P.; Gopalan, D.; Screaton, N.J. Dual-Energy CT
Angiography for Assessment of Regional Pulmonary Perfusion in Patients With Chronic Thromboembolic
Pulmonary Hypertension: Initial Experience. Am. J. Roentgenol. 2011, 196, 524–532. [CrossRef] [PubMed]

41. Geyer, L.L.; Scherr, M.; Körner, M.; Wirth, S.; Deak, P.; Reiser, M.F.; Linsenmaier, U. Imaging of Acute
Pulmonary Embolism Using a Dual Energy CT System with Rapid KVp Switching: Initial Results.
Eur. J. Radiol. 2012, 81, 3711–3718. [CrossRef] [PubMed]

42. Lu, G.-M.; Wu, S.-Y.; Yeh, B.M.; Zhang, L.-J. Dual-Energy Computed Tomography in Pulmonary Embolism.
BJR 2010, 83, 707–718. [CrossRef] [PubMed]

43. Thieme, S.F.; Graute, V.; Nikolaou, K.; Maxien, D.; Reiser, M.F.; Hacker, M.; Johnson, T.R.C. Dual Energy CT
Lung Perfusion Imaging—Correlation with SPECT/CT. Eur. J. Radiol. 2012, 81, 360–365. [CrossRef]

44. Chae, E.J.; Seo, J.B.; Jang, Y.M.; Krauss, B.; Lee, C.W.; Lee, H.J.; Song, K.-S. Dual-Energy CT for Assessment
of the Severity of Acute Pulmonary Embolism: Pulmonary Perfusion Defect Score Compared With CT
Angiographic Obstruction Score and Right Ventricular/Left Ventricular Diameter Ratio. Am. J. Roentgenol.
2010, 194, 604–610. [CrossRef] [PubMed]

45. Zhang, L.J.; Yang, G.F.; Zhao, Y.E.; Zhou, C.S.; Lu, G.M. Detection of Pulmonary Embolism Using
Dual-Energy Computed Tomography and Correlation with Cardiovascular Measurements: A Preliminary
Study. Acta Radiol. 2009, 50, 892–901. [CrossRef] [PubMed]

46. Meinel, F.G.; Graef, A.; Bamberg, F.; Thieme, S.F.; Schwarz, F.; Sommer, W.H.; Neurohr, C.; Kupatt, C.;
Reiser, M.F.; Johnson, T.R.C. Effectiveness of Automated Quantification of Pulmonary Perfused Blood Volume
Using Dual-Energy CTPA for the Severity Assessment of Acute Pulmonary Embolism. Investig. Radiol. 2013,
48, 563–569. [CrossRef] [PubMed]

47. Dournes, G.; Verdier, D.; Montaudon, M.; Bullier, E.; Rivière, A.; Dromer, C.; Picard, F.; Billes, M.-A.;
Corneloup, O.; Laurent, F.; et al. Dual-Energy CT Perfusion and Angiography in Chronic Thromboembolic
Pulmonary Hypertension: Diagnostic Accuracy and Concordance with Radionuclide Scintigraphy. Eur. Radiol.
2013, 24, 42–51. [CrossRef] [PubMed]

http://dx.doi.org/10.1097/RLU.0000000000002085
http://dx.doi.org/10.3390/app10155360
http://dx.doi.org/10.1183/13993003.congress-2015.PA4570
http://dx.doi.org/10.1148/131.2.521
http://www.ncbi.nlm.nih.gov/pubmed/441344
http://dx.doi.org/10.1055/s-2008-1027724
http://dx.doi.org/10.1016/j.acra.2008.05.018
http://dx.doi.org/10.1016/j.ejrad.2008.07.031
http://dx.doi.org/10.2214/AJR.10.4842
http://www.ncbi.nlm.nih.gov/pubmed/21343493
http://dx.doi.org/10.1016/j.ejrad.2011.02.043
http://www.ncbi.nlm.nih.gov/pubmed/21420812
http://dx.doi.org/10.1259/bjr/16337436
http://www.ncbi.nlm.nih.gov/pubmed/20551257
http://dx.doi.org/10.1016/j.ejrad.2010.11.037
http://dx.doi.org/10.2214/AJR.09.2681
http://www.ncbi.nlm.nih.gov/pubmed/20173135
http://dx.doi.org/10.1080/02841850903095393
http://www.ncbi.nlm.nih.gov/pubmed/19639470
http://dx.doi.org/10.1097/RLI.0b013e3182879482
http://www.ncbi.nlm.nih.gov/pubmed/23519007
http://dx.doi.org/10.1007/s00330-013-2975-y
http://www.ncbi.nlm.nih.gov/pubmed/23982287


Diagnostics 2020, 10, 1004 22 of 27

48. Nakazawa, T.; Watanabe, Y.; Hori, Y.; Kiso, K.; Higashi, M.; Itoh, T.; Naito, H. Lung Perfused Blood Volume
Images with Dual-Energy Computed Tomography for Chronic Thromboembolic Pulmonary Hypertension:
Correlation to Scintigraphy with Single-Photon Emission Computed Tomography. J. Comput. Assist. Tomogr.
2011, 35, 590–595. [CrossRef] [PubMed]

49. Renapurkar, R.D.; Bolen, M.A.; Shrikanthan, S.; Bullen, J.; Karim, W.; Primak, A.; Heresi, G.A. Comparative
Assessment of Qualitative and Quantitative Perfusion with Dual-Energy CT and Planar and SPECT-CT V/Q
Scanning in Patients with Chronic Thromboembolic Pulmonary Hypertension. Cardiovasc. Diagn. Ther. 2018,
8, 414–422. [CrossRef] [PubMed]

50. Koike, H.; Sueyoshi, E.; Sakamoto, I.; Uetani, M. Clinical Significance of Late Phase of Lung Perfusion Blood
Volume (Lung Perfusion Blood Volume) Quantified by Dual-Energy Computed Tomography in Patients
with Pulmonary Thromboembolism. J. Thorac. Imaging 2017, 32, 43–49. [CrossRef]

51. Renard, B.; Remy-Jardin, M.; Santangelo, T.; Faivre, J.-B.; Tacelli, N.; Remy, J.; Duhamel, A. Dual-Energy CT
Angiography of Chronic Thromboembolic Disease: Can It Help Recognize Links between the Severity of
Pulmonary Arterial Obstruction and Perfusion Defects? Eur. J. Radiol. 2011, 79, 467–472. [CrossRef]

52. Takagi, H.; Ota, H.; Sugimura, K.; Otani, K.; Tominaga, J.; Aoki, T.; Tatebe, S.; Miura, M.; Yamamoto, S.;
Sato, H.; et al. Dual-Energy CT to Estimate Clinical Severity of Chronic Thromboembolic Pulmonary
Hypertension: Comparison with Invasive Right Heart Catheterization. Eur. J. Radiol. 2016, 85, 1574–1580.
[CrossRef]

53. Meinel, F.; Graef, A.; Thierfelder, K.; Armbruster, M.; Schild, C.; Neurohr, C.; Reiser, M.; Johnson, T. Automated
Quantification of Pulmonary Perfused Blood Volume by Dual-Energy CTPA in Chronic Thromboembolic
Pulmonary Hypertension. Fortschr. Röntgenstr. 2013, 186, 151–156. [CrossRef]

54. Koike, H.; Sueyoshi, E.; Sakamoto, I.; Uetani, M.; Nakata, T.; Maemura, K. Quantification of Lung Perfusion
Blood Volume (Lung PBV) by Dual-Energy CT in Patients with Chronic Thromboembolic Pulmonary
Hypertension (CTEPH) before and after Balloon Pulmonary Angioplasty (BPA): Preliminary Results.
Eur. J. Radiol. 2016, 85, 1607–1612. [CrossRef] [PubMed]

55. Koike, H.; Sueyoshi, E.; Sakamoto, I.; Uetani, M. Quantification of Lung Perfusion Blood Volume by
Dual-Energy CT in Patients with and Without Chronic Obstructive Pulmonary Disease. J. Belg. Soc. Radiol.
2015, 99, 62–68. [CrossRef] [PubMed]

56. Alford, S.K.; van Beek, E.J.; McLennan, G.; Hoffman, E.A. Heterogeneity of pulmonary perfusion as a
mechanistic image-based phenotype in emphysema susceptible smokers. Proc. Natl. Acad. Sci. USA 2010,
107, 7485–7490. [CrossRef] [PubMed]

57. Iyer, K.S.; Newell, J.D.; Jin, D.; Fuld, M.K.; Saha, P.K.; Hansdottir, S.; Hoffman, E.A. Quantitative Dual-Energy
Computed Tomography Supports a Vascular Etiology of Smoking-Induced Inflammatory Lung Disease.
Am. J. Respir. Crit. Care Med. 2016, 193, 652–661. [CrossRef]

58. Ohno, Y.; Hatabu, H.; Murase, K.; Higashino, T.; Kawamitsu, H.; Watanabe, H.; Takenaka, D.; Fujii, M.;
Sugimura, K. Quantitative Assessment of Regional Pulmonary Perfusion in the Entire Lung Using
Three-Dimensional Ultrafast Dynamic Contrast-Enhanced Magnetic Resonance Imaging: Preliminary
Experience in 40 Subjects. J. Magn. Reson. Imaging 2004, 20, 353–365. [CrossRef]

59. Hopkins, S.R.; Levin, D.L.; Emami, K.; Kadlecek, S.; Yu, J.; Ishii, M.; Rizi, R.R. Advances in Magnetic
Resonance Imaging of Lung Physiology. J. Appl. Physiol. 2007, 102, 1244–1254. [CrossRef]

60. Pedersen, M.R.; Fisher, M.T.; van Beek, E.J.R. MR Imaging of the Pulmonary Vasculature—An Update.
Eur. Radiol. 2006, 16, 1374–1386. [CrossRef]

61. Fink, C.; Risse, F.; Buhmann, R.; Ley, S.; Meyer, F.J.; Plathow, C.; Puderbach, M.; Kauczor, H.U. Quantitative
Analysis of Pulmonary Perfusion using Time-Resolved Parallel 3D MRI—Initial results. Rofo Fortschr. Geb.
Rontgenstr. Neuen Bildgeb. Verfahr. 2004, 176, 170–174. [CrossRef]

62. Hansch, A.; Kohlmann, P.; Hinneburg, U.; Boettcher, J.; Malich, A.; Wolf, G.; Laue, H.; Pfeil, A. Quantitative
Evaluation of MR Perfusion Imaging Using Blood Pool Contrast Agent in Subjects without Pulmonary
Diseases and in Patients with Pulmonary Embolism. Eur. Radiol. 2012, 22, 1748–1756. [CrossRef]

63. Ohno, Y.; Koyama, H.; Matsumoto, K.; Onishi, Y.; Nogami, M.; Takenaka, D.; Yoshikawa, T.; Matsumoto, S.;
Sugimura, K. Dynamic MR Perfusion Imaging: Capability for Quantitative Assessment of Disease Extent
and Prediction of Outcome for Patients with Acute Pulmonary Thromboembolism. J. Magn. Reson. Imaging
2010, 31, 1081–1090. [CrossRef]

http://dx.doi.org/10.1097/RCT.0b013e318224e227
http://www.ncbi.nlm.nih.gov/pubmed/21926854
http://dx.doi.org/10.21037/cdt.2018.05.07
http://www.ncbi.nlm.nih.gov/pubmed/30214856
http://dx.doi.org/10.1097/RTI.0000000000000250
http://dx.doi.org/10.1016/j.ejrad.2010.04.018
http://dx.doi.org/10.1016/j.ejrad.2016.06.010
http://dx.doi.org/10.1055/s-0033-1350412
http://dx.doi.org/10.1016/j.ejrad.2016.06.016
http://www.ncbi.nlm.nih.gov/pubmed/27501896
http://dx.doi.org/10.5334/jbr-btr.865
http://www.ncbi.nlm.nih.gov/pubmed/30039069
http://dx.doi.org/10.1073/pnas.0913880107
http://www.ncbi.nlm.nih.gov/pubmed/20368443
http://dx.doi.org/10.1164/rccm.201506-1196OC
http://dx.doi.org/10.1002/jmri.20137
http://dx.doi.org/10.1152/japplphysiol.00738.2006
http://dx.doi.org/10.1007/s00330-005-0109-x
http://dx.doi.org/10.1055/s-2004-817624
http://dx.doi.org/10.1007/s00330-012-2428-z
http://dx.doi.org/10.1002/jmri.22146


Diagnostics 2020, 10, 1004 23 of 27

64. Rajaram, S.; Swift, A.J.; Telfer, A.; Hurdman, J.; Marshall, H.; Lorenz, E.; Capener, D.; Davies, C.; Hill, C.;
Elliot, C.; et al. 3D Contrast-Enhanced Lung Perfusion MRI Is an Effective Screening Tool for Chronic
Thromboembolic Pulmonary Hypertension: Results from the ASPIRE Registry. Thorax 2013, 68, 677–678.
[CrossRef] [PubMed]

65. Ley, S.; Fink, C.; Zaporozhan, J.; Borst, M.M.; Meyer, F.J.; Puderbach, M.; Eichinger, M.; Plathow, C.; Grünig, E.;
Kreitner, K.-F.; et al. Value of High Spatial and High Temporal Resolution Magnetic Resonance Angiography
for Differentiation between Idiopathic and Thromboembolic Pulmonary Hypertension: Initial Results.
Eur. Radiol. 2005, 15, 2256–2263. [CrossRef] [PubMed]

66. Ohno, Y.; Koyama, H.; Yoshikawa, T.; Nishio, M.; Matsumoto, S.; Matsumoto, K.; Aoyama, N.; Nogami, M.;
Murase, K.; Sugimura, K. Contrast-Enhanced Multidetector-Row Computed Tomography vs. Time-Resolved
Magnetic Resonance Angiography vs. Contrast-Enhanced Perfusion MRI: Assessment of Treatment Response
by Patients with Inoperable Chronic Thromboembolic Pulmonary Hypertension. J. Magn. Reson. Imaging
2012, 36, 612–623. [CrossRef] [PubMed]

67. Schönfeld, C.; Cebotari, S.; Voskrebenzev, A.; Gutberlet, M.; Hinrichs, J.; Renne, J.; Hoeper, M.M.; Olsson, K.M.;
Welte, T.; Wacker, F.; et al. Performance of Perfusion-Weighted Fourier Decomposition MRI for Detection of
Chronic Pulmonary Emboli: Detection of Chronic PE. J. Magn. Reson. Imaging 2015, 42, 72–79. [CrossRef]

68. Ohno, Y.; Hatabu, H.; Murase, K.; Higashino, T.; Nogami, M.; Yoshikawa, T.; Sugimura, K. Primary Pulmonary
Hypertension: 3D Dynamic Perfusion MRI for Quantitative Analysis of Regional Pulmonary Perfusion.
Am. J. Roentgenol. 2007, 188, 48–56. [CrossRef] [PubMed]

69. Swift, A.J.; Telfer, A.; Rajaram, S.; Condliffe, R.; Marshall, H.; Capener, D.; Hurdman, J.; Elliot, C.; Kiely, D.G.;
Wild, J.M. Dynamic Contrast–Enhanced Magnetic Resonance Imaging in Patients with Pulmonary Arterial
Hypertension. Pulm. Circ. 2014, 4, 61–70. [CrossRef]

70. Skrok, J.; Shehata, M.L.; Mathai, S.; Girgis, R.E.; Zaiman, A.; Mudd, J.O.; Boyce, D.; Lechtzin, N.; Lima, J.A.C.;
Bluemke, D.A.; et al. Pulmonary Arterial Hypertension: MR Imaging-Derived First-Pass Bolus Kinetic
Parameters Are Biomarkers for Pulmonary Hemodynamics, Cardiac Function, and Ventricular Remodeling.
Radiology 2012, 263, 678–687. [CrossRef]

71. Ohno, Y.; Koyama, H.; Nogami, M.; Takenaka, D.; Matsumoto, S.; Onishi, Y.; Matsumoto, K.; Murase, K.;
Sugimura, K. Dynamic Perfusion MRI: Capability for Evaluation of Disease Severity and Progression of
Pulmonary Arterial Hypertension in Patients with Connective Tissue Disease. J. Magn. Reson. Imaging 2008,
28, 887–899. [CrossRef]

72. Hueper, K.; Parikh, M.A.; Prince, M.R.; Schoenfeld, C.; Liu, C.; Bluemke, D.A.; Dashnaw, S.M.; Goldstein, T.A.;
Hoffman, E.A.; Lima, J.A.; et al. Quantitative and Semiquantitative Measures of Regional Pulmonary
Microvascular Perfusion by Magnetic Resonance Imaging and Their Relationships to Global Lung Perfusion
and Lung Diffusing Capacity: The Multiethnic Study of Atherosclerosis Chronic Obstructive Pulmonary
Disease Study. Investig. Radiol. 2013, 48, 223–230. [CrossRef]

73. Sergiacomi, G.; Bolacchi, F.; Cadioli, M.; Angeli, M.L.; Fucci, F.; Crusco, S.; Rogliani, P.; Pezzuto, G.; Romeo, F.;
Mariano, E.; et al. Combined Pulmonary Fibrosis and Emphysema: 3D Time-Resolved MR Angiographic
Evaluation of Pulmonary Arterial Mean Transit Time and Time to Peak Enhancement. Radiology 2010, 254,
601–608. [CrossRef]

74. Runge, V.M. Critical Questions Regarding Gadolinium Deposition in the Brain and Body after Injections of
the Gadolinium-Based Contrast Agents, Safety, and Clinical Recommendations in Consideration of the EMA’s
Pharmacovigilance and Risk Assessment Committee Recommendation for Suspension of the Marketing
Authorizations for 4 Linear Agents. Investig. Radiol. 2017, 52, 317–323. [CrossRef]

75. Prybylski, J.P.; Semelka, R.C.; Jay, M. The Stability of Gadolinium-Based Contrast Agents in Human Serum:
A Reanalysis of Literature Data and Association with Clinical Outcomes. Magn. Reson. Imaging 2017, 38,
145–151. [CrossRef] [PubMed]

76. Schoenfeld, C.; Cebotari, S.; Hinrichs, J.; Renne, J.; Kaireit, T.; Olsson, K.M.; Voskrebenzev, A.; Gutberlet, M.;
Hoeper, M.M.; Welte, T.; et al. MR Imaging–Derived Regional Pulmonary Parenchymal Perfusion and
Cardiac Function for Monitoring Patients with Chronic Thromboembolic Pulmonary Hypertension before
and after Pulmonary Endarterectomy. Radiology 2016, 279, 925–934. [CrossRef] [PubMed]

http://dx.doi.org/10.1136/thoraxjnl-2012-203020
http://www.ncbi.nlm.nih.gov/pubmed/23349220
http://dx.doi.org/10.1007/s00330-005-2792-z
http://www.ncbi.nlm.nih.gov/pubmed/16041529
http://dx.doi.org/10.1002/jmri.23680
http://www.ncbi.nlm.nih.gov/pubmed/22566188
http://dx.doi.org/10.1002/jmri.24764
http://dx.doi.org/10.2214/AJR.05.0135
http://www.ncbi.nlm.nih.gov/pubmed/17179345
http://dx.doi.org/10.1086/674882
http://dx.doi.org/10.1148/radiol.12111001
http://dx.doi.org/10.1002/jmri.21550
http://dx.doi.org/10.1097/RLI.0b013e318281057d
http://dx.doi.org/10.1148/radiol.09081546
http://dx.doi.org/10.1097/RLI.0000000000000374
http://dx.doi.org/10.1016/j.mri.2017.01.006
http://www.ncbi.nlm.nih.gov/pubmed/28089499
http://dx.doi.org/10.1148/radiol.2015150765
http://www.ncbi.nlm.nih.gov/pubmed/26727392


Diagnostics 2020, 10, 1004 24 of 27

77. Itatani, K.; Miyazaki, S.; Furusawa, T.; Numata, S.; Yamazaki, S.; Morimoto, K.; Makino, R.; Morichi, H.;
Nishino, T.; Yaku, H. New Imaging Tools in Cardiovascular Medicine: Computational Fluid Dynamics and
4D Flow MRI. Gen. Thorac. Cardiovasc. Surg. 2017, 65, 611–621. [CrossRef] [PubMed]

78. Zambrano, B.A.; McLean, N.A.; Zhao, X.; Tan, J.-L.; Zhong, L.; Figueroa, C.A.; Lee, L.C.; Baek, S.
Image-Based Computational Assessment of Vascular Wall Mechanics and Hemodynamics in Pulmonary
Arterial Hypertension Patients. J. Biomech. 2018, 68, 84–92. [CrossRef] [PubMed]

79. Su, Z.; Tan, W.; Shandas, R.; Hunter, K.S. Influence of Distal Resistance and Proximal Stiffness
on Hemodynamics and RV Afterload in Progression and Treatments of Pulmonary Hypertension:
A Computational Study with Validation Using Animal Models. Comput. Math. Methods Med. 2013,
2013, 1–12. [CrossRef]

80. Kheyfets, V.O.; Rios, L.; Smith, T.; Schroeder, T.; Mueller, J.; Murali, S.; Lasorda, D.; Zikos, A.; Spotti, J.;
Reilly, J.J.; et al. Patient-Specific Computational Modeling of Blood Flow in the Pulmonary Arterial Circulation.
Comput. Methods Programs Biomed. 2015, 120, 88–101. [CrossRef] [PubMed]

81. Tang, B.T.; Pickard, S.S.; Chan, F.P.; Tsao, P.S.; Taylor, C.A.; Feinstein, J.A. Wall Shear Stress Is Decreased in
the Pulmonary Arteries of Patients with Pulmonary Arterial Hypertension: An Image-Based, Computational
Fluid Dynamics Study. Pulm. Circ. 2012, 2, 470–476. [CrossRef]

82. Hunter, K.S.; Feinstein, J.A.; Ivy, D.D.; Shandas, R. Computational Simulation of the Pulmonary Arteries and
Its Role in the Study of Pediatric Pulmonary Hypertension. Prog. Pediatr. Cardiol. 2010, 30, 63–69. [CrossRef]

83. Spazzapan, M.; Sastry, P.; Dunning, J.; Nordsletten, D.; de Vecchi, A. The Use of Biophysical Flow Models
in the Surgical Management of Patients Affected by Chronic Thromboembolic Pulmonary Hypertension.
Front. Physiol. 2018, 9, 223. [CrossRef]

84. Reiter, U.; Reiter, G.; Fuchsjäger, M. MR Phase-Contrast Imaging in Pulmonary Hypertension. BJR 2016, 89,
20150995. [CrossRef] [PubMed]

85. Reiter, U.; Reiter, G.; Kovacs, G.; Stalder, A.F.; Gulsun, M.A.; Greiser, A.; Olschewski, H.; Fuchsjäger, M.
Evaluation of Elevated Mean Pulmonary Arterial Pressure Based on Magnetic Resonance 4D Velocity
Mapping: Comparison of Visualization Techniques. PLoS ONE 2013, 8, e82212. [CrossRef] [PubMed]

86. Helderman, F.; Mauritz, G.-J.; Andringa, K.E.; Vonk-Noordegraaf, A.; Marcus, J.T. Early Onset of Retrograde
Flow in the Main Pulmonary Artery Is a Characteristic of Pulmonary Arterial Hypertension. J. Magn. Reson.
Imaging 2011, 33, 1362–1368. [CrossRef] [PubMed]

87. Ota, H.; Sugimura, K.; Miura, M.; Shimokawa, H. Four-Dimensional Flow Magnetic Resonance Imaging
Visualizes Drastic Change in Vortex Flow in the Main Pulmonary Artery after Percutaneous Transluminal
Pulmonary Angioplasty in a Patient with Chronic Thromboembolic Pulmonary Hypertension. Eur. Heart J.
2015, 36, 1630. [CrossRef] [PubMed]

88. Barker, A.J.; Roldán-Alzate, A.; Entezari, P.; Shah, S.J.; Chesler, N.C.; Wieben, O.; Markl, M.; François, C.J.
Four-Dimensional Flow Assessment of Pulmonary Artery Flow and Wall Shear Stress in Adult Pulmonary
Arterial Hypertension: Results from Two Institutions: Pulmonary Arterial Flow in Adult Pulmonary Arterial
Hypertension. Magn. Reson. Med. 2015, 73, 1904–1913. [CrossRef] [PubMed]

89. Odagiri, K.; Inui, N.; Miyakawa, S.; Hakamata, A.; Wei, J.; Takehara, Y.; Sakahara, H.; Sugiyama, M.;
Alley, M.T.; Tran, Q.-K.; et al. Abnormal Hemodynamics in the Pulmonary Artery Seen on Time-Resolved
3-Dimensional Phase-Contrast Magnetic Resonance Imaging (4D-Flow) in a Young Patient With Idiopathic
Pulmonary Arterial Hypertension. Circ. J. 2014, 78, 1770–1772. [CrossRef] [PubMed]

90. Schäfer, M.; Kheyfets, V.O.; Schroeder, J.D.; Dunning, J.; Shandas, R.; Buckner, J.K.; Browning, J.; Hertzberg, J.;
Hunter, K.S.; Fenster, B.E. Main Pulmonary Arterial Wall Shear Stress Correlates with Invasive Hemodynamics
and Stiffness in Pulmonary Hypertension. Pulm. Circ. 2016, 6, 37–45. [CrossRef]

91. Kheyfets, V.O.; Schafer, M.; Podgorski, C.A.; Schroeder, J.D.; Browning, J.; Hertzberg, J.; Buckner, J.K.;
Hunter, K.S.; Shandas, R.; Fenster, B.E. 4D Magnetic Resonance Flow Imaging for Estimating Pulmonary
Vascular Resistance in Pulmonary Hypertension: Estimating PVR With MRI. J. Magn. Reson. Imaging 2016,
44, 914–922. [CrossRef]

92. Han, Q.J.; Witschey, W.R.T.; Fang-Yen, C.M.; Arkles, J.S.; Barker, A.J.; Forfia, P.R.; Han, Y. Altered Right
Ventricular Kinetic Energy Work Density and Viscous Energy Dissipation in Patients with Pulmonary Arterial
Hypertension: A Pilot Study Using 4D Flow MRI. PLoS ONE 2015, 10, e0138365. [CrossRef]

93. Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [CrossRef]
94. Mackie, P.; Sim, F.; Johnman, C. Big Data! Big Deal? Public Health 2015, 129, 189–190. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s11748-017-0834-5
http://www.ncbi.nlm.nih.gov/pubmed/28929446
http://dx.doi.org/10.1016/j.jbiomech.2017.12.022
http://www.ncbi.nlm.nih.gov/pubmed/29310945
http://dx.doi.org/10.1155/2013/618326
http://dx.doi.org/10.1016/j.cmpb.2015.04.005
http://www.ncbi.nlm.nih.gov/pubmed/25975872
http://dx.doi.org/10.4103/2045-8932.105035
http://dx.doi.org/10.1016/j.ppedcard.2010.09.008
http://dx.doi.org/10.3389/fphys.2018.00223
http://dx.doi.org/10.1259/bjr.20150995
http://www.ncbi.nlm.nih.gov/pubmed/26942293
http://dx.doi.org/10.1371/journal.pone.0082212
http://www.ncbi.nlm.nih.gov/pubmed/24349224
http://dx.doi.org/10.1002/jmri.22581
http://www.ncbi.nlm.nih.gov/pubmed/21591004
http://dx.doi.org/10.1093/eurheartj/ehv054
http://www.ncbi.nlm.nih.gov/pubmed/25736251
http://dx.doi.org/10.1002/mrm.25326
http://www.ncbi.nlm.nih.gov/pubmed/24974951
http://dx.doi.org/10.1253/circj.CJ-14-0283
http://www.ncbi.nlm.nih.gov/pubmed/24790032
http://dx.doi.org/10.1086/685024
http://dx.doi.org/10.1002/jmri.25251
http://dx.doi.org/10.1371/journal.pone.0138365
http://dx.doi.org/10.1161/CIRCULATIONAHA.115.001593
http://dx.doi.org/10.1016/j.puhe.2015.02.013
http://www.ncbi.nlm.nih.gov/pubmed/25747566


Diagnostics 2020, 10, 1004 25 of 27

95. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
96. Albrecht, M.H.; Bickford, M.W.; Nance, J.W.; Zhang, L.; De Cecco, C.N.; Wichmann, J.L.; Vogl, T.J.; Schoepf, U.J.

State-of-the-Art Pulmonary CT Angiography for Acute Pulmonary Embolism. Am. J. Roentgenol. 2017, 208,
495–504. [CrossRef] [PubMed]

97. Dhakal, P.; Iftikhar, M.H.; Wang, L.; Atti, V.; Panthi, S.; Ling, X.; Mujer, M.T.P.; Dawani, O.; Rai, M.P.;
Tatineni, S.; et al. Overutilisation of Imaging Studies for Diagnosis of Pulmonary Embolism: Are We
Following the Guidelines? Postgrad. Med. J. 2019, 95, 420–424. [CrossRef] [PubMed]

98. Wasson, J.H. Clinical Prediction Rules. Have They Come of Age? JAMA 1996, 275, 641–642. [CrossRef]
99. Banerjee, I.; Sofela, M.; Yang, J.; Chen, J.H.; Shah, N.H.; Ball, R.; Mushlin, A.I.; Desai, M.; Bledsoe, J.;

Amrhein, T.; et al. Development and Performance of the Pulmonary Embolism Result Forecast Model
(PERFORM) for Computed Tomography Clinical Decision Support. JAMA Netw. Open 2019, 2, e198719.
[CrossRef]

100. Eberhard, M.; Alkadhi, H. Machine Learning and Deep Neural Networks: Applications in Patient and Scan
Preparation, Contrast Medium, and Radiation Dose Optimization. J. Thorac. Imaging 2020, 35, S17–S20.
[CrossRef]

101. Liang, J.; Bi, J. Computer aided detection of pulmonary embolism with tobogganing and mutiple instance
classification in CT pulmonary angiography. In IPMI; Karssemeijer, N., Lelieveldt, B., Eds.; LNCS; Springer:
Heidelberg, Germany, 2007; Volume 4584, pp. 630–641.

102. Buhmann, S.; Herzog, P.; Liang, J.; Wolf, M.; Salganicoff, M.; Kirchhoff, C.; Reiser, M.; Becker, C.H. Clinical
Evaluation of a Computer-Aided Diagnosis (CAD) Prototype for the Detection of Pulmonary Embolism.
Acad. Radiol. 2007, 14, 651–658. [CrossRef]

103. Das, M.; Mühlenbruch, G.; Helm, A.; Bakai, A.; Salganicoff, M.; Stanzel, S.; Liang, J.; Wolf, M.; Günther, R.W.;
Wildberger, J.E. Computer-Aided Detection of Pulmonary Embolism: Influence on Radiologists’ Detection
Performance with Respect to Vessel Segments. Eur. Radiol. 2008, 18, 1350–1355. [CrossRef]

104. Park, S.C.; Chapman, B.E.; Zheng, B.E. A Multistage Approach to Improve Performance of Computer-Aided
Detection of Pulmonary Embolisms Depicted on CT Images: Preliminary Investigation. IEEE Trans.
Biomed. Eng. 2011, 58, 1519–1527. [CrossRef]

105. Tajbakhsh, N.; Gotway, M.B.; Liang, J. Computer-Aided Pulmonary Embolism Detection Using a Novel
Vessel-Aligned Multi-Planar Image Representation and Convolutional Neural Networks. In Medical
Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M.,
Frangi, A., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland,
2015; Volume 9350, pp. 62–69. [CrossRef]

106. Engelke, C.; Schmidt, S.; Bakai, A.; Auer, F.; Marten, K. Computer-Assisted Detection of Pulmonary Embolism:
Performance Evaluation in Consensus with Experienced and Inexperienced Chest Radiologists. Eur. Radiol.
2008, 18, 298–307. [CrossRef] [PubMed]

107. Li, Y.; Dai, Y.; Deng, L.; Yu, N.; Guo, Y. Computer-Aided Detection for the Automated Evaluation of
Pulmonary Embolism. THC 2017, 25, 135–142. [CrossRef] [PubMed]

108. González, G.; Jiménez-Carretero, D.; Rodríguez-López, S.; Kumamaru, K.K.; George, E.; San José Estépar, R.;
Rybicki, F.J.; Ledesma-Carbayo, M.J. Automated Axial Right Ventricle to Left Ventricle Diameter Ratio
Computation in Computed Tomography Pulmonary Angiography. PLoS ONE 2015, 10, e0127797. [CrossRef]
[PubMed]

109. Scott, J.A.; Palmer, E.L. Neural Network Analysis of Ventilation-Perfusion Lung Scans. Radiology 1993, 186,
661–664. [CrossRef] [PubMed]

110. Patil, S.; Henry, J.W.; Rubenfire, M.; Stein, P.D. Neural Network in the Clinical Diagnosis of Acute Pulmonary
Embolism. Chest 1993, 104, 1685–1689. [CrossRef]

111. Tourassi, G.D.; Floyd, C.E.; Sostman, H.D.; Coleman, R.E. Acute Pulmonary Embolism: Artificial Neural
Network Approach for Diagnosis. Radiology 1993, 189, 555–558. [CrossRef]

112. Holst, H.; Åström, K.; Järund, A.; Palmer, J.; Heyden, A.; Kahl, F.; Trägil, K.; Evander, E.; Sparr, G.;
Edenbrandt, L. Automated Interpretation of Ventilation-Perfusion Lung Scintigrams for the Diagnosis of
Pulmonary Embolism Using Artificial Neural Networks. Eur. J. Nucl. Med. Mol. Imaging 2000, 27, 400–406.
[CrossRef]

http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.2214/AJR.16.17202
http://www.ncbi.nlm.nih.gov/pubmed/27897042
http://dx.doi.org/10.1136/postgradmedj-2018-135995
http://www.ncbi.nlm.nih.gov/pubmed/30665902
http://dx.doi.org/10.1001/jama.1996.03530320065037
http://dx.doi.org/10.1001/jamanetworkopen.2019.8719
http://dx.doi.org/10.1097/RTI.0000000000000482
http://dx.doi.org/10.1016/j.acra.2007.02.007
http://dx.doi.org/10.1007/s00330-008-0889-x
http://dx.doi.org/10.1109/TBME.2010.2063702
http://dx.doi.org/10.1007/978-3-319-24571-3_8
http://dx.doi.org/10.1007/s00330-007-0770-3
http://www.ncbi.nlm.nih.gov/pubmed/17901958
http://dx.doi.org/10.3233/THC-171315
http://www.ncbi.nlm.nih.gov/pubmed/28582900
http://dx.doi.org/10.1371/journal.pone.0127797
http://www.ncbi.nlm.nih.gov/pubmed/26000632
http://dx.doi.org/10.1148/radiology.186.3.8430170
http://www.ncbi.nlm.nih.gov/pubmed/8430170
http://dx.doi.org/10.1378/chest.104.6.1685
http://dx.doi.org/10.1148/radiology.189.2.8210389
http://dx.doi.org/10.1007/s002590050522


Diagnostics 2020, 10, 1004 26 of 27

113. Betancur, J.; Otaki, Y.; Motwani, M.; Fish, M.B.; Lemley, M.; Dey, D.; Gransar, H.; Tamarappoo, B.; Germano, G.;
Sharir, T.; et al. Prognostic Value of Combined Clinical and Myocardial Perfusion Imaging Data Using
Machine Learning. JACC Cardiovasc. Imaging 2018, 11, 1000–1009. [CrossRef]

114. Leha, A.; Hellenkamp, K.; Unsöld, B.; Mushemi-Blake, S.; Shah, A.M.; Hasenfuß, G.; Seidler, T. A Machine
Learning Approach for the Prediction of Pulmonary Hypertension. PLoS ONE 2019, 14, e0224453. [CrossRef]

115. Zhang, J.; Gajjala, S.; Agrawal, P.; Tison, G.H.; Hallock, L.A.; Beussink-Nelson, L.; Lassen, M.H.; Fan, E.;
Aras, M.A.; Jordan, C.; et al. Fully Automated Echocardiogram Interpretation in Clinical Practice: Feasibility
and Diagnostic Accuracy. Circulation 2018, 138, 1623–1635. [CrossRef]

116. Sengupta, P.P.; Huang, Y.-M.; Bansal, M.; Ashrafi, A.; Fisher, M.; Shameer, K.; Gall, W.; Dudley, J.T. Cognitive
Machine-Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis
From Restrictive Cardiomyopathy. Circ. Cardiovasc. Imaging 2016, 9. [CrossRef]

117. Sanchez-Martinez, S.; Duchateau, N.; Erdei, T.; Kunszt, G.; Aakhus, S.; Degiovanni, A.; Marino, P.; Carluccio, E.;
Piella, G.; Fraser, A.G.; et al. Machine Learning Analysis of Left Ventricular Function to Characterize Heart
Failure With Preserved Ejection Fraction. Circ. Cardiovasc. Imaging 2018, 11. [CrossRef] [PubMed]

118. Tabassian, M.; Sunderji, I.; Erdei, T.; Sanchez-Martinez, S.; Degiovanni, A.; Marino, P.; Fraser, A.G.; D’hooge, J.
Diagnosis of Heart Failure With Preserved Ejection Fraction: Machine Learning of Spatiotemporal Variations
in Left Ventricular Deformation. J. Am. Soc. Echocardiogr. 2018, 31, 1272–1284.e9. [CrossRef] [PubMed]

119. Kusunose, K.; Abe, T.; Haga, A.; Fukuda, D.; Yamada, H.; Harada, M.; Sata, M. A Deep Learning Approach for
Assessment of Regional Wall Motion Abnormality from Echocardiographic Images. JACC Cardiovasc. Imaging
2020, 13, 374–381. [CrossRef] [PubMed]

120. Winther, H.B.; Hundt, C.; Schmidt, B.; Czerner, C.; Bauersachs, J.; Wacker, F.; Vogel-Claussen, J. ν-Net.
JACC Cardiovasc. Imaging 2018, 11, 1036–1038. [CrossRef]

121. Avendi, M.R.; Kheradvar, A.; Jafarkhani, H. Automatic Segmentation of the Right Ventricle from Cardiac
MRI Using a Learning-Based Approach: Automatic Segmentation Using a Learning-Based Approach.
Magn. Reson. Med. 2017, 78, 2439–2448. [CrossRef]

122. Bai, W.; Shi, W.; de Marvao, A.; Dawes, T.J.W.; O’Regan, D.P.; Cook, S.A.; Rueckert, D. A Bi-Ventricular
Cardiac Atlas Built from 1000+ High Resolution MR Images of Healthy Subjects and an Analysis of Shape
and Motion. Med. Image Anal. 2015, 26, 133–145. [CrossRef]

123. Mauger, C.; Gilbert, K.; Lee, A.M.; Sanghvi, M.M.; Aung, N.; Fung, K.; Carapella, V.; Piechnik, S.K.;
Neubauer, S.; Petersen, S.E.; et al. Right Ventricular Shape and Function: Cardiovascular Magnetic
Resonance Reference Morphology and Biventricular Risk Factor Morphometrics in UK Biobank. J. Cardiovasc.
Magn. Reson. 2019, 21, 41. [CrossRef]

124. Swift, A.J.; Lu, H.; Uthoff, J.; Garg, P.; Cogliano, M.; Taylor, J.; Metherall, P.; Zhou, S.; Johns, C.S.; Alabed, S.;
et al. A Machine Learning Cardiac Magnetic Resonance Approach to Extract Disease Features and Automate
Pulmonary Arterial Hypertension Diagnosis. Eur. Heart J.—Cardiovasc. Imaging 2020, jeaa001. [CrossRef]

125. Dawes, T.J.W.; de Marvao, A.; Shi, W.; Fletcher, T.; Watson, G.M.J.; Wharton, J.; Rhodes, C.J.; Howard, L.S.G.E.;
Gibbs, J.S.R.; Rueckert, D.; et al. Machine Learning of Three-Dimensional Right Ventricular Motion Enables
Outcome Prediction in Pulmonary Hypertension: A Cardiac MR Imaging Study. Radiology 2017, 283, 381–390.
[CrossRef]

126. Samad, M.D.; Wehner, G.J.; Arbabshirani, M.R.; Jing, L.; Powell, A.J.; Geva, T.; Haggerty, C.M.; Fornwalt, B.K.
Predicting Deterioration of Ventricular Function in Patients with Repaired Tetralogy of Fallot Using Machine
Learning. Eur. Heart J.—Cardiovasc. Imaging 2018, 19, 730–738. [CrossRef] [PubMed]

127. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology
2016, 278, 563–577. [CrossRef]

128. Leopold, J.A.; Maron, B.A. Precision Medicine in Pulmonary Arterial Hypertension: A First Step. Circ. Res.
2019, 124, 832–833. [CrossRef]

129. Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.;
Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting More Information from Medical Images
Using Advanced Feature Analysis. Eur. J. Cancer 2012, 48, 441–446. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jcmg.2017.07.024
http://dx.doi.org/10.1371/journal.pone.0224453
http://dx.doi.org/10.1161/CIRCULATIONAHA.118.034338
http://dx.doi.org/10.1161/CIRCIMAGING.115.004330
http://dx.doi.org/10.1161/CIRCIMAGING.117.007138
http://www.ncbi.nlm.nih.gov/pubmed/29661795
http://dx.doi.org/10.1016/j.echo.2018.07.013
http://www.ncbi.nlm.nih.gov/pubmed/30146187
http://dx.doi.org/10.1016/j.jcmg.2019.02.024
http://www.ncbi.nlm.nih.gov/pubmed/31103590
http://dx.doi.org/10.1016/j.jcmg.2017.11.013
http://dx.doi.org/10.1002/mrm.26631
http://dx.doi.org/10.1016/j.media.2015.08.009
http://dx.doi.org/10.1186/s12968-019-0551-6
http://dx.doi.org/10.1093/ehjci/jeaa001
http://dx.doi.org/10.1148/radiol.2016161315
http://dx.doi.org/10.1093/ehjci/jey003
http://www.ncbi.nlm.nih.gov/pubmed/29538684
http://dx.doi.org/10.1148/radiol.2015151169
http://dx.doi.org/10.1161/CIRCRESAHA.119.314757
http://dx.doi.org/10.1016/j.ejca.2011.11.036
http://www.ncbi.nlm.nih.gov/pubmed/22257792


Diagnostics 2020, 10, 1004 27 of 27

130. Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.W.L.; Dekker, A.;
Fenstermacher, D.; et al. Radiomics: The Process and the Challenges. Magn. Reson. Imaging 2012, 30,
1234–1248. [CrossRef] [PubMed]

131. Hemnes, A.R.; Beck, G.J.; Newman, J.H.; Abidov, A.; Aldred, M.A.; Barnard, J.; Berman Rosenzweig, E.;
Borlaug, B.A.; Chung, W.K.; Comhair, S.A.A.; et al. PVDOMICS: A Multi-Center Study to Improve
Understanding of Pulmonary Vascular Disease Through Phenomics. Circ. Res. 2017, 121, 1136–1139.
[CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.mri.2012.06.010
http://www.ncbi.nlm.nih.gov/pubmed/22898692
http://dx.doi.org/10.1161/CIRCRESAHA.117.311737
http://www.ncbi.nlm.nih.gov/pubmed/29074534
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Pulmonary Vascular Morphometrics: Evolution from Castings to Imaging 
	Pulmonary Hypertension: Screening, Disease Detection, Disease Severity, and a Non-Invasive Measure of Mean PAP 
	Interstitial Lung Disease (ILD): Disease Severity, Risk Stratification, and Monitoring 
	Chronic Obstructive Pulmonary Disease (COPD): Disease Severity 
	Chronic Thromboembolic Pulmonary Hypertension: Disease Detection and Characterisation 
	COVID-19: Insights into the Pathophysiology of Disease 

	Pulmonary Perfusion 
	Nuclear Medicine 
	Dual Energy CT, DECT 
	MR Perfusion 

	Blood Flow Imaging (BFI) 
	Applications of Artificial Intelligence in Multimodality Imaging of the Pulmonary Circulation and Right Ventricle 
	Computed Tomography Pulmonary Angiography (CTPA) 
	Nuclear Medicine 
	Echocardiography 
	Cardiovascular Magnetic Resonance (CMR) 

	Radiomics 
	Extant AI-Based Pulmonary Vascular Imaging Techniques in Clinical Practice 
	Conclusions 
	References

