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Abstract

Pathway analysis is an informative method for comparing and contrasting drug-induced

gene expression in cellular systems. Here, we define the effects of the marine natural prod-

uct fucoxanthin, separately and in combination with the prototypic phosphatidylinositol 3-

kinase (PI3K) inhibitor LY-294002, on gene expression in a well-established human glio-

blastoma cell system, U87MG. Under conditions which inhibit cell proliferation, LY-294002

and fucoxanthin modulate many pathways in common, including the retinoblastoma, DNA

damage, DNA replication and cell cycle pathways. In sharp contrast, we see profound differ-

ences in the expression of genes characteristic of pathways such as apoptosis and lipid

metabolism, contributing to the development of a differentiated and distinctive drug-induced

gene expression signature for each compound. Furthermore, in combination, fucoxanthin

synergizes with LY-294002 in inhibiting the growth of U87MG cells, suggesting complemen-

tarity in their molecular modes of action and pointing to further treatment combinations. The

synergy we observe between the dietary nutraceutical fucoxanthin and the synthetic chemi-

cal LY-294002 in producing growth arrest in glioblastoma, illustrates the potential of nutri-

pharmaceutical combinations in targeting this challenging disease.

Introduction

Glioblastoma multiforme (GBM) is the most common primary and aggressive malignant

brain tumor in adults [1], with patients having a median survival after diagnosis of only 12–15

months [1–4]. Current chemotherapy, together with surgery and radiotherapy, provide only

minor patient benefit, and there is a considerable need for development of effective new

therapies.

One way to achieve efficacious treatment, in particular in areas such as cancer (where mul-

tiple disease drivers may exist) and infectious diseases (where mutations are common during

treatment, which of course also exists in the case of cancer) is the use of compound combina-

tions [5]. Here in some cases synergy of active ingredients is desired [5], in order to achieve
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the desired effect at lower dose, which means that the effect of the compound combination is

higher than that expected in case of the null hypothesis of additivity. Multiple models exist for

this purpose, such as the Loewe model (which assumes additivity of effects), the Bliss model

(which assumes independence) and the Highest Single Agent (HSA) model, which only takes

the most significant effect into account (as well as other more recent models [6, 7] which in

some cases show more intuitive behavior in practice). However, given that the mechanistic

reason for synergy is in most cases poorly understood, the model choice is often empirical,

which can lead to conclusions that a compound combination is synergistic due to the model

chosen, which wouldn’t have been the case with another model (see [7] for a more detailed dis-

cussion of this subject). In this work, we employed the Loewe synergy model; however we also

applied other models to verify results, and they were found to be in agreement with each other

in this case (see results section). Still, generally speaking the identification of synergy of a com-

pound combination depends on the particular definition one chooses for this purpose and this

choice is hence of fundamental nature for the analysis of combination screening data.

Our work has characterized the genes and pathways deployed by glioblastoma cells in their

response to drugs and natural products. An initial focus on the pro-proliferative phosphatidy-

linositol 3-kinase/protein kinase B/mechanistic target of rapamycin (PI3K/Akt/mTOR) path-

way, has highlighted the key gene expression responses to the well-characterized PI3K

inhibitor LY-294002, subsequently uncovering a synergy in growth inhibition between fuco-

xanthin and LY-294002.

The fact that drug therapy for GBM has been unsuccessful probably reflects our lack of

detailed knowledge of the signaling pathways that control GBM growth and differentiation.

We know that many key cellular signaling pathways are dysregulated in GBM including prolif-

eration, angiogenesis, components of the mTOR complexes (mTORC) signaling and Nuclear

Factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling [8, 9]. Taken

together, these signaling pathway changes constitute a phenotype that may promote tumor

survival and thereby contribute to the extreme resistance that this tumor displays towards con-

ventional therapies [10].

LY-294002 targets an important pathway often mutated in GBM, the PI3K/Akt pathway

[11], which appears particularly important in glioblastoma proliferation but also plays a central

role in the regulation of tumor cell survival, motility, angiogenesis and metabolism [12]. This

has led to many attempts to target the PI3K/Akt pathway as a potential treatment option for

glioblastoma [13, 14].

PI3K has four catalytic isoforms within class I: phosphatidylinositol 4,5-bisphosphate

3-kinase catalytic subunit alpha isoform (PIK3CA/p110α), phosphatidylinositol-4,5-bispho-

sphate 3-kinase catalytic subunit beta (PIK3CB/p110β), phosphatidylinositol-4,5-bisphosphate

3-kinase catalytic subunit delta (PIK3CD/p110δ), and phosphatidylinositol-4,5-bisphosphate

3-kinase catalytic subunit gamma (PIK3CG/p110γ). Recent studies implicate overexpression

of the PIK3CB/p110β isoform in glioblastoma, where it acts as a selective tumor survival factor.

Inhibition of PIK3CB/p110β suppresses viability and growth of GBM cells and xenograft

tumors in mice, with minimal cytotoxic effects on normal astrocytes [15].

LY-294002 (Fig 1A) was an early PI3K inhibitor to be discovered. LY-294002 is a proto-

typic, non-selective PI3K inhibitor, which inhibits the α, β and δ isoforms of PI3K, and also

has off-target effects on casein kinase 2 (CK2), glycogen synthase kinase 3 beta (GSK3B),

mTOR [16, 17]. LY-294002 has previously been shown to enhance the cytotoxicity of temozo-

lomide in U87MG glioma cells by down-regulating genes involved in the PI3K/Akt pathway

[18]. For a recent general review of PI3K inhibitors, see [19].

As an earlier alternative to synthetic drugs, natural products targeting PI3K emerged as

potential cancer therapeutics: wortmannin (Fig 1B) was isolated as a fungal metabolite, while

PLOS ONE Transcriptomics predicts compound synergy in treated glioblastoma cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0239551 September 18, 2020 2 / 25

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0239551


LY-294002, the first synthetic PI3K inhibitor, was derived from the natural product quercetin

[20].

Another natural product with putative PI3K inhibitor activity and therapeutic potential in

glioblastoma is fucoxanthin [21–23]. Fucoxanthin is a member of the xanthophyll class of

carotenoids, and is present at high concentrations in the brown alga Saccharina latissimi [24]

where it plays an accessory role in light harvesting and radiation protection.

Fucoxanthin has a particularly interesting and unique molecular structure (Fig 1C), exhibit-

ing antioxidant properties due to a long conjugated backbone characteristic of all carotenoids

[25], but possessing an unusual terminal allenic bond and conjugated carbonyl groups [26].

Fucoxanthin has been suggested to act in glioblastoma by suppressing invasion and inducing

apoptosis through PI3K/Akt pathway inhibition [17, 27] and Janus Kinase/Signal Transducer

and Activator of Transcription (JAK/STAT) pathway inhibition [28, 29].

Previous studies of the activity of fucoxanthin in U87MG glioblastoma cells have shown

the modulation of several individual proteins involved in apoptosis, including B-cell lym-

phoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, and caspase-9, all of which are

involved in the PI3K/Akt pathway [30]. In addition, both in hepatocytes and in immortal

human cell line (HeLa) cells, fucoxanthin has been shown to stimulate the adenosine mono-

phosphate -activated protein kinase (AMPK) pathway to induce autophagy and cytoprotection

[31]. In HeLa cells, fucoxanthin also inhibits Bcl-2, inducing Bax production and caspase-3

cleavage [32], while the deacetylated human metabolite of dietary fucoxanthin, fucoxanthinol

(Fig 1D), modulates the NF-κB pathway, caspase activity, Bcl-2 proteins, MAPK, PI3K/Akt,

JAK/STAT, activator protein 1 (AP-1), and growth arrest and DNA damage-inducible 45

(GADD45) [33].

These previous studies suggest that fucoxanthin changes the transcriptomic phenotype of

cancer cells and warrant detailed analysis of its effects at the molecular and cellular pathway

levels. To achieve this effectively and comprehensively, genome-wide approaches are

Fig 1. Chemical structures of the PI3K inhibitors discussed in this study. A, LY-294002; B, Wortmannin; C, the

natural product fucoxanthin; D, Fucoxanthinol, the deacetylated metabolite of fucoxanthin.

https://doi.org/10.1371/journal.pone.0239551.g001
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necessary, amongst which gene expression microarray techniques are some of the most robust

and powerful [19, 34, 35].

The juxtaposition of phenotypic and target-based drug discovery is yielding a new echelon

of pathway-active drugs [36, 37]. Genome-wide gene expression analysis lies at the heart of

phenotypic drug discovery, enabling simultaneous high-content pathway exploration and

drug response characterization [38, 39]. In cancer, tumor cells seem addicted to certain signal-

ing pathways such as the PI3K/AKT pathway. Not only can the members of signaling pathways

be used as potential targets in drug discovery [40], but changes within the pathways themselves

can also reveal how cancer cells escape drug treatment. Targeting these escape mechanisms

can lead to synergistic therapeutic effects [41, 42].

In the current study, we compare and contrast the effects of fucoxanthin, whose molecular

mode of action is incompletely understood, to that of LY-294002, whose activities are compar-

atively well known [18]. For these studies we have used gene expression analysis in the stan-

dard glioblastoma cell line U87MG. We identify effects on the PI3K/Akt/mTOR and other

signaling pathways in this glioblastoma model cell system and use the observed gene expres-

sion responses of the two compounds to define their potential synergies.

Materials and methods

Cell culture and reagents

Human glioblastoma U87MG cells expressing the wild-type TP53 gene were obtained from

the European Collection of Authenticated Cell Cultures (ECACC 89081402) and maintained

in DMEM/F12 medium (Gibco, ThermoFisher, UK) supplemented with 10% fetal bovine

serum (FBS) (Sigma, UK) and 5% antibiotic/antimycotic solution (Sigma, UK). We have

checked U87MG cell line using the ICLAC database (https://iclac.org/databases/cross-

contaminations/) and can confirm that this cell line is not in the list of misidentified or con-

taminated cell lines.

Cells were maintained at 37˚C in a humidified atmosphere of 95% air and 5% CO2. LY-

294002 (L9908, >98% purity) and fucoxanthin (F6932, >95% purity) were purchased from

Sigma UK. LY-294002 and fucoxanthin were dissolved in dimethyl sulfoxide (DMSO) before

testing.

Proliferation assay

Cell survival was determined using the Cell Counting Kit-8 (CCK-8) assay (Sigma, UK).

U87MG cells were seeded at a density of 8,000 cells/well in 96-well plates and allowed to

adhere overnight at 37˚C in a humidified atmosphere of 95% air and 5% CO2. Fucoxanthin

and LY-294002 were tested in triplicate in at least two separate experiments. Dilutions of fuco-

xanthin and LY-294002 were made first at different concentrations in DMSO and then added

to cell medium at a 1:100 ratio. Then, the culture medium was removed from the plates, and

fresh medium containing compound was added. Control cells were treated with vehicle solu-

tion containing 1% DMSO. Blank controls without cells were also prepared. After 72h treat-

ment, 5 μL of CCK-8 was added to every well containing 100 μL of tested compounds, controls

or blank. After 3 h of incubation at 37˚C in the dark, the plates were read using a Mithras

LB940 multimode microplate reader (Berthold Technologies), and the absorbance values were

determined at 490 nm, according to the manufacturer‘s instructions. The percentage of surviv-

ing cells was calculated for each well using the formula:

%cell survival ¼
At � Ab

Ac � Ab
� 100;
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where At is absorbance of the medium with tested compound, Ac is absorbance of control

medium, and Ab is absorbance of blank medium.

Concentration-effect relationships for both compounds were analyzed using Prism software

version 8.0.1 (GraphPad, Inc., San Diego, CA). Data were fitted using a four-parameter logistic

equation.

Apoptosis assay

The extent of cell apoptosis was measured using the Annexin V-FITC apoptosis detection kit

(Abcam, Cambridge, UK). U87MG cells were seeded at a density of 80,000 cells/well in 6-well

plates and allowed to adhere overnight at 37˚C in a humidified atmosphere of 95% air and 5%

CO2. Fucoxanthin and LY-294002 were tested at concentrations of 20 μM and 200 μM, their

respective IC50 values determined in the proliferation assay. Control cells were treated with 1%

DMSO (vehicle). After 24h and 48h of treatment, the cells were trypsinized, centrifuged, resus-

pended in 500 μL of binding buffer followed by the addition of 5 μL Annexin V-FITC and 5 μL

propidium iodide (PI) according to the manufacturer’s instructions. The samples were incu-

bated at room temperature for 5 min in the dark and then analyzed on a BD Accuri™ C6 Flow

Cytometer (BD Biosciences). A total of 10,000 events were counted for each sample. Fluores-

cence was measured at an excitation wavelength of 480 nm with detection for PI at 530 nm

and Annexin V at 585 nm.

Synergy assay

To study the effects of combined treatments with LY-294002 or fucoxanthin the proliferation

assay was performed as described above. Concentration-response relationships for 0.5–

500 μM LY-294002 were determined in the presence of 10, 16 or 25 μM fucoxanthin. The

experiment was repeated 9 times to ensure statistical significance.

The analysis of combination effects was performed using Combenefit software (version

2.021) [43], primarily with the additive Loewe synergy effect as a baseline model [44], which

assumes independent compound mode of actions [7]. However, as described in the introduc-

tion, the annotation of synergy of compound combinations is heavily dependent on the defini-

tion one uses, and hence also the Bliss and Highest Single Agent (HSA) model were used for

comparison (where the main conclusion agreed between methods, see results section for

details).

Microarrays

Cells were seeded into T25 flasks at a density of 500,000 cells/flask and allowed to adhere and

grow for 24h. The culture medium was removed, and fresh medium containing compound for

test was added to each flask at the IC50 concentration for inhibiting proliferation at 72h, previ-

ously determined as 200 μM for LY-294002 and 20 μM for fucoxanthin (Fig 2). Control cells

were treated with medium containing 1% DMSO alone. All experiments were performed in

triplicate. Cells were visualised during culture using the EVOS Cell Imaging System (Thermo

Fisher Scientific, UK).

After 24h and 48h of treatment, the cells were trypsinized, and total RNA was isolated using

the RNeasy Mini kit (Qiagen, UK) according to the manufacturer’s recommendations. A

Thermo Scientific™ NanoDrop instrument was used to quantify the RNA and test the purity of

each sample. Aliquots of RNA were frozen at -80˚C prior to analysis at ATLAS Biolabs (Berlin,

Germany) for microarray experiments.

Total RNA was analyzed by ATLAS Biolabs (Berlin, Germany) using their Affymetrix WT

Expression Profiling Standard Service. The quality and quantity of each RNA sample was
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determined using the Agilent 2100 Bioanalyzer and Nanodrop. For the library preparation

(cDNA synthesis, amplification and labeling) GeneChip1WT PLUS reagents were used.

96-array plates were processed on an Applied Biosystems GeneChip 3000 instrument system

followed by hybridization, dyeing, washing, and scanning using the GeneChip™ Hybridization,

Wash, and Stain Kit from Affymetrix (catalog number: 900720). Hybridization controls, qual-

ity control parameters and primary data analysis was performed using Expression Console

v1.4 (also from Affymetrix). The analysis was conducted on a Clariom S Human array

(Thermo Fisher Scientific, Catalog Number: 902926) with a fixed number of probes per tran-

script as probe sets consisting of a subset of 10 probes per gene (yielding >20,000 annotated

genes, as documented by Affymetrix (www.affymetrix.com/analysis/netaffx/)).

Microarray data analysis

An expression matrix was created from the average signal intensities by applying the RMA

(Robust Multi-array Average) algorithm as a multi-chip model [45]. A control housekeeping

gene intron/exon separation area under receiving operating curve value threshold of 0.8 was

selected to ensure good sample quality.

Microarray gene expression profiling and visualization were performed using Affymetrix

Transcriptome Analysis Console (TAC) software (ThermoFisher) which uses the limma pack-

age [46]. In defining differentially expressed genes (DEGs), two criteria were used. Firstly, the

probeset absolute log 2 Fold Change (FC) was higher than 1 based on Tukey’s bi-weight aver-

age between treatment and time matching controls [47], which renders the average value less

sensitive to outliers [48]. Secondly, the Benjamini-Hochberg corrected p-value of the ANOVA

(Analysis of Variance) test was applied to compare conditions (either time or treatment). We

considered a gene to be differentially expressed if it had a corrected p-value lower than 0.05

[49]. The ANOVA tests were calculated with an eBayes (Empirical Bayes Statistics for Differ-

ential Expression) variance calculation [50]. Finally, the Clariom S chip’s probe sets were

mapped to UniProt SwissProt identifiers [51], keeping only the protein coding genes. If a gene

had more than one probe set, the most differentially expressed probe sets were used in all

cases.

Fig 2. Dose-response relationships of the inhibitory action of fucoxanthin (A) and LY-294002 (B) on U87MG glioblastoma cell survival over 24, 48, or

72h of treatment. Data were normalized relative to the viability of cells treated with vehicle.

https://doi.org/10.1371/journal.pone.0239551.g002
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Gene pathway analysis

After defining the differentially expressed genes (DEGs), pathway analysis was performed. For each

treatment, untreated U87MG cells were used as controls at each corresponding time point. To

show the most significantly modulated pathways after compound treatment, WikiPathways map

representations [52] were used and the signal intensities of DEGs involved in particular enriched

pathways shown as down-regulated or up-regulated in response to specific treatments [53]. Fisher’s

Exact Tests were used for the statistical analysis of each component within the pathway.

Gene Set Enrichment Analysis (GSEA) used the Broad Institute GSEA tool [54] version

number 3.0, using the Hallmark [55] and the Gene Ontology [56] gene sets from the Broad

Institute website at 7th of June 2019. The genes were translated through UniProt to ENTREZ

IDs and the genes were ranked based on their fold change.

Results

Fucoxanthin and LY-294002 reduce proliferation of U87MG cells

As a first step, we studied the effects of fucoxanthin and LY-294002 on the cellular proliferation

of U87MG cells. The compounds were tested at concentrations of 1 to 1000 μM (Fig 2). For

both compounds, little effect on cell survival was observed at concentrations of less than 10 μM.

For in vitro experiments, we used a 24h cell exposure regime, carried out at drug concentra-

tions equal to the 72h IC50 for cell proliferation, determined in earlier dose-response studies

with treated and untreated cells. Cell survival decreased at concentrations higher than 10 μM

resulting in IC50s of 20 μM for fucoxanthin (Fig 2A) and 200 μM for LY-294002 (Fig 2B) after

72h of treatment.

Cellular morphology of U87MG glioblastoma cells after 24 and 48h of treatment with fuco-

xanthin or LY-294002 clearly differed from that of DMSO-treated control cells (see S1A–S1F

Fig). The cells grew as monolayers in the cell culture flasks before treatment, forming some

spheres after 24h and 48h. After treatment with fucoxanthin for 24h, most adherent cells were

round, with some showing signs of nuclear fragmentation, although cells with pseudopod-like

protrusions were also observed. After treatment for 48h, some cells remained adherent, while

others floated off their plastic substrates, often as aggregates. The morphology of cells treated

with LY-294002 differed from those treated with fucoxanthin, with some cell membrane bleb-

bing observed after both 24h and 48h treatment.

The mechanisms of fucoxanthin and LY-294002 are different in apoptosis

The morphological differences observed above were further examined by fluorescence acti-

vated cell sorting (FACS) (S1G–S1L Fig). The apoptosis and necrosis levels of the treatments

were measured using propidium iodide and annexin-V staining. Fucoxanthin did not increase

the fractions of apoptotic cells after 24 h treatment (S1M & S1N vs S1O & S1P Fig), although

these slightly decreased from 3.5% and 2.4% to 1.5 and 1.8% in the case of early and late apo-

ptosis. The percentage of necrotic cells increased from less than 0.1% to 0.3%, which although

statistically significant is probably not relevant (p = 0.011 in a one sided two sample t-test). Fol-

lowing a longer exposure for 48 h however, fucoxanthin increased the number of late apoptotic

(from 2.2% to 6.7%) and necrotic cells (from 0.1% to 2.7%) compared to their respective frac-

tions in vehicle-treated cultures (S1M and S1N Fig for control and Q, R for LY-294002,

p = 0.056 and 0.013, respectively in a two-sample one sided t-test) (for more details of the

results of FACS analysis, see the legend to S1 File). In turn, treatment with LY-294002

increased the fraction of early apoptotic cells from 3.5% and 3.3% to 6.8% and 6.7% and late

apoptotic cells from 2.4% and 2.3% to 5.6% and 8.3% after 24 and 48 h treatments respectively,
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basically doubling the amount of apoptotic cells (two-sample one sided t-test p<0.05). The

number of necrotic cells increased as well, but to a much lesser extent than in the case of fuco-

xanthin and not significantly after 48h (p = 0.08). The molecular mechanisms underlying these

observations were further analyzed using transcriptomics, as shown in detail in S2 Fig.

Compound effects are highly reproducible

Gene expression studies for U87MG cells treated with fucoxanthin and LY-294002 were per-

formed at 24h and 48h time points, using the 72h IC50 concentrations of 20 μM and 200 μM

respectively, to compare the modes of action of both compounds at early and late time points.

To check the specificity and reproducibility of the drug responses as measured by gene expres-

sion analysis, a Principal Component Analysis (PCA) (S3 Fig) and a heatmap (S4 Fig) analysis

were performed after normalizing the gene expression results following Robust Multi-array

Average (RMA) [45] algorithm and the eBayes ANOVA (for details see Methods).

The results were highly reproducible. Both PCA and cluster analysis (S3 and S4 Figs) show

a clear difference between the transcriptomic profiles exhibited by fucoxanthin and LY-294002

treatments. In both the cluster analysis and PCA the LY-294002 samples were more clearly dif-

ferent from control compared to fucoxanthin. This may indicate a more specific mechanism

of action for LY-294002 compared to fucoxanthin.

Differentially expressed genes after LY-294002 and fucoxanthin treatments

Down-regulation of gene expression was the predominant cell response observed after both

treatments. LY-294002 treatment showed a higher and more consistent down-regulation, with

more genes shared between the 24h and 48h time-points, while fucoxanthin generated a less

consistent response (Fig 3). Individual genes within these transcriptional profiles are anno-

tated in S1 Table.

Analysis of the 25 most differentially expressed genes from each treatment

After assembling overall patterns of differentially expressed genes (S1 Table, S5 Fig), we exam-

ined the 25 most differentially expressed genes in each condition to evaluate the consistency of

the temporal response to each compound.

Fig 3. Venn diagram showing in-common and unique responses for the two treatments in gene expression space.

Note that few up-regulated genes (A) are shared by the two treatments, in contrast to a much higher overlap in down-

regulated genes (B). F24—represents the expression of a gene after 24h treatment with fucoxanthin; F48—represents

the expression of a gene after 48h treatment with fucoxanthin; L24—represents the expression of a gene after 24h

treatment with LY-294002; L48—represents the expression of a gene after 48h treatment with LY-294002.

https://doi.org/10.1371/journal.pone.0239551.g003
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In the case of LY-294002 treatment at 24h (Fig 4A) and at 48h (Fig 4B), the 25 most differ-

entially up- and down-regulated genes were mostly shared. The majority of genes show parallel

responses at both time points, and with both drug treatments, although NR4A2, NR4A3,

GPR1, CLDN1, CHAC1 and SGK1 show elevation only upon LY-294002 treatment, indicating

a compound specific response in U87MG.

Similarly, the 25 most differentially expressed genes in response to fucoxanthin at 24h and

48h were compared with those seen in LY-294002 treatments at the same time points (Fig 5).

In this case, clear differences were seen between the gene expression profiles of the 25 most dif-

ferentially expressed genes in each treatment.

Fig 4. Gene expression signature difference between conditions using the 25 most differentially expressed up-regulated (A) and down-regulated (B) genes after LY-

294002 at 24h (left side) and 48h (right side) treatment. The expression of an individual gene (log2FC) across all four conditions is marked in specific colors per

condition (F24—light green, represents the expression of a gene after 24h treatment with fucoxanthin; F48—dark green, represents the expression of a gene after 48h

treatment with fucoxanthin; L24—mauve represents the expression of a gene after 24h treatment with LY-294002; L48—pink, represents the expression of a gene after

48h treatment with LY-294002). The response to LY-294002 is consistent over time.

https://doi.org/10.1371/journal.pone.0239551.g004
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Concentrating on differences between LY-294002 and fucoxanthin, amongst the up-regu-

lated genes after 24h of LY-294002 treatment were two nuclear hormone receptors, NR4A2

and NR4A3, which were amongst the 25 most down-regulated genes after 48h of fucoxanthin

treatment, illustrating a major difference in nuclear hormone induction between the two com-

pounds. The NR4A2 and NR4A3 gene products regulate apoptosis in neutrophils [57], point-

ing to a potential difference in the molecular mechanisms underlying apoptosis in the two

U87MG treatments used here.

Fig 5. Gene expression differences between the 25 most differentially expressed up-regulated (A) and down-regulated (B) genes after fucoxanthin at 24h (left side) and

48h (right side) treatment. The expression of an individual gene (log2FC) across all four conditions is marked in specific colors per condition (F24—light green,

represents the expression of a gene after fucoxanthin at 24h treatment; F48—dark green, represents the expression of a gene after fucoxanthin at 48h; L24—mauve

represents the expression of a gene after LY-294002 at 24h; L48—pink, represents the expression of a gene after LY-294002 48h). The response to fucoxanthin is more

variable at the two time points and differs from that of LY-294002.

https://doi.org/10.1371/journal.pone.0239551.g005
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Pathways differentially modulated by fucoxanthin and LY-294002

Following analysis of individual gene expression changes, we next used WikiPathway analysis

to obtain an overview of the main changes in signaling pathways produced by the two com-

pounds; results for the 25 most differentially expressed pathways are shown in Table 1 (see S2

Table for entire list of expressed pathways with the corresponding up-regulated and down-reg-

ulated genes involved).

Many well-defined cellular signaling pathways are significantly modulated in common by

the two compounds. Both compounds decreased the expression of genes from the “Retinoblas-

toma genes in cancer”, “DNA damage”, “DNA replication” and “Cell Cycle” pathways, sug-

gesting a cytostatic effect. Interestingly the PI3K/Akt pathway, which we expected to be

targeted by both inhibitors, is differentially affected only by fucoxanthin treatment, at both

24h (Table 1A) and 48h (Table 1B).

To obtain a different view on the pathway activity of the compounds we used GSEA (Gene

Set Enrichment Analysis) with Hallmark and Gene Ontology classification. At all time points

and treatment conditions, the Hallmark gene sets “E2F targets” and “G2M checkpoints” were

down-regulated (FDR corrected p-value < 0.05, S3 Table). The GSEA results and WikiPath-

way approaches therefore reinforce each other, both analyses implicating the master regulator

of the cell cycle E2F in co-ordinating the down-regulation of the genes in the G2M phase

checkpoint, thereby producing cell cycle arrest.

Many other signaling pathways are affected by both treatments, listed in Table 1 and S2

Table. Amongst those of particular interest were the apoptosis and necrosis pathways, the cell

cycle, and the EGFR pathways, elements of which have previously been seen in the U87MG

growth response [58].

1. Apoptosis pathway. From these pathway analyses, specific patterns of drug response

can be inferred. One important pathway is apoptosis-related gene expression, summarized in

Table 2A. A co-ordinated anti-apoptotic response to LY-294002 treatment is seen, with the

same down-regulated apoptosis genes participating at both 24h and 48h treatment. Differential

down-regulation of the transcripts for Caspase 1 and Caspase 10 is evident, together with

down-regulation of the genes encoding FAS, BID, BIRC3, MAPK10 and HELLS. This suppres-

sion of the apoptosis pathway induced by LY-249002 may indicate the induction of a tumor

cell survival program in U87MG cells, as suggested by the parallel up-regulation of growth-

associated genes encoding the insulin-like growth factor 1 receptor (IGF1R), TNF receptor

superfamily member 1B (TNFRSF1B) and the Bcl-2 like 11 (Bcl-2L11) genes.

In sharp contrast, a different spectrum of down-regulated apoptotic genes accompanies

growth inhibition by fucoxanthin. Here, the major down-regulated caspase is CASP2, accom-

panied by a much-restricted spectrum of other apoptotic genes. A full overview of changes

observed in the apoptosis pathway is attached at S2 Fig, which also shows that it is the effector

end of the pathway that is down-regulated most.

2. PI3K/Akt pathway. Fucoxanthin has a transcriptomic effect on the PI3K/Akt pathway,

increasing the expression of 10 of the genes involved in this pathway after 24h, 5 of which

remain up-regulated after 48h treatment. At the same time, the expression of 24 genes is

decreased at 24h, with 19 of these genes remaining down-regulated after 48h treatment

(p<0.05 Benjamin Hochberg corrected Fisher exact test, S6 Fig).

Surprisingly, LY-294002 does not exert a significant transcriptional effect at the pathway

level on the PI3K/Akt pathway (p>0.05 Benjamin Hochberg corrected Fisher exact test), even

though it acts directly on this pathway by inhibition of PI3K. Only 4 genes from this large

pathway at 24h, and 8 genes at 48h, were up-regulated, although 17 and 19 genes, respectively

were down-regulated after 24h and 48h treatment (see S6 Fig for the wiring diagrams of the
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Table 2. WikiPathway analysis. A, Apoptosis, B, PI3K/Akt, C, Retinoblastoma. L24, genes affected by LY-294002 at 24h; L48, genes affected by LY-294002 at 48h; F24,

genes affected by fucoxanthin at 24h; L48, genes affected by fucoxanthin at 48h. All genes are listed in order of their level of expression.

Differential expression of pathway genes

A. Apoptosis B. PI3K/Akt C. Retinoblastoma

L24 L48 F24 F48 L24 L48 F24 F48 L24 L48 F24 F48

Down-

regulated

FAS FAS CASP2 TNFSF10 CCNE2 CCNE2 CCNE2 CCNE2 E2F1 E2F1 E2F1 CCNE2

CASP1 CASP1 HELLS GYS1 COL1A2 GYS1 ITGA2 SKP2 CDK2 SKP2 CCND3

BIRC3 CASP10 COL1A2 TNC ITGA5 PRLR CDK2 CCNA2 CDK2 PLK4

BID BIRC3 COL6A3 PRLR COL1A2 IL7R CCNA2 SUV39H1 CCNA2 MCM6

MAPK10 BID PRLR IL7R LAMB1 ITGB8 MCM7 CCNE2 MCM7 MCM3

BIRC5 MAPK10 IL7R PIK3R3 ITGA2 ANGPT1 SUV39H1 CDC25A SUV39H1 RFC3

CASP8 BIRC5 ANGPT1 ANGPT1 PRLR EFNA5 CCNE2 CCND3 CCNE2 MCM4

HELLS TNFSF10 HGF FGF7 IL7R FGF7 CDC25A CDK1 CDC25A POLE

HELLS EPHA2 HGF LAMA5 HGF CDK1 PLK4 CCND3 PRIM1

PDGFRB EPHA2 COL6A1 PDGFRA PLK4 CCNB1 CDK1 BARD1

CREB3L1 PDGFRB ITGB8 LPAR6 CCNB1 CCNB2 PLK4 RRM2

EIF4EBP1 PPP2R2B CSF1 GNG2 CCNB2 MCM6 MCM6 CDK6

TLR4 CREB3L1 ANGPT1 IL7 MCM6 RFC4 RFC4

TGFA IL7 EFNA5 BCR RFC4 TOP2A TOP2A

CDK2 TLR4 FGF7 BDNF TOP2A CDC45 CDC45

CCND1 TGFA HGF TGFA CDC45 MCM3 MCM3

BRCA1 CDK2 EPHA2 CDK6 MCM3 RFC3 RFC5

CCND3 GNG2 CCND3 RFC3 MCM4 RFC3

BRCA1 CREB3L1 SGK1 MCM4 PRIM1 MCM4

BCR POLA1 ORC1 POLA1

TGFA PRIM1 CHEK1 PRIM1

CDK2 ORC1 TTK ORC1

CCND1 CHEK1 SMC2 CDT1

CCND3 BARD1 KIF4A PCNA

TTK RRM1 MSH6

SMC2 RRM2 BARD1

KIF4A HMGB2 TTK

RRM1 TYMS SMC2

RRM2 STMN1 KIF4A

TYMS ANLN RRM1

ANLN RPA3 RRM2

CDC7 CDC7 TYMS

POLE2 POLE2 STMN1

FANCG FANCG ANLN

POLD3 POLD3 RPA3

H2AFZ CDC7

CCND1 WEE1

E2F3 POLE2

CDC25B

SMC1A

POLD3

CCND1

(Continued)
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genes involved in the PI3K/Akt pathway). The reason behind this loss of statistical significance

at the pathway level even though similar numbers of differentially expressed genes were

involved in PI3K/Akt pathway, is that fucoxanthin has an effect on fewer genes that are differ-

entially expressed between the two compounds, while LY-294002 has an effect on a higher

number of differentially expressed genes (Table 2B).

Both compounds increased JAK2 expression, a component of the PI3K pathway (S6 Fig),

LY-294002 at 24h and 48h, fucoxanthin only at the 24h time point. JAK2 modulates the PI3K/

mTOR pathway [59] and has been described as a potential co-target for PI3K inhibitors [60].

Up-regulation of JAK2 could reflect a pro-proliferative role within the glioblastoma cells as

they react to the growth inhibition caused by down-regulation of the PI3K pathway. Several

other pro-proliferative genes (Bcl-2, SGK1, IGF1R) show similar induction patterns in the

PI3K pathway itself (S6 Fig). The observation of SGK1 up-regulation is of particular interest

since this kinase has recently been shown to be a key survival kinase for glioblastoma stem

cells [61].

3. Retinoblastoma pathway. Fucoxanthin has a marked transcriptomic effect on the Reti-

noblastoma pathway: 42 genes in this pathway are down-regulated at 24h, with 12 remaining

down-regulated after 48h treatment (Table 2C and S7 Fig). LY-294002 also down-regulates

gene expression within this pathway, with 35 genes showing down-regulation at 24h, 19 of

which remain down-regulated at the 48h treatment time (S7 Fig).

Again, down-regulated genes appear mostly at the effector end of the pathway. Such genes

include the cyclin dependent kinases CDK1 and CDK2, together with cyclins D4 and D6, and

the main cell cycle initiator transcription factor E2F. TP53 is the only gene up-regulated in the

Retinoblastoma pathway, and this only in response to fucoxanthin at 48h. The results suggest

that cell cycle arrest is effected by down-regulation of the retinoblastoma pathway by both

compounds. However the lower amount of cell cycle arresting genes at 48h in the fucoxanthin

treatment and the TP53 gene up-regulation may indicate genotoxicity [62, 63].

Fucoxanthin is synergistic in combination with LY-294002 on U87MG

The results of the transcriptomics strongly suggest that the two compounds fucoxanthin and

LY-294002 are working in different ways.

To address the question whether fucoxanthin and LY-294002 when combined are synergis-

tic in the U87MG system, we first analyzed the synergy of the two compounds in combination

experiments based on Loewe synergy (Fig 6), observing significant synergy in the concentra-

tion range of 10–100μM LY-294002 combined with 16, 20 and 25μM fucoxanthin. We did not

Table 2. (Continued)

Up-regulated L24 L48 F24 F48 L24 L48 F24 F48 L24 L48 F24 F48

IGF1R IGF1R TRAF1 TP53 JAK2 CSF3 TSC1 FGF18 TP53

TNFRSF1B TNFRSF10B IGF1R JAK2 JAK2 NGF

BCL2L11 BCL2L11 ITGB3 IL2RB ATF4

SGK1 ITGB8 SPP1 EIF4EBP1

KDR KITLG TP53

IGF1R NGF

IL6 HSP90B1

SGK1 ATF4

C8orf44-SGK3

SGK3

https://doi.org/10.1371/journal.pone.0239551.t002

PLOS ONE Transcriptomics predicts compound synergy in treated glioblastoma cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0239551 September 18, 2020 15 / 25

https://doi.org/10.1371/journal.pone.0239551.t002
https://doi.org/10.1371/journal.pone.0239551


test combinations with fucoxanthin at concentrations higher than 25μM, because it causes

potent inhibition of cell proliferation (see Fig 2A, 72h relationship). In other words, at 50 or

100μM fucoxanthin, there would be full suppression of proliferation and there is no point to

examine the effect of LY-294002. When we tested the effect of the combination containing

10μM fucoxanthin (concentration lower than IC50), we found no synergy, so we did not

attempt to test the effect of the combinations containing even lower concentrations of fuco-

xanthin. Therefore our range is: 10, 16 and 25μM.

In order to explore whether the observation of synergy was purely due to the particular syn-

ergy metric chosen, we next performed synergy analysis using the Bliss and Highest Single

Agent (HSA) methods, implemented in the Combenefit package [43]. Combenefit provides a

set of metrics (or scores) which captures information about the synergy distribution. As can be

seen in Fig 7, while numerical synergies derived differ to an extent between methods, all meth-

ods identify synergy in the same concentration range of the compound combination used.

Fucoxanthin and LY-294002 treatments synergize, with maximal synergy being observed in

these studies at 50 μM LY-294002 and 25 μM fucoxanthin, well below their individual IC50s

Fig 6. LY-294002 and fucoxanthin are synergistic. A) Dose response curves of LY-294002 and fucoxanthin using

three concentrations of fucoxanthin (10μM, 16 μM and 25 μM) with 10 separate concentrations of LY-294002. B)

Loewe synergy analysis.

https://doi.org/10.1371/journal.pone.0239551.g006

Fig 7. The synergy model used does not affect the synergy observed between fucoxanthin and LY-294002. A) Loewe synergy model, additive

model, B) Bliss synergy model, product-based model, C) Highest Single Agent model–only one agent’s effect is considered. In all figures, the color

indicates the degree of synergism and the values indicate synergy scores calculated as described in [43]. The higher the synergy is, the darker blue the

background, and the higher the synergy score. Asterisks indicate significance of the synergy scores obtained following a one sample t-test (�p< 0.05;
��p<0.001, ���p< 0.0001; the number of replicates (N) is shown on the left top corner of the matrix display).

https://doi.org/10.1371/journal.pone.0239551.g007
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(Fig 6). These data indicate that there are elements in the two response pathways that comple-

ment each other, thereby enhancing growth inhibition.

Discussion

The feasibility of using gene expression as a measure of phenotypic change has been estab-

lished for several systems, including the comparison of normal and glioblastoma-derived neu-

ral stem cells [64], drug screening [36] and toxicogenomics [65]. Here we use gene expression

to gain insight into drug response in the glioblastoma cancer cell line U87MG, using two com-

pounds with anti-proliferative effects, the prototypic pan-subtype specific PI3K inhibitor LY-

294002 and the natural product fucoxanthin. Our report contains the first genome wide

expression profile of changes associated with the exposure to fucoxanthin, a widely consumed

natural carotenoid present in seaweeds, and illustrates the power of gene expression

approaches to discover novel drug synergies in the nutri-pharmaceutical arena.

The U87MG cell system is widely used in glioblastoma research [66]. Although there has

been much discussion about the origins and use of this cell line in studies of human glioblas-

toma [67, 68], the U87MG cell line remains one of the standard workhorses of drug discovery

for this devastating disease.

In U87MG cells, fucoxanthin has previously been suggested to activate apoptosis via inhibi-

tion of the PI3K/Akt/mTOR pathway [30]. In the current study, we have used genome-wide

gene expression to compare and contrast the effects of fucoxanthin on the PI3K and other

pathways in U87MG cells, comparing its effects with those of a widely used non-selective PI3K

inhibitor LY-294002.

We treated U87MG glioblastoma cells for 24h and 48h with each compound at its experi-

mentally determined 72h anti-proliferative IC50 (Fig 2), reasoning that the “early” gene expres-

sion changes observed in response to drug treatment might be more reliable and informative

than those accompanying later time points at which there could be substantial toxicity.

Indeed, the over-expression of TP53 at 48h of fucoxanthin treatment may indicate the

potential toxicity of this natural product at this time point, since increased TP53 expression is

a marker of toxicity [69, 70]. U87MG harbors wild-type TP53, which provides part of its

defense against genomic damage [62, 63]. The possibility of emerging toxicity at 48h is also

suggested by the FACS data (S1 Fig) which indicate increased necrosis. No pro-apoptotic

genes are up-regulated by either fucoxanthin or LY-294002 at any time point tested (specifi-

cally illustrated in the apoptosis pathway analyses for U87MG shown in S2 Table).

U87MG cells respond to growth inhibition by both LY-294002 and fucoxanthin by activat-

ing new signaling pathways centered on growth and proliferation. These responses may repre-

sent survival pathways activated by growth inhibition, mirroring previous observations of

PDGFR inhibitor resistance [71] and possibly reflecting the stemness of both the U87MG cell

line and GBM tumors in general [72].

In the case of LY-294002, we observed the sustained up-regulation of JAK2 and insulin

receptor substrate 2 at both 24h and 48h in the PI3K pathway, although for fucoxanthin, JAK2

was only observed as up-regulated at 24h. To escape PI3K inhibition, the glioblastoma cells

may hence be inducing survival factors to activate alternative growth mechanisms through

JAK2. The involvement of JAK2 in the cellular response to PI3K/Akt inhibition parallels other

reports in which the JAK2 and PI3K pathways have been found to interact [28, 29].

Beyond the differences between the 2 treatments, many similarities can be seen: both fuco-

xanthin and LY-294002 arrest the cell cycle by down-regulating the cyclin dependent kinases

CDK1 and CDK2, together with cyclins D4 and D6, and the main cell cycle initiator transcrip-

tion factor E2F. Cell cycle regulation is being exerted through the retinoblastoma pathway, one
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of the most significantly down-regulated pathways in the case of both compounds at both time

points. Close scrutiny shows that the effectors of the retinoblastoma pathway are also down-

regulated, suggesting that the cells are entering a non-mitotic state.

Our results based on drug induced gene expression analysis support the orthogonal screen-

ing strategy being adopted within the WINDOW Consortium [73]. U87MG glioblastoma cells

display a coordinated survival response upon LY-294002 treatment, involving both PI3K and

JAK2. Combining inhibitors of these 2 targets has proven effective in other cancer cell systems

such as in lung cancer cells [74], ovarian cancer cells [75] and also in murine xenografts mod-

els where combined PI3K/mTOR and JAK inhibitors showing potent efficacy of Philadelphia-

like acute lymphoblastic leukemia [76] and should be tested in glioblastoma, along with other

combinations suggested by the current data.

It is interesting to note that the gene expression profile observed for LY-294002 was more

consistent than that of fucoxanthin. The disparity of gene expression responses between the

24h and 48h time points for fucoxanthin may indicate that this compound exhibits more com-

plex drug-induced gene expression effects over time than does LY-294002. This hypothesis

requires further investigation but is consistent with the observed metabolic lability of fucoxan-

thin in whole animal studies and the production of a new antiproliferative active metabolite,

fucoxanthinol [77]. In parallel experiments not reported here, we have confirmed that fucox-

anthinol inhibits U87MG cell proliferation, but do not yet know whether fucoxanthin is exten-

sively metabolized to fucoxanthinol by glioblastoma cells themselves.

Although the effectiveness of fucoxanthin as a brain cancer treatment remains highly specu-

lative [33], its active metabolite fucoxanthinol has shown encouraging effects in animal models

of other cancers such as osteosarcoma [78], leukemia [79], colorectal cancer [80], and prostate

cancer [81], supporting further studies of both fucoxanthin and fucoxanthinol in glioblastoma.

The remarkable divergence of gene induction and repression between the two anti-prolifer-

ative compounds in this cell system, reported for the first time, showing a combinatorial syn-

ergy between the synthetic compound and natural product, is predicted in part by the

divergence in drug-induced gene expression signatures observed for the two compounds.

Detailed knowledge of drug response may thus be helpful in designing combination therapy

approaches, especially where synergy between drugs and natural products can be demonstrated.

Conclusions

Our studies illustrate the power of microarray-based transcriptomics to compare and contrast

genome-wide gene expression changes accompanying drug response in human cancer cells, in

this case using the U87MG human glioblastoma cell system. By coupling gene expression anal-

ysis to signaling pathway analysis, we have been able to clearly differentiate the effects of two

target compounds, the prototypic PI3K inhibitor LY-294002 and the marine carotenoid fuco-

xanthin, previously thought to share common mechanisms of action.

Also, by focusing transcriptomics on a particular biological event (in our case, the induction

of growth arrest in the U87MG glioblastoma cancer cell), we have been able to define and dis-

sect important elements of the growth control pathways that can be induced in these cells. The

remarkably wide divergence of gene induction and repression events accompanying treatment

with the two anti-proliferative compounds in this model cell system, reported for the first

time, raises the possibility of more widely exploiting the complementarity between the effects

of synthetic compounds (such as kinase inhibitors) and natural products (such as marine

carotenoids).

To this end, we have experimentally demonstrated a combinatorial synergy in growth arrest

between the two anti-proliferative compounds used in this study, which can in part be

PLOS ONE Transcriptomics predicts compound synergy in treated glioblastoma cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0239551 September 18, 2020 18 / 25

https://doi.org/10.1371/journal.pone.0239551


predicted by the divergence in their drug-induced gene expression signatures. A detailed

knowledge of genome-wide gene expression changes accompanying drug response may there-

fore be helpful in predicting and designing further novel nutri-pharmaceutical combinations

to exploit such synergies.

Supporting information

S1 Table. DEGs per state.

(XLSX)

S2 Table. DEG pathway lists.

(XLS)

S3 Table. GSEA results.

(XLSX)

S1 File. FACS materials.

(PDF)

S1 Fig. Cell morphology and flow cytometry analysis after fucoxanthin and LY-294002 treat-

ment. Representative images of cultured U87MG cells, analysis of flow cytometry charts and sta-

tistical analyses of the percentages of apoptotic and necrotic cells. Cells treated with vehicle for 24

h (A, G, M) and 48 h (B, H, N). Cells treated with 200 μM fucoxanthin for 24 h (C, I, O) and 48 h

(D, J, P). Cells treated with 20 μM LY-294002 for 24 h (E, K, Q) and 48 h (F, L, R). Viable cells are

shown in the lower left quarter (Q2-LL), early apoptotic cells are shown in the lower right quarter

(Q2-LR), late apoptotic cells are shown in the upper right quarter (Q2-UR) and necrotic or

mechanically damaged cells are shown in the upper left quarter (Q2-UL). More apoptotic cells are

seen after LY-294002 compared to fucoxanthin treatment and more necrotic cells are seen after

fucoxanthin compared to LY-294002 treatment. The stars compare time matched control and

treated samples, using a one sided two sample t-test: �p<0.5 ��p<0.01 ���p<0.001.

(TIF)

S2 Fig. Apoptosis WikiPathway map representations. L24, Apoptosis affected by LY-294002

at 24h; L48, Apoptosis affected by LY-294002 at 48h. F24, Apoptosis affected by fucoxanthin at

24h. L48, Apoptosis affected by fucoxanthin 48h, showing down-regulated (left tables, in

green) and up-regulated genes (left tables in red) in response to individual treatments.

(TIF)

S3 Fig. Three views of the PCA plots of the gene expression data. The first 3 Principal Com-

ponents (PCs) plotted contain 73.5% of the variance. Each of the 3 PCs are indicated with their

representative variances on the axes of the graphs, together with what they represent in the

analysis. Note that the samples cluster tightly with respect to treatment and time conditions

emphasizing concordance within the analysis.

(TIF)

S4 Fig. Euclidean distance based heatmap and clustering of the samples. The samples were

clustered based on treatment first and then by time. LY-294002 24h (L24), LY-294002 48h

(L48) treatments, fucoxanthin 24h (F24) and fucoxanthin 48h (F48) treatments, Control 24h

(C24), Control 48h (C48). Up-regulated genes are shown in red; down-regulated genes are

shown in blue. Only significantly differentially expressed genes with absolute fold change

above 1 are shown. Genes which are “E2F targets” and “G2M checkpoints” according to the

Broad dataset are shown. The colors used are the same as those used in the PCA analysis.

(TIF)
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S5 Fig. Volcano plot of the 4 treatments showing the top 25 down-regulated genes (left

side, in blue) and the top 25 up-regulated genes (right side, in red) accompanied by their

level of expression, expressed as logarithm-based 2 fold changes (Log2FC, < -1 or > 1) and

corrected p-value as logarithm-base 10 false discovery rate (Log10FDR P-value, <0.05). A.

top 25 differentially expressed genes in U87MG responding to LY-294002 at 24h treatment; B.

top 25 differentially expressed genes in U87MG responding to LY-294002 at 48h treatment; C.

top 25 differentially expressed genes in U87MG responding to fucoxanthin at 24h; D. top 25

differentially expressed genes in U87MG responding to fucoxanthin at 48h. The complete list

of DEGs and their annotation is shown in S1 Table.

(TIF)

S6 Fig. PI3K/Akt signaling Pathway WikiPathway map representations. L24, PI3K/Akt sig-

naling pathway affected by LY-294002 at 24h; L48, PI3K/Akt signaling Pathway affected by

LY-294002 at 48h. F24, PI3K/Akt signaling Pathway affected by fucoxanthin at 24h. L48,

PI3K/Akt signaling Pathway affected by fucoxanthin 48h, showing down-regulated (left tables,

in green) and up-regulated genes (left tables in red) in response to individual treatments.

(TIF)

S7 Fig. Retinoblastoma gene in cancer, WikiPathway map representations. L24, Retinoblas-

toma gene in cancer pathway affected by LY-294002 at 24h; L48, Retinoblastoma gene in can-

cer pathway affected by LY-294002 at 48h; F24, Retinoblastoma gene in cancer pathway

affected by fucoxanthin at 24h; L48, Retinoblastoma gene in cancer pathway affected by fuco-

xanthin at 48h; together with the down-regulated (left table in green) and up-regulated genes

(left table in red) in response to each individual treatment. It can be seen that the effector end

of the pathway is down-regulated the most.

(TIF)

Author Contributions

Conceptualization: Lavinia-Lorena Pruteanu, Andreas Bender, Leonardo Dario Gomez,

David Stanley Bailey.

Data curation: Lavinia-Lorena Pruteanu, Dezső Módos, Edgars Kletnieks.
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