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Abstract
Anomaly detection in condition data is critical for reliable industrial asset operations. But statistical classifiers
require certain amount of normal operations data before acceptable accuracy can be achieved. The necessary train-
ing data however is often not available in the early period of asset operations. This problem is addressed here
by using a hierarchical model for asset fleet that systematically identifies similar assets, and formulates higher
level distributions of the asset level parameters. Hierarchical models enable the individuals from a population,
comprising of statistically coherent sub-populations, to collaboratively learn from one another. The higher level
distributions in this paper represent the general behaviour of similar assets, and the individual asset behaviours are
described by the parameters sampled from higher level distributions. Results obtained with the hierarchical model
show a marked improvement in anomaly detection for assets having low amount of data, compared to independent
modelling or having a model common to the entire fleet.

Impact Statement
It is shown in this paper that industrial assets with low amount of data can significantly improve the perfor-
mances of their anomaly detection classifiers by collaborating with similar assets containing more data. The
authors enable this collaborative learning via a hierarchical model of the asset fleet, that defines higher level
distributions representing the general behaviour of asset clusters and individual asset level parameters sampled
from the higher level distributions.

1. Introduction
Modern industrial assets are embedded with a plethora of sensors that monitor asset operations in
real time. Availability of asset condition time series combined with readily available computing power
and communication technologies has extensively automated industrial operations in the recent decade
(Gilchrist and Gilchrist, 2016; Xu et al., 2014).

Asset health management in particular has moved from physics based formulations to Machine
Learning (ML) techniques. As a part of asset health management, detecting anomalies in an asset’s con-
dition data is important for accurate prognosis. An ideal anomaly detection algorithm instantaneously
identifies deviations in real time, and activates the prognosis algorithm to plan timely maintenance.
Accurate anomaly detection also enables efficient extraction of the failure trajectories from historical
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condition data. Failure trajectories are the time series ranging from the asset’s deviation from normal
behaviour till its failure. Since historical failure trajectories constitute the training dataset for prognosis,
learning capabilities of the prognosis models primarily depend on accurate anomaly detection. An inef-
ficient anomaly detection algorithm instead could let a failure go undetected, or flag many anomalies
that turn out to be benign and not require any intervention (Kang, 2018).

Most industries today rely on rule based systems for anomaly detection. These comprise of preset
warnings and trip limits on the sensor measurements (Zaidan et al., 2015; Saxena et al., 2008). Force
tripping an asset often results in production losses, which could have been avoided if a planned mainte-
nance was carried out in good time. Moreover, the warning-trip systems are inherently non-responsive.
An asset, for example, could be operating well within the limits but also be deviating from its normal
behaviour. This deviation would not be flagged by a warning-trip system until sensor measurements
start exceeding the preset limits, which might already be too late and the opportune time be lost.

In scenarios where the domain knowledge about the underlying distribution is available beforehand,
statistical classifiers provide a mathematically justifiable solution for anomaly detection. Statistical
classifiers posit that the condition monitoring data generated during normal asset operations can be
described using a family of underlying distributions. Assuming that an asset commences operating
in normal condition, the underlying probability density function p(θ), θ being its parameters, can be
estimated to model that asset’s normal operation data. Upcoming anomalies in asset operations cause
a change in system dynamics, and induce deviation from its underlying estimated density function.
Statistical tests are used to evaluate if a newly recorded data point is significantly different to be deemed
anomalous or not (Kang, 2018; Rajabzadeh et al., 2016).

Statistical classifiers are amongst the recommended anomaly detection techniques in the recent liter-
ature on asset health management (Kang, 2018). The asset condition data are associated with intrinsic
and extrinsic measurement errors caused by system instabilities and inefficiencies, even while the asset
is operating in stable conditions. For most preliminary algorithms deployment and simulations, the
combined random effect of error and fluctuations in the sensor measurements has been treated as
multivariate Gaussian (Borguet and Léonard, 2009; Kobayashi and Simon, 2005; Saxena et al., 2008).

But independent modelling of assets is accompanied with challenges, primarily that of distribu-
tion instabilities. Depending on the variance in asset data, distribution parameters would not be stable
until certain amount of data describing the asset’s working regime is obtained. Moreover, owing to
the statistically heterogeneous nature of asset operations, collective modelling of the fleet wide data
is challenging (Salvador Palau et al., 2019). These characteristics impede the application of statistical
classifiers for detecting anomalies in the early periods of asset operations when sufficient training data
is not available. Therefore, a systematic method for modelling the underlying clusters of similar assets,
and enabling their comprising assets to collaboratively learn from one another is much needed.

This paper addresses the above problem by using a hierarchical model for the asset fleet that system-
atically identifies similar assets, and formulates higher level distributions of the asset level parameters.
Hierarchical models enable the individuals from a population, comprising of statistically coherent
sub-populations, to collaboratively learn from one another. (Gelman et al., 2013; Eckert et al., 2007;
Hensman et al., 2013; Teacy et al., 2012). The higher level distributions in this paper represent the gen-
eral behaviour of similar assets, and the individual asset behaviours are described by the parameters
sampled from higher level distributions. Comprehensive information about hierarchical modelling can
be found in (Gelman et al., 2013; Gelman and Hill, 2006).

The continuing paper is structured as: Section 2 discusses the prevalent hierarchical modelling and
collaborative anomaly detection techniques specifically in the industrial health management literature.
Following this, Section 3 describes hierarchical modelling of an asset fleet, including the mathematical
description for extending an asset’s independent model to a hierarchical fleet-wide model containing
clusters of similar assets. An example implementation of the hierarchical model for a simulated fleet
of assets is shown in Section 4. The same section also compares the performance of the hierarchical
model with the case where the asset parameters were independently estimated. The results from the
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experiments are discussed in Section 5. Lastly, Sections 6 and 7 summarise the key conclusion and
highlight the future research directions respectively.

2. Literature Review
This section discusses the prevalent applications of hierarchical modelling and automated anomaly
detection in the context of industrial assets’ health management.

2.1. Hierarchical Modelling of the Industrial Assets
Applied mathematicians have stressed on understanding the heterogeneous nature of the industrial
assets since as long as 1967. Lindley et al. (1967) proposed the use of a simple statistical trend
test to quantify the evolving reliability of independent industrial assets. The underlying argument
was that a single poisson process model could not describe the times between failures occurring in
multiple independent assets. Ascher (1983) further highlighted the importance of understanding inter-
asset heterogeneity with an illustration of “happy", “noncommittal", or “sad" assets, corresponding
to increasing, constant, or decreasing times between failures respectively. Ascher (1983) showed that
using the trend test proposed by Lindley et al. (1967) followed by a non homogeneous poisson processes
model, independent industrial assets could be described significantly more accurately.

Multiple industrial assets are independent, but not identical in statistical sense. Yet, their Independent
and Identically Distributed (IID) natures are assumed on several occasions for the ease of modelling
(Arjas and Bhattacharjee, 2004). For the modern industrial automation almost entirely relying on data-
driven ML algorithms, such oblivion to the statistically heterogeneous nature of industrial data poses
ever greater risk. Industrial automation, according to the notion of Industry 4.0, aims at end-to-end
hands off collaborative control made possible by a series of decision making algorithms (Gilchrist
and Gilchrist, 2016). For example, a maintenance planning procedure broadly comprises of anomaly
detection, followed by failure prediction, followed by maintenance planning, and finally followed by
resource allocation. In such a serial dependency, inefficiencies or inaccuracies of an algorithm govern-
ing any of these steps can easily perpetuate through the control pipeline and deteriorate the decision
making of the algorithms in the following steps.

Industrial asset fleets are in fact a collection of not identical, but similar individuals. For example,
a collection of automobiles could be manufactured differently but they all share similarities in their
basic design (Chen and Singpurwalla, 1996). This characteristic make hierarchical models a suitable
solution for statistical analyses of the asset fleets. While modelling the asset fleets, collective behaviours
of clusters of similar assets are described using higher level distributions, from which are sampled
the parameters describing individual asset operations. For the asset health management applications,
researchers have proposed using hierarchical modelling to account for system heterogeneity. While
most of the applications focus on describing times between failures, there are also some instances in
recent literation where the condition data-driven real time prognosis is enhanced using hierarchical
modelling.

One of the earliest applications use hierarchical bayesian estimation of Bernoulli model parameters
for reliability estimation of emergency diesel generators in separate nuclear power plants (Chen and
Singpurwalla, 1996). They showed that hierarchical Bernoulli model was a better technique for simul-
taneously modelling the collective "composite" and individual reliabilities of the generators, compared
to the prevalent approach of analysing data from all generators as a single dataset. Most other appli-
cations in the traditional survival analysis target modelling the times between failures, similar to the
illustration described in (Ascher, 1983). For example, Arjas and Bhattacharjee (2004) used a hierarchi-
cal poisson process model to describe the times between failures of closing valves in the safety systems
of nuclear plants. They used hierarchical modelling for median times between failures for a collection
of valves experiencing different rates of failures over a period of observation. An interesting application
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can also be found in (Johnson et al., 2005) where hierarchical modelling was used for reliability estima-
tion of new space crafts, which had experienced none to few failures. Similar other applications include
(Economou et al., 2007; Dedecius and Ettler, 2014; Yuan and Ji, 2015), all commonly modelling the
times between failures for various equipment.

Of the more recent but fewer condition data-driven prognosis applications, Zaidan et al. (2015)
demonstrated the benefits of hierarchical bayesian modelling for inferring the deterioration pattern of
gas turbines operating in various conditions. Their model involved inferring the health index regression
pattern of several gas turbines with respect to operating time, and was shown that hierarchical modelling
is a statistically robust solution while learning the prediction function from data spanning across a large
fleet of machines. Kao and Chen (2012) used hierarchical Bayesian neural networks for predicting the
failure times of fatigue crack growth, where the focus was on quantifying the systemic heterogeneities
across the assets rather than enhancing individual predictions.

2.2. Anomaly Detection for Industrial Assets
The traditional applications of anomaly detection mostly target system diagnostics, involving fault iden-
tification and classification. However, with condition data readily available, online anomaly detection
techniques are recently gaining popularity.

Anomaly detection in industrial asset operations is challenging. This is because the assets operate
over a wide range of environments, in various operating regimes, and can fail in multiple modes (Khan
and Madden, 2010; Michau and Fink, 2019). Every asset has its own unique behaviour and failure
tendency, and therefore requires an anomaly detector particularly suited for its operations. Moreover,
the assets do not fail frequently, making the classifier’s training data highly imbalanced towards “normal
operation" class. Researchers therefore often treat anomaly detection in asset operations as a one-class
time series classification problem (Kang, 2018).

This paper focuses only on the statistical classifiers, which are introduced in Section 1, due to their
straightforward implementation compared to more sophisticated algorithms like deep learning. Such
statistical classifiers have been proposed by several researchers for anomaly detection in gas turbine
combustors, cooling fans, and general performance monitoring (Kang, 2018; Borguet and Léonard,
2009; Yan, 2016; Jin et al., 2012).

Interestingly, the literature presents examples where different degrees and forms of collaboration
amongst the assets have shown to improve the performances of anomaly detectors. In the simplest
form of collaboration, similar assets are manually identified by the operators based on predetermined
indicators, and an overall model is trained using the data from all units as a single IID dataset. This
type of collaboration can be found in (Zio and Di Maio, 2010; González-Prida et al., 2016; Lapira and
Lee, 2012), where in every case the operators use a relevant parameter for clustering the corresponding
assets. Some researchers have also clustered the entire time series of condition monitoring data based
on their Euclidean distances like in the case of (Liu, 2018; Leone et al., 2016; Al-Dahidi et al., 2018).
In a comparatively more complex collaborative approach, Michau et al. (2018) modelled the functional
behaviours of each unit using deep neural networks and identified the similar ones based on the amount
of deviation in the neural network parameters. However, each of these applications are associated with
their own set of constraints, which primarily are the lack of complete representation for the case of (Zio
and Di Maio, 2010; González-Prida et al., 2016; Lapira and Lee, 2012), dimensional complexity while
evaluating the Euclidean distances in (Liu, 2018; Leone et al., 2016; Al-Dahidi et al., 2018), and the
necessary training data for each unit required to train the neural networks in the case of (Michau et al.,
2018).

Amongst examples of collaborative anomaly detection solutions, the closest one to the problem
discussed in this paper can be found in Michau and Fink (2019). Michau and Fink (2019) stress the
necessity of one class-classification for industrial systems owing to a wide range of possible operating
regimes and rarity of failures. Michau and Fink (2019) also focus on early life monitoring where a
given asset would not have sufficient data for training a robust classifier and propose that the asset
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rely on learning from other similar assets. However, their proposed solution relies on accumulating
data from similar assets to a central location (or the target asset), and augmenting the features space to
define a boundary for normal operation common to all similar assets. It must be noted that while the
target problem is similar, Michau and Fink (2019) focus on feature alignment and the current paper
focuses on modelling an overall fleet behaviour and modifying it to suit individual assets. As such,
the solution proposed in this paper differs from the one presented in Michau and Fink (2019) in three
aspects. First, the proposed hierarchical model is capable of identifying the asset clusters in the fleet,
in contrast to Michau and Fink (2019) where it is assumed that all assets within the fleet are similar
or known beforehand. Second, the operating regime targeted in this paper is that of earlier operations
compared to Michau and Fink (2019), where the assets they describe as new have 17,000 data points for
24-dimensional data. Lastly, hierarchical modelling presented here is a distributed learning technique,
and more importantly a technique that enables the assets to learn from each others models rather than
their data.

In summary, anomaly detection in asset operations has become increasingly important in the
recent years due to widespread automation. Several researchers have shown that collaborative learn-
ing amongst the assets can help improve the performances of fault classification models, though with
their own set of constraints. Anomaly detection is especially challenging during the early stages of
asset operations where sufficient data are not available to model the corresponding regimes of oper-
ations. The authors believe that hierarchical modelling of the asset fleet addresses this challenge by
enabling the assets with insufficient data to collaborate with other similar assets containing more data.
The literature also shows that hierarchical modelling is a reliable technique to model heterogeneity in
an asset fleet but, to the best of the authors’ knowledge, it has not yet been implemented for data-driven
anomaly detection in industrial assets.

3. Mathematical Description
3.1. Independent asset models
Consider, a fleet comprising of I assets. Any given asset i is monitored using d sensors, measuring
the internal and external parameters such as temperature, vibrations, pressure, etc. Each of which is a
feature describing that asset’s behaviour, and thus the nth set of measurements from ith asset can be
represented as a vector xi,n ∈ Rd .

If Ni measurements recorded from asset i over a given time period, then that asset’s data can be
represented as a vector Xi = [xi,1, xi,2, ..., xi,Ni ],Xi ∈ R

d×Ni .
Owing to the random nature of measurement noise, and assuming no manual interventions, the

underlying distribution of an individual asset’s data can be modelled using a multivariate Gaussian
xi,n ∼ N(µi,Ci) where µi ∈ R

d is the mean vector and Ci ∈ R
d×d is the covariance matrix.

p(xi,n |µi,Ci) =
1√

(2π)d |Ci |
exp

(
−

1
2
(xi,n − µi)

TC−1
i (xi,n − µi)

)
(1)

Maximum likelihood estimation can be used to evaluate µ̂i and Ĉi values for Xi . A graphical repre-
sentation of an isolated independent asset model is shown in Figure 1. The following section describes
extending the independent asset model to a hierarchical model.

3.2. Hierarchical modelling
A fleet often comprises of assets which are similar by their operational behaviour. This could be because
certain assets have the same base model, or they may be operating in similar conditions (Jin et al., 2015;
Leone et al., 2017). It gives rise to the presence of statistically homogenous asset clusters within the
fleet. The challenges related to distribution instabilities mentioned in Section 1 can be alleviated if the
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Figure 1. Graphical representation of modelling an asset’s data as multivariate Gaussian.

individuals comprising such a cluster are jointly modelled with a common underlying distribution of
their individual distribution parameters.

Hierarchical model of the asset fleet mathematically formulates this idea by defining distributions
at two levels. The parameters describing the distributions of individual asset data are considered to be
sampled from their corresponding higher level distributions. The higher level distributions are shared
by the asset clusters, and therefore jointly resemble the operating regimes of the assets comprising those
clusters. The higher level distributions are chosen as the conjugate priors of the asset level distribution
parameters. Estimated asset level parameters are weighed more towards the higher level distribution
when the asset does not possess sufficient data. However, as more data is accumulated over time, the
weight shifts towards the asset’s own data and eventually becomes equivalent to an independent model.
This enables an asset with insufficient data in its early phase of operations to collaboratively learn from
similar other assets containing more data.

For the case of asset fleets, Normal-Inverse Wishart are chosen as the higher level distributions.
These are the natural conjugate priors for a multivariate Gaussian with unknown mean and covariance.
Concretely, the parameters (µi,Ci) describing ith asset are believed to be sampled from higher distri-
butions as µi ∼ N(mk, β

−1
k

Ci) and Ci ∼ IW(Λk, αk) where k = 1, 2, ...,K represents the cluster index
and (mk ∈ R

d, βk ∈ R,Λk ∈ R
d×d, αk ∈ R) are the parameters of cluster level distributions.

p(µi |mk, βk,Ci) = N(µi |mk, β
−1
k Ci) =

√
βd
k

(2π)d |Ci |
exp

(
−
βk
2
(µi −mk)

TC−1
i (µi −mk)

)
(2)

p(Ci |Λk, αk) = IW(Ci |Λk, αk) =
|Λk |

αk /2

2αkd/2Γd(
αk

2 )
|Ci |

−(αk+d+1)/2 exp
(
−

1
2

Tr(ΛiC−1
i )

)
(3)

where Γ is the multivariate Gamma function, and Tr() is the trace function.
As it can be observed that, at higher level lies a mixture of Normal-Inverse Wishart distributions

from which pairs of (µi,Ci) are sampled. The probability density function for a given (µi,Ci) pair
conditional on higher level parameters therefore can therefore be written as:

p(µi,Ci |mk, βk,Λk, αk) =

K∑
k=1

[
πkN(µi |mk, β

−1
k Ci)IW(Ci |Λk, αk)

]
(4)

Where πk ∈ R and
∑K

k=1 πk = 1 is the proportion of assets belonging to k th cluster. Individual asset
data are further sampled from this (µi,Ci) pair.
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Therefore, probability density function for complete data for an asset i is:

p(xi,1, xi,2, ..., x1,Ni ) =

Ni∏
n=1

[
N(µi,Ci)

K∑
k=1

[
πkN(µi |mk, β

−1
k Ci)IW(Ci |Λk, αk)

] ]
(5)

probability density function of the entire fleet data across all assets (represented by X) is:

p(X) =
I∏

i=1

[ Ni∏
n=1

[
N(µi,Ci)

K∑
k=1

[
πkN(µi |mk, β

−1
k Ci)IW(Ci |Λk, αk)

] ] ]
(6)

For a given set of (µi,Ci,mk, αk, ), the above function is also the likelihood of the data. Obtaining
estimates of (µi,Ci,mk, αk, ) parameters would therefore require maximising the log of above probabil-
ity function with respect to the parameters. The required log-likelihood objective function of the entire
dataset for given parameter values is:

log(p(X)) =
I∑

i=1

Ni∑
n=1

log(N(µi,Ci)) +

I∑
i=1

log
( K∑
k=1

πkN(µi |mk, β
−1
k Ci)IW(Ci |Λk, αk)

)
(7)

However, it can be observed that, due to presence of summation
∑K

k=1 within log() function in the
second term, analytically evaluating partial derivatives and equating them to zero is not straightforward,
because both LHS and RHS of the final equations would comprise of unknown parameters. The next
section explains an iterative expectation maximisation (EM) algorithm that solves this problem.

3.2.1. Model Parameters Estimation
Maximising the log-likelihood in (7) is difficult specifically because the clusters within the fleet and
their constituent assets are not predetermined. The data is therefore in a sense incomplete.

A latent (hidden) binary variable matrix z ∈ {0, 1}I×K is introduced to complete the data, such that
zi,k = 1 if the ith asset belongs to the k th cluster. For a given asset i and set of distribution parameters,
the probability of zi,k = 1 is therefore given by:

p(zi,k |θ) = πk (8)

This, if evaluated across all values of k, and zthi vector of z would be:

p(zi |θ) =
K∏
k=1
[πk]

zi,k (9)

Where θ represents the set of parameters (mk, βk,Λk, αk, πk).

Moreover, The probability of (µi,Ci) conditioned on zi,k = 1 is:

p(µi,Ci |zi,k = 1, θ) = N(µi |mk, β
−1
k Ci)IW(Ci |Λk, αk) (10)

This, again if evaluated across all values of k is given by:

p(µi,Ci |zi = 1, θ) =
K∏
k=1

[
N(µi |mk, β

−1
k Ci)IW(Ci |Λk, αk)

]zi,k (11)

Probability of (µi,Ci, zi) can therefore be evaluated simply by multiplying (9) and (11) as:

p(µi,Ci, zi |θ) =
K∏
k=1

[
πkN(µi |mk, β

−1
k Ci)IW(Ci |Λk, αk)

]zi,k (12)
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Continuing similar to (5) and (6), the complete data probability for a given set of parameters θ is
given by:

p(X, z|θ) =
I∏

i=1

[ Ni∏
n=1

[
N(xi |µi,Ci)

K∏
k=1

[
πkN(µi |mk, β

−1
k Ci)IW(Ci |Λk, αk)

]zi,k
] ]

(13)

The graphical representation shown in Figure 2 describes the hierarchical modelling for whole fleet
data, including the hidden cluster indicator z.

Figure 2. Graphical representation of hierarchically modelled fleet data. Individual asset data are modelled as multivariate Gaussians, whose
mean and covariance parameters are sampled from higher level Normal-Inverse Wishart distributions respectively.

The complete data log-likelihood for a given set of parameters θ thus equates to:

log(p(X, z|θ)) =
I∑

i=1

Ni∑
n=1

log(N(xi |µi,Ci)) +

I∑
i=1

K∑
k=1

zi,k log
(
πkN(µi |mk, β

−1
k Ci)IW(Ci |Λk, αk)

)
(14)

To maximise the complete data log-likelihood function in (14), (14) must be differentiated with
respect to individual parameters to obtain the corresponding maxima. However, the values of zi,k are
unknown, and therefore the partial derivative equations are not solvable.

The Expectation Maximisation (EM) algorithm addresses this problem of parameter estimation via
looped iterations through two steps: the Expectation(E)-step, and the Maximisation(M)-step which are
explained in the following subsections. Here again, θ are the model parameters and the parameters
corresponding to tth iteration are written as θ t .

In the E-step, a function Q(θ, θ t ) is computed which is the expectation of the complete data log-
likelihood w.r.t. the distribution of hidden variable z conditioned over the incomplete data X and θ t

parameter values. Concretely,

Q(θ, θ t ) = Ez |X,θt−1 {log(l(X, z|θ))} (15)

Therefore the z terms are replaced by their expected values for the given incomplete data X and θ t

parameter values, and the other terms in Q(θ, θ t ) depend on θ.
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In the M-step, the values of parameters for the next (t+1)th iteration θ t+1 of the E-step are evaluated
by maximising Q(θ, θ t ) over θ, but treating z terms as constants.

θ t+1 = arg max
θ

Q(θ, θ t ) (16)

Estimated values of model parameters at M-step of every EM iteration are presented in (17) to (22),
where the “γi,k" terms are the expected zi,k values from the previous E-step. The estimates for αk at
M-steps can be obtained using any non-linear optimisation routine. Derivations of the E- and M- steps
for our application are shown in Appendix A.

1
β̂k
=

∑I
i=1 γi,k(µi −mk)

TC−1
i (µi −mk)

d
∑I

i=1 γi,k

(17)

m̂k =

[ I∑
i=1

γi,kC−1
i

]−1 [ I∑
i=1

γi,kC−1
i µi

]
(18)

Λ̂k =

[
αk

I∑
i=1

γi,k

] [ I∑
i=1

γi,kC−1
i

]−1
(19)

π̂k =

∑I
i=1 γi,k

I
(20)

µ̂i =
1

Ni +
∑K

k=1 βkγi,k

[ Ni∑
n=1

xi,n +
K∑
k=1

βkγi,kmk

]
(21)

Ĉi =

∑Ni

n=1(xi,n − µi)(xi,n − µi)
T +

∑K
k=1 βkγi,k(µi −mk)(µi −mk)

T +
∑K

k=1 γi,kΛk

Ni +
∑K

k=1 γi,kαk + d + 2
(22)

Parameters for the zeroth iteration are randomly initialised, and the estimates are believed to have
converged when their evaluated values are consistent over consecutive iterations or when the complete
data log likelihood in (14) ceases to increase any further with more iterations.

The initialisation of parameters can also vary by application. Generally it was observed here that,
the asset level parameters (i.e. (µi,Ci) ∀ i ∈ {I}) were best initialised by the standard maximum log-
likelihood estimator for the asset’s Gaussian model. While initialising the higher level parameters, βk
were best initialised at low values and αk as equal to the dimension of the data. These ensured wider
search space in the early iterations. (mk,Λk) ∀ k ∈ {K} initialised randomly around the observed data
values, but ensuring that the initial Λk were positive definite matrices. The steps followed for hierar-
chical model parameters estimation, including the initialisation in the experiments described here and
EM iterations, are described in Algorithm 1. In Algorithm 1, E(xi,n) in line 4 represents the expectation
of xi,n vector, rand(d) and rand(d, d) functions in line 9 generate random real numbered matrices of
(d) and (d × d) dimensions respectively, and p(clusti = k) in line 16 represents the overall data likeli-
hood for the ith asset, assuming that the ith asset belongs to the cluster k. Moreover, the terms on the
RHS in the M-step are the values from the previous iterations, except γi,k which are evaluated at the
corresponding E-step.
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Algorithm 1: Pseudo-code describing the steps to estimate the hierarchical model parameters
for an asset fleet comprising K clusters and generating d dimensional condition data

Result: Estimated hierarchical model parameters
1 Initialise the parameters:
2 for each asset i do

3 µi ←

∑Ni
n=1 xi,n

Ni
;

4 C(n,m)i ← E
(
(xi,n − E(xi,n))(xi,m − E(xi,m)

)
;

5 end
6 for each cluster k do
7 βk ← 0.001;
8 αk ← d;
9 (mk,Λk) ←

(
rand(d), rand(d × d)

)
;

10 end
11 space
12 The EM iterations:
13 while Iter < 20 do
14 The E-step:
15 for each asset i and cluster k do
16 γi,k ←

p(clusti=k)
p(clusti=1)+p(clusti=2)+...+p(clusti=k) ;

17 end
18 The M-step:
19 for each asset i do

20 µ̂i ←
1

Ni+
∑K

k=1 βkγi,k

[ ∑Ni

n=1 xi,n +
∑K

k=1 βkγi,kmk

]
;

21 Ĉi ←

∑Ni
n=1(xi,n−µi )(xi,n−µi )

T+
∑K

k=1 βkγi,k (µi−mk )(µi−mk )
T+

∑K
k=1 γi,kΛk

Ni+
∑K

k=1 γi,kαk+d+2 ;

22 end
23 for each cluster k do
24 1

β̂k
←

∑I
i=1 γi,k (µi−mk )

T C−1
i (µi−mk )

d
∑I

i=1 γi,k
;

25 m̂k ←

[ ∑I
i=1 γi,kC−1

i

]−1 [ ∑I
i=1 γi,kC−1

i µi

]
;

26 Λ̂k ←

[
αk

∑I
i=1 γi,k

] [ ∑I
i=1 γi,kC−1

i

]−1
;

27 π̂k ←

∑I
i=1 γi,k

I ;

28 αk ← BFGSmax

(
1
2αk log |Λk |

∑
i γik −

d
2 log(2)αk

∑
i γik − log

(
Γd

(αk

2
) ) ∑

i γik −

1
2 (αk + d + 1)

∑
i γik log |Ci |

)
;

29 end
30 Iter ← Iter + 1;
31 end
32 return: (µi,Ci, βk, αk,Λk,mk) ∀ i, k ∈ I,K respectively.
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4. Example Implementation
This section discusses the experiments conducted to demonstrate and evaluate the performance of the
hierarchical model for anomaly detection. Performance of the hierarchical model is also compared with
independent modelling of the assets.

Independent modelling does not consider the presence of similar assets in the fleet. Therefore, the
(µ̂i, Ĉi) estimates for every asset, obtained via independent modelling, correspond to their maximum
likelihood estimates based on that asset’s data only. These estimates are evaluated according to (23) and
(24).

µ̂i =

∑Ni

n=1 xi,n

Ni
(23)

Ĉ
(n,m)
i = E

(
(xi,n − E(xi,n))(xi,m − E(xi,m)

)
(24)

Where Ĉ
(n,m)
i represents the (n,m)th entry of the estimated covariance matrix Ĉi , and E(xi,n)

represents the expectation of xi,n data vector.
Experimental cases, and the performance metric used for evaluating and comparing both modelling

approaches are described in the following subsections. Section 4.1 explains the synthetic dataset used
for the experiments, Section 4.2 briefly describes the Receiver Operating Characteristic curves which
were used as an evaluation metric, and finally Sections 4.3 and 4.4 presents the experimental results to
compare the performances of hierarchical and independent modelling techniques.

4.1. Experimental Data
Synthetic datasets representing a fleet of assets, containing sub-populations of similar assets, were used
for the experiments. These constituted the training and the testing datasets.

4.1.1. Training dataset
The data generation method described here ensured that the fleet comprised of coherent sub-populations
of assets, and also that no two assets in the fleet were identical.

The training dataset comprised of multidimensional samples of assets’ condition data over a period
of their normal operation and collected across the entire fleet. The condition data for each asset com-
prised of points randomly sampled from a Gaussian distribution, with constant mean and covariance.
This ensured that the simulated asset data was equivalent to a real asset operating in steady condi-
tion but with associated noise and fluctuations as explained in Section 1. The means of the underlying
Gaussians were considered to be the equivalents of the asset model types, and the covariances of the
Gaussians were considered to be the equivalents of their operating conditions.

Different asset model types are designed to operate in different ranges. Therefore, the assets belong-
ing to the same model type are expected to operate within a certain permissible range. This was
represented in the training dataset by defining ranges for the Gaussian means of assets belonging to
separate model types. Similarly, the operating condition of an asset determines how much variation is
caused in its condition data. For example, older engines are expected to have higher vibrations than
the newer ones, and therefore induce larger variation from their mean vibrations value. This was repre-
sented in the dataset by defining a set of possible covariance matrices that an asset’s Gaussian can be
associated with.

Before simulating the assets, separate ranges for each feature were defined. Each set of ranges rep-
resented a separate model type present in the fleet. Moreover, a set of covariance matrices was also
defined. While simulating an asset, its model type and operating condition were first characterised.
Following which, the multidimensional mean of that asset’s underlying Gaussian distribution was ran-
domly selected within the range of its corresponding model type. Similarly, the covariance matrix
corresponding to the asset’s operating condition was selected from the predefined set of covariances.
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From this Gaussian, number of points were sampled, which represented that asset’s condition data col-
lected over a period of its normal operation. The same process was repeated for all assets comprising
the fleet, and the final collection of points for assets constituted the training dataset.

4.1.2. Testing dataset
The testing dataset for any given simulated asset described in Section 4.1.1 was a mixture of points sam-
pled from that asset’s true underlying distribution and points sampled from an anomalous distribution.
The anomalous distribution was generated by inducing systematic deviation from the true underly-
ing distribution. This deviation was induced in the form of change in the mean and covariance of the
true distribution. A large number of points were sampled from both true and anomalous distribution to
ensure good statistics.

Consider a given asset i in the fleet, whose true underlying distribution had the mean and covariance
values µi and Ci respectively. The anomalous distribution for this asset would be a multivariate Gaus-
sian of the same dimension, but with its underlying mean and covariance being µi + l and L.∗Ci where,
l and L are the deviations induced into the true mean and covariance values. The induced deviations
were constant across all assets. Moreover, both l and L were varied across a wide range to study the
sensitivity of the classifiers with respect to the Gaussian’s mean and covariance.

A schematic description of how the normal and anomalous data for the simulated assets were gener-
ated is shown in Figure 3. This figure shows an example of generating normal and anomalous data for a
two dimensional data set, where the regions defined for separate model types are shaded in colour and
the set of covariances are shown using ellipses. And while the procedure is the same for five dimen-
sional data, the regions in space representing the model types have been widened in Figure 3 for easier
representation.

4.1.3. Experimental specifications
The simulated fleet used for the experiments discussed here comprised of 800 assets. The assets could
each belong to either of the two possible operating conditions and to either of the two possible model
types. Therefore, the fleet comprised of total four clusters of assets, represented by each combination
of the operating condition and the model type. All clusters contained the same number of assets (i.e.
200 assets per cluster).

The simulated condition data was five dimensional. All asset means for those belonging to the first
model type lay within the range (−25, 25), and for the second model type lay within the range (275, 325).
Similarly, the two covariance matrices corresponding to the operating conditions are shown in 25. The
ranges for means and the two covariance matrices were arbitrarily chosen.

C1 =


16.68 5.43 3.28 −2.31 1.76
5.43 22.05 −3.74 −1.11 −1.14
3.28 −3.74 18.72 3.91 −3.19
−2.31 −1.11 3.91 20.87 4.00
1.76 −1.14 −3.19 4.00 23.12


and C2 =


55.59 3.39 3.24 −2.00 −3.95
3.39 55.75 1.22 −24.02 −3.76
3.24 1.22 55.83 15.29 1.78
−2.00 −24.02 15.29 63.69 11.21
−3.95 −3.76 1.78 11.21 23.12


(25)

Where the superscript represents the cluster id. Moreover, the assets comprising the fleet held dif-
ferent amount of data (number of points sampled from its underlying Gaussian). Each asset could have
either low, medium, or high amount of data. Assets belonging to the low data category held only 5
data points. Assets belonging to the medium and high data category contained 20 and 100 data points
respectively. To make the setup clear, the corresponding values of the variables defined and derived in
Section 3 are summarised in Table 1.

As an example, consider an asset belonging to the first model type and first operating condi-
tion. Let this asset belong to the “medium" data category. To simulate this asset, its mean was
first selected as a random point with features lying within the range (−25, 25). This mean was
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Figure 3. A schematic representation describing how the normal and anomalous data were generated for the experiments. The procedure is
shown here for a two dimensional dataset as an example..

Table 1. The values of various parameters introduced in Section 3.

Parameter Value
I 800
d 5
K 4

Ni

5 (for low data category);
20 (for medium data category);

100 (for high data category)

(10.05,−15.95, 4.94,−4.24, 0.68). Next, with this mean and C1 from (25) as the covariance, 20 points
were randomly sampled. 20 points were sampled because this asset belonged to the medium data cat-
egory. An example of the condition data for this asset is shown in Table 2. The remaining 799 assets
in the fleet were similarly simulated based on their model type, operating condition, and the cate-
gory they belonged to. The complete training dataset can be found at: https://github.com/Dhada27/
Hierarchical-Modelling-Asset-Fleets

https://github.com/Dhada27/Hierarchical-Modelling-Asset-Fleets
https://github.com/Dhada27/Hierarchical-Modelling-Asset-Fleets
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Table 2. An example of condition data for a medium data category asset.

Measurement
number x1 x2 x3 x4 x5

1 17.33 -23.02 1.88 -3.38 6.06
2 12.29 -14.77 2.87 -0.40 -2.80
3 9.93 -15.19 6.12 2.69 -2.52
... ... ... ... ... ...
19 8.28 -16.18 4.05 -0.21 -2.76
20 11.39 -13.20 12.56 -8.65 -1.26

The proportion of assets belonging to the low data category were varied across a wide range from 0.1
to 0.9. The remaining assets were evenly divided into medium and high data categories. For example,
if 0.3 proportion of assets belonged to the low data category, then 0.35 proportion of assets belonged
to high and medium data category each. Moreover, all clusters contained the same number of assets
belonging to either of the three categories. Given this dataset, the goal for an anomaly detection
algorithm was to model the assets’ normal operation by estimating the parameters of the underlying
Gaussians. There was no indicator for the algorithm to know which cluster a given asset belonged to.

The testing dataset for each asset comprised of 1500 points randomly sampled from the true under-
lying distribution, and 1500 points sampled from the anomalous distribution. The deviations l and L
for the anomalous distributions were each varied while keeping the other constant, so that the sensitiv-
ity of the algorithms with respect to either parameters could be studied. Values of l were varied across
{0, 5, 10, 20, 50, 100} while keeping L fixed at 1, and the values of L were varied across {1, 1.5, 2, 5, 10}
while keeping l fixed at 0.

4.2. Performance Evaluation
After the estimated model parameters are obtained, the operator must define a region in multidimen-
sional space that encompasses the asset’s normal operations data. For the statistical classifiers, this
region is often defined based on a critical value from the probability density function (PDF) values,
such that any point having the PDF value less than the critical value will lie outside the region and be
deemed anomalous. The critical value corresponds to an α significance level, which separates the most
likely 100 ∗ α% points from the rest. In other words, the critical value separates 100 ∗ α percentile data
sampled from the rest.

For the case of multivariate Gaussians, this region is an ellipsoid, and determining its boundary cor-
responding to the required α level is numerically complex. This is because one cannot simply integrate
the tails of the multivariate Gaussian and obtain the boundary corresponding to the required α level.
However, for a multivariate Gaussian with dimension d, the squared Mahalanobis distance (Dmd) of
any point with respect to that Gaussian is standard chi-squared with d degrees of freedom1. For a stan-
dard chi-squared distribution, it is easy to obtain the PDF value separating the the most likely 100 ∗α%
points from the rest. This fact can be used to determine if a given data point from the multivariate
Gaussian falls within the α level set by the operator or not.

For example, if the α level is set at 0.8, then the corresponding PDF value for a standard chi-squared
distribution can be obtained which would in fact be the critical value for the squared Dmd of the points.
Any point having the squared Dmd greater than the critical value would be deemed anomalous. The
p−values corresponding to various α levels for a standard 5-dimensional chi-squared distribution are
shown in Table 3. These also act as the critical values for the squared Dmd while generating the ROCs.

1Proof shown in Appendix B
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Table 3. Various α levels used while plotting the ROCs, and the corresponding Dmd values for the current experiment. These
correspond to a standard chi-squared distribution with 5 degrees of freedom

α level D2
md value α level D2

md value

0.995 0.412 0.5 4.251
0.99 0.554 0.1 9.236
0.975 0.831 0.05 11.071
0.95 1.145 0.025 12.833
0.9 1.61 0.01 15.086

0.75 2.675 0.005 16.75

The squared Mahalanobis distance for any point X from a given Gaussian distribution with the
estimated mean and covariance µ̂ and Ĉ is obtained as:

D2
md = (X − µ̂)T Ĉ−1(X − µ̂) (26)

Areas under the Receiver operator characteristic (ROC) curves were used as a measure for evaluat-
ing the performance of hierarchical modelling, and also for comparing with conventional independent
modelling technique. This is a widely used evaluation metric for classification tasks and is often called
the c-statistic. It provides an aggregate measure of classification performance across a wide range of α
levels.

To plot an ROC, the α levels while classifying the testing dataset were varied across
{0.995, 0.99, 0.975, 0.95, 0.9, 0.75, 0.5, 0.1, 0.05, 0.025, 0.01, 0.005}. An ROC curve was obtained for a
single asset and its corresponding testing dataset by plotting the true positive rate (TPR) vs false positive
rate (FPR) for each of the alpha levels mentioned above.

Consider a testing dataset with NP and NN number of real positive and negative class data points
respectively. For the current use case, testing data points sampled from the true underlying distribution
were labelled as the “negative" class and those sampled from the anomalous distribution were labelled
as the “positive" class. If a classifier is tested using this dataset and the resulting output comprises of
NTP and NFP true positives and false positives respectively, the TPR and FPR are evaluated according
to:

TPR =
NTP

NP
FPR =

NFP

NN
(27)

The Area Under the ROC Curve (AUC) was used as an indicator of the model’s performance for a
given asset. From (27), it can be observed that a higher AUC is characterised by a high TPR and a low
FPR for some α level. A higher AUC means that the classifier is better capable of separating the positive
and the negative class in the testing dataset. Therefore, higher the AUC, the better is the classifier. An
example ROC for a medium data category asset and its corresponding AUC are shown in Figure 4. This
ROC was evaluated for the parameters estimated based on hierarchical modelling.

Such AUCs were evaluated for hierarchical modelling across the fleet and for each testing dataset,
and were compared with those obtained using independent modelling.

4.3. Experimental Design
The experiments involved comparing four learning scenarios as explained below:

1. Independent Learning In the first scenario, the assets were capable of learning from their own
data only. This means that the only source of information for estimating the parameters of the
underlying Gaussian was the given asset’s condition data only. The mean and covariance
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Figure 4. An example ROC for asset id 52 evaluated for testing dataset with l and L equal to 0 and 10 respectively.

estimates in this scenario were evaluated according to the standard maximum likelihood
estimation in (23) and (24).

2. Learning from similar assets In this scenario, the hierarchical model for the fleet was
implemented. Clusters of similar assets were identified, and the parameters for the hierarchical
model were estimated using the EM algorithm as explained in Section 3. The EM steps were
iterated 20 times, and the values of µ̂i and Ĉi after the 20th iteration were treated as the final
estimates of hierarchical modelling. 20 iterations were deemed sufficient for parameter estimation
because the overall data log likelihood did not increase any further. The value of K , which are the
number of clusters present in the fleet was set to its true value 4.

3. Learning from all The third scenario was similar to the one in case 2 above, but with the
difference being in this scenario the assets did not have a sense of identifying similar assets. This
means that a given asset here learnt from all other assets in the fleet. To model this scenario, the
same steps as those in case 2 were followed, but the value of K was set to 1. As a result, the entire
fleet was treated as one cluster and the density function parameters of all assets shared a common
underlying distribution.

4. Only the low data assets learn from others Lastly, a combination of hierarchical and
independent modelling was considered in the experiments. This scenario involved clustering and
hierarchical modelling similar to the one in case 2. But while all 800 assets here participated in
estimating hierarchical model parameters, only those assets belonging to the low data category
used the final estimates for classifying the testing dataset. The medium and high data category
assets used independent modelling to estimate their Gaussian parameters. Concretely, the final
estimates for the assets belonging to the low data category were derived from the hierarchical
model, whereas the final estimates for the assets belonging to the medium and high data category
were derived from their independent models.
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(a) All assets have 5 data points each (b) All assets have 6 data points each

(c) Low data assets have 5 data points only (d) Low data assets have 6 data points only

Figure 5. The figures represent the clustering done by the EM algorithm when the assets (low data category assets in (c) and (d)) have 5 and
6 data points only. The incorrectly clustered assets are marked with dotted red circle..

It was observed during the experiments that the accuracy of clustering using EM algorithm relied
on the initialisation of parameters, especially the βk and αk parameters. These parameters must be
initialised such that the algorithm’s search space is wide enough and is not trapped in local optima
during the early iterations. The approximate initialisations of parameters to ensure a wider search space
are mentioned in Section 3. However, even with the optimal initialisation, the EM algorithm was unable
to cluster the assets due to the wide range of means chosen.

This problem is highlighted in Figure 5, where a sample of 50 assets from each of the asset clusters
was taken and the total 200 assets thus formed were clustered based on the available 5 and 6 data
points only. The figures show both cases- where all assets had the same amount of data, and where
the assets are divided into “low", “medium", and “high" data categories explained in Section 4.1.3. In
the figures corresponding to the latter case, the assets belonging to the “low", “medium", and “high"
data categories are represented in red, orange, and green colours respectively. Also, the number of data
points with assets belonging to the low data category were 5 and 6, and were constant for the remaining
assets. In all figures, the assets with ids 1 to 50 belonged to the same cluster, 51-100 belonged to the
next cluster, and so on. Therefore, these asset ids are expected to be clustered together, which was not
the case for only initial 5 or 6 data points. The wrongly clustered assets are marked with the dotted red
circle.
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In the real world, this problem can be addressed by including certain categorical data along with the
time series data. Categorical data can arise from the operational experience, such as asset’s environment,
upkeep, operation, etc. However, for the experimental results presented here, it was assured that the
assets were correctly clustered in these cases. If it was found that an asset was wrongly clustered, it was
manually reassigned to its correct cluster and the results evaluated again. The goal of the experiments
is to demonstrate the advantage of hierarchical modelling over the conventional independent modelling
on the effectiveness of collaborative learning between assets.

4.4. Experimental Results
For each of the four scenarios, the AUCs were evaluated across all assets in the fleet. Box plots for each
low, medium, and high data category assets for the same testing dataset are shown in Figure 6, where
“HL" stands for “Hierarchical Learning" where the final estimates are estimated based on the higher
level model. Figure 6 also includes a combined box plot for all assets in the fleet and for the above
described scenarios. These AUCs are presented as box plots. Results corresponding to a subset of test
cases are presented here, and the same conclusions hold across all testing datasets. The corresponding
testing dataset deviations for all figures are mentioned in their captions.

As an interesting extension to the above described scenarios, the number of data points held by the
low data category assets were gradually increased. The number of data points were increased from 5
till 21 in steps of 1, so that classifier performances throughout the transition of the assets from low to
the medium data category and beyond could be analysed. While doing this, the number of points held
by the medium and high data category assets were kept constant at their initial values. Figures 7 and
8 present the effect of increasing data at the low data category assets, where 0.2 proportion of assets
initially belonged to the low data category. The corresponding testing datasets are mentioned in Figure
captions.

Furthermore, a learning scenario where all 800 assets held the same amount of data was also studied.
This was done by simulating the fleet where all assets initially had 5 data points only, which were
gradually increased to as high as 500 together across all assets. The classifier performances were studied
throughout this transition. Figure 9 present the classifier performances when all assets contained the
same amount of data.
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(a) AUCs across low data category assets only. (b) AUCs across medium data category assets only.

(c) AUCs across high data category assets only.
(d) AUCs across all assets, and for all the cases included
in the experiments.

Figure 6. Shown here are the AUCs measured for the experiment cases. The subset of assets across which the AUCs are measured are
indicated in the corresponding captions. For all the above four plots, the deviation for anomalous data in the testing dataset was set at 1 and
10 for l and L respectively.
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(a) l = 0; L = 1 (b) l = 0; L = 2

(c) l = 0; L = 5 (d) l = 0; L = 10
Figure 7. Box plots presenting the effect of gradually increasing data contained by the low data category assets. The captions denote the
corresponding deviations in the testing dataset.
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(a) l = 0; L = 1 (b) l = 5; L = 1

(c) l = 20; L = 1 (d) l = 100; L = 1
Figure 8. Box plots presenting the effect of gradually increasing data contained by the low data category assets. The captions denote the
corresponding deviations in the testing dataset.
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(a) l = 0; L = 1.5 (b) l = 0; L = 2

(c) l = 0; L = 5 (d) l = 0; L = 10
Figure 9. Box plots presenting the effect of gradually increasing the data across all assets, when they all had same amount of data. The
corresponding testing dataset deviations are denoted in the captions.

5. Discussion
A better classifier for a given asset and a testing dataset is characterised by a higher AUC, as explained
in Section 4.2. However, while analysing the performance of that classifier across the entire fleet, its
consistency also plays a key role. An operator would prefer having a classifier showing consistent but
slightly worse performance rather than an unreliable classifier which shows high AUC for some assets
in the fleet but low for others. A classifier’s consistency is represented as variance of AUCs measured
across the assets by the length of the boxes and whiskers of the box plots. Therefore, while analysing the
results, one must note that a classifier showing higher median and smaller variance is a better classifier.
The following points are summarised from the results presented in Section 4.4:

1. It is inferred from Figures 6a to 6c that hierarchical modelling is beneficial for the assets belonging
to the low data category only. Medium and High data category assets are better off or equally good
learning from their own data rather than learning from others. For the assets belonging to the low
data category however, the classifiers obtained using hierarchical modelling show significantly
higher AUCs and lower variances than the independent models learning from their own data. This
is true especially until the proportion of low data assets in the fleet is less than or equal to 0.6.
Figures 7 and 8 also show that until a certain amount of data is accumulated by the asset, it is
better for it to rely on hierarchical model estimates. While transition in figures 7 and 8 occurs at
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approximately 13 data points, it can be different for different applications depending on the asset
similarities, variance in data, and the proportion of low data category assets present in the fleet.

2. Figure 6 shows that learning from similar assets is more helpful than learning from all assets in
the fleet. Learning from all resulted in higher variance in AUCs recorded across all assets, as
shown in Figures 6a to 6c. Figure 6d also shows that the AUCs are higher when only the low data
assets rely on the hierarchical model estimates, while others learn from their own data using
independent models.
lalala
The aforementioned points are further highlighted by Figures 10 and 11 (in Appendix C) where
the classifier performances for the low data category assets across various testing datasets are
presented. In these figures again, the hierarchical model is seen to consistently outperform the
independent model, and learning from similar assets shows much lesser variance than learning
from all assets in the fleet.
lalala

3. Unfortunately, Figure 9 shows that independent modelling is always the better option when all
assets in the fleet contain same amount of data. This is true across the entire range from 5 data
points until 500 and beyond. But Figure 9 also represents that hierarchical modelling eventually
converges and becomes similar to independent modelling when the assets keep generating data
over time. This confirms our hypothesis that initially the hierarchical model estimates are weighted
more towards the general fleet behaviour. The trend seen in Figure 9 is an expected outcome
because when all assets in the fleet have same amount of data, none of which are clearly indicative
of the assets’ operating regime. Therefore, the general fleet behaviour, which is a combined
behaviour observed across all assets, was not indicative of the correct operating regime as well.

4. Apart from the performance evaluation metric presented in Section 4.2, Bhattacharyya distance
(DB) was also used to compare the performances of hierarchical and independent asset models.
DB is a metric that evaluates the similarity between two multivariate Gaussians, and is calculated
according to (28) for the Gaussians parameterised by (µ1,C1) and (µ2,C2) (Bhattacharyya, 1946).
For the current application, DB between the true and estimated Gaussians for all the assets were
evaluated. The plots for the evaluated DB are presented in Appendix D.

DB =
1
8
(µ1 − µ2)

T

(
C1 + C2

2

)−1

(µ1 − µ2) +
1
2

ln

(
Det

(C1+C2
2

)√
Det(C1)Det(C2)

)
(28)

5. It was observed that the performance of hierarchical model was affected by the choice of range of
means mentioned in 4.1.3. Had the range of means been shorter, it would mean that the assets
were more similar to one another, resulting in an improved performance of the hierarchical model.
This fact can be observed from the results from the same experiment with shorter ranges of
means, (−5, 5) and (295, 305), presented in Appendix E and D for both performance metrics.

6. Conclusion
This paper proposes the use of hierarchical model as a systematic method for the similar assets within
a fleet to collaboratively learn from one another, and improve the performances of their statistical clas-
sifiers for anomaly detection. The asset condition monitoring data are modelled using multivariate
Gaussians. But the hierarchical model, unlike conventional maximum likelihood estimation, involves
higher level distributions from which the asset level Gaussian parameters are sampled. The higher level
distributions are shared by the clusters of similar assets, where similarities arise by the virtue of the
assets operating in similar conditions or being of the same model type. The higher level distributions
for the covariances and the means of the asset level Gaussians are modelled using their conjugates, i.e.
Inverse Wishart and Gaussian respectively.
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The experiments demonstrate collaborative learning using hierarchical model, showing that it can
significantly improve the performances of conventional classifiers in the early periods of asset oper-
ations, when sufficient data are not available to estimate the Gaussian parameters using conventional
maximum likelihood methods. However, the hierarchical model performs worse than maximum likeli-
hood estimation when all assets in the fleet have same amount of data. The higher level distributions
are also representative of the general behaviour of the asset fleet, and can be of interest to the operators
who want an overall understanding the fleet performance.

7. Future Research Directions
This was the first use case of hierarchical modelling for anomaly detection in industrial asset operations,
and interesting future research awaits.

1. The example implementation here was shown using a simulation fleet of assets. An interesting
follow up work would be to analyse how hierarchical modelling works for a real world fleet of
assets. Such analysis can include the extent of improvement in overall maintenance cost to the
organisation, and therefore its business value can be justified. Moreover, the real world
implementation would enable including the categorical data for clustering the assets and improve
the accuracy of the EM algorithm. This is explained in Section 4.3.

2. Since anomaly detection algorithms are supposed to be implemented in real time, a follow up task
is to extend the hierarchical model to an online version. The online version should classify each
new data point as anomalous or not, and if the new data point is not anomalous it should be used
to update the hierarchical model parameters.

3. An important conclusion from the experiments was that a low data category asset benefits the
most from the hierarchical model. Moreover, that asset has nothing to contribute towards the
general fleet knowledge. Therefore, it would be interesting to analyse how a hierarchical model
would perform if only the medium and high data category assets were allowed to contribute to the
higher level distributions, whereas the low data category assets only learn from them.

4. Lastly, an important assumption while modelling the asset behaviours was that the mean of the
Gaussian during an asset’s normal operation is constant. This might not always be the case.
Sometimes, an asset’s operation could involve a sequence of tasks which could induce a cyclic
nature to the Gaussian mean. Therefore, future research must focus on extending the current
hierarchical model to account for natural deviations observed in the Gaussian mean throughout an
asset’s operation.
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A. Derivations of the E and M steps
A.1. E-step
For the case of asset fleets, the E-step involves first evaluating the expectation of z w.r.t. distribution
conditioned on X for parameter values θ = θ t . Since zi,k is binary, E(zi,k |(µi,Ci)

t, θ t ) = p(zi,k =
1|(µi,Ci)

t, θ t ) = p(zi,k = 1|(µi,Ci)
t, θ t ). Using Bayes’ rule:

p(zi,k = 1|(µi,Ci)
t, θ t ) =

p((µi,Ci)
t |zi,k = 1, θ t )p(zi,k = 1)∑K

k=1 p((µi,Ci)
t |zi,k = 1, θ t )p(zi,k = 1)

(29)

from equations 8 and 10 we know,

p(zi,k = 1|(µi,Ci)
t, θ t ) =

(N(µi |mk, β
−1
k

Ci)IW(Ci |Λk, αk))(πk)∑K
k=1(N(µi |mk, β

−1
k

Ci)IW(Ci |Λk, αk))(πk)
(30)

Where all distribution parameters correspond to the values obtained at M-step of latest (tth) iteration.
Let, p(zi,k = 1|(µi,Ci)

t, θ t ) = γi,k . Therefore, our function Q(θ, θ t ) can be deduced from equation 14
by replacing zi,k with γi,k :

Q(θ, θ t ) =
I∑

i=1

Ni∑
n=1

log(N(µi,Ci)) +

I∑
i=1

K∑
k=1

γi,k log
(
πkN(µi |mk, β

−1
k Ci)IW(Ci |Λk, αk)

)
(31)

After substituting the symbolic representation with the corresponding distribution functions and
parameters, Q(θ, θ t ) (not including constant terms, because they would become zero after differentia-
tion) becomes:
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Q(θ, θ t ) =

−
1
2

∑
i

∑
n

log |Ci | −
1
2

∑
i

∑
n

(xi,n − µi)
TC−1

i (xi,n − µi)−

1
2

∑
i

γi,k

∑
k

log |Ci | +
1
2

∑
i

γi,k

∑
k

log(βk) −
1
2

∑
i

γi,k

∑
k

βk(µi −mk)
TC−1

i (µi −mk)+

1
2

∑
i

γi,k

∑
k

αk log |Λk | −
1
2

∑
i

γi,k

∑
k

αkd log(2)−∑
i

γi,k

∑
k

log
(
Γd(

αk
2
)
)
−

1
2

∑
i

γi,k

∑
k

(αk + d + 1) log |Ci |−

1
2

∑
i

γi,k

∑
k

Tr(ΛkC−1
i ) +

∑
i

γi,k

∑
k

πk (32)

The γi,k are not included in summations because they are supposed to be treated as constants in the
M-step that follows.

A.2. M-step
In M-step, θ t+1 values are obtained for following (t + 1)th E-step by maximising the Q(θ, θ t ) func-
tion obtained in equation 32 with respect to each of the θ parameters, and treating γi,k as constants.
Calculations for partial derivatives of Q(θ, θ t ) w.r.t. each parameter are shown below:

A.2.1. Evaluating µ̂i

∂Q(θ, θ t )
∂µi

=⇒
∑
n

C−1
i (xi,n − µi) −

∑
k

βkγi,kC−1
i (µi −mk) = 0

=⇒
∑
n

xi,n − Niµi = µi

∑
k

βkγi,k −
∑
k

βkγi,kmk

=⇒ µ̂i =
1

Ni +
∑K

k=1 βkγi,k

[ Ni∑
n=1

xi,n +
K∑
k=1

βkγi,kmk

]
A.2.2. Evaluating m̂k

∂Q(θ, θ t )
∂mk

=⇒
∑
i

γi,k βkC−1
i (µi −mk) = 0

=⇒ βk
∑
i

γi,kC−1
i µi = βk

∑
i

γi,kC−1
i mk

=⇒

[∑
i

γi,kC−1
i

]
mk =

[∑
i

γi,kC−1
i µi

]
=⇒ m̂k =

[ I∑
i=1

γi,kC−1
i

]−1 [ I∑
i=1

γi,kC−1
i µi

]
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A.2.3. Evaluating Λ̂k

∂Q(θ, θ t )
∂Λk

=⇒
1
2

∑
i

γi,kαkΛ
−1
k −

1
2

∑
i

γi,kC−1
i = 0

=⇒ Λ−1
k =

∑
i γi,kC−1

i

αk
∑

i γi,k

=⇒ Λ̂k =

[
αk

I∑
i=1

γi,k

] [ I∑
i=1

γi,kC−1
i

]−1

A.2.4. Evaluating β̂k

∂Q(θ, θ t )
∂βk

=⇒
d
2

∑
i

γi,k

1
βk
−

1
2

∑
i

γi,k(µi −mk)
TC−1

i (µi −mk) = 0

=⇒
1
β̂k
=

∑I
i=1 γi,k(µi −mk)

TC−1
i (µi −mk)

d
∑I

i=1 γi,k

A.2.5. Evaluating Ĉi

∂Q(θ, θ t )
∂Ci

=⇒ −
Ni

2
C−1
i +

1
2

C−1
i

(∑
n

(xi,n − µi)(xi,n − µi)
T )

C−1
i

−
1
2

C−1
i +

1
2

C−1
i

(∑
k

βkγi,k(µi −mk)(µi −mk)
T )

C−1
i

−
1
2

∑
k

γi,k(αk + d + 1)C−1
i +

1
2

∑
k

γi,kC−1
i ΛkC−1

i = 0

=⇒ −
Ni

2
Ci +

1
2

∑
n

(xi,n − µi)(xi,n − µi)
T −

1
2

Ci

+
1
2

∑
k

βkγi,k(µi −mk)(µi −mk)
T

−
1
2

∑
k

γi,k(αk + d + 1)Ci +
1
2

∑
k

γi,kΛk = 0

=⇒ (Ni + 1 +
∑
k

γi,kαk + d + 1)Ci =
∑
n

(xi,n − µi)(xi,n − µi)
T

+
∑
k

βkγi,k(µi −mk)(µi −mk)
T +

∑
k

γi,kΛk

=⇒ Ĉi =∑Ni

n=1(xi,n − µi)(xi,n − µi)
T +

∑K
k=1 βkγi,k(µi −mk)(µi −mk)

T +
∑K

k=1 γi,kΛk

Ni +
∑K

k=1 γi,kαk + d + 2
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A.2.6. Evaluating α̂k
The below stated f (αk) must be maximised w.r.t. αk :

f (αk) =
1
2
αk log |Λk |

∑
i

γik −
d
2

log(2)αk
∑
i

γik−

log
(
Γd

(αk
2

) ) ∑
i

γik −
1
2
(αk + d + 1)

∑
i

γik log |Ci | (33)

But the presence of log
(
Γd

(αk

2
) ) ∑

i γik term makes differentiation w.r.t. αk complex. Therefore,

a nonlinear optimisation must be used for evaluating αk values at the M-step of every iteration. For
the experiments discussed in this paper, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was
used to minimise − f (αk), with limits set as αk ∈ (d, d + 20).

A.2.7. Evaluating π̂k

Evaluating π̂k is a constrained optimisation problem, because πk also have to satisfy an additional
condition of

∑
k πk = 1. Therefore, we need to maximise [Q(θ, θ t )+ η(

∑
k πk − 1)] w.r.t. πk , where η is

the Lagrange multiplier. From equation 32, we have:

∂[Q(θ, θ t ) + η(
∑

k πk − 1)]
∂πk

=⇒

∑
i γi,k

πk
+ η = 0

=⇒ πk =
−

∑
i γi,k

η

But since
∑

k πk = 1; η = η(
∑

k πk) = −
∑

i

∑
k γi,k (from above) = −I (by definition, because these

are also the expectations of zi,k) where I are total assets in the fleet. Substituting value of η in above
equation, we get:

π̂k =

∑I
i=1 γi,k

I

B. Proof for the Chi-squared Nature of the Squared Mahalanobis Distance
Proof for the standard chi-squared nature of the squared Mahalanobis distances (D2

md
) of points with

respect to a d dimensional multivariate Gaussian is presented here. This proof is provided for the sake
of completeness, where basic knowledge of linear algebra is assumed. The reader is advised to refer
(Thill, 2017) for the complete derivation, and also the empirical proof.

For any given point X in space, its squared Mahalanobis distance (D2
md

) with respect to a multivariate
Gaussian with mean µ and covariance Σ is evaluated as (assuming orthonormal eigenvectors):

D2
md = (X − µ)TΣ−1(X − µ)

Upon performing he eigenvalue decomposition of Σ−1, one obtains:

Σ−1 = UΛ−1U−1 = UΛUT =

d∑
k=1

λ−1
k ukuTk

Where uk is the k th eigenvector of the corresponding eigenvalue λk .
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Therefore,

Dmd = (X − µ)TΣ−1(X − µ) (34)

= (X − µ)T
( d∑
k=1

λ−1
k ukuTk

)
(X − µ) (35)

=

d∑
k=1

λ−1
k (X − µ)TukuTk (X − µ) (36)

=

d∑
k=1

λ−1
k

[
µTk (X − µ)

]2
(37)

=

d∑
k=1

[
λ
−1
2
k
µTk (X − µ)

]
(38)

=

d∑
k=1

Y2
k (39)

Where Yk is a new random variable based on affine linear transformation of the random vector X .
We know that a random variable Z = (X − µ) can be expressed as Z ∼ N(0,Σ). Similarly, the

random variable Yk introduced in (38) is of the form Yk = λ
−1
2
k
µT
k

Z . It can therefore be expressed as
Yk ∼ N(0,Σ2

k) where:

Σ2
k = λ

−1
2
k

uTk Σλ
−1
2
k

uk

= λ−1
k uTk Σµk

Upon substituting Σ =
∑d

j=1 λju juTj ,

Σ2
k = λ

−1
k uTk Σµk

= λ−1
k uTk

( d∑
j=1

λju juTj
)
µk

=

d∑
j=1

λ−1
k uTk λju juTj uk

=

d∑
j=1

λ−1
k λjuTk u juTj uk

Since all eigenvectors ui are pairwise orthonormal, the dotted products uT
k

u j and uTj uk will be zero
for j , k. Only for the case j = k we get:
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Σ2
k = λ

−1
k λkuTk ukuTk uk

= λ−1
k λk | |uk | |2 | |uk | |2

= 1

The last step follows because the norm | |uk | | of an orthonormal eigenvector is equal to 1. The squared
Dmd can thus be expressed as D2

md
=

∑d
k=1 Y2

k
where Yk ∼ N(0, 1). This is also the exact definition of

a standard chi-squared distribution with d degrees of freedom, i.e. the sum of the squared of d random
variables which are standard normally distributed. Therefore, the squared Dmd is chi-squared with d
degrees of freedom and can therefore be used to obtain a critical value for anomaly detection.

C. More result figures to demonstrate the benefit of hierarchical modelling for the low data
category assets.

(a) l = 0; L = 1 (b) l = 0; L = 2

(c) l = 0; L = 5 (d) l = 0; L = 10
Figure 10. Box plots presenting AUCs recorded across the assets belonging to the low data category. The corresponding testing dataset
deviations are denoted in the captions.
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(a) l = 5; L = 1 (b) l = 20; L = 1

(c) l = 50; L = 1 (d) l = 100; L = 1
Figure 11. Box plots presenting AUCs recorded across the assets belonging to the low data category. The corresponding testing dataset
deviations are denoted in the captions.
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D. Performance evaluation using Bhattacharyya distance
Figures 12a and 12b present the Bhattacharyya distance (DB) evaluated across all assets in the fleet,
according to (28), as the data points in the low data category assets were sequentially increased. Figure
12a corresponds to the case where the range of individual asset means lay within the range (−25, 25)
and (275, 325) for the two model types. Figure 12b corresponds to the narrower range of means (−5, 5)
and (295, 305) for the two model types. Covariances used to represent the asset operating conditions
were the same for both figures and mentioned in (25).

(a) Asset means ∈ (−25, 25) and (275, 325)

(b) Asset means ∈ (−5, 5) and (295, 305)
Figure 12. Box plots presenting the DB recorded across the assets belonging to the low data category, for the original and narrower range of
means.
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E. Results from the experiment conducted for a shorter range of asset means.
Figure 13 shows the comparison of performances of the hierarchical model and independent learning
for the clusters with a narrow range of means representing the asset model types. The asset clusters
comprised of means ranging within (−5, 5) for one model type and (295, 305) for the other. The covari-
ance matrices used to generate data were the same as the ones shown in (25). A slight improvement
in performance of the hierarchical model can be observed, due to the fact that the assets in a cluster
here are more similar to one another. Figure 13 is evaluated in the same manner as Figure 8 but for the
training and testing datasets corresponding to a narrower range of means.

(a) l = 5; L = 1 (b) l = 20; L = 1

(c) l = 50; L = 1 (d) l = 100; L = 1
Figure 13. Box plots presenting AUCs recorded across the assets belonging to the low data category, but for a narrower range of means.
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