
Data and Computation Efficient
Meta-Learning

John Fitzgerald Bronskill

Department of Engineering
University of Cambridge

This thesis is submitted for the degree of
Doctor of Philosophy

Wolfson College July 2020

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work
done in collaboration except as declared in the Preface and specified in the text. It is not
substantially the same as any that I have submitted, or, is being concurrently submitted for a
degree or diploma or other qualification at the University of Cambridge or any other University
or similar institution except as declared in the Preface and specified in the text. I further state
that no substantial part of my thesis has already been submitted, or, is being concurrently
submitted for any such degree, diploma or other qualification at the University of Cambridge
or any other University or similar institution except as declared in the Preface and specified in
the text. It does not exceed the prescribed word limit for the relevant Degree Committee.

John Fitzgerald Bronskill
July 2020

Data and Computation Efficient Meta-Learning

John Fitzgerald Bronskill

Abstract

In order to make predictions with high accuracy, conventional deep learning systems require
large training datasets consisting of thousands or millions of examples and long training times
measured in hours or days, consuming high levels of electricity with a negative impact on our
environment. It is desirable to have have machine learning systems that can emulate human
behavior such that they can quickly learn new concepts from only a few examples. This is
especially true if we need to quickly customize or personalize machine learning models to
specific scenarios where it would be impractical to acquire a large amount of training data
and where a mobile device is the means for computation. We define a data efficient machine
learning system to be one that can learn a new concept from only a few examples (or shots) and
a computation efficient machine learning system to be one that can learn a new concept rapidly
without retraining on an everyday computing device such as a smart phone.

In this work, we design, develop, analyze, and extend the theory of machine learning
systems that are both data efficient and computation efficient. We present systems that are trained
using multiple tasks such that it "learns how to learn" to solve new tasks from only a few
examples. These systems can efficiently solve new, unseen tasks drawn from a broad range of
data distributions, in both the low and high data regimes, without the need for costly retraining.
Adapting to a new task requires only a forward pass of the example task data through the
trained network making the learning of new tasks possible on mobile devices. In particular,
we focus on few-shot image classification systems, i.e. machine learning systems that can
distinguish between numerous classes of objects depicted in digital images given only a few
examples of each class of object to learn from.

To accomplish this, we first develop ML-PIP, a general framework for Meta-Learning
approximate Probabilistic Inference for Prediction. ML-PIP extends existing probabilistic
interpretations of meta-learning to cover a broad class of methods. We then introduce VERSA,
an instance of the framework employing a fast, flexible and versatile amortization network that
takes few-shot learning datasets as inputs, with arbitrary numbers of training examples, and
outputs a distribution over task-specific parameters in a single forward pass of the network.
We evaluate VERSA on benchmark datasets, where at the time, the method achieved state-of-
the-art results when compared to meta-learning approaches using similar training regimes
and feature extractor capacity.

Next, we build on VERSA and add a second amortized network to adapt key parameters
in the feature extractor to the current task. To accomplish this, we introduce CNAPS, a
conditional neural process based approach to multi-task classification. We demonstrate that,
at the time, CNAPS achieved state-of-the-art results on the challenging META-DATASET

vi

benchmark indicating high-quality transfer-learning. Timing experiments reveal that CNAPS

is computationally efficient when adapting to an unseen task as it does not involve gradient
back propagation computations. We show that trained models are immediately deployable to
continual learning and active learning where they can outperform existing approaches that do
not leverage transfer learning.

Finally, we investigate the effects of different methods of batch normalization on meta-
learning systems. Batch normalization has become an essential component of deep learning
systems as it significantly accelerates the training of neural networks by allowing the use of
higher learning rates and decreasing the sensitivity to network initialization. We show that
the hierarchical nature of the meta-learning setting presents several challenges that can render
conventional batch normalization ineffective. We evaluate a range of approaches to batch
normalization for few-shot learning scenarios, and develop a novel approach that we call
TASKNORM. Experiments demonstrate that the choice of batch normalization has a dramatic
effect on both classification accuracy and training time for both gradient based- and gradient-
free meta-learning approaches and that TASKNORM consistently improves performance.

I would like to dedicate this thesis to my wonderful wife Andrea who demonstrated both
encouragement and patience while I pursued this work.

Acknowledgements

I have been very fortunate to have Richard Turner and Sebastian Nowozin as PhD supervisors.
Both have provided superb guidance, deep insights, and extensive contributions to my work. I
want to thank Rich for taking me on as a student even though it had been more than thirty years
since I completed my Masters degree. Being in Rich’s group has been a fantastic experience
and a great privilege. I have always had deep respect for Sebastian’s work and know-how and
I am lucky that he agreed to co-supervise and contribute numerous key ideas and suggestions.
I would also like to thank my advisor Dr. José Miguel Hernández Lobato for his support.

I was also very fortunate to have a desk next to Jonathan Gordon who has been a fabulous
collaborator. I learned a lot from him and he contributed jointly to almost all aspects of the
research contained in this thesis. I would also like to acknowledge the valuable and significant
contributions of my other awesome student collaborators and co-authors Matthias Bauer and
James Requeima - it has been a great pleasure to work with both of them.

Finally, a big thanks to all the members of the Computational and Biological Learning
group at the University of Cambridge for helping make my PhD experience so enjoyable.

Table of contents

List of figures xv

List of tables xvii

Nomenclature xix

1 Introduction 1
1.1 Motivation . 1
1.2 Overview and Main Contributions . 2
1.3 List of Publications . 4

1.3.1 Conference Proceedings . 4
1.3.2 Workshops . 5
1.3.3 Source Code Repositories . 5

2 Background 7
2.1 Meta-Learning, Multi-Task Learning, and Transfer Learning 7

2.1.1 Meta-Learning . 7
2.1.2 Multi-Task Learning . 8
2.1.3 Transfer Learning . 9

2.2 Few-Shot Learning Fundamentals . 9
2.2.1 Tasks, Context and Target Sets . 9
2.2.2 Episodic Training . 10
2.2.3 Hierarchical Probabilistic Modelling View of Meta-Learning 12

2.3 Meta-learning Methods . 14
2.3.1 Multi-step Gradient Approaches . 16
2.3.2 Few-step Gradient Approaches . 16
2.3.3 Amortization via Hypernetworks . 19
2.3.4 Semi-amortized Approaches . 23
2.3.5 Probabilistic Methods . 24

2.4 Neural Processes . 26
2.4.1 Conditional Neural Processes . 26

xii Table of contents

2.4.2 Neural Processes . 27
2.4.3 Generative Query Networks for View Reconstruction 28

2.5 Continual Learning and Amortized Inference Methods 30
2.6 Active Learning and Few-shot Learning . 31
2.7 Datasets for Few-Shot Classification . 31

2.7.1 Omniglot . 32
2.7.2 miniImageNet . 32
2.7.3 META-DATASET . 33

2.8 Conclusion . 34

3 VERSA: Meta-Learning Probabilistic Inference For Prediction 37
3.1 Introduction . 37
3.2 Meta-Learning Probabilistic Inference For Prediction 38

3.2.1 Probabilistic Model . 38
3.2.2 Probabilistic Inference . 39

3.3 Versatile Amortized Inference . 42
3.4 Variational Inference Derivations for the Model 45
3.5 ML-PIP Unifies Disparate Related Work . 45
3.6 Experiments and Results . 47

3.6.1 Posterior Inference with Toy Data . 47
3.6.2 Few-shot Classification . 48
3.6.3 ShapeNet View Reconstruction . 51

3.7 Summary . 54
3.8 Epilogue . 54

4 CNAPS: Fast and Flexible Multi-Task Classification Using Conditional Neural Adap-
tive Processes 57
4.1 Introduction . 57
4.2 Model Design . 59

4.2.1 Specification of the classifier: global θ and task-specific parameters ψτ . 60
4.2.2 Computing the local parameters via adaptation networks 61

4.3 Model Training . 64
4.4 Related Work . 65
4.5 Experiments and Results . 66
4.6 Continual Learning . 69
4.7 Active Learning . 72
4.8 Summary . 73
4.9 Epilogue . 73

Table of contents xiii

5 TASKNORM: Rethinking Batch Normalization for Meta-Learning 79
5.1 Introduction . 79
5.2 Background and Related Work . 80

5.2.1 Normalization Layers in Deep Learning 80
5.2.2 Desiderata for Meta-Learning Normalization Layers 81

5.3 Normalization Layers for Meta-learning . 83
5.3.1 Conventional Usage of Batch Normalization (CBN) 83
5.3.2 Batch Renormalization (BRN) . 83
5.3.3 Transductive Batch Normalization (TBN) 84
5.3.4 Instance-Based Normalization Schemes 85
5.3.5 Other NLs . 86

5.4 Task Normalization . 86
5.4.1 Meta-Batch Normalization (METABN) . 87
5.4.2 TASKNORM . 87

5.5 Experiments . 89
5.5.1 Small Scale Few-Shot Classification Experiments 89
5.5.2 Large Scale Few-Shot Classification Experiments 92
5.5.3 Transduction Tests . 94
5.5.4 Ablation Study: Choosing the best parameterization for α 95
5.5.5 Evolution of α as Training Progresses . 98

5.6 Summary . 98

6 Conclusions and Discussion 101
6.1 Summary . 101

6.1.1 Primary Contributions . 101
6.2 Discussion . 102

6.2.1 Building a State-of-the-Art Few-shot, Multi-task Image Classifier 102
6.2.2 Future Work . 105

References 109

Appendix A Additional Modeling Details and Experiments 121
A.1 Additional ML-PIP Modeling Details and Experiments 121

A.1.1 Bayesian Decision Theoretic Generalization of ML-PIP 121
A.1.2 Justification for Context-Independent Approximation 123

A.2 Additional CNAPS Few-Shot Classification Results 125
A.2.1 Joint Training of θ and ϕ . 125
A.2.2 Comparison Between CNAPS and Parallel Residual Adapters 126

xiv Table of contents

Appendix B Experiment Details 129
B.1 VERSA Experimentation Details . 129

B.1.1 Omniglot Few-shot Classification Training Procedure 129
B.1.2 miniImageNET Few-shot Classification Training Procedure 130

B.2 CNAPS Experimentation Details . 130
B.2.1 META-DATASET Training and Evaluation Procedure 130
B.2.2 Continual Learning Experimentation Details 132
B.2.3 Active Learning Experimentation Details 133

B.3 TASKNORM Experimentation Details . 134
B.3.1 MAML Experiments . 134
B.3.2 CNAPS Experiments . 134
B.3.3 Prototypical Networks Experiments . 135

Appendix C Network Architectures 137
C.1 VERSA Few-shot Classification Network Architectures 137
C.2 VERSA View Reconstruction Network Architectures 138
C.3 CNAPS Network Architectures . 138

C.3.1 ResNet18 Architecture details . 138
C.3.2 Adaptation Network Architecture Details 138
C.3.3 Linear Classifier Adaptation Network . 140

List of figures

2.1 Sample meta-learning task . 10
2.2 Episodic training . 11
2.3 Directed graphical model for multi-task learning 13
2.4 Model design space . 14
2.5 Residual Adapters . 17
2.6 FiLM layer and its use in a residual network . 20
2.7 Prototypical Networks classification . 22
2.8 Neural process graphical models . 27
2.9 Conditional neural process computational flow 27
2.10 3D model reconstruction from a set of photographs 28
2.11 Meta-learning perspective of view reconstruction 29
2.12 GQN concept and flow diagram . 29
2.13 Omniglot samples . 32
2.14 META-DATASET samples . 34

3.1 Computational flow of VERSA for few-shot classification 43
3.2 Computational flow of VERSA for few-shot view reconstruction 44
3.3 Posterior inference with toy data experiment results 48
3.4 Test accuracy on Omniglot when varying way and shot 51
3.5 Results for ShapeNet view reconstruction for unseen objects 53

4.1 Probabilistic graphical model for CNP framework and computational diagram
depicting the CNAPS model . 59

4.2 Implementation of the class-specific adaptation parameters ψw 62
4.3 Implementation of the feature-extractor . 63
4.4 Adaptation network ϕf . 63
4.5 t-SNE plots of the FiLM layer parameters at test time 69
4.6 Comparing CNAPS to gradient based feature extractor adaptation 69
4.7 Continual learning classification results on Split MNIST and Split CIFAR100 . . 71
4.8 Continual learning results on Split MNIST . 71

xvi List of figures

4.9 Continual learning results on Split CIFAR100 . 76
4.10 Accuracy vs active learning iterations for held-out classes / languages 77
4.11 Complete active learning results on Omniglot . 78

5.1 Options for batch normalization for meta-learning 82
5.2 Plots of α as a function of context set size . 88
5.3 Plot of accuracy vs shot for MAML . 91
5.4 Training curves for small scale experiments . 92
5.5 Training curves for large scale experiments . 95
5.6 Plots of validation accuracy and training loss versus training iteration 99
5.7 Plots of TASKNORM parameters versus training iteration 99
5.8 Plots of α as a function of training iteration and context set size 100

A.1 Visualizing the learned weights . 124
A.2 Visualizing the task weights . 125

List of tables

3.1 Accuracy results for different few-shot settings on Omniglot and miniImageNet 50
3.2 Negative Log-likelihood results on Omniglot and miniImageNet 51
3.3 List of ShapeNet categories used in the view reconstruction experiments 52
3.4 View reconstruction test results . 54

4.1 Few-shot classification results on META-DATASET 67
4.2 Few-shot classification results using models trained on ILSVRC-2012 only . . . 68

5.1 Accuracy results for different few-shot settings on Omniglot and miniImageNet
using MAML . 89

5.2 Accuracy results for different few-shot settings on Omniglot and miniImageNet
using Prototypical Networks . 90

5.3 Few-shot classification results on META-DATASET using CNAPS 93
5.4 Few-shot classification results on META-DATASET using Prototypical Networks 94
5.5 Few-shot classification results when classifying one example and one class at a

time . 96
5.6 Results of α parameterization tests using the MAML algorithm 97
5.7 Results of α parameterization tests using the CNAPS algorithm 98

A.1 Few-shot classification results comparing joint training to two-stage training . . 126
A.2 Few-shot classification results for Parallel Residual Adapters 127

B.1 Datasets used to train, validate, and test CNAPS models 132

C.1 Feature extraction network used for Omniglot few-shot learning 137
C.2 Feature extraction network used for miniImageNet few-shot learning 138
C.3 Amortization network used for Omniglot and miniImageNet few-shot learning 138
C.4 Linear classifier used for Omniglot and miniImageNet few-shot learning 139
C.5 Encoder network used for ShapeNet few-shot learning 139
C.6 Amortization network used for ShapeNet few-shot learning 139
C.7 Generator network used for ShapeNet few-shot learning 140

xviii List of tables

C.8 ResNet-18 basic block network . 140
C.9 ResNet-18 basic scaling block network . 140
C.10 ResNet-18 feature extractor network . 141
C.11 Set encoder g network . 141
C.12 Set encoder ϕf network . 141
C.13 Film generator network . 142
C.14 Adaptation network for classifier weights . 142
C.15 Adaptation network for classifier bias . 142
C.16 Linear classifier network . 142

Nomenclature

Acronyms / Abbreviations

1D 1-Dimensional

2D 2-Dimensional

3D 3-Dimensional

C-VAE Conditional Variational Autoencoder

CNAPS Conditional Neural Adaptive Processes

CNP Conditional Neural Process

Dτ The context set for a task τ

GPU Graphics Processing Unit

GQN Generative Query Network

i.i.d. independent and identically distributed

LSTM Long Short-Term Memory

MAML Model-Agnostic Meta-Learning

MAP Maximum A Posteriori

ML-PIP Meta-learning Probabilistic Inference for Prediction

NL Normalization Layer

NP Neural Process

SVGD Stein Variational Gradient Descent

T τ The target set for a task τ

τ A task in a multi-task learning setting

Chapter 1

Introduction

1.1 Motivation

Humans are able to learn a new concept from just a few examples and can leverage past
experience with concepts in one domain to learn new concepts in a different domain (Lake
et al., 2011). In addition, humans can learn continuously with minimal forgetting of older
concepts. In the quest to emulate this ability, the machine learning community has made
spectacular advances in the areas of computer vision (Krizhevsky et al., 2012), natural language
processing (Devlin et al., 2018), and speech recognition (Xiong et al., 2018). Despite this, to
learn new concepts or tasks, conventional deep learning techniques:

• require thousands of training examples (e.g. training an image classifier on ImageNet to
achieve state of the art accuracy requires 1300 labeled examples per class (Krizhevsky
et al., 2012));

• overfit when only a few training examples are available (Goodfellow et al., 2016);

• have only basic ability for leveraging previous learning (e.g. transfer learning (Pratt et al.,
1991) or fine-tuning (Yosinski et al., 2014)) and this is typically done at training time as
opposed to post-training deployment time;

• exhibit catastrophic forgetting (i.e. the tendency for a neural network to suddenly lose
knowledge it had already learned when learning new information (French, 1999));

• need long training times measured in hours or days, which result in high computation
costs, large power consumption and carbon dioxide emmisions. For example, training
the BERT model (Devlin et al., 2018) takes 79 hours using 64 NVIDIA V100 GPUs, costing
up to USD12,571 of cloud computing time, utilizing an effective 1507 kilowatt-hours of
electricity (about the same as used by the average UK citizen in 15 weeks) and emitting
1438 pounds of carbon dioxide (about the same emitted by the average UK citizen over a
period of 5 weeks) (Strubell et al., 2019);

2 Introduction

• are trained offline using specialized computing platforms (e.g. cloud data center, GPU
cluster, etc.) as opposed to online on common computing devices; and

• have difficulty adding new classes or datasets in the classification setting without re-
training.

On the other hand, we desire machine learning systems that are:

• data efficient: able to learn a new task from only a few examples without over-fitting, but
be resistant to under-fitting if more data is available;

• computation efficient: able to learn a new task rapidly without retraining on common
computing platforms (e.g. on a mobile device);

• make predictions in real-time in a power efficient manner on common computing plat-
forms (e.g. on a mobile device);

• share knowledge across tasks;

• learn continuously, without forgetting.

In this thesis we aim to design, develop, analyze, and extend the theory of machine learning
systems that are both data efficient and computation efficient. During training, our system is
exposed to multiple tasks such that it "learns how to learn" (i.e. meta-learns) to solve new tasks
from only a few examples. The system can effectively and efficiently solve new, unseen tasks
from a broad range of data distributions, in both the low and high data regimes, without the
need for costly retraining. Adapting to a new task requires only a forward pass of the example
task data through the trained network making the learning of new tasks possible on mobile
devices.

In particular, we focus on few-shot image classification systems. We argue that such systems
require mechanisms that adapt to each task, and that these mechanisms should themselves
be learned from a diversity of datasets and tasks at training time. The adaptation mechanism
should affect the entire system, not just the classifier component and the resulting system
should be adept at continual learning.

1.2 Overview and Main Contributions

This section provides an overview of the work contained in this thesis. For each topic, the
main results are summarized and the publications that I co-authored with my supervisors and
fellow students that resulted from the research are cited. My personal contributions to each
topic are listed at the beginning of the respective chapters.

1.2 Overview and Main Contributions 3

VERSA: Meta-Learning Probabilistic Inference For Prediction Chapter 3 introduces a new
framework for data efficient, computation efficient, and versatile learning. Specifically: (i) We
develop ML-PIP, a general framework for Meta-Learning approximate Probabilistic Inference
for Prediction. ML-PIP extends existing probabilistic interpretations of meta-learning to cover
a broad class of methods. (ii) We introduce VERSA, an instance of the framework employing a
fast, flexible and versatile amortization network that takes few-shot learning datasets as inputs,
with arbitrary numbers of training examples, and outputs a distribution over task-specific
parameters in a single forward pass of the network. VERSA substitutes optimization at test time
with forward passes through inference networks, amortizing the cost of inference and relieving
the need for second derivatives during training. (iii) We evaluate VERSA on benchmark
datasets where the method set state-of-the-art results (at the time), handles arbitrary numbers
of training examples, and for classification, arbitrary numbers of classes at train and test time.
The power of the approach is then demonstrated through a challenging few-shot ShapeNet
view reconstruction task.

These results are joint work with my co-first author Jonathan Gordon, as well as Matthias
Bauer, Sebastian Nowozin, and Richard Turner and were published as ‘Meta-Learning Proba-
bilistic Inference For Prediction’ (Gordon et al., 2019) in the ICLR 2019 conference proceedings.

CNAPS: Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive
Processes Chapter 4 builds on the work in the Chapter 3 and adds a second amortized
network to adapt key parameters in the feature extractor to the current task in addition to
adapting the final layer classifier. To accomplish this, we introduce a conditional neural
process based approach to the multi-task classification setting and establish connections to
the meta-learning and few-shot learning literature. The resulting approach, called CNAPS,
comprises a classifier whose parameters are modulated by an adaptation network that takes
the current task’s dataset as input. We demonstrate that CNAPS achieved state-of-the-art
results (at the time) on the challenging META-DATASET benchmark indicating high-quality
transfer-learning. We show that the approach is robust, avoiding both over-fitting in low-shot
regimes and under-fitting in high-shot regimes. Timing experiments reveal that CNAPS is
computationally efficient at test-time as it does not involve gradient based adaptation. Finally,
we show that trained models are immediately deployable to continual learning and active
learning where they can outperform existing approaches that do not leverage transfer learning.

These results are joint work with my co-first authors James Requeima and Jonathan Gordon,
as well as Sebastian Nowozin, and Richard Turner and were published as ‘Fast and Flexible
Multi-Task Classification Using Conditional Neural Adaptive Processes’ (Requeima et al.,
2019b) in the NeurIPS 2019 conference proceedings and was selected for a spotlight talk.

TASKNORM: Rethinking Batch Normalization for Meta-Learning Chapter 3 and Chap-
ter 4 demonstrate that modern meta-learning approaches for image classification rely on

4 Introduction

increasingly deep networks to achieve state-of-the-art performance, making batch normal-
ization an essential component of meta-learning pipelines. However, the hierarchical nature
of the meta-learning setting presents several challenges that can render conventional batch
normalization ineffective, giving rise to the need to rethink normalization in this setting. In
Chapter 5, we evaluate a range of approaches to batch normalization for meta-learning sce-
narios, and develop a novel approach that we call TASKNORM. Experiments on fourteen
datasets demonstrate that the choice of batch normalization has a dramatic effect on both
classification accuracy and training time for both gradient based- and gradient-free meta-
learning approaches. Importantly, TASKNORM is found to consistently improve performance.
Finally, we provide a set of best practices for normalization that will allow fair comparison of
meta-learning algorithms.

These results are joint work with my co-first author Jonathan Gordon, as well as James
Requeima, Sebastian Nowozin, and Richard Turner and were published as ‘TASKNORM:
Rethinking Batch Normalization for Meta-Learning’ in the ICML 2020 conference proceedings.
(Bronskill et al., 2020).

1.3 List of Publications

The following provides a list of all publications I have co-authored in the course of pursuing
my DPhil degree.

1.3.1 Conference Proceedings

Jonathan Gordon*, John Bronskill*, Matthias Bauer, Sebastian Nowozin, and Richard Turner
(2019). ‘Meta-Learning Probabilistic Inference for Prediction’. In: Proceedings of the 7th Interna-
tional Conference on Learning Representations. *equal contribution

James Requeima*, Jonathan Gordon*, John Bronskill*, Sebastian Nowozin, and Richard E.
Turner (2019). ‘Fast and flexible multi-task classification using conditional neural adaptive
processes.’ In: Advances in Neural Information Processing Systems 32, pages 7957–7968. This
paper was selected for a spotlight presentation at the conference. *equal contribution

John Bronskill*, Jonathan Gordon*, James Requeima, Sebastian Nowozin, and Richard E.
Turner (2020). ‘TASKNORM: Rethinking Batch Normalization for Meta-Learning.’ In Proceed-
ings of the 37th International Conference on Machine Learning. *equal contribution

Daniela Massiceti, John Bronskill, Luisa M. Zintgraf, Sebastian Tschiatschek, Katja Hofmann
and Cecily Morrison (2020). ‘Meta-learning from Poor-Quality Videos for Personalised Object
Recognition’ Submitted to: The 2020 European Conference on Computer Vision.

1.3 List of Publications 5

1.3.2 Workshops

Jonathan Gordon*, John Bronskill*, Matthias Bauer, Sebastian Nowozin and Richard E. Turner
(2018). ‘Decision-Theoretic Meta-Learning: Versatile and Efficient Amortization of Few-Shot
Learning’ In: International Workshop on Automatic Machine Learning (AutoML 2018) at Thirty-fifth
International Conference on Machine Learning. *equal contribution

Jonathan Gordon*, John Bronskill*, Matthias Bauer*, Sebastian Nowozin, and Richard E.
Turner (2018). ‘Versa: Versatile and Efficient Few-shot Learning’. In: Third Workshop on Bayesian
Deep Learning at the 32nd Conference on Neural Information Processing Systems. *equal contribution

Jonathan Gordon*, John Bronskill*, Matthias Bauer*, Sebastian Nowozin, and Richard E.
Turner (2018). ‘Consolidating the Meta-Learning Zoo: A Unifying Perspective as Posterior
Predictive Inference’. In: Workshop on Meta-Learning (MetaLearn 2018) at the 32nd Conference on
Neural Information Processing Systems. *equal contribution

1.3.3 Source Code Repositories

John Bronskill, Jonathan Gordon, and Matthias Bauer (2019). Code for ‘Meta-Learning Proba-
bilistic Inference for Prediction’. https://github.com/Gordonjo/versa

John Bronskill, Jonathan Gordon, and James Requeima (2019). Code for ‘Fast and flexible multi-
task classification using conditional neural adaptive processes.’ and ‘TASKNORM: Rethinking
Batch Normalization for Meta-Learning.’ https://github.com/cambridge-mlg/cnaps

https://github.com/Gordonjo/versa
https://github.com/cambridge-mlg/cnaps

Chapter 2

Background

In this chapter, we review the concepts and literature that form the basis of the research work
that follows. First, we give a high-level overview of Meta-Learning, Multi-Task Learning and
Transfer Learning in Section 2.1. In Section 2.2, we explain the concepts that underlie few-shot
learning and then in Section 2.3, we survey the few-shot learning methods that are the most
relevant to the work in this thesis. In Section 2.4, we summarize Neural Processes, a meta-
learning approach that combines the benefits of Gaussian Processes which are probabilistic and
data efficient with the computational efficiency of deep neural networks. We then provide brief
introductions to Continual Learning and Active Learning and their relationship to few-shot
learning methods in Section 2.5 and Section 2.6, respectively. Finally, we describe the primary
datasets used to benchmark few-shot learning methods in Section 2.7.

2.1 Meta-Learning, Multi-Task Learning, and Transfer Learning

Meta-Learning, Multi-Task Learning, and Transfer Learning are all closely related topics that
have a range of definitions depending on the specific domain. In the following, only the main
ideas behind these concepts will be outlined with emphasis on their use in this work.

2.1.1 Meta-Learning

Conventional deep learning learning systems are normally trained to solve a specific prediction
task and in doing so require copious data and computational resources (Krizhevsky et al.,
2012). This can be problematic if training data or computing resources are scarce or impractical
to obtain. A key concept throughout this thesis is meta-learning or learning to learn. In meta-
learning, a machine learning model gains experience over multiple learning tasks and leverages
this past cross-task experience to improve future learning ability. This ability to learn how to
learn leads to benefits in both data and computation efficiency (Hospedales et al., 2020).

8 Background

The concept of meta-learning originated in cognitive psychology (Maudsley, 1980). In
computer science, early approaches to meta-learning include a system called Shift To A Better
Bias (Utgoff, 1986), the variable bias management system (Rendell et al., 1987) which auto-
matically selects between different learning algorithms, and the work by Schmidhuber (1987)
that attempts to learn entire learning algorithms via genetic evolution. Since recurrent neural
networks (RNNs) are universal computers, Schmidhuber (1993) showed how self-referential
RNNs can learn to run their own weight change algorithm. In this work, we focus on more
recent deep learning approaches to meta-learning.

Historically, machine learning models were learned based on hand-engineered features.
In the deep learning era that followed, features were jointly learned with the model. Meta-
learning can be viewed as the next step in this progression by jointly learning the features,
model, and the learning algorithm itself (Hospedales et al., 2020). In the context of this thesis,
we use the term meta-learning to refer to the ability of a system to generate or induce a learning
algorithm to meet the demands of a novel machine learning task based on experience acquired
from prior tasks.

2.1.2 Multi-Task Learning

The goal of multi-task learning (Caruana, 1997) is to improve learning efficiency and accuracy
of prediction on a group of tasks by learning from the group of tasks in parallel, compared to
training on each task separately. It accomplishes this by leveraging a shared representation
between tasks i.e. what is learned for a single task will aid in the learning other tasks. Caruana
(1997) shows that multi-task learning also improves generalization by leveraging the domain-
specific information contained in the training signals of related tasks.

An example of this is a system to filter email that is customized for each user to only
display email that is of importance to them (Edelen et al., 2019). However, some email will
be important to many users, but other email will only be important for a small subset of
users. When implementing such a system, one possibility is train a unique filtering model for
each user in the system. Alternatively, multi-task learning could be employed to potentially
improve overall accuracy across all users by leveraging various commonalities and differences
across the user base. This is especially true if some email users do not receive much email and
hence have little training data to contribute. Caruana (1997) shows reduction of prediction
error by up to 30% on certain tasks using multi-task learning versus single-task learning.

Multi-task learning differs from meta-learning in that the goal of multi-task learning is to
make predictions on a fixed number of tasks whereas the goal of meta-learning is to make
predictions on future tasks that are not seen during training. In addition, multi-task learning
employs a single level of optimization during learning while meta-learning also employs a
higher level objective to learn across many tasks such that a novel task can be rapidly solved.
However, in Chapter 3 and Chapter 4 we demonstrate that multi-task learning principles

2.2 Few-Shot Learning Fundamentals 9

can aid in training neural networks that learn to rapidly generate classifier parameters for
classifying novel tasks.

2.1.3 Transfer Learning

Transfer learning aims to transfer knowledge from one learning task to another related task. In
particular, it is common to use a source task to improve learning on a target task by transferring
some or all of the parameters from the source task to the target task (Hospedales et al., 2020).

For example, it is common to train a classification model on a large image dataset such
as ImageNet (Russakovsky et al., 2015) and use the learned feature representations to aid
classification on a different dataset such as CIFAR (Krizhevsky and Hinton, 2009). This process
is often referred to as fine tuning since the transferred ImageNet features are fine-tuned with
the CIFAR image data.

In an impressive success story, Bird et al. (2020) demonstrate that transfer learning between
the Electroencephalographic (EEG) brainwave domain and the Electromyographic (EMG)
muscular wave domain showed significant gains in classification accuracy. In particular, when
the pre-trained weights from the EMG model are used to initialize training of the EEG model,
classification accuracy increases to 92.83% from 62.37% using random initialization.

Transfer learning differs from meta-learning in that the information transferred via transfer
learning is learned by conventional supervised learning on a source task without use of a
higher-level meta-learning training objective that aims to learn across many tasks such that
it can rapidly learn a new task. That said, in Chapter 4 we show how transfer learning can
be used in conjunction with meta-learning to great effect by employing a pre-trained feature
extractor and modulating it’s activations with meta-learned weights.

2.2 Few-Shot Learning Fundamentals

This thesis is primarily concerned with developing data and computation efficient systems for
multi-task, few-shot image classification and regression based on a meta-learning approach. In
this section, we describe the key ingredients for few-shot learning: task, context and target
sets, as well as a meta-learning training protocol, and a probabilistic view of meta-learning.

2.2.1 Tasks, Context and Target Sets

In the following, we consider the multi-task image classification scenario. Rather than a single,
large dataset D, we assume access to a dataset D = {τt}Kt=1 comprising a large number of
training tasks τt, drawn i.i.d. from a distribution p(τ). The data for a task τ consists of a context
set Dτ = {(xτn,yτn)}Nτ

n=1 with Nτ elements with the inputs xτn and labels yτn observed, and a
target set T τ = {(xτ∗m ,yτ∗m)}Mτ

m=1 with Mτ elements for which we wish to make predictions.
Here the inputs xτ∗ are observed and the labels yτ∗ are only observed during training. The

10 Background

examples from a single task are assumed i.i.d., but examples across tasks are not. Note that
the target set examples are drawn from the same set of labels as the examples in the context
set. An example task is shown in Figure 2.1. In the few-shot learning literature, a task is also
referred to as an episode. In the next section, a task-aware training regime termed episodic
training will be described.

𝑁𝜏 = 8 1 2 3 4 5 6 7 8

𝒙𝜏

𝒚𝜏
Stopwatch

𝑐 = 1

digital
clock
𝑐 = 2

digital
watch
𝑐 = 3

Stopwatch

𝑐 = 1

parking
meter
𝑐 = 4

digital
clock
𝑐 = 2

digital
watch
𝑐 = 3

digital
clock
𝑐 = 2

𝑀𝜏 = 4 1 2 3 4

𝒙𝜏∗

𝒚𝜏∗
parking
meter
𝑐 = 4

digital
watch
𝑐 = 3

stopwatch

𝑐 = 1

digital
clock
𝑐 = 2

C
o

n
te

xt
 S

et

Ta
rg

et
 S

et

Number of classes: 𝐶 = 4

Number of shots per class: 𝑘𝑐 = [2, 3, 2, 1]

Number of queries per class: 𝑞𝑐 = [1, 1, 1, 1]

Fig. 2.1 A sample meta-learning task consisting of a context set Dτ of size Nτ = 8 and a target
set Tτ of size Mτ = 4. Note that the labels yτ∗ would only be observed during training. The
elements of the context and target sets are drawn from four different classes - stopwatch, digital
clock, digital watch, and parking meter. Another task may have different context and target
sizes, different classes, a different number of classes, and different number of examples per
class. Images are examples from ImageNet (Russakovsky et al., 2015).

2.2.2 Episodic Training

The majority of multi-task, few-shot classification methods that are based on meta-learning
concepts use an episodic training and testing protocol introduced by Vinyals et al. (2016). The
key principle behind this protocol is that the training (referred to as meta-training) and testing
(referred to as meta-testing) conditions should match and the system should be meta-trained
with a large number of few-shot learning tasks.

The episodic training and testing protocol is described in the steps below. Figure 2.2 depicts
a generic meta-learning-based multi-task classification system that will be referred to in the
various steps.

Meta-Training

1. Create the context and target sets. Draw a task τ from the training datatset Dtrain as
follows.

• Select the number of classes C or way of the classification task.

2.2 Few-Shot Learning Fundamentals 11

Meta-learner

Classifier

Context Set
𝐷𝜏

Target
Inputs 𝒙𝜏∗

Classifier
Parameters
𝝍𝜏

Few-shot Learner

Loss
Function

Target
Labels 𝒚𝜏∗

𝑝 𝒚𝜏∗ 𝒙𝜏∗, 𝝍𝜏)

Loss

Meta - Training

Meta-learner

Classifier

Context Set
𝐷𝜏

Target
Inputs 𝒙𝜏∗

Classifier
Parameters
𝝍𝜏

Few-shot Learner

𝑝 𝒚𝜏∗ 𝒙𝜏∗, 𝝍𝜏)

Meta - Testing

Meta-learner

Classifier
𝑓(𝒙𝜏∗, 𝜽, 𝝍𝜏)

Context Set
𝐷𝜏

Target
Inputs 𝒙𝜏∗

Classifier
Parameters
𝝍𝜏

Few-shot Learner

Loss
Function ℒ

Target
Labels 𝒚𝜏∗

𝑝 𝒚𝜏∗ 𝒙𝜏∗, 𝝍𝜏, 𝜽)
Loss

Used During
Meta-Training Only

Fig. 2.2 Episodic training. The meta-learner takes the context set Dτ as input and induces
parameters for the classifier ψτ that are specific to task τ . In addition, θ are parameters that
are shared across all tasks. Given these parameters, the classifier can now make predictions
p(yτ∗|xτ∗,ψτ ,θ) on target inputs xτ∗. If in meta-training mode, the predictions and true
labels yτ∗ are passed into a loss function and the computed loss can be used to improve the
meta-learner parameters via back-propagation.

• Select the number of examples kc or shots for each class c ∈ C in the context set Dτ .

• Select the number of examples qc or queries for each class c ∈ C in the target set T τ .

• Sample C classes from Dtrain without replacement.

• Form the context set Dτ by sampling without replacement from each class c ∈ C, kc
image inputs xτ with label yτ = c.

• Form the target set T τ by sampling without replacement from each class c ∈ C, qc
image inputs xτ∗ with label yτ∗ = c.

2. Induce a classifier. Feed the context set Dτ as input to the meta-learner (see Figure 2.2).
The goal of the meta-learner is to process Dτ , and produce a classifier model with
parameters θ that are shared across tasks and ψτ that are specific to task τ .

3. Classify. The resulting task-specific classifier f (see Figure 2.2) can now make predictions
p(yτ∗|xτ∗,ψτ ,θ) for any test inputs xτ∗ ∈ T τ associated with the task.

4. Compute the loss and update the parameters. The predictions p(yτ∗|xτ∗,ψτ ,θ) at the
true target labels yτ∗ are input to a loss function L where the output loss can be used to
back-propagate through the networks and update the parameters of the meta-learner.

5. Iterate. The above steps are repeated until the loss stops decreasing or some other
stopping criteria is met.

12 Background

Meta-testing

1. Same as step 1 in Meta-Training except:

• The task would be drawn from the test set Dtest.

• The target set T τ does not require labels yτ∗.

2. Induce a classifier. Same as step 2 in Meta-Training.

3. Classify. Same as step 3 in Meta-Training.

4. Iterate. Repeat for as many tasks that need to be classified.

Often, the assumption is that meta-test tasks will include classes that have not been seen
during meta-training, and Dτ will contain only a few observations for each class. In the next
section, we cast meta-learning in terms of a probabilistic model.

2.2.3 Hierarchical Probabilistic Modelling View of Meta-Learning

In the previous section, we described the computational flow for a meta-learning approach to
multi-task, few-shot classification. In this section, we take a more formal perspective on the
scenario.

A general and useful view of meta-learning is through the perspective of hierarchical
probabilistic modelling (Heskes, 2000; Bakker and Heskes, 2003; Grant et al., 2018; Gordon
et al., 2019). A standard graphical representation of this modelling approach is presented
in Figure 2.3. Global parameters θ encode information shared across all tasks, while local
parametersψτ encode information specific to task τ . This model introduces a hierarchy of latent
parameters, corresponding to the hierarchical nature of the data distribution. Let Xτ and Y τ

denote all the inputs and outputs (both context and target) for task τ . The joint probability of
the outputs and task specific parameters for T tasks, given the inputs and global parameters is:

p
(
{Y τ ,ψτ}Tτ=1|{Xτ}Tτ=1,θ

)
=

T∏
τ=1

p (ψτ |θ)
Nτ∏
n=1

p (yτn|xτn,ψτ ,θ)
Mτ∏
m=1

p (yτ∗m |xτ∗m ,ψτ ,θ) .

The context set Dτ and xτ∗ are always observed and yτ∗ is observed in training. In this
thesis, we focus primarily on the posterior predictive distribution p (yτ∗|xτ∗, Dτ ,θ) of the
model and we make the following assumptions:

1. yτ |xτ ⊥⊥ xτ∗

2. p(yτ |xτ ,θ) ⊥⊥ ψτ

3. yτ∗ ⊥⊥ Dτ |ψτ

4. xτ∗ only affects ψτ when yτ∗ is observed.

2.2 Few-Shot Learning Fundamentals 13

xτ∗
myτ∗

mψτyτ
nxτ

n

θ

Context Dτ Target T τ
m = 1, ...,Mτn = 1, ..., Nτ

τ=1,...

Fig. 2.3 Directed graphical model for multi-task meta-learning that employs shared parameters
θ, that are common to all tasks, and task specific parameters {ψτ}Tτ=1. The data for a task τ
consists of a context set Dτ = {(xτn,yτn)}

Nτ
n=1 with Nτ elements with the inputs xτn and labels yτn

observed, and a target set T τ = {(xτ∗m ,yτ∗m)}Mτ
m=1 with Mτ elements for which we wish to make

predictions. Here the inputs xτ∗ are observed and the labels yτ∗ are only observed during
training.

A general approach to meta-learning is to design inference procedures for the task-specific
parameters ψτ = ψϕ(D

τ) conditioned on the context set (Grant et al., 2018; Gordon et al.,
2019), where ψ is parameterized by additional parameters ϕ. Thus, a meta-learning algorithm
defines a predictive distribution parameterized by θ and ϕ as p (yτ∗m |xτ∗m ,ψϕ (Dτ) ,θ) . This
perspective relates to the inner and outer loops of meta-learning algorithms (Grant et al., 2018;
Rajeswaran et al., 2019): the inner loop represents adaptation to a given task by using ψϕ to
generate the parameters ψτ as a function of the context set; while the outer loop represents the
meta-training objective by computing the loss between predictions p(yτ∗|xτ∗,ψϕ (Dτ) ,θ) for
target inputs xτ∗ and the true target outputs yτ∗ to update the parameters θ and ϕ that are
shared across tasks.

During meta-training, a task τ is drawn from p(τ) and randomly split into a context set
Dτ and target set T τ . The meta-learning algorithm’s inner-loop is then applied to the context
set to produce ψτ . With θ and ψτ , the algorithm can produce predictions for the target set
inputs xτ∗m . Given a differentiable loss function, and assuming that ψϕ is also differentiable,
the meta-learning algorithm can then be trained with stochastic gradient descent algorithms.
Using log-likelihood as an example loss function, we may express a meta-learning objective
for θ and ϕ as

L(θ,ϕ) = E
p(τ)

[
Mτ∑
m=1

log p (yτ∗m |xτ∗m ,ψϕ (Dτ) ,θ)

]
where {{(xτ∗m ,yτ∗m)}Mτ

m=1, D
τ} ∼ p(τ). (2.1)

14 Background

In the next section, we use this view to summarize a range of meta-learning approaches.

2.3 Meta-learning Methods

There has been an explosion of few-shot learning algorithms proposed in recent years. For
in-depth reviews see Hospedales et al. (2020) and Wang et al. (2019). In this section, we will
summarize the methods most relevant to this thesis. Typically, few-shot learning approaches
are divided into roughly three main approaches including: (i) Gradient-based (ii) Metric
Learning (iii) Amortization / Hypernets. However, in this section, we organize various few-
shot image classification systems (including our own work) in terms of i) the choice of the
parameterization of the classifier (and in particular the nature of the task-specific parameters),
and ii) the function used to compute the task-specific parameters from the context set. This
space is illustrated in Figure 2.4.

Adaptation Mechanism

Faster at Test-Time

Ta

sk
-s

p
ec

if
ic

 P
ar

am
et

er
s

All

Classifier
and

Feature
Adapters

Classifier
Only

Multi-step Gradient Few-step Gradient Semi-Amortized Amortized

Finetune

Residual
Adapters

LEO,
Proto-MAML

CNAPS,
TADAM

VERSA,
Proto Nets,

Matching Nets

MAML Meta-LSTM

M
o

d
el

 F
le

xi
b

ili
ty

CAVIA

Disc. k-shot

Fig. 2.4 Model design space. The y-axis represents the number of task-specific parameters.
Increasing the number task-specific parameters increases model flexibility, but also the propen-
sity to over-fit. The x-axis represents the complexity of the mechanism used to adapt the
task-specific parameters to training data. On the right are amortized approaches (i.e. using
fixed functions). On the left is gradient-based adaptation. Mixed approaches lie between.
Computational efficiency increases to the right. Flexibility increases to the left, but with it
over-fitting and need for hand tuning.

2.3 Meta-learning Methods 15

The choice of task-specific parameters ψτ . Clearly, any approach to multi-task classification
must adapt, at the very least, the top-level classifier layer of the model. A number of successful
models have proposed doing just this with e.g., metric-based approaches (Proto Nets (Snell
et al., 2017)), variational inference (Disc. k-shot (Bauer et al., 2017)), or amortized networks
(VERSA (Gordon et al., 2019) and Chapter 3). On the other end of the spectrum are models that
adapt all the parameters of the classifier, e.g., MAML (Finn et al., 2017), Reptile (Nichol et al.,
2018), Bayesian MAML (Yoon et al., 2018). The trade-off here is clear: as more parameters are
adapted, the resulting model is more flexible, but also slower and more prone to over-fitting.
For this reason, in this thesis we will explore methods that modulate only a small portion of
the network parameters, following recent work on multi-task learning including Residual
Adapters (Rebuffi et al., 2017, 2018), and FiLM layers (Perez et al., 2018).

We argue that just adapting the linear classification layer is sufficient when the task distri-
bution is not diverse, as in the standard benchmarks used for few-shot classification (Omniglot
(Lake et al., 2011) and miniImageNet (Ravi and Larochelle, 2017)). However, when faced with a
diverse set of tasks, such as that introduced recently by Triantafillou et al. (2020), it is important
to adapt the feature extractor on a per-task basis as well.

The adaptation mechanism ψ (Dτ). Adaptation varies in the literature from performing full
gradient descent learning with Dτ (e.g. Fine-tuning (Yosinski et al., 2014)) to relying on simple
operations such as taking the mean of class-specific feature representations (Proto Nets, Match-
ing Nets (Vinyals et al., 2016)). Recent work has focused on reducing the number of required
gradient steps by learning a global initialization (MAML, Reptile) or additional parameters
of the optimization procedure (Meta-LSTM (Ravi and Larochelle, 2017)). Gradient-based
procedures have the benefit of being flexible, but are computationally demanding, and prone
to over-fitting in the low-data regime. Another line of work has focused on learning neural
networks to output the values of ψ, which we denote as amortization (VERSA). Amortization
greatly reduces the cost of adaptation and enables sharing of global parameters, but may suffer
from the amortization gap (Cremer et al., 2018) (i.e., underfitting), particularly in the large data
regime. Recent work has proposed using semi-amortized inference (Proto-MAML Triantafillou
et al. (2020), LEO (Rusu et al., 2018)), but have done so while only adapting the classification
layer parameters. CNAPS (Requeima et al., 2019b) and Chapter 4 and TADAM (Oreshkin
et al., 2018) use an amortized approach to adapt a key set of feature extractor parameters in
addition to the classification layer parameters.

In the following, we group few-shot learning methods in terms of the adaptation mecha-
nism, from multi-step gradient through to few-step gradient, and then amortized approaches.
We’ll then look at semi-amortized approaches that combine few-step gradient and amortization
techniques. We will also cover an additional category that encompasses probabilistic methods
that span the categorization above.

16 Background

2.3.1 Multi-step Gradient Approaches

Multi-step gradient-based approaches for few-shot learning "fine tune" some or all of the
parameters in a model to a particular task by taking as many gradient descent training steps
using the context set data as necessary to optimize classification accuracy, while trying to avoid
over-fitting.

Fine-tuning

A non-episodic baseline to measure meta-learning methods against is referred to as fine-tuning
(Yosinski et al., 2014). Here we pre-train a feature extractor with shared parameters θ off-line
on all the classes of the entire meta-learning training set Dtrain (i.e. the union of all the training
tasks). The final classifier layer of the pre-trained model is then removed and the remaining
layers serve as an embedding function. Note that the meta-training phase is not required when
fine-tuning. During meta-testing, for each task, the removed final layer is replaced with an
untrained fully-connected layer with input size being equal to the embedding function output
dimension and output size equal to the way of the task. The context set data from the test task
is then used to train the new final classifier layer (and optionally to update the parameters
of the pre-trained embedding function as well) using gradient descent or other optimization
method. This network trained on the context set can now be evaluated using the target set
data from the task.

Residual Adapters In addition to fine-tuning the final fully-connected classifier layer, Rebuffi
et al. (2017) also fine-tune a small set of key parameters in the feature extractor. In particular,
they devise two efficient parameterizations for modulating the output feature maps of 2D
convolutional layers in residual neural networks (He et al., 2016) that they call residual adapters.
The idea is to add additional task specific convolution and batch normalization layers with a
small number of parameters to a standard residual layer. Figure 2.5 depicts both the series and
parallel versions of a residual adapter. A compelling aspect is that the new parameterizations
result in the majority of the weights of the residual layer being shared across tasks while
less than 10% of the total weights in a layer are task specific, greatly reducing the number of
parameters that need to be fine-tuned compared to adjusting all of the weights in the feature
extractor network. The authors demonstrate excellent results on a "visual decathlon" challenge
using this approach.

2.3.2 Few-step Gradient Approaches

Few-step gradient-based methods for few-shot learning attempt to learn a good initialization
of model parameters such that only a few gradient steps on the context set data are required to
fine tune the model to a particular task.

2.3 Meta-learning Methods 17

Fig. 2.5 Series (a) versus parallel (b) residual adapters. Standard residual neural network block
components are shown in black and the added residual adapter components are shown in
blue. Diagram from (Rebuffi et al., 2017)

Model Agnostic Meta-Learning (MAML)

Arguably, the most well-known few-shot learning method is a gradient-based approach called
Model Agnostic Meta-Learning (MAML) (Finn et al., 2017). The basic idea is that a model is
initially trained on a variety of tasks such that it can rapidly adapt to any new task by taking
only a few additional gradient steps with only a small number of examples from the new task.
In a nutshell, their method trains models that can easily be “fine-tuned” to a new task. In
other words (referring to Figure 2.2 and Figure 2.3), MAML sets θ to be the initialization of
all the network parameters and the task specific parameters ψτ are the network parameters
after applying one or more gradient steps using the examples in the context set Dτ . More
specifically, to meta-train MAML, let θ be the (initially random) parameters of the classifier f .
Then for each task, compute the task-specific classifier parameters ψτ by taking one or more
inner gradient steps on the context set data Dτ with step size α:

ψτ = θ − α∇θL(fθ(xτ),yτ) (2.2)

18 Background

Then, update the parameters θ by taking a meta (or outer) gradient step with step size β on the
target set with the classifier f using the task-specific parameters ψτ :

θ = θ − β∇θL(fψτ (xτ∗),yτ∗) (2.3)

Note Equation (2.3) requires calculating a gradient through a gradient since f uses the
updated parameters ψτ , which can be computationally and memory intensive. There is a first-
order approximation of MAML which performs almost as well with reduced computational
complexity.

For meta-testing MAML, equation Equation (2.3) is not necessary and it is replaced with a
simple forward pass through the classifier with the task-specific weights:

yτ∗ = fψτ (xτ∗) (2.4)

A key advantage of MAML is that it can work with any model which can be trained with
gradient descent. MAML has been applied to classification, regression, and reinforcement
learning problems with good success, though recent techniques have surpassed it on stan-
dard benchmarks. A downside of MAML is that it requires gradient steps even at meta-test
time, which prohibits the use of MAML on mobile devices as common mobile deep learning
frameworks currently do not support gradient back-propagation computation. In addition,
the original variant of MAML does not provide distributions over parameters or predictions.
In Section 2.3.5 we briefly describe some probabilistic variants of MAML, and in Chapter 3, we
detail ML-PIP, a distributional model for making predictions that includes MAML as a special
case.

Meta-LSTM

(Ravi and Larochelle, 2017) use a Long Short-Term Memory (LSTM) network to learn an
optimizer to directly output the task-specific weight updates based on the context set alleviating
the need to tune the gradient descent step-size.

Reptile

Nichol et al. (2018) devise an algorithm that is closely related to the first-order variant of
MAML, but does not use episodic training (i.e. it does not require the task to be split into
context and target sets). Reptile works by computing multiple gradient steps on a task, and
moving the network weights θ towards the fully trained weights on that task so that at test
time, only a few gradient steps are required to adapt to the new task.

2.3 Meta-learning Methods 19

2.3.3 Amortization via Hypernetworks

A hypernetwork is a network that generates the weights for some or all of another network
(Ha et al., 2016). The main challenge in generating the parameters for a high capacity neural
network is the large number of weights involved. A fully connected layer with d inputs
and k outputs has dk weights plus k biases and a convolutional layer with d input maps, k
output maps, and filter kernel extent f has dkf2 weights plus k biases. The key is to devise a
parameterization such that the generation network needs to infer only a fraction of the total
number of weights in the network.

More typically, in these methods, θ parameterizes a shared feature extractor, and ψ a set of
parameters used to adapt the network to a specific task, which include a linear classifier and
possibly additional parameters of the network. These methods are often described as amortized
as the meta-learner learns to learn how to generate classifier parameters incrementally during
meta-training across a large number of training tasks. Note that a well known technique called
Prototypical Networks (Snell et al., 2017) (described in detail later in this section) can be viewed
in this way as: (i) it employs a shared feature extractor to embed inputs in a feature space;
and (ii) the computation of the mean embedding vector for each class in the context set can
be construed as a simple hypernetwork (with no parameters) that generates the task-specific
classifier parameters.

In the following, we summarize the few-shot learning methods that employ amortization.
Prior to that we review two technologies that play an important role in the implementation of
amortization networks: deep sets and Feature-wise Linear Modulation (FiLM) layers.

Deep-Sets

When processing or learning from a set of elements, it is desirable that the result of the
processing or learning is invariant to the ordering of the elements in the set. Zaheer et al. (2017)
formalizes the result that a function f(S) acting on a set S will be invariant to a permutation in
the elements of S (subject to some restrictions) if it can be decomposed into the form:

f(S) = ρ(
∑
s∈S

ϕ(s)) (2.5)

where ρ and ϕ are transformations. In practice, ρ and ϕ can be arbitrary neural networks and
the sum in Equation (2.5) can be replaced without loss of generality by a mean operation. Qi
et al. (2017) prove (subject to some restrictions) that the sum may also be replaced by a max

operator that takes an arbitrary number of vectors as input and returns a new vector of the
element-wise maximum. This concept will prove to be extremely valuable to meta-learning
systems as a way to summarize a dataset. Deep sets are a key component of many amortization
networks to achieve invariance to the size and ordering of the context set.

20 Background

FiLM Layers An effective and economical approach to adapting a convolutional neural
network based image classifier to a specific task or dataset is to pretrain the network on a
large dataset (such as ImageNet (Krizhevsky et al., 2012)), freeze the learned weights, and then
insert adapter layers with a small number of parameters that will modulate the feature maps at
the output of one or more of the convolutional layers in the network. The parameters for the
adapter layers can be learned using gradient descent (or some other optimization algorithm)
on the context set data or generated by a hypernet using the context set as input. The latter is
the approach taken in this research (see Chapter 4).

A specific realization of this concept is a Feature-wise Linear Modulation (FiLM) layer
(Perez et al., 2018) that scales and shifts the ith feature map fi of the the output of a 2D
convolutional layer FiLM(fi; γi, βi) = γifi + βi using two parameters, γi and βi. Figure 2.6a
illustrates a FiLM layer operating on a convolutional layer, and Figure 2.6b illustrates how
a FiLM layer can be added to a standard Residual network block (He et al., 2016). A key
advantage of FiLM layers is that they enable expressive feature adaptation while adding even
fewer parameters than are required for residual adapters.

FiLM 𝒇𝑖

𝛾𝑖,1 𝛽𝑖,1

+

𝛾𝑖,𝑐ℎ 𝛽𝑖,𝑐ℎ

…

(a) A FiLM layer.

3x3 BN
FiLM
𝒇𝑏1

ReLU 3x3 BN
FiLM
𝒇𝑏2

+ ReLU

block 𝑏

𝑏1 𝑏1 𝑏2 𝑏2

(b) A ResNet basic block with FiLM layers.

Fig. 2.6 (Left) A FiLM layer operating on convolutional feature maps indexed by channel ch.
(Right) How a FiLM layer is used within a basic Residual network block (He et al., 2016).

We now summarize specific amortization-based few-shot learning methods.

Learnet

Bertinetto et al. (2016) describe a system for generating all the parameters of a feed forward
neural network in a single shot. A learnet network is trained offline and learns to generate the
parameters of a second pupil feed-forward network that is optimized for 1-shot learning. The
key innovation is in the factorization of fully connected and convolutional layers such that
there are drastically fewer parameters to predict in the pupil network. The factorization is
analogous to singular value decomposition so that a learnet only needs to predict the diagonal
elements of the fully connected weight matrix resulting in a reduction from dk weights to
d. The same concept is extended to convolutional layers resulting in only df2 weights to be
generated instead of dkf2.

2.3 Meta-learning Methods 21

HyperNetworks

Ha et al. (2016) describe a hypernetwork that is able to generate the weights of convolutional,
residual, Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM) networks
with a dramatic reduction in the number of parameters that need to be generated. To generate
a convolutional layer, the hypernetwork learns the weights of two fully-connected linear layers
with m inputs as well as an embedding vector of size z such that the number of learnable
weights is z + md(z + 1) + f2k(m + 1) compared to dkf2. For image classification tasks,
the hypernetwork approach leads to only a small increase in error rate when compared to a
standard approach.

The following two methods, Prototypical Networks and Matching Networks, are normally
categorized as metric-learning approaches. Metric learning approaches for few-shot classifi-
cation typically map the context set for each task into an embedding space where similar
datapoints are clustered together such that a non-parametric classifier that uses a pre-defined
distance metric can separate out individual classes and predict their label correctly. However,
in our schema, we see these as amortized methods as the generation of the prototypes by
computing the mean of the embedding space vectors for each class of the context set can be
viewed as an amortization network with no learnable parameters.

Prototypical Networks

Snell et al. (2017) approach few-shot classification by learning a non-linear clustering mapping
gθ to an embedding space and then computing distances to prototype representations of each
class. In particular, the prototype for each class c is simply the mean of the embedding vectors
for each class in the context set Dτ of task τ :

Pc =
1

|Dτ
c |
∑
xi∈Dτ

c

gθ (xi) (2.6)

Classification of a new target data point xτ∗ is achieved by calculating a softmax over
distances to the learned prototypes:

p(yτ∗ = c|xτ∗,θ) = exp(−d(gθ(xτ∗),Pc))∑
c′ exp(−d(gθ(xτ∗),Pc′))

(2.7)

where d is the euclidean distance function. Figure 2.7 is a simple depiction of Equation (2.7)
for two-way classification. The objective for learning is to minimize the negative log-probability
of the actual class c via gradient descent. Note that other distance functions such as the cosine
or Mahalanobis distance could be used in place of the euclidean distance for d.

In the context of Figure 2.2 and Figure 2.3, the parameters θ that are shared across tasks
are the parameters of the embedding network g and the parameters ψ are the computed
prototypes Pc and f is a nearest neighbor classifier.

22 Background

𝒙𝜏∗

𝑝 𝒚𝜏∗ = 1 𝒙𝜏∗, 𝜽) =
𝑒−𝑑1

𝑒−𝑑1+𝑒−𝑑2

𝒫1

𝒫2

𝑑1
𝑔𝜽(𝒙

𝜏∗)

𝑑2
𝑔𝜽

Fig. 2.7 Two-way classification of an image xτ∗ using Prototypical Networks. The image xτ∗ is
first mapped through the feature extractor gθ. Next the distance from the each of the two class
prototypes P1 and P2 to the mapped point gθ(xτ∗) is computed and finally the probability of
the image belonging to class 1 can be calculated as shown.

As the classification stage in prototypical networks is non-parametric, it is possible to train
the model using a certain number of shots per class and way and test the model with different
values of shot and way, which adds significant flexibility. The authors found that training with
a higher value of way than was used for testing led to superior classification accuracy. In their
experiments, they tune the value used for way during training based on validation set results.
They hypothesize that training on higher way forces the model to generalize better. However,
they also found that there was no advantage to using a different value for shot in training
versus testing.

Interestingly, prototypical networks can be shown to be equivalent to a linear classifier
with weights Wc,· = 2Pc and biases bc = −∥Pc∥2 (Snell et al., 2017; Triantafillou et al., 2020).
Prototypical Networks can also be viewed as a simple deep sets system - compare the form of
the prototype computation in Equation (2.6) to that of deep sets in Equation (2.5).

In summary, prototypical networks are a simple, flexible, efficient approach which achieves
state of the art results on certain few-shot learning benchmarks.

Matching Networks

The matching networks model (Vinyals et al., 2016) is conceptually similar to prototypical net-
works in that a neural network maps examples into a non-linear embedding space. However,
instead of using a euclidean distance based nearest neighbor classifier, matching networks use
a weighted nearest neighbor classifier where an LSTM-based attention mechanism determines
the weights. When the number of shots is equal to one, prototypical networks and matching
networks are equivalent. When the number of shots is greater than one, the two approaches
differ due to the attention mechanism in matching networks. The approaches also differ in that
prototypical networks use a euclidean distance metric while matching networks use a cosine
distance metric. Snell et al. (2017) demonstrate superior accuracy results using a euclidean
distance in both approaches.

2.3 Meta-learning Methods 23

Few-Shot Image Recognition by Predicting Parameters from Activations

In an approach that has many similarities to Prototypical Networks, Qiao et al. (2018) learn a
mapping ϕ from the activations in a pre-trained neural network to the weights of a final layer
classifier such that the system is capable of high classification accuracy on both the classes it
has been pre-trained on and new classes for which it has seen only a few examples.

More formally (Qiao et al., 2018), let gθ(x) be the activations before the fully connected layer
for a training example image x on a pre-trained feature extraction network with parameters θ.
If Wc are the fully-connected layer weights for class c and Pc (refer to Equation (2.6)) are the
mean activations for the class c, then ϕ :→ PcWc. Note that the 1D weight vectors Wc for each
class c can be learned independently and subsequently concatenated with each other to form
the complete 2D fully connected layer weight matrix. ϕ is learned by minimizing the loss:

L(ϕ) =
∑

(c,x)∈D

[
−ϕ(Pc)gθ(x) + log

∑
c′∈C

eϕ(Pc′)gθ(x)

]
+ λ∥ϕ∥ (2.8)

where D is a large training set with many examples of each of the classes C and ∥ϕ∥ is a
regularizer with weight λ. Once trained, this mapping was shown to work well for data from
unseen classes in a single forward pass at test time. The activation statistic is not restricted
to being the mean - the authors found that the maximum activation was the most effective
for unseen classes. Note that this system is also extremely flexible in that a different number
of classes can be used at test time due to the context independent construction of the fully-
connected classification layer and it is also independent of the number of shots at test time
due to that fact that an aggregate statistic of the activations is used as opposed to an activation
vector of fixed size.

TADAM: Task dependent adaptive metric for improved few-shot learning

Oreshkin et al. (2018) propose a system using a pre-trained convolutional feature extractor
and a prototypical networks based task-specific classifier. The distinguishing feature in the
system is a hypernet that takes the context set as input and outputs FiLM layer (Perez et al.,
2018) parameters that modulate each of the feature maps that result from the convolutional
layers in the feature extractor. The modulation of the activations in the feature extractor allow
the pre-trained feature extractor to adapt to the current task, enhancing classification accuracy.

2.3.4 Semi-amortized Approaches

In the context of few-shot learning, semi-amortized methods refer to systems that have some
inference parameters that are shared / amortized across many tasks and others that require
optimization for each task. In reality, MAML could be construed as semi-amortized as the
inner learning rate and the initial network parameters θ before each inner optimization step

24 Background

are shared across tasks. That is why Figure 2.4 depicts MAML to be between few-shot gradient
and semi-amortized adaptation approaches. Below we summarize few-shot leaning methods
that more fully combine amortization networks and few-step gradient optimization to adapt
parameters to each task.

Proto-MAML

Proto-MAML (Triantafillou et al., 2020) combines the best of both MAML and Prototypical
Networks and demonstrates superior classification accuracy to either of the component meth-
ods. Given that the task specific layer of prototypical networks can be expressed as a linear
classifier, the Proto-MAML task-specific layer is initialized from the prototypical networks
weights and then these weights are updated with gradient steps on the context set using the
MAML algorithm.

Meta-learning with latent embedding optimization (LEO)

Like MAML, LEO (Rusu et al., 2018) is fundamentally a gradient-based learning technique.
However, it differs from MAML in that the gradient steps are not taken in weight-space,
but in a learned lower dimensional latent space from which the task-specific parameters are
generated. The latent space takes as input an encoded version of the context set and outputs a
distribution over classifier weights in a class conditional manner. The system uses a pre-trained
feature extractor whose weights are fixed and the task-specific gradient optimization in the
latent space only affects the top level classifier parameters.

Fast Context Adaptation via Meta-Learning (CAVIA)

CAVIA (Zintgraf et al., 2018) is also a fundamentally gradient-based learning technique. It
differs from MAML in that only a small number of task-specific parameters ψ are updated at
meta-test time as opposed to MAML where all model parameters are updated. The parameters
ψ are extra inputs to the model that modulate its behavior in a task-specific manner. The inner
gradient steps only update ψ and the outer meta-gradient updates the remaining parameters
θ in the model that are shared across tasks. Given that only a small number of parameters
are updated in the inner gradient loop, CAVIA is much less prone to over-fitting compared to
MAML.

2.3.5 Probabilistic Methods

Probabilistic approaches to few-shot learning span various methods for adapting the task
specific parameters of a meta-learning system, but we group them together here. Before
summarizing various probabilistic methods, we first provide a brief overview of variational
inference.

2.3 Meta-learning Methods 25

Variational Inference

While not restricted for use in few-shot learning problems, the use of variational inference
(Zhang et al., 2017) plays an important part in many high-scale, probabilistic few-shot learning
systems. In a nutshell, variational inference is able to convert an intractable Bayesian inference
problem into an optimization problem by approximating the true posterior probability distri-
bution by a simpler, parametric distribution. In probabilistic few shot learning, there are many
inference problems over a large number tasks, each with a small number of training examples,
and it is often impractical to use variational inference to solve each one individually. How-
ever, recent advances in amortized variational inference (Kingma and Welling, 2014; Rezende
et al., 2014) have brought great power and efficiency to variational inference by learning the
parameters of a single neural network (often called a recognition model) to predict each of the
unknown variables.

Probabilistic MAML

Finn et al. (2018) extend MAML using variational inference in order to sample a model for
a new task from a model distribution. The goal of their meta-training phase is to learn a
Gaussian prior specific to each task τ over parameters θ with shared means µθ and variances
σ2
θ . During the meta-testing phase, an initial set of parameters θτ are sampled from the learned

prior and then are used to compute the gradient on the loss with respect to the context set Dτ .
This gradient is then used to compute the parameters adapted to the specific task.

Bayesian MAML

Yoon et al. (2018) take a very different approach to evolving MAML towards a probabilistic
framework. Bayesian MAML essentially replaces the inner gradient descent step in standard
MAML with Stein Variational Gradient Descent (SVGD) (Liu and Wang, 2016). SVGD is a
non-parametric, sampling based variational inference method which allows the approximating
distribution to be arbitrary. To obtain M samples from a target from SVGD, M instances of
the model parameters (called particles) need to be stored and updated. Bayesian MAML is
essentially an ensemble approach with each set of particles representing a sample of weights
from the target distribution. If the number of particles is one, Bayesian MAML reverts to
standard MAML. Classification accuracy increases with the number of particles, however
this comes with the cost of storing additional sets of model parameters. In addition, SVGD
performance is known to degrade as the dimensionality of the problem increases (Zhuo et al.,
2017), limiting its usefulness in high dimensional scenarios.

26 Background

Discriminative k-Shot Learning Using Probabilistic Models

Bauer et al. (2017) employs a fixed pre-trained feature extraction network with parameters
shared across tasks θ and learn a mapping between feature activations and top-layer classifier
weights in a context independent manner, however the authors take a probabilistic approach
to the learning the weights. The top-level weights used in each few-shot classification task
are generated by an inference network that utilizes "conceptual information" from pre-trained
classes as a prior along with the likelihood of the context set. When coupled with a pre-trained,
high capacity feature extraction network such as a ResNet-34 (He et al., 2016), the system
achieves excellent classification accuracy results.

2.4 Neural Processes

A Neural Process (NP) (Garnelo et al., 2018a,b) is a scalable and expressive new class of meta-
learning model that makes predictions on sets of inputs. The goal of neural processes is to
combine the benefits of Gaussian Processes (Rasmussen and Williams, 2005) that utilize prior
knowledge to make inferences with the computational efficiency of neural networks. With
reference to the previous section on categorizing few-shot learning methods, neural processes
can be viewed as an amortized approach. In a neural process, a context set is fed through a
deep sets type network and the pooled result is then passed as a context specific parameter
into a model that makes predictions. Neural processes emerged concurrently with and are
intimately related to the the work in this thesis.

2.4.1 Conditional Neural Processes

The graphical model for a Conditional Neural Process (CNP) is shown on the left side of
Figure 2.8 and the computational flow is shown in Figure 2.9. Referring to Figure 2.9, the CNP
can be decomposed into an encoder and a decoder. The encoder takes as input the context set
Dτ and passes each member of the set through an embedding network with parameters ϕ.
The resulting embeddings from each context set member r1, r2, ..., rNτ are then combined or
pooled with a summation or mean operation to produce a representation of the context set r.
Since the encoder stage takes as input a set, it is often referred to as a set encoder. The decoder
takes the context set representation r, along with the target set inputs xτ∗1 ,x

τ∗
2 , ...x

τ∗
Mτ

as inputs
to a second network with parameters ρ to produce the target set predictions yτ∗1 ,y

τ∗
2 , ...y

τ∗
Mτ

.
Note that this architecture is built directly on the deep sets concept (refer to Equation (2.5)).
The deep sets connection allows the encoder to handle input context sets of arbitrary size and
ensures permutation invariance of the context set members. The CNP target outputs can be
stochastic by generating mean and variance outputs from each that can be sampled from and
provide a measure of uncertainty. CNPs can be used for both regression and classification,

2.4 Neural Processes 27

though the original approach to CNP classification has limitations that will be discussed and
overcome in Chapter 4.

𝑛 = 1,… ,𝑁𝜏

𝒚𝑛
𝜏 𝒙𝑛

𝜏

𝑚 = 1,… ,𝑀𝜏

𝒚𝑚
𝜏∗ 𝒙𝑚

𝜏∗

𝜏 = 1,…

Context Set 𝐷𝜏 Target Set 𝑇𝜏

𝑛 = 1,… ,𝑁𝜏

𝒚𝑛
𝜏 𝒙𝑛

𝜏

𝑚 = 1,… ,𝑀𝜏

𝒚𝑚
𝜏∗ 𝒙𝑚

𝜏∗

𝜏 = 1,…

Context Set 𝐷𝜏 Target Set 𝑇𝜏

𝒁

Conditional Neural Process Neural Process

Fig. 2.8 (Left) Graphical model for a conditional neural process. (Right) Graphical model for a
neural process with latent variable z.

Context Set 𝐷𝜏

𝜙

𝜙

𝜙

⋯

𝑟1

𝑟2

𝑟𝑁𝜏

⋯

∑

(𝒙1
𝜏 , 𝒚2

𝜏)

(𝒙2
𝜏 , 𝒚2

𝜏)

(𝒙𝑁𝜏
𝜏 , 𝒚𝑁𝜏

𝜏)

⋯

𝑟

Encoder

𝜌 𝜌 𝜌⋯

𝒙1
𝜏∗ 𝒙2

𝜏∗ 𝒙𝑀𝜏

𝜏∗

𝒚2
𝜏∗ 𝒚2

𝜏∗ 𝒚𝑀𝜏

𝜏∗

Decoder

Fig. 2.9 Conditional neural process computational flow.

2.4.2 Neural Processes

A NP is a generalization of a CNP. The primary difference is that a NP adds a global (i.e. shared
across tasks) stochastic latent variable z that can be sampled from (refer to Figure 2.8). CNPs
make independent predictions at each target input and do not represent uncertainty in the
underlying function, whereas the the additional latent variable z in a NP allows for this with
better uncertainty estimates as a result.

28 Background

2.4.3 Generative Query Networks for View Reconstruction

There has been much work in the computer vision research community to reconstruct unseen
views or 3-Dimensional (3D) models of a scene from one or more photographs of that scene
taken from different viewpoints. See Figure 2.10 for an example (Furukawa et al., 2015).
Historically, the methods used to solve these problems have been geometry based - see Hartley
and Zisserman (2003) for an excellent overview. More recently, deep learning approaches
have been used as solutions to the reconstruction problems that implicitly learn about scene
geometry and appearance.

Fig. 2.10 3D model reconstruction from a set of photographs. From Furukawa et al. (2015).

Figure 2.11 shows how view reconstruction can be formulated as a meta-learning regression
problem: (i) The context set Dτ for a task τ comprises a small set of viewpoints xτ (which
may be a viewing angle or position in 2D or 3D space) and images yτ that correspond to the
rendered 2D views from the viewpoints; (ii) The meta-learner takes as input the context set
and generates a set of task-specific view parameters ψτ ; (iii) The view generator takes the
task-specific view parameters and a set of novel viewpoints xτ∗ as input along with θ (the
parameters shared across tasks) and generates a predicted view p(yτ∗|xτ∗,ψτ ,θ); (iv) During
meta-training, the predicted view and the ground truth view yτ∗ are fed into a loss function L
and the computed loss is then back-propagated through the view generator and meta-learner
so that their parameters can be improved; (v) The system is trained on many tasks until the loss
no longer decreases at which point the system should generate high fidelity views from unseen
viewpoints. In the following, we will summarize how NPs can be used for view reconstruction.

Eslami et al. (2018) introduce the Generative Query Network (GQN) which given a context
set of images of a simple 3D scene taken from various viewpoints creates an internal repre-
sentation of the scene r and can subsequently infer one or more target images of the scene
taken from new viewpoints. A GQN is essentially an elaborate NP. Figure 2.12 is a conceptual

2.4 Neural Processes 29

Meta-learner

View
Generator

𝑓(𝒙𝜏∗, 𝜽,𝝍𝜏)

Context Set:
𝐷𝜏 = {viewpoints 𝒙𝝉, views 𝒚𝜏}

Target Inputs:
novel viewpoints 𝒙𝜏∗

View
Parameters
𝝍𝜏

Few-shot Learner

Loss
Function ℒ

Ground
Truth
Target
views 𝒚𝜏∗

predicted views
𝑝 𝒚𝜏∗ 𝒙𝜏∗, 𝝍𝜏, 𝜽)

Loss

Used During
Meta-Training Only

Fig. 2.11 Meta-learning perspective of view reconstruction. The meta-learner takes the context
set Dτ consisting of viewpoints xτ and corresponding views yτ as input and induces parame-
ters ψτ for the view generator that are specific to task τ . In addition, θ are parameters of the
view generator that are shared across all tasks. Given these parameters, the view generator
can now predict views p(yτ∗|xτ∗,ψτ ,θ) on target inputs consisting of novel viewpoints xτ∗.
If in meta-training mode, the predictions and ground truth views yτ∗ are passed into a loss
function L (e.g. mean squared error between the predicted and ground truth views) and the
computed loss can be used to improve the model parameters via back-propagation.

flow diagram of the GQN system extracted from (Eslami et al., 2018). Referring to Figure 2.12:
the left side A refers to the context set (denoted with Observations vi); the central part in
B pools the context set with a deep sets style network (denoted with f) to derive the scene
representation r; and finally the right side is the decoder (denoted as the Generation network
g) which generates novel target views using a recurrent neural network (RNN) with layers
h1, h2, . . . hL and input from the scene representation r, the latent variable z, and a target input
(denoted as Query). The system is computationally intensive, but generates impressive results.

Fig. 2.12 GQN concept and flow diagram. From Eslami et al. (2018) with alterations from
Turner (2018).

30 Background

In Chapter 3, we describe a view reconstruction method that is essentially a CNP model,
but our model was published first, though developed concurrently with CNPs.

2.5 Continual Learning and Amortized Inference Methods

Continual or lifelong learning (Ring, 1997) is the ability of a machine learning model to
continuously learn from new data, building on past learning, and without forgetting what it
has learned in the past. Schwarz et al. (2018) compile a clear desiderata for a continual learning
method: (i) It should not catastrophically forget, i.e. it should perform well on previously
learned tasks. (ii) It should exhibit positive forward transfer, i.e. it should learn new tasks with
better performance by building on previously learned tasks. (iii) It should be scalable to a
large number of tasks. (iv) It should exhibit positive backward transfer, i.e. the performance on
previous tasks should improve as it learns new tasks. (v) It should be able to learn without
task labels.

Well known approaches for continual learning include Progress and Compress (Schwarz
et al., 2018), Elastic Weight Consolidation (Kirkpatrick et al., 2017), Variational Continual
Learning (Nguyen et al., 2017), and Riemannian Walk (Chaudhry et al., 2018).

Online learning (Saad, 2009; Hoi et al., 2018) is a simpler form of continual learning where
the learner must continuously make predictions based on a small number of data points
arriving in a streaming fashion. Meta-trained few-shot learners are well suited to this task as
they are trained adapt to a new task with a small context size and make predictions based on
that.

Meta-learning can be used as an approach to continual learning (Hospedales et al., 2020).
For example, a sequence of meta-training tasks can be designed such that the context set
contains only a single new prediction problem, whereas the target set is drawn from all
prediction problems seen up until now. This allows a meta-learner to learn new tasks but also
encourage it to perform well on previously seen problems.

Few-shot classification methods that employ amortization networks (in particular neural
process based methods) can be directly applied to continual learning scenarios since: (i) like
any other few-shot learning system they are meta-trained to adapt to new task data; and
(ii) its deep sets based amortization network can generate a compact summary of a context set
categorized by class, that when persisted can serve as a simple memory of the class data seen
to date which can be easily updated as new data is seen.

In Chapter 4 we show that our meta-trained few-shot image classification system performs
competitively on standard continual learning benchmarks "out of the box" with no specific
training for the continual learning scenario. It does this by effectively adapting to the new
tasks presented, along with a small memory component to aid in retaining previous task data.

2.6 Active Learning and Few-shot Learning 31

2.6 Active Learning and Few-shot Learning

Active learning (Cohn et al., 1996; Settles, 2012) is a specific case of machine learning where
the learning algorithm has the ability to choose its own training data. The assumption is that
the learner has access to a large pool of unlabeled training data and it can select which training
inputs that it would like to have labeled by an oracle (i.e. a human expert). The goal is to choose
the data points that will be the most informative to the learner such that it can make good
predictions without having to label a large number of training points (with the assumption
that labelling a data point is expensive by some measure). Effective active learning systems
require: (i) their predictions to have well-calibrated uncertainty/probability estimates; (ii) the
ability to update their parameters incrementally and sequentially.

Due to the requirement to update parameters incrementally based on a small number of
data points, active learning systems can be viewed as closely related to meta-learning systems.
In particular, a meta-learning view of active learning is as follows (Hospedales et al., 2020): the
inner loop is considered to be the conventional supervised learning task (e.g. classification) that
uses the currently labeled datapoints as the context set, and the unlabeled pool of datapoints
as the target inputs; and the outer loop learns to select the best datapoints to label next.

In Chapter 4, we demonstrate that our meta-learning approach to few-shot image classi-
fication improves significantly over random acquisition of data points to label without any
special training for active learning indicating that our model produces high quality probability
predictions.

2.7 Datasets for Few-Shot Classification

This section describes the standard datasets for evaluating few-shot learning methods. We start
by describing Omniglot, a small and relatively simple dataset of hand drawn characters. In the
standard train-validation-test dataset split for Omniglot, the validation and test sets contain the
same character classes as the train set, and require only a minimal amount of generalization by
the few-shot learning method being evaluated. Next is a more challenging dataset of natural
images called miniImageNet. The dataset is larger as is the size of the constituent images. The
validation and test sets consist of different classes than the train set, so a few-shot learner needs
to generalize to a greater degree compared to Omniglot. However, the overall content of the
dataset is homogeneous, i.e. the character of the test set does not differ significantly from the
train set. Finally, we cover META-DATASET, which is currently one of the the most challenging
few-shot image classification benchmarks. META-DATASET is a dataset of diverse datasets.
The test set not only contains classes that are held out of the train set, but entire datasets are
held out, requiring a few-shot learner to adapt and generalize to data that is very different to
what it was trained on. Also, unlike Omniglot and miniImageNet, the tasks have random shot
and way and present both low and high, shot and way scenarios.

32 Background

2.7.1 Omniglot

Lake et al. (2011) hypothesize that the sharing of the constituent parts of objects is the key to
the one-shot recognition of new objects that may share some of the same component parts
of known objects. In order to test their methods, the authors have created a dataset called
Omniglot that consists of characters culled from 50 different alphabets. Unlike the popular
MNIST (LeCun et al., 2010) handwritten character dataset that has just 10 characters with
thousands of examples of each, Omniglot has over 1600 characters with only 20 examples of
each. As a result, Omniglot has become a defacto standard dataset for benchmarking few-shot
learning methods. The content of Omniglot images is homogeneous - all of the characters are
strokes on a constant color background. The defacto standard Omniglot benchmark includes
the following classification task configurations: (i) 5-way, 1-shot; (ii) 5-way, 5-shot; (iii) 20-way,
1-shot; (iv) 20-way, 5-shot. See Figure 2.13 for several samples from the dataset.

Fig. 2.13 Samples from six Omniglot alphabets. From Bouma (2017).

2.7.2 miniImageNet

miniImageNet is a subset of the larger Imagenet dataset (Russakovsky et al., 2015) created by
Vinyals et al. (2016). It consists of 60,000 color images that is sub-divided into 100 classes, each
with 600 instances. The images have dimensions of 84× 84 pixels. Ravi and Larochelle (2017)

2.7 Datasets for Few-Shot Classification 33

standardized the 64 training, 16 validation, and 20 test class splits. Along with Omniglot,
miniImageNet has become a defacto standard dataset for benchmarking few-shot image
classification methods. miniImageNet is significantly more difficult than Omniglot due to
the fact that the images are color and consist of photographic imagery as opposed to hand-
written characters. The defacto standard miniImageNet benchmark includes the following
classification task configurations: (i) 5-way, 1-shot; (ii) 5-way, 5-shot.

2.7.3 META-DATASET

Despite the ubiquity of Omniglot and miniImageNet protocols for evaluating few-shot clas-
sification algorithms, they exhibit several significant disadvantages. The first is that they
consider only homogeneous tasks (i.e. the tasks consist of a fixed number of classes and a fixed
number of training examples per class), whereas real-life learning tasks are heterogeneous and
consist of a variable number of classes and and an unbalanced number of examples per class.
The second is that the Omniglot and miniImageNet benchmarks only measure in distribution
generalization. Ideally, a meta-trained model should be able to generalize to new distributions
at meta-test time. The third is that Omniglot and miniImageNet benchmarks are saturated
in being able to differentiate the advantages of competing methods. Almost all approaches
can achieve high classification accuracy on Omniglot and while miniImageNet benchmark is
more challenging than Omniglot, most of the recent methods score similarly on it (assuming
the network capacity is held constant), making it difficult to determine which methods are
superior.

Recently, Triantafillou et al. (2020) proposed META-DATASET, a few-shot classification
benchmark that addresses the issue of homogeneous train and test-time tasks and more closely
resembles real-world few-shot multi-task learning by evaluating methods not only on held-out
classes, but also on entirely held-out datasets. Many of the approaches that achieved excellent
performance on simpler benchmarks struggle with this collection of diverse tasks.

META-DATASET is composed of ten (eight train, two test) image classification datasets.
The challenge constructs few-shot learning tasks by drawing from the following distribution.
First, one of the datasets is sampled uniformly; second, the “way” and “shot” are sampled
randomly according to a fixed procedure; third, the classes and context / target instances
are sampled. Where a hierarchical structure exists in the data (ImageNet or Omniglot), task-
sampling respects the hierarchy. In the meta-test phase, the identity of the original dataset is not
revealed and the tasks must be treated independently (i.e. no information can be transferred
between them). Notably, the meta-training set comprises a disjoint and dissimilar set of classes
from those used for meta-test. META-DATASET is presently, the "gold standard" for evaluating
few-shot classification methods.

Referring to Figure 2.14, the ten datasets that comprise META-DATASET are: (a) ImageNet
ILSVRC 2012 (Russakovsky et al., 2015), (b) Omniglot (Lake et al., 2011), (c) Aircraft (Maji et al.,

34 Background

2013), (d) Birds (Wah et al., 2011), (e) Describable Textures (DTD) (Cimpoi et al., 2014), (f) Quick
Draw (Ha and Eck, 2017), (g) Fungi (Schroeder and Cui, 2018), (h) VGG Flower (Nilsback and
Zisserman, 2008), (i) Traffic Signs (Houben et al., 2013), and (j) MSCOCO (Lin et al., 2014).

Fig. 2.14 Samples from the ten constituent datasets that form META-DATASET. From Triantafil-
lou et al. (2020).

2.8 Conclusion

In this chapter, we introduced various background concepts relevant to this thesis including
meta-learning, multi-task learning, transfer learning, and few-shot learning. Focusing on
few-shot image classification, we described a range of methods and categorized them in terms
of the mechanism used to adapt model parameters to a given task and which parameters of
the model are task-specific.

There has been spectacular progress in the field of few-shot learning research in recent
years, spawning a wide array of ever improving techniques. However, there is still much to be
done. In particular:

• There exists no unified theoretical view of few-shot learning methods;

• Most few-shot learning methods are designed for and evaluated on datasets that are
homogeneous in terms of content, requiring only minimal generalization to diverse tasks;

• Little or no attention has been paid to the computational efficiency of few-shot learning
algorithms, especially at test-time, but also at training time.

In response to the above deficiencies, in the following three chapters, we:

2.8 Conclusion 35

• Unify many existing few-shot learning methods, including MAML and Prototypical
Networks, under a general framework that we call Meta-learning approximate Probabilistic
Inference for Prediction or ML-PIP;

• Introduce VERSA and CNAPS, two novel, expressive and flexible amortization based
few-shot image classification algorithms that efficiently adapt to diverse new tasks at
meta-test time;

• Rethink batch normalization for few-shot learning algorithms by: (i) first investigating
the effects of different normalization methods on several few-shot image classification
algorithms in terms of both classification accuracy and training efficiency; and then
(ii) introduce TASKNORM, a new normalization technique that consistently improves
classification accuracy and training efficiency across few-shot learning methods.

Chapter 3

VERSA: Meta-Learning Probabilistic
Inference For Prediction

3.1 Introduction

Due to the large quantity of recent work in few-shot learning (Wang et al., 2019; Hospedales
et al., 2020), notably in meta-learning based approaches (Ravi and Larochelle, 2017; Vinyals
et al., 2016; Edwards and Storkey, 2017; Finn et al., 2017; Lacoste et al., 2018), a unifying view
is needed to understand and improve these methods. Existing frameworks (Grant et al., 2018;
Finn et al., 2018) are limited to specific families of approaches. In this chapter we develop
a framework for meta-learning approximate probabilistic inference for prediction (ML-PIP),
providing this view in terms of amortizing posterior predictive distributions. In Section 3.5, we
show that ML-PIP re-frames and extends existing point-estimate probabilistic interpretations
of meta-learning (Grant et al., 2018; Finn et al., 2018) to cover a broader class of methods,
including gradient based meta-learning (Finn et al., 2017; Ravi and Larochelle, 2017), metric
based meta-learning (Snell et al., 2017), amortized MAP inference (Qiao et al., 2018) and
conditional probability modelling (Garnelo et al., 2018a,b).

The framework incorporates three key elements. First, we leverage shared statistical
structure between tasks via hierarchical probabilistic models developed for multi-task and
transfer learning (Heskes, 2000; Bakker and Heskes, 2003). Second, we share information
between tasks about how to learn and perform inference using meta-learning (Naik and
Mammone, 1992; Thrun and Pratt, 2012; Schmidhuber, 1987). Since uncertainty is rife in
small datasets, we provide a procedure for meta-learning probabilistic inference. Third, we
enable fast learning that can flexibly handle a wide range of tasks and learning settings via
amortization (Kingma and Welling, 2014; Rezende et al., 2014).

Building on the framework, we propose a new method – VERSA – which substitutes
optimization procedures at test time with forward passes through inference networks. This
amortizes the cost of inference, resulting in faster test-time performance, and relieves the need

38 VERSA: Meta-Learning Probabilistic Inference For Prediction

for second derivatives during training. VERSA employs a flexible amortization network that
takes few-shot learning datasets, and outputs a distribution over task-specific parameters in a
single forward pass. The network can handle arbitrary numbers of shots, and for classification,
arbitrary numbers of classes at train and test time (see Section 3.3). In Section 3.6, we evaluate
VERSA on (i) standard benchmarks where (at the time) the method set new state-of-the-art
results, (ii) settings where test conditions (shot and way) differ from training, and (iii) a
challenging one-shot view reconstruction task.

This chapter is based on the conference publication entitled ‘Meta-learning Probabilistic
Inference for Prediction’ (Gordon et al., 2019). As one of two first authors, I contributed
jointly to all aspects of the work including the development the the model, devising the set of
experiments, preparing the datasets, writing the code, performing the experiments, analyzing
the results, and writing the paper.

3.2 Meta-Learning Probabilistic Inference For Prediction

We now present the framework that consists of (i) a multi-task probabilistic model, and (ii) a
method for meta-learning probabilistic inference.

3.2.1 Probabilistic Model

Two principles guide the choice of model. First, the use of discriminative models to maximize
predictive performance on supervised learning tasks (Ng and Jordan, 2002). Second, the need
to leverage shared statistical structure between tasks (i.e. multi-task learning). These criteria
are met by the standard multi-task directed graphical model described earlier in Figure 2.3 that
employs shared parameters θ, which are common to all tasks, and task specific parameters
{ψτ}Tτ=1. Inputs are denoted x and outputs y. Context set Dτ = {(xτn,yτn)}Nτ

n=1, and target set
T τ = {(xτ∗m ,yτ∗m)}Mτ

m=1 are explicitly distinguished for each task τ , as this is key for few-shot
learning.

Let Xτ and Y τ denote all the inputs and outputs (both context and target) for task τ . As
shown in Section 2.2.3, the joint probability of the outputs and task specific parameters for T
tasks, given the inputs and global parameters is:

p
(
{Y τ ,ψτ}Tτ=1|{Xτ}Tτ=1,θ

)
=

T∏
τ=1

p (ψτ |θ)
Nτ∏
n=1

p (yτn|xτn,ψτ ,θ)
Mτ∏
m=1

p (yτ∗m |xτ∗m ,ψτ ,θ) .

3.2 Meta-Learning Probabilistic Inference For Prediction 39

In this work we are interested in the posterior predictive distribution of our model:

p(yτ∗|xτ∗, Dτ ,θ) = p(yτ∗|xτ∗,yτ ,xτ ,θ) (expanding Dτ)

=
p(yτ∗,xτ∗|yτ ,xτ ,θ)
p(yτ |xτ∗,xτ ,θ)

(definition of conditional probability)

=
p(yτ∗,xτ∗|yτ ,xτ ,θ)

p(yτ |xτ ,θ)
(yτ |xτ ⊥⊥ xτ∗)

=

∫
p(yτ∗,yτ ,ψτ |xτ∗,xτ ,θ)dψτ

p(yτ |xτ ,θ)
(numerator contains the joint probability)

=

∫
p(yτ∗,ψτ |xτ∗,xτ ,yτ ,θ)p(yτ |xτ∗,xτ ,θ)dψτ

p(yτ |xτ ,θ)
(chain rule)

=

∫
p(yτ∗|xτ∗,ψτ ,θ)p(ψτ |xτ ,yτ ,θ)p(yτ |xτ∗,xτ ,θ)dψτ

p(yτ |xτ ,θ)
(chain rule)

=

∫
p(yτ∗|xτ∗,ψτ ,θ)p(ψτ |Dτ ,θ)p(yτ |xτ ,θ)dψτ

p(yτ |xτ ,θ)
(yτ |xτ ⊥⊥ xτ∗)

=
p(yτ |xτ ,θ)

∫
p(yτ∗|xτ∗,ψτ ,θ)p(ψτ |Dτ ,θ)dψτ

p(yτ |xτ ,θ)
(p(yτ |xτ ,θ) ⊥⊥ ψτ)

=

∫
p(yτ∗|xτ∗,ψτ ,θ)p(ψτ |Dτ ,θ)dψτ

(3.1)

In the next section, the goal is to meta-learn fast and accurate approximations to the
posterior predictive distribution for unseen tasks τ .

3.2.2 Probabilistic Inference

This section provides a framework for meta-learning approximate inference that is a simple
reframing and extension of existing approaches (Finn et al., 2017; Grant et al., 2018). We will
employ point estimates for the shared parameters θ since data across all tasks will pin down
their value. Distributional estimates will be used for the task-specific parameters since only a
few shots constrain them.

Once the shared parameters are learned, the probabilistic solution to few-shot learn-
ing in the model above comprises two steps. First, form the posterior distribution over
the task-specific parameters p(ψτ |xτ∗, Dτ ,θ). Second, compute the posterior predictive
p(yτ∗|xτ∗, Dτ ,θ). These steps will require approximation and the emphasis here is on perform-
ing this quickly at test time. We will describe the form of the approximation, the optimization
problem used to learn it, and how to implement this efficiently below.

Specification of the approximate posterior predictive distribution. Our framework approx-
imates the posterior predictive distribution by an amortized distribution qϕ(yτ∗|xτ∗, Dτ ,θ).
That is, we learn a feed-forward inference network with parameters ϕ that takes any training

40 VERSA: Meta-Learning Probabilistic Inference For Prediction

dataset Dτ and test input xτ∗ as inputs and returns the predictive distribution over the test
output yτ∗. We construct this by amortizing the approximate posterior qϕ(ψτ |xτ∗, Dτ ,θ) and
then form the approximate posterior predictive distribution using:

qϕ(y
τ∗|xτ∗, Dτ ,θ) =

∫
p(yτ∗|xτ∗,ψτ ,θ)qϕ(ψτ |xτ∗, Dτ ,θ)dψτ . (3.2)

This step may require additional approximation e.g. Monte Carlo sampling. The amortization
will enable fast predictions at test time. The form of these distributions is identical to those
used in amortized variational inference (Edwards and Storkey, 2017; Kingma and Welling,
2014). In this work, we use a factorized Gaussian distribution for qϕ(ψτ |xτ∗, Dτ ,θ) with means
and variances set by the amortization network. However, the training method described next
is different.

Meta-learning the approximate posterior predictive distribution. The quality of the ap-
proximate posterior predictive for a single task will be measured by the KL-divergence between
the true and approximate posterior predictive distribution KL [p(yτ∗|xτ∗, Dτ ,θ)∥qϕ(yτ∗|xτ∗, Dτ ,θ)].
The goal of learning will be to minimize the expected value of this KL averaged over tasks,

ϕ∗ = argmin
ϕ

E
p(Dτ)

[KL [p(yτ∗|xτ∗, Dτ ,θ)∥qϕ(yτ∗|xτ∗, Dτ ,θ)]]

= argmin
ϕ

E
p(Dτ)

[
E

p(yτ∗|Dτ)
[log(p(yτ∗|xτ∗, Dτ ,θ)− log(qϕ(y

τ∗|xτ∗, Dτ ,θ))]

]
= argmax

ϕ
E

p(yτ∗,Dτ)
[log(qϕ(y

τ∗|xτ∗, Dτ ,θ))]

= argmax
ϕ

E
p(yτ∗,Dτ)

[
log

∫
p(yτ∗|xτ∗,ψτ ,θ)qϕ(ψτ |xτ∗, Dτ ,θ)dψτ

]
.

(3.3)

Training will therefore return parameters ϕ that best approximate the posterior predictive
distribution in an average KL sense. So, if the approximate posterior qϕ(ψτ |xτ∗, Dτ ,θ) is
rich enough, global optimization will recover the true posterior p(ψτ |xτ∗, Dτ ,θ) (assuming
p(ψτ |xτ∗, Dτ ,θ) obeys identifiability conditions (Casella and Berger, 2002)).1 Thus, the amor-
tized procedure meta-learns approximate inference that supports accurate prediction. Sec-
tion A.1.1 provides a generalized derivation of the framework, grounded in Bayesian decision
theory (Jaynes, 2003).

The right hand side of Equation (3.3) indicates how training could proceed: (i) select a task
τ at random, (ii) sample some training data Dτ , (iii) form the posterior predictive qϕ(·|Dτ) and,
(iv) compute the log-density log qϕ(y

τ∗|xτ∗, Dτ ,θ) at test data yτ∗ not included inDτ . Repeating
this process many times and averaging the results would provide an unbiased estimate of the

1Note that the true predictive posterior p(yτ∗|xτ∗, Dτ ,θ) is recovered regardless of the identifiability of
p(ψτ |xτ∗, Dτ ,θ).

3.2 Meta-Learning Probabilistic Inference For Prediction 41

objective which can then be optimized. This perspective also makes it clear that the procedure
is scoring the approximate inference procedure by simulating approximate Bayesian held-out
log-likelihood evaluation. Importantly, while an inference network is used to approximate
posterior distributions, the training procedure differs significantly from standard variational
inference. In particular, rather than minimizing KL(qϕ(ψ

τ |xτ∗, Dτ ,θ)∥p(ψτ |xτ∗, Dτ ,θ)), our
objective function directly focuses on the posterior predictive distribution and minimizes
KL [p(yτ∗|xτ∗, Dτ ,θ)∥qϕ(yτ∗|xτ∗, Dτ ,θ)].

End-to-end stochastic training. Armed by the insights above we now layout the full training
procedure. We reintroduce inputs and shared parameters θ and the objective becomes:

L (ϕ) = − E
p(Dτ ,yτ∗,xτ∗)

[log qϕ(y
τ∗|xτ∗, Dτ ,θ)]

= − E
p(D,yτ∗,xτ∗)

[
log

∫
p(yτ∗|xτ∗,ψτ ,θ)qϕ(ψτ |Dτ ,θ)dψτ

]
.

(3.4)

We optimize the objective over the shared parameters θ as this will maximize predictive
performance (i.e., Bayesian held out likelihood). An end-to-end stochastic training objective
for θ and ϕ is:

L̂ (θ,ϕ) = 1

MT

∑
M,T

log
1

L

L∑
l=1

p (yτ∗m |xτ∗m ,ψτl ,θ) , with ψτl ∼ qϕ(ψτ |Dτ ,θ) (3.5)

and {yτ∗m ,xτ∗m , Dτ} ∼ p(y∗,x∗, D), where p represents the data distribution (e.g., sampling
tasks and splitting them into disjoint training data Dτ and test data T τ = {(xτ∗m ,yτ∗m)}Mτ

m=1).
This type of training therefore uses episodic train / test splits at meta-train time. We have also
approximated the integral over ψ using L Monte Carlo samples. Interestingly, the learning
objective does not require an explicit specification of the prior distribution over parameters,
p(ψτ |θ), learning it implicitly through qϕ(ψτ |xτ∗, Dτ ,θ) instead.

We use the local reparametrization trick (Kingma et al., 2015) for efficient computation.
The ’trick’ takes advantage of the fact that for a fully factorized Gaussian posterior on the
inferred classifier weightswτ , the posterior activations p(yτ∗|xτ∗,ψτ ,θ) after multiplying the
feature extractor outputs hθ(xτ∗) by the weights will also be a fully-factorized Gaussian. As a
result, instead of sampling the Gaussian classifier weights individually and then multiplying
them by the feature extractor outputs to get a sample from p(yτ∗|xτ∗,ψτ ,θ), the idea is to
sample p(yτ∗|xτ∗,ψτ ,θ) directly from the distribution over the resulting activations, leading
to a significant computational savings as many fewer variables are sampled. For example, if
the dimension of the feature extractor output is dθ and the task is C-way classification, the local
reparameterization trick reduces the number of samples required from C × dθ to C (a factor
of dθ improvement). Kingma et al. (2015) also show that using the local reparameterization

42 VERSA: Meta-Learning Probabilistic Inference For Prediction

trick also leads to a lower variance gradient estimator which results in faster and more stable
training.

In summary, we have developed an approach for Meta-Learning Probabilistic Inference
for Prediction (ML-PIP). A simple investigation of the inference method with synthetic data is
provided in Section 3.6.1. In Section 3.5 we will show that this formulation unifies a number of
existing approaches, but first we discuss a particular instance of the ML-PIP framework that
supports versatile learning.

3.3 Versatile Amortized Inference

A versatile system is one that makes inferences both rapidly and flexibly. By rapidly we mean
that test-time inference involves only simple computation such as a feed-forward pass through
a neural network. By flexibly we mean that the system supports a variety of tasks – including
variable numbers of shots or numbers of classes in classification problems – without retraining.
Rapid inference comes automatically with the use of a deep neural network to amortize the
approximate posterior distribution q. However, it typically comes at the cost of flexibility:
amortized inference is usually limited to a single specific task. Below, we discuss design
choices that enable us to retain flexibility.

Inference with sets as inputs. The amortization network takes data sets of variable size
as inputs whose ordering we should be invariant to. We use permutation-invariant mean
pooling operations to process these sets as formalized in Zaheer et al. (2017) and described in
Section 2.3.3. The deep sets mean pooling operation ensures that the network can process any
number of training observations.

VERSA for Few-Shot Image Classification. For few-shot image classification, our parame-
terization of the probabilistic model is inspired by early work from Heskes (2000); Bakker
and Heskes (2003) and recent extensions to deep learning (Bauer et al., 2017; Qiao et al., 2018).
A feature extractor neural network hθ(x) ∈ Rdθ , shared across all tasks, feeds into a set of
task-specific linear classifiers with softmax outputs and weights and biases ψτ = {W τ , bτ} (see
Figure 3.1).

A naive amortization requires the approximate posterior qϕ(ψ|D,θ) to model the distri-
bution over full weight matrices in Rdθ×C (and biases). This requires the specification of
the number of few-shot classes C ahead of time and limits inference to this chosen number.
Moreover, it is difficult to meta-learn systems that directly output large matrices as the out-
put dimensionality is high. Inspired by Qiao et al. (2018), we therefore propose specifying
qϕ(ψ|D,θ) in a context independent manner such that each weight vector ψc depends only
on examples from class c, by amortizing individual weight vectors associated with a single

3.3 Versatile Amortized Inference 43

| |
w

(1)
τ · · · w(C)

τ

| |

Linear Classifier

hθ(x
τ∗)xτ∗

θ

p(yτ∗|xτ∗,θ,ψτ)

Feature extraction Softmax output

hθ

(
x
τ(1)
1

)
· · ·hθ

(
x
τ(1)
k1

)
k1 context

examples from
class 1

hθ

(
x
τ(C)
1

)
· · ·hθ

(
x
τ(C)
kC

)
kC context

examples from
class C

ϕ ϕ
Amortization
Network

Amortization Network qϕ

hθ

(
x
τ(1)
1

)
...

hθ

(
x
τ(1)
k

)
ϕpre

ϕpre

h
(1)
1

h
(1)
k

h
(1)

ϕpost

q(w
(1)
τ)

individual fea-
ture extraction

instance
pooling

regression
onto

weights

Fig. 3.1 Computational flow of VERSA for few-shot classification with the context-independent
approximation. Left: A test point xτ∗ is mapped to its softmax output through a feature
extractor neural network and a linear classifier (fully connected layer). The global parameters
θ of the feature extractor are shared between tasks whereas the weight vectorsw(c)

τ of the linear
classifier are task specific and inferred through an amortization network with parameters ϕ.
Right: Amortization network that maps the extracted features of the k training examples of
a particular class to the corresponding weight vector of the linear classifier. The additional
superscript in parentheses associated with each context set example indicates the class.

softmax output instead of the entire weight matrix directly. To reduce the number of learned
parameters, the amortization network operates directly on the extracted features hθ(x):

qϕ(ψ|D,θ) =
C∏
c=1

qϕ

(
ψc|{hθ (xcn)}

kc
n=1, θ

)
. (3.6)

Note that in our implementation, end-to-end training is employed, i.e., we backpropagate to
θ through the inference network. Here kc is the number of observed examples in class c and
ψc = {wc, bc} denotes the weight vector and bias of the linear classifier associated with that
class. Thus, we construct the classification matrix ψτ by performing C feed-forward passes
through the inference network qϕ(ψ|D,θ) (see Figure 3.1).

The assumption of context independent inference is an approximation. In Section A.1.2,
we provide theoretical and empirical justification for its validity. Our theoretical arguments
use insights from Density Ratio Estimation (Mohamed, 2018; Sugiyama et al., 2012), and we
empirically demonstrate that full approximate posterior distributions are close to their context
independent counterparts. Critically, the context independent approximation addresses all
the limitations of a naive amortization mentioned above: (i) the inference network needs
to amortize far fewer parameters whose number does not scale with number of classes C
(a single weight vector instead of the entire matrix); (ii) the amortization network can be
meta-trained with different numbers of classes per task, and (iii) the number of classes C can
vary at test-time.

44 VERSA: Meta-Learning Probabilistic Inference For Prediction

xτ∗

ψτ

Generator

θ

p(yτ∗|xτ∗,θ,ψτ)

(yτ1 ,x
τ
1) (yτk ,x

τ
k)

ϕϕ

Amortization Network ϕ

yτ1

...

yτk

ϕpre

ϕpre

hτ1

xτ1

hτk

xτk

ϕmid

ϕmid

h̃τ1

h̃τk

h
τ

ϕpost

ψτ

individual fea-
ture extraction

instance
pooling

regression onto
stochastic inputs

Fig. 3.2 Computational flow of VERSA for few-shot view reconstruction. Left: A set of training
images and angles {(yτn,xτn)}kn=1 are mapped to a stochastic inputψτ through the amortization
network qϕ. ψτ is then concatenated with a test angle xτ∗ and mapped onto a new image
through the generator θ. Right: Amortization network that maps k image/angle examples
of a particular object-instance to the corresponding stochastic input. The k view images in
the context set {yτn}kn=1 are fed through a feature extraction network with parameters ϕpre to
produce outputs {hτn}kn=1. These outputs are then are concatenated with the k context view
angles {xτn}kn=1. The concatenated vectors are then passed through a network with parameters
ϕmid to produce outputs {h̃τn}kn=1. The outputs of this network are then combined using mean
pooling. Finally, the pooled output is fed through a network with parameters ϕpost to produce
the task specific stochastic output ψτ .

VERSA for Few-Shot Image Reconstruction (Regression). We consider a challenging few-
shot learning task with a complex (high dimensional and continuous) output space. We define
view reconstruction as the ability to infer how an object looks from any desired angle based on
a small set of observed views. We frame this as a multi-output regression task from a set of
training images with known orientations to output images with specified orientations. Refer
to Figure 2.11 and Section 2.4.3 for a meta-learning perspective on view reconstruction.

Our generative model is similar to the generator of a GAN or the decoder of a VAE: A latent
vector ψτ ∈ Rdψ , which acts as an object-instance level input to the generator, is concatenated
with a view angle representation and mapped through the generator to produce an image at
the specified orientation. In this setting, we treat all parameters θ of the generator network as
global parameters (see Section C.2 for full details of the architecture), whereas the latent inputs
ψτ are the task-specific parameters. We use a Gaussian likelihood in pixel space for the outputs
of the generator. To ensure that the output means are between zero and one, we use a sigmoid
activation after the final layer. ϕ parameterizes an amortization network that first processes the
image representations of an object, concatenates them with their associated view orientations,
and processes them further before mean pooling. From the pooled representations, qϕ(ψ|D,θ)
produces a distribution over vectors ψτ . This process is illustrated in Figure 3.2.

3.4 Variational Inference Derivations for the Model 45

3.4 Variational Inference Derivations for the Model

We derive a Variational Inference (VI) based objective for our probabilistic model. VI does
not distinguish between context and target data for each task, consequently we define a VI
task as the union of the context and target data: U τ = Dτ ∪ T τ . By amortized VI we mean that
qϕ(ψ

τ |U τ ,θ) is parameterized by a neural network with a fixed-sized ϕ (Kingma and Welling,
2014; Rezende et al., 2014; Kingma et al., 2015; Blundell et al., 2015). Conversely, non-amortized
VI refers to local parameters ϕτ that are optimized independently (at test time) for each new
task τ , such that q(ψτ |U τ ,θ) = N (ψτ |µϕτ ,Σϕτ). However, the derivation of the objective
function does not change between these options. For a single task τ , an evidence lower bound
(ELBO; (Wainwright and Jordan, 2008)) may be expressed as:

Lτ = Eqϕ(ψτ |Uτ ,θ)

 ∑
(xτ ,yτ)∈Uτ

log p(yτ |xτ ,ψτ ,θ)

−KL [qϕ(ψ
τ |U τ ,θ)∥p(ψτ |θ)] . (3.7)

We can then derive a stochastic estimator to optimize Equation (3.7) by sampling U τ ∼ p(D)

(approximated with a training set of tasks) and simple Monte Carlo integration over ψτ such
that ψτl ∼ qϕ(ψτ |U τ ,θ):

L̂(θ,ϕ) = 1

T

T∑
τ=1

 ∑
(xτ ,yτ)∈Uτ

(
1

L

L∑
l=1

log p(yτ |xτ ,ψτl ,θ)

)
−KL [qϕ(ψ

τ |U τ ,θ)∥p(ψτ |θ)]

 ,

(3.8)
Equation (3.8) differs from our objective function in Equation (3.5) in two important ways:
(i) Equation (3.5) does not contain a KL term for qϕ(ψτ |U τ ,θ) (nor any other form of prior
distribution over ψ), and (ii) Equation (3.7) does not distinguish between training and test data
within a task, and therefore does not explicitly encourage the model to generalize in any way.

In Section 3.6, we show that VERSA significantly improves over standard VI in the few-shot
classification case and compare to recent VI/meta-learning hybrids.

3.5 ML-PIP Unifies Disparate Related Work

In this section, we continue in the spirit of Grant et al. (2018), and recast a broader class of
meta-learning approaches as approximate inference in hierarchical models. We show that
ML-PIP unifies a number of important approaches to meta-learning, including both gradient
and metric based variants, as well as amortized MAP inference and conditional modelling
approaches (Garnelo et al., 2018a). We lay out these connections, most of which rely on point
estimates for the task-specific parameters corresponding to q(ψτ |Dτ ,θ) = δ (ψτ −ψ∗(Dτ ,θ)).
In addition, we compare previous approaches to VERSA.

46 VERSA: Meta-Learning Probabilistic Inference For Prediction

Gradient-Based Meta-Learning. Let the task-specific parameters ψτ be all the parameters
in a neural network. Consider a point estimate formed by taking a step of gradient ascent of
the training loss, initialized at ψ0 and with learning rate η.

ψ∗(Dτ ,θ) = ψ0 + η
∂

∂ψ

Nτ∑
n=1

log p(yτn|xτn,ψ,θ)
∣∣∣∣
ψ0

. (3.9)

This is an example of semi-amortized inference (Kim et al., 2018), as the only shared inference
parameters are the initialization and learning rate, and optimization is required for each task
(albeit only for one step). Importantly, Equation (3.9) recovers MAML (Finn et al., 2017),
providing a perspective as semi-amortized ML-PIP. This perspective is complementary to that
of Grant et al. (2018) who justify the one-step gradient parameter update employed by MAML
through MAP inference and the form of the prior p(ψ|θ). Note that the episodic meta-train /
meta-test splits do not fall out of this perspective. Instead we view the update choice as one
of amortization which is trained using the predictive KL and naturally recovers the test-train
splits. More generally, multiple gradient steps could be fed into an RNN to compute ψ∗

which recovers Ravi and Larochelle (2017). In comparison to these methods, besides being
distributional over ψ, VERSA relieves the need to back-propagate through gradient based
updates during training and compute gradients at test time, as well as enables the treatment of
both local and global parameters which simplifies inference.

Metric-Based Few-Shot Learning. Let the task-specific parameters be the top layer softmax
weights and biases of a neural network ψτ = {wτ

c , b
τ
c}Cc=1. The shared parameters are the

lower layer weights. Consider amortized point estimates for these parameters constructed by
averaging the top-layer activations for each class,

ψτ∗(Dτ ,θ) = {wτ∗
c , b

τ∗
c }Cc=1 =

{
µτc ,−∥µτc∥2/2

}C
c=1

where µτc =
1

kc

kc∑
n=1

hθ(x
τ(c)
n) (3.10)

These choices lead to the following predictive distribution:

p(yτ∗ = c|xτ∗,θ) ∝ exp (−d(hθ(xτ∗), µτc)) = exp

(
hθ(x

τ∗)Tµτc −
1

2
∥µτc∥2

)
, (3.11)

which recovers prototypical networks (Snell et al., 2017) using a Euclidean distance function d
with the final hidden layer being the embedding space. In comparison, VERSA is distributional
and it uses a more flexible amortization function that goes beyond averaging of activations.

Amortized MAP inference. Qiao et al. (2018) proposed a method for predicting weights of
classes from activations of a pre-trained network to support i) online learning on a single task to
which new few-shot classes are incrementally added, ii) transfer from a high-shot classification

3.6 Experiments and Results 47

task to a separate low-shot classification task. This is an example usage of hyper-networks
(Ha et al., 2016) to amortize learning about weights, and can be recovered by the ML-PIP
framework by pre-training θ and performing MAP inference for ψ. VERSA goes beyond
point estimates and although its amortization network is similar in spirit, it is more general,
employing end-to-end training and supporting full multi-task learning by sharing information
between many tasks.

Conditional models trained via maximum likelihood. In cases where a point estimate of
the task-specific parameters are used the predictive becomes

qϕ(y
∗|D,θ) =

∫
p(y∗|ψ,θ)qϕ(ψ|D,θ)dψ = p(y∗|ψ∗(D,θ),θ). (3.12)

In such cases the amortization network that computes ψ∗(D,θ) can be equivalently viewed
as part of the model specification rather than the inference scheme. From this perspective,
the ML-PIP training procedure for ϕ and θ is equivalent to training a conditional model
p(y∗|ψ∗

ϕ(D,θ),θ) via maximum likelihood estimation, establishing a strong connection to
neural processes (Garnelo et al., 2018a,b).

3.6 Experiments and Results

We evaluate VERSA on several few-shot learning tasks. We begin with toy experiments
to investigate the properties of the amortized posterior inference achieved by VERSA. We
then report few-shot classification results using the Omniglot and miniImageNet datasets in
Section 3.6.2, and demonstrate VERSA’s ability to retain high accuracy as the shot and way are
varied at test time. 2

3.6.1 Posterior Inference with Toy Data

To investigate the approximate inference performed by our training procedure, we run the
following experiment. We first generate data from a Gaussian distribution with a mean that
varies across tasks:

p(θ) = δ(θ − 0); p (ψτ |θ) = N
(
ψτ ;θ, σ2ψ

)
; p (yτn|ψτ) = N

(
yτn;ψ

τ , σ2y
)
. (3.13)

We generate T = 250 tasks in two separate experiments, having N ∈ {5, 10} train observations
and M = 15 test observations. We introduce the inference network qϕ(ψ|Dτ) = N (ψ;µτq , σ

τ2
q),

2Source code for the experiments is available at https://github.com/Gordonjo/versa.

https://github.com/Gordonjo/versa

48 VERSA: Meta-Learning Probabilistic Inference For Prediction

ψ(t) ψ(t) ψ(t) ψ(t)

Fig. 3.3 True posteriors p(ψ|D) () and approximate posteriors qϕ(ψ|D) () for unseen test
sets (⋆) in the experiment. In both cases (five and ten shot), the approximate posterior closely
resembles the true posterior given the observed data.

amortizing inference as:

µτq = wµ

N∑
n=1

yτn + bµ, στ2q = exp

(
wσ

N∑
n=1

yτn + bσ

)
. (3.14)

The learnable parameters ϕ = {wµ, bµ,wσ, bσ} are trained with the objective function in
Equation (3.5). The model is trained to convergence with Adam (Kingma and Ba, 2015) using
mini-batches of tasks from the generated dataset. Then, a separate set of tasks is generated
from the same generative process, and the posterior qϕ(ψ|D) is inferred with the learned
amortization parameters. The true posterior over ψ is Gaussian with a mean that depends
on the task, and may be computed analytically. Figure 3.3 shows the approximate posterior
distributions inferred for unseen test sets by the trained amortization networks. The evaluation
shows that the inference procedure is able to recover accurate posterior distributions over ψ,
despite minimizing a predictive KL divergence in data space.

3.6.2 Few-shot Classification

We evaluate VERSA on standard few-shot classification tasks in comparison to previous
work. Specifically, we consider the Omniglot (Lake et al., 2011) and miniImageNet (Ravi
and Larochelle, 2017) datasets which are C-way classification tasks with kc examples per class.
VERSA follows the implementation in Sections 3.2 and 3.3, and the approximate inference
scheme in Equation (3.6). We follow the experimental protocol established by Vinyals et al.
(2016) for Omniglot and Ravi and Larochelle (2017) for miniImagenet, using equivalent architec-
tures for hθ. Training is carried out in an episodic manner: for each task, kc examples are used
as training inputs to infer qϕ(ψ(c)|D,θ) for each class, and an additional set of examples is used
to evaluate the objective function. Full details of data preparation and network architectures
are provided in Section B.1 and Section C.1, respectively.

Table 3.1 details few-shot classification performance for VERSA as well as competitive
approaches.

3.6 Experiments and Results 49

The tables include results for only those approaches with comparable training procedures
and convolutional feature extraction architectures. Approaches that employ pre-training
and/or residual networks (Bauer et al., 2017; Qiao et al., 2018; Rusu et al., 2018; Gidaris and
Komodakis, 2018; Oreshkin et al., 2018; Satorras and Estrach, 2018; Lacoste et al., 2018) have
been excluded so that the quality of the learning algorithm can be assessed separately from the
power of the underlying discriminative model. For Omniglot, the training, validation, and test
splits have not been specified for previous methods, affecting the comparison.

VERSA achieves state-of-the-art results at the time (67.37% - up 1.38% over the previous
best) on 5-way - 5-shot classification on the miniImageNet benchmark and (97.66% - up 0.02%)
on the 20-way - 1 shot Omniglot benchmark for systems using a similar feature extractor
architecture and an end-to-end training procedure. VERSA is within error bars of state-of-the-
art (at the time) on three other benchmarks including 5-way - 1-shot miniImageNet, 5-way
- 5-shot Omniglot, and 5-way - 1-shot Omniglot. Results on the Omniglot 20 way - 5-shot
benchmark are very competitive with, but lower than other approaches. While most of the
methods evaluated in Table 3.1 adapt all of the learned parameters for new tasks, VERSA is
able to achieve state-of-the-art performance despite adapting only the weights of the top-level
classifier.

Comparison to standard and amortized VI. To investigate the performance of our inference
procedure, we compare it in terms of log-likelihood (Table 3.2) and accuracy (Table 3.1) to
training the same model using both amortized and non-amortized VI (i.e., Equation (3.8)).
Derivations and details are provided in Section 3.4. VERSA improves substantially over
amortized VI even though the same amortization network is used for both. This is due to VI’s
tendency to under-fit, especially for small numbers of data points (Trippe and Turner, 2018;
Turner and Sahani, 2011) which is compounded when using inference networks (Cremer et al.,
2018). Using non-amortized VI improves performance substantially, but does not reach the
level of VERSA and forming the posterior is significantly slower as it requires many forward /
backward passes through the network. This is similar in spirit to MAML (Finn et al., 2017),
though MAML dramatically reduces the number of required iterations by finding good global
initializations e.g., five gradient steps for miniImageNet. This is in contrast to the single
forward pass required by VERSA.

Versatility. VERSA allows us to vary the number of classes C and shots kc between training
and testing (Equation (3.6)). Figure 3.4a shows that a model trained for a particular C-way
retains very high accuracy as C is varied. For example, when VERSA is trained for the 20-Way,
5-Shot condition, at test-time it can handle C = 100 way conditions and retain an accuracy
of approximately 94%. Figure 3.4b shows similar robustness as the number of shots kc is
varied. VERSA therefore demonstrates considerable flexibility and robustness to the test-time
conditions, but at the same time it is efficient as it only requires forward passes through the

50 VERSA: Meta-Learning Probabilistic Inference For Prediction

Omniglot miniImageNet
5-way accuracy (%) 20-way accuracy (%) 5-way accuracy (%)

Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Siamese Nets
(Koch et al., 2015)

97.3 98.4 88.1 97.0

Matching Nets
(Vinyals et al., 2016)

98.1 98.9 93.8 98.5 46.6 60.0

Neural Statistician
(Edwards and Storkey,
2017)

98.1 99.5 93.2 98.1

Memory Mod
(Kaiser et al., 2017)

98.4 99.6 95.0 98.6

Meta LSTM
(Ravi and Larochelle,
2017)

43.44 ± 0.77 60.60 ± 0.71

MAML
(Finn et al., 2017)

98.7 ± 0.4 99.9 ± 0.1 95.8 ± 0.3 98.9 ± 0.2 48.7 ± 1.84 63.11 ± 0.92

Prototypical Nets3

(Snell et al., 2017)
97.4 99.3 95.4 98.7 46.61 ± 0.78 65.77 ± 0.70

mAP-SSVM
(Triantafillou et al.,
2017)

98.6 99.6 95.2 98.6 50.32 ± 0.80 63.94 ± 0.72

mAP-DLM
(Triantafillou et al.,
2017)

98.8 99.6 95.4 98.6 50.28 ± 0.80 63.70 ± 0.70

LLAMA
(Grant et al., 2018)

49.40 ± 1.83

PLATIPUS
(Finn et al., 2018)

50.13 ± 1.86

Meta-SGD
(Li et al., 2017)

99.53 ± 0.26 99.93 ± 0.09 95.93 ± 0.38 98.97 ± 0.19 50.47 ± 1.87 64.03 ± 0.94

SNAIL
(Mishra et al., 2018)

99.07 ± 0.16 99.78 ± 0.09 97.64 ± 0.30 99.36 ± 0.18 45.1 55.2

Relation Net
(Sung et al., 2018)

99.6 ± 0.2 99.8 ± 0.1 97.6 ± 0.2 99.1 ± 0.1 50.44 ± 0.82 65.32 ± 0.70

Reptile
(Nichol et al., 2018)

97.68 ± 0.04 99.48 ± 0.06 89.43 ± 0.14 97.12 ± 0.32 49.97 ± 0.32 65.99 ± 0.58

BMAML
(Yoon et al., 2018)

53.8 ± 1.46

Amortized VI 97.77 ± 0.55 98.71 ± 0.22 90.56 ± 0.54 96.12 ± 0.23 44.13 ± 1.78 55.68 ± 0.91
Non-Amortized VI 98.77 ± 0.18 99.74 ± 0.06 95.28 ± 0.19 98.84 ± 0.09
VERSA (Ours) 99.70 ± 0.20 99.75 ± 0.13 97.66 ± 0.29 98.77 ± 0.18 53.40 ± 1.82 67.37 ± 0.86

Table 3.1 Accuracy results for different few-shot settings on Omniglot and miniImageNet.
The ± sign indicates the 95% confidence interval over tasks using a Student’s t-distribution
approximation. Bold text indicates the highest scores that overlap in their confidence intervals.
Blank entries indicate that no result was computed or published for that configuration. Results
for Non-Amortized VI were not computed on miniImageNet due to the lengthy computation
time.

3.6 Experiments and Results 51

Omniglot miniImageNet
5-way NLL 20-way NLL 5-way NLL

Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Amortized VI 0.179 ± 0.009 0.137 ± 0.004 0.456 ± 0.010 0.253 ± 0.004 1.328 ± 0.024 1.165 ± 0.010
Non-Amortized VI 0.144 ± 0.005 0.025 ± 0.001 0.393 ± 0.005 0.078 ± 0.002
VERSA 0.010 ± 0.005 0.007 ± 0.003 0.079 ± 0.009 0.031 ± 0.004 1.183 ± 0.023 0.859 ± 0.015

Table 3.2 Negative Log-likelihood (NLL) results for different few-shot settings on Omniglot and
miniImageNet. The ± sign indicates the 95% confidence interval over tasks using a Student’s
t-distribution approximation. Note that results for Non-Amortized VI were not computed on
miniImageNet due to the lengthy computation time.

network. The time taken to evaluate 1000 test tasks with a 5-way, 5-shot miniImageNet trained
model using MAML (https://github.com/cbfinn/maml) is 302.9 seconds whereas VERSA took
53.5 seconds on a NVIDIA Tesla P100-PCIE-16GB GPU. This is more than 5× speed advantage
in favor of VERSA while bettering MAML in accuracy by 4.26%.

0 20 40 60 80 100

85

90

95

100

M
ea

n
A

cc
ur

ac
y

(%
)

5 way, 1 shot

5 way, 5 shot

20 way, 1 shot

20 way, 5 shot

(a) Way (C)

0 2 4 6 8 10
99

99.2

99.4

99.6

99.8

100

M
ea

n
A

cc
ur

ac
y

(%
)

5 way, 5 shot

5 way, 1 shot

20 way, 5 shot

20 way, 1 shot

(b) Shot (kc)

Fig. 3.4 Test accuracy on Omniglot when varying (a) way (fixing shot to be that used for
training) and (b) shot. In Figure 3.4b, all models are evaluated on 5-way classification. Colors
indicate models trained with different way-shot episodic combinations.

3.6.3 ShapeNet View Reconstruction

ShapeNetCore v2 (Chang et al., 2015) is an annotated database of 3D objects covering 55
common object categories with ∼51,300 unique objects. For our experiments, we use 12 of the
largest object categories. Refer to Table 3.3 for a complete list. We concatenate all instances from
all 12 of the object categories together to obtain a dataset of 37,108 objects. This concatenated
dataset is then randomly shuffled and we use 70% of the objects (25,975 in total) for training,
10% for validation (3,710 in total) , and 20% (7423 in total) for testing. For each object, we
generate V = 36, 128 × 128 pixel image views spaced evenly every 10 degrees in azimuth
around the object. We then convert the rendered images to gray-scale and reduce their size to
be 32× 32 pixels. Again, we train our model in an episodic manner. Each training iteration
consists a batch of one or more tasks. For each task an object is selected at random from the
training set. We train on a single view selected at random from the V = 36 views associated

https://github.com/cbfinn/maml

52 VERSA: Meta-Learning Probabilistic Inference For Prediction

with each object and use the remaining 35 views to evaluate the objective function. We then
generate 36 views of the object with a modified version of our amortization network which
is shown diagrammatically in Figure 3.2. To evaluate the system, we generate views and
compute quantitative metrics over the entire test set. Tables C.5 to C.7 describe the network
architectures for the encoder, amortization, and generator networks, respectively. To train, we
use the Adam (Kingma and Ba, 2015) optimizer with a constant learning rate of 0.0001 with
24 tasks per batch for 500,000 training iterations. In addition, we set dϕ = 256, dψ = 256 and
number of ψ samples to 1.

Object Category sysnet ID Instances

airplane 02691156 4045
bench 02828884 1813
cabinet 02933112 1571
car 02958343 3533
phone 02992529 831
chair 03001627 6778
display 03211117 1093
lamp 03636649 2318
speaker 03691459 1597
sofa 04256520 3173
table 04379243 8436
boat 04530566 1939

Table 3.3 List of ShapeNet categories used in the VERSA view reconstruction experiments.

We evaluate VERSA view reconstruction by comparing it to a conditional variational
autoencoder (C-VAE) with view angles as labels (Kingma et al., 2014; Narayanaswamy et al.,
2017) and identical architectures. We train VERSA in an episodic manner and the C-VAE in
batch-mode on all 12 object classes at once. We train on a single view selected at random
and use the remaining views to evaluate the objective function. Figure 3.5 shows views
of unseen objects from the test set generated from a single shot with VERSA as well as a
C-VAE and compares both to ground truth views. Both VERSA and the C-VAE capture the
correct orientation of the object in the generated images. However, VERSA produces images
that contain much more detail and are visually sharper than the C-VAE images. Although
important information is missing due to occlusion in the single shot, VERSA is often able to
accurately impute this information presumably due to learning the statistics of these objects.
Table 3.4 provides quantitative comparison results between VERSA with varying shot and
the C-VAE. The quantitative metrics all show the superiority of VERSA over a C-VAE. As the
number of shots increase to 5, the measurements show a corresponding improvement.

3.6 Experiments and Results 53

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

shot

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

Fig. 3.5 Results for ShapeNet view reconstruction for unseen objects from the test set (shown
left). The model was trained to reconstruct views from a single orientation. Top row: im-
ages/views generated by a C-VAE model; middle row images/views generated by VERSA;
bottom row: ground truth images. Views are spaced evenly every 30 degrees in azimuth.

54 VERSA: Meta-Learning Probabilistic Inference For Prediction

Model MSE SSIM

C-VAE 1-shot 0.0269 0.5705
VERSA 1-shot 0.0108 0.7893
VERSA 5-shot 0.0069 0.8483

Table 3.4 View reconstruction test results. Mean squared error (MSE – lower is better) and the
structural similarity index (SSIM - higher is better) (Wang et al., 2004) are measured between
the generated and ground truth images. Error bars not shown as they are insignificant.

3.7 Summary

In this chapter, we have introduced ML-PIP, a probabilistic framework for meta-learning. ML-
PIP unifies a broad class of recently proposed meta-learning methods, and suggests alternative
approaches. Building on ML-PIP, we developed VERSA, a few-shot learning algorithm that
avoids the use of gradient based optimization at test time by amortizing posterior inference of
task-specific parameters. We evaluated VERSA on several few-shot learning tasks and at the
time, demonstrated state-of-the-art performance.

3.8 Epilogue

In this section, we capture follow-on work related to ML-PIP and VERSA.

Few-shot classification accuracy continues to climb Since the writing of this paper, there
have been numerous papers describing new approaches to few-shot image classification with
continuously improving results on the miniImageNet benchmark. Most of the improvements
can be attributed to more capable feature extractors that produce superior embeddings. In fact,
two very recent papers (Tian et al., 2020; Chen et al., 2020) argue that using a good pre-trained
embedding combined with fine-tuning a linear classifier or a metric-based classifier can yield
better results than a sophisticated meta-learning algorithm. This is a very interesting result and
certainly demands close scrutiny. However, a potential confounder in these experiments is that
they used settings where these conclusions were drawn using tasks and evaluation conditions
that were homogeneous (i.e. they used fixed way and shot), by only testing on in-distribution
tasks, and in the case of fine tuning, by not considering the cost of doing extensive optimization
at test time. In Chapter 4, we consider much more complex tasks and show that fine-tuning and
metric-learning approaches (such as prototypical networks) can be significantly outperformed.

VERSA view reconstruction compared to CNPs, NPs, and GQN Our work on view recon-
struction was published prior to the Neural Processes (NP), Conditional Neural Process (CNP),
and Generative Query Network (GQN) work summarized in Section 2.4, however the de-

3.8 Epilogue 55

velopment was independent and concurrent. In retrospect, our VERSA view reconstruction
model is almost identical to a CNP. Compare Figure 3.2 and Figure 2.9. The ϕ network that
pools the input context set with a deep sets network in the two models is identical. The
representation r in the CNP maps directly to ψτ in VERSA with the exception that VERSA

retains uncertainty in the parameters, and the CNP decoder with network ρ is the same as
the VERSA view reconstruction decoder with parameters θ. The two systems are precisely
the same when there is no uncertainty in the VERSA qϕ distribution over parameters. When
there is uncertainty, VERSA is closer to a NP model, although the training objective is different
because VERSA does not use variational inference, while a NP does.

GQN view reconstruction was based on a NP (as opposed to a CNP) model and took
advantage of the additional latent variable z to offer superior uncertainty estimates. The GQN
approach also used a much more elaborate decoder based on a recurrent neural network.
The GQN experimental work went considerably further than ours. GQN demonstrated
view reconstruction on simple 3D scenes containing several objects whereas the VERSA view
reconstruction only dealt with a single 3D object.

Variance collapse in ML-PIP In a recent paper that builds on the ML-PIP and VERSA

concepts, Iakovleva et al. (2020) show that training with the approximation in Equation (3.5)
tends to severely underestimate the variance in the inferred task specific weightsψτ , effectively
reducing the VERSA model to be deterministic. We also noticed this in our image classification
experiments. This can occur because the ML-PIP training objective Equation (3.5) is exclusively
focused on the predictive distribution as opposed to the distribution over the learned classifier
weights. In the simple experiment in Section 3.6.1 that uses Gaussian data, we see that
in Figure 3.3 the weight distribution is properly inferred and does not collapse since the
true weight distribution and true predictive distribution are also Gaussian (and identifiable).
However, when doing larger scale image classification experiments, where the distribution
is identifiable to a lesser degree, uncertainty is pushed into label noise instead of parameter
uncertainty, resulting in a collapse of the weight variance.

To avoid this problem, Iakovleva et al. (2020) take a different approach in their system
called SAMOVAR and use amortized variational inference to learn the distribution over the
task specific weights using a loss identical to that used in NPs. When compared directly to
VERSA, the classification accuracy of SAMOVAR is almost identical, though the variance of the
distribution over the weights did not collapse in SAMOVAR as it does in VERSA. A downside
of SAMOVAR is that it requires orders of magnitude greater number of Monte Carlo samples
to achieve optimal classification accuracy, making adaptation to unseen tasks considerably
slower than VERSA.

56 VERSA: Meta-Learning Probabilistic Inference For Prediction

In another recent paper, Foong et al. (2020) present a modified version of the ML-PIP loss
that should avoid the variance collapse:

L̂ (θ,ϕ) = 1

T

∑
T

log

[
1

L

L∑
l=1

exp

(∑
M

p (yτ∗m |xτ∗m ,ψτl ,θ)

)]
, with ψτl ∼ qϕ(ψτ |Dτ ,θ) (3.15)

This improved version of the ML-PIP loss computes the joint likelihood over the target set
compared to the simple average as in Equation (3.5). This small modification in the new
formulation captures correlations in the target set and structure in the predictive distribution,
potentially avoiding the weight variance collapse, though this has yet to be validated in image
classification experiments.

Chapter 4

CNAPS: Fast and Flexible Multi-Task
Classification Using Conditional
Neural Adaptive Processes

4.1 Introduction

In this chapter, we consider the development of general purpose image classification systems
that can handle tasks from a broad range of data distributions, in both the low and high data
regimes, without the need for costly retraining when new tasks are encountered. We argue
that such systems require mechanisms that adapt to each task, and that these mechanisms
should themselves be learned from a diversity of datasets and tasks at training time. This
general approach relates to methods for meta-learning (Schmidhuber, 1987; Thrun and Pratt,
2012) and few-shot learning (Lake et al., 2015). However, existing work in this area typically
considers homogeneous task distributions at train and test-time that therefore require only
minimal adaptation. To handle the more challenging case of different task distributions we
design a fully adaptive system, requiring specific design choices in the model and training
procedure.

Current approaches to meta-learning and few-shot learning for classification are character-
ized by two fundamental trade-offs (refer back to Figure 2.4). (i) The number of parameters
that are adapted to each task. One approach adapts only the top, or head, of the classifier
leaving the feature extractor fixed (Snell et al., 2017; Gordon et al., 2019). While useful in simple
settings, this approach is prone to under-fitting when the task distribution is heterogeneous
(Triantafillou et al., 2020). Alternatively, we can adapt all parameters in the feature extractor
(Finn et al., 2017; Nichol et al., 2018) thereby increasing fitting capacity, but incurring a com-
putation cost and opening the door to over-fitting in the low-shot regime. What is needed
is a middle ground which strikes a balance between model capacity and reliability of the

58
CNAPS: Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive

Processes

adaptation. (ii) The adaptation mechanism. Many approaches use gradient-based adaptation
(Finn et al., 2017; Yosinski et al., 2014). While this approach can incorporate training data
in a very flexible way, it is computationally inefficient at test-time, may require expertise to
tune the optimization procedure, and is again prone to over-fitting. Conversely, function
approximators can be used to directly map training data to the desired parameters (we refer to
this as amortization) (Gordon et al., 2019; Qiao et al., 2018). This yields fixed-cost adaptation
mechanisms, and enables greater sharing across training tasks. However, it may under-fit if the
function approximation is not sufficiently flexible. On the other hand, high-capacity function
approximators require a large number of training tasks to be learned.

We introduce a modelling class that is well-positioned with respect to these two trade-
offs for the multi-task classification setting called Conditional Neural Adaptive Processes
(CNAPS).1 CNAPS directly model the desired predictive distribution (Geisser, 1983, 2017),
thereby introducing a conditional neural processes (CNPs) (Garnelo et al., 2018a) approach to
the multi-task classification setting. CNAPS handles varying way classification tasks and
introduces a parametrization and training procedure enabling the model to learn to adapt
the feature representation for classification of diverse tasks at test time. CNAPS utilize i)
a classification model with shared global parameters and a small number of task-specific
parameters. We demonstrate that by identifying a small set of key parameters, the model
can balance the trade-off between flexibility and robustness. ii) A rich adaptation neural
network with a novel auto-regressive parameterization that avoids under-fitting while proving
easy to train in practice with existing datasets (Triantafillou et al., 2020). In Section 4.5 we
evaluate CNAPS. Recently, Triantafillou et al. (2020) proposed META-DATASET, a few-shot
classification benchmark that addresses the issue of homogeneous train and test-time tasks and
more closely resembles real-world few-shot multi-task learning. Many of the approaches that
achieved excellent performance on simple benchmarks struggle with this collection of diverse
tasks. In contrast, we show that CNAPS achieved (at the time) state-of-the-art performance on
the META-DATASET benchmark, often by comfortable margins and at a fraction of the time
required by competing methods. Finally, we showcase the versatility of the model class by
demonstrating that CNAPS can be applied “out of the box” to continual learning and active
learning.

This chapter is based on the conference publication entitled ‘Fast and Flexible Multi-Task
Classification Using Conditional Neural Adaptive Processes’ (Requeima et al., 2019b). I was
one of the joint-first authors and we all contributed equally to all aspects of the work including
the development the the model, devising the set of experiments, preparing the datasets, writing
the code, performing the experiments, analyzing the results, and writing the paper.

1Source code available at https://github.com/cambridge-mlg/cnaps.

https://github.com/cambridge-mlg/cnaps

4.2 Model Design 59

xτ∗
m

yτ∗
m

ψϕ (D
τ)

Dτ

θ

m = 1, . . .

τ = 1, . . .

(a)

Softmax Output
𝑝 𝒚𝝉∗ 𝒙𝝉∗, 𝜽, 𝝍𝜏)

𝝍𝑓
𝜏 𝝍𝑤

𝜏

𝑤(⋅; 𝝍𝑓)

𝑓𝜃 (𝒙
𝝉∗; 𝝍𝑓

𝜏)𝒙𝝉∗

𝑓𝜃 (⋅; 𝝍𝑓)

𝝍𝑓(⋅; 𝜙𝑓)
𝝍𝑤(⋅; 𝜙𝑤)

{𝒙𝜏}

{𝒚𝜏}
𝑓𝜃 (⋅; 𝝍𝑓)

𝜽 {𝑓𝜃 (𝒙
𝜏; 𝝍𝑓

𝜏)}
𝝍𝑓

𝜏

𝜽

Adaptation Networks

Classification Model

(b)

Fig. 4.1 (a) Probabilistic graphical model detailing the CNP (Garnelo et al., 2018a) framework.
Shaded nodes indicate variables that are observed. The data for a task τ consists of a context set
Dτ = {(xτn,yτn)}Nτ

n=1 with Nτ elements with the inputs xτn and labels yτn observed, and a target
set {(xτ∗m ,yτ∗m)}Mτ

m=1 with Mτ elements for which we wish to make predictions. Here the inputs
xτ∗ are observed and the labels yτ∗ are only observed during training. θ are global classifier
parameters shared across tasks. ψτ are local task-specific parameters, produced by a function
ψϕ(·) that acts on the context set Dτ . ψϕ(·) has another set of global adaptation network
parameters ϕ. θ and ϕ are the learnable parameters in the model. (b) Computational diagram
depicting the CNAPS model class. Red boxes imply parameters in the model architecture
supplied by adaptation networks ψf and ψw. Blue shaded boxes depict the feature extractor
and the gold box depicts the linear classifier. In the lower Adaptation Networks box, the
context set inputs {xτ} are fed into the feature extractor adaptation network ψf to generate the
parameters to adapt the feature extractor to the current task. The context set inputs are then
fed into the adapted feature extractor whose output is passed to the linear classifier adaptation
network ψw which generates the weights for the linear classifier for the current task. In the
upper Classification Model box, the target inputs {xτ∗} are classified by the adapted feature
extractor and linear classifier to produce the labels yτ∗ at the Softmax Output.

4.2 Model Design

We consider a setup where a large number of training tasks are available, each composed of
a set of inputs x and labels y. The data for task τ includes a context set Dτ = {(xτn,yτn)}Nτ

n=1,
with inputs and outputs observed, and a target set {(xτ∗m ,yτ∗m)}Mτ

m=1 for which we wish to make
predictions (yτ∗ are only observed during training). CNPs (Garnelo et al., 2018a) construct
predictive distributions given xτ∗ as:

p (yτ∗|xτ∗,θ, Dτ) = p (yτ∗|xτ∗,θ,ψτ = ψϕ (D
τ)) . (4.1)

Here θ are global classifier parameters shared across tasks. ψτ are local task-specific parameters,
produced by a function ψϕ(·) that acts on Dτ . ψϕ(·) has another set of global parameters ϕ
called adaptation network parameters. θ and ϕ are the learnable parameters in the model (see
Figure 4.1a).

60
CNAPS: Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive

Processes

CNAPS is a model class that specializes the CNP framework for the multi-task classification
setting. The model-class is characterized by a number of design choices, made specifically for
the multi-task image classification setting. CNAPS employ global parameters θ that are trained
offline to capture high-level features, facilitating transfer and multi-task learning. Whereas
CNPs define ψτ to be a fixed dimensional vector used as an input to the model, CNAPS

instead let ψτ be specific parameters of the model itself. This increases the flexibility of the
classifier, enabling it to model a broader range of input / output distributions. We discuss
our choices (and associated trade-offs) for these parameters below. Finally, CNAPS employ a
novel auto-regressive parameterization of ψϕ(·) that significantly improves performance. An
overview of CNAPS and its key components is illustrated in Figure 4.1b.

4.2.1 Specification of the classifier: global θ and task-specific parameters ψτ

We begin by specifying the classifier’s global parameters θ followed by how these are adapted
by the local parameters ψτ .

Global Classifier Parameters. The global classifier parameters will parameterize a feature
extractor fθ(x) whose output is fed into a linear classifier, described below. A natural choice
for fθ(·) in the image setting is a convolutional neural network, e.g., a ResNet (He et al., 2016).
In what follows, we assume that the global parameters θ are fixed and known. In Section 4.3
we discuss the training of θ.

Task-Specific Classifier Parameters: Linear Classification Weights. The final classifica-
tion layer must be task-specific as each task involves distinguishing a potentially unique set of
classes. We use a task specific affine transformation of the feature extractor output, followed
by a softmax. The task-specific weights are denoted ψτw ∈ Rdf×Cτ

(suppressing the biases to
simplify notation), where df is the dimension of the feature extractor output fθ(x) and Cτ is
the number of classes in task τ .

Task-Specific Classifier Parameters: Feature Extractor Parameters. A sufficiently flexible
model must have capacity to adapt its feature representation fθ(·) as well as the classification
layer (e.g. compare the optimal features required for ImageNet versus Omiglot). We therefore
introduce a set of local feature extractor parameters ψτf , and denote fθ(·) the unadapted feature
extractor, and fθ(·;ψτf) the feature extractor adapted to task τ .

It is critical in few-shot multi-task learning to adapt the feature extractor in a parameter-
efficient manner. Unconstrained adaptation of all the feature extractor parameters (e.g. by
fine-tuning (Yosinski et al., 2014)) gives flexibility, but it is also slow and prone to over-fitting
(Triantafillou et al., 2020). Instead, we employ linear modulation of the convolutional feature
maps as proposed by Perez et al. (2018), which adapts the feature extractor through a relatively
small number of task specific parameters.

A FiLM layer (refer back to Section 2.3.3) scales and shifts the ith unadapted feature map
fi in the feature extractor FiLM(fi; γ

τ
i , β

τ
i) = γτi fi + βτi using two task specific parameters, γτi

4.2 Model Design 61

and βτi . FiLM layers enable expressive feature adaptation while adding only a small number
of parameters (Perez et al., 2018). For example, in our implementation we use a ResNet18
with FiLM layers after every convolutional layer. The set of task specific FiLM parameters
(ψτf = {γτi ,βτi }) constitute fewer than 0.7% of the parameters in the model. Despite this, as we
show in Section 5.5, they allow the model to adapt to a broad class of datasets.

4.2.2 Computing the local parameters via adaptation networks

The previous sections have specified the form of the classifier p (yτ∗|xτ∗,θ,ψτ) in terms of the
global and task specific parameters, θ and ψτ = {ψτf ,ψτw}. The local parameters could now
be learned separately for every task τ via optimization. While in practice this is feasible for
small numbers of tasks (see e.g., (Rebuffi et al., 2017, 2018)), this approach is computationally
demanding, requires expert oversight (e.g. for tuning early stopping), and can over-fit in the
low-data regime.

Instead, CNAPS uses a function, such as a neural network, that takes the context set Dτ as
an input and returns the task-specific parameters, ψτ = ψϕ (D

τ). The adaptation network has
parameters ϕ that will be trained on multiple tasks to learn how to produce local parameters
that result in good generalization, a form of meta-learning. Sacrificing some of the flexibility
of the optimisation approach, this method is comparatively cheap computationally (only
involving a forward pass through the adaptation network), automatic (with no need for expert
oversight), and employs explicit parameter sharing (via ϕ) across the training tasks.

Adaptation Network: Linear Classifier Weights. CNAPS represents the linear classifier
weights ψτw as a parameterized function of the form ψτw = ψw(D

τ ;ϕw,ψf ,θ), denoted ψw(Dτ)

for brevity. There are three challenges with this approach: first, the dimensionality of the
weights depends on the task (ψτw is a matrix with a column for each class, see Figure 4.2)
and thus the network must output parameters of different dimensionalities; second, the
number of datapoints in Dτ will also depend on the task and so the network must be able
to take inputs of variable cardinality; third, we would like the model to support continual
learning. To handle the first two challenges we follow Gordon et al. (2019). First, each
column of the weight matrix is generated independently from the context points from that
class ψτw =

[
ψw (Dτ

1) , . . . , ψw (Dτ
C)
]
, an approach which scales to arbitrary numbers of

classes. Second, we employ a permutation invariant architecture (Zaheer et al., 2017; Qi et al.,
2017) for ψw(·) to handle the variable input cardinality (see Section C.3 for details). Third,
as permutation invariant architectures can be incrementally updated (Vartak et al., 2017),
continual learning is supported (as discussed in Section 4.5).

Intuitively, the classifier weights should be determined by the representation of the data
points emerging from the adapted feature extractor. We therefore input the adapted feature
representation of the data points into the network, rather than the raw data points (hence the
dependency of ψw on ψf and θ). To summarize, ψw(·) is a function on sets that accepts as

62
CNAPS: Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive

Processes

input a set of adapted feature representations from Dτ
c , and outputs the cth column of the linear

classification matrix, i.e.,

ψw (Dτ
c ;ϕw,ψf ,θ) = ψw ({fθ (xm;ψf) |xm ∈ Dτ ,ym = c};ϕw) . (4.2)

Here ϕw are learnable parameters of ψw(·). See Figure 4.2 for an illustration.

Split
𝑓𝜃 (𝒙

𝝉; 𝝍𝑓
𝜏)

by class label 𝑦

{𝑓𝜃 (𝒙
𝜏;𝝍𝑓

𝜏)}

{𝒚𝝉 }

𝝍𝑤(·; 𝜙𝑤 , 𝝍𝑓
𝜏 , 𝜽)

{𝑓𝜃 (𝑥𝑘
𝑐; 𝝍𝑓

𝜏)}𝑘=1
𝑘𝑐

(i.e. 𝑘𝑐 train examples
from each class 𝑐)

𝑓𝜃 (𝒙
𝜏∗; 𝝍𝑓

𝜏)

Linear
Classifier 𝑤

Softmax 𝑝 𝒚𝜏∗ 𝒙𝜏∗, 𝜽, 𝝍𝜏)𝑤1 𝑤𝑐 𝑤𝐶
… 𝑏𝑐

𝑏1

𝑏𝐶

…

…

…Shared network for each class 𝑐 in C

Mean Pooling

𝜙𝑏

𝜙𝑤

𝑧𝐶

𝜓𝑤 𝐷𝑖
𝜏 ≔ 𝑤𝑖; 𝑏𝑖

Fig. 4.2 Implementation of functional representation of the class-specific parameters ψw. In
this parameterization, ψcw are the linear classification parameters for class c, and ϕw are the
learnable parameters.

Adaptation Network: Feature Extractor Parameters. CNAPS represents the task-specific
feature extractor parameters ψτf , comprising the parameters of the FiLM layers γτ and βτ in
our implementation, as a parameterized function of the context-set Dτ . Thus, ψf (·;ϕf ,θ) is
a collection of functions (one for each FiLM layer) with parameters ϕf , many of which are
shared across functions. We denote the function generating the parameters for the ith FiLM
layer ψif (·) for brevity.

Our experiments (Section 4.5) show that this mapping requires careful parameterization.
We propose a novel parameterization that improves performance in complex settings with
diverse datasets. Our implementation contains two components: a task-specific representation
that provides context about the task to all layers of the feature extractor (denoted zτG), and an
auto-regressive component that provides information to deeper layers in the feature extractor
concerning how shallower layers have adapted to the task (denoted ziAR). The input to the
ψif (·) network is zi = (zτG, z

i
AR). z

τ
G is computed for every task τ by passing the inputs xτn

through a global set encoder g with parameters in ϕf .
To adapt the lth layer in the feature extractor, it is useful for the system to have access to the

representation of task-relevant inputs from layer l−1. While zG could in principle encode how
layer l − 1 has adapted, we opt to provide this information directly to the adaptation network
adapting layer l by passing the adapted activations from layer l − 1. The auto-regressive
component ziAR is computed by processing the adapted activations of the previous convolutional
block with a layer-specific set encoder (except for the first residual block, whose auto-regressive
component is given by the un-adapted initial pre-processing stage in the ResNet). Both the
global and all layer-specific set-encoders are implemented as permutation invariant functions
(Zaheer et al., 2017; Qi et al., 2017) (see Section C.3 for details). The full parameterization is
illustrated in Figure 4.3, and the architecture of ψif (·) networks is illustrated in Figure 4.4.

4.2 Model Design 63

𝑓𝜃

𝒙𝜏∗
Pre

𝒙𝝉

𝒙𝝉
𝑓𝜃 (𝒙

𝜏∗; 𝝍𝑓
𝜏)

𝑓𝜃 (𝒙
𝝉; 𝝍𝑓

𝜏)
Post

𝝍𝒇(𝐷
𝜏)𝑔 Set Encoder

𝒛𝐺
𝜏

block 2

𝛾1
𝜏, 𝛽1

𝜏

block 1

layer 1

𝜓𝒇
1

𝒛AR
1

𝜓𝒇
1 Set

Encoder

block 2

𝛾2
𝜏, 𝛽2

𝜏

block 1

layer 2

𝜓𝒇
2

𝒛AR
2

𝜓𝒇
2 Set

Encoder

block 2

𝛾3
𝜏, 𝛽3

𝜏

block 1

layer 3

𝜓𝒇
3

𝒛AR
3

𝜓𝒇
3 Set

Encoder

block 2

𝛾4
𝜏, 𝛽4

𝜏

block 1

layer 4

𝜓𝒇
4

𝒛AR
4

𝜓𝒇
4 Set

Encoder

𝑓𝜽
1(𝒙𝝉) 𝑓𝜽

2(𝒙𝝉; 𝝍𝑓
𝜏) 𝑓𝜽

3(𝒙𝝉; 𝝍𝑓
𝜏) 𝑓𝜽

4(𝒙𝝉; 𝝍𝑓
𝜏)

Fig. 4.3 Implementation of the feature-extractor: an independently learned set encoder g
provides a fixed context that is concatenated to the (processed) activations of x from the
previous ResNet block. The inputs zi = (zτG, z

i
AR) are then fed to ψif (·), which outputs the

FiLM parameters for layer i. Green arrows correspond to propagation of auto-regressive
representations. Note that the auto-regressive component ziAR is computed by processing the
adapted activations {f iθ(x;ψτf)} of the previous convolutional block.

𝒁𝐺

Concatenate

𝜙𝒇
𝑖

𝒛𝐴𝑅
𝑖

(𝑙2
p
en

alty)

𝜙
𝑓

𝜷𝑏1

𝜷𝑖𝑏1

𝜙
𝑓

𝜸𝑏1

(𝑙2
p
en

alty)

𝜸𝑖𝑏1

1

(𝑙2
p
en

alty)

𝜙
𝑓

𝜷𝑏2

𝜷𝑖𝑏2

𝜙
𝑓

𝜸𝑏2

(𝑙2
p
en

alty)

𝜸𝑖𝑏2

1

Fig. 4.4 Adaptation network ϕf . Rγibjch andRβibjch denote a vector of regularization weights
that are learned with an l2 penalty.

64
CNAPS: Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive

Processes

4.3 Model Training

The previous section has specified the model (see Figure 4.1b for a schematic). We now
describe how to train the global classifier parameters θ and the adaptation network parameters
ϕ = {ϕf ,ϕw}.

Training the global classifier parameters θ. A natural approach to training the model (origi-
nally employed by CNPs (Garnelo et al., 2018a)) would be to maximize the likelihood of the
training data jointly over θ and ϕ. However, experiments (detailed in Section A.2.1) showed
that it is crucially important to adopt a two stage process instead. In the first stage, θ are
trained on a large dataset (e.g., the training set of ImageNet (Russakovsky et al., 2015; Tri-
antafillou et al., 2020)) in a full-way classification procedure, mirroring standard pre-training.
Second, θ are fixed and ϕ are trained using episodic training over all meta-training datasets in
the multi-task setting. We hypothesize that two-stage training is important for two reasons:
(i) during the second stage, ϕf are trained to adapt fθ(·) to tasks τ by outputting ψτf . As θ
has far more capacity than ψτf , if they are trained in the context of all tasks, there is no need
for ψτf to adapt the feature extractor, resulting in little-to-no training signal for ϕf and poor
generalization. (ii) Allowing θ to adapt during the second phase violates the principle of “train
as you test”, i.e., when test tasks are encountered, θ will be fixed, so it is important to simulate
this scenario during training. Finally, fixing θ during meta-training is desirable as it results in
a dramatic decrease in training time.

Training the adaptation network parametersϕ. Following the work of Garnelo et al. (2018a),
we train ϕwith maximum likelihood. An unbiased stochastic estimator of the log-likelihood
is:

L̂ (ϕ) = 1

MT

T∑
τ=1

Mτ∑
m=1

log p (y∗τm |x∗τ
m ,ψϕ (D

τ) ,θ) , (4.3)

where M =
T∑
τ=1

Mτ and {y∗τm ,x∗τ
m , D

τ} ∼ P̂ , with P̂ representing the data distribution (e.g.,

sampling tasks and splitting them into disjoint context (Dτ) and target data {(x∗τ
m ,y

∗τ
m)}Mτ

m=1).
Maximum likelihood training therefore naturally uses episodic context / target splits often
used in meta-learning. In our experiments we use the protocol defined by Triantafillou et al.
(2020) and META-DATASET for this sampling procedure.

Algorithm for Constructing Stochastic Estimator An algorithm for constructing the stochas-
tic training objective L̂(ϕ; τ) for a single task τ is given in Algorithm 1. CAT(·;π) denotes a
the likelihood of a categorical distribution with parameter vector π. This algorithm can be
used on a batch of tasks to construct an unbiased estimator for the auto-regressive likelihood
of the task outputs.

4.4 Related Work 65

Algorithm 1 Stochastic Objective Estimator for Meta-Training.

1: procedure META-TRAINING({xτ∗m ,yτ∗m }Mm=1, D
τ ,θ,ϕ)

2: ψτf ← ψf ({fθ(xτn)|xτ ∈ Dτ};ϕf)
3: ψτc ← ψw({fθ(xτn;ψτf)|xτ ∈ Dτ ,yτn = c};ϕw) ∀c ∈ Cτ
4: for m ∈ 1, ...,M do
5: πm ← fθ(x

τ∗
m ;ψτf)

Tψτw
6: log p(yτ∗m |πm)← logCAT(yτ∗m ;πm)
7: end for
8: return L̂(ϕ; τ)← 1

M

∑
M

log p(yτ∗m |πm)

9: end procedure

4.4 Related Work

Our work frames multi-task classification as directly modelling the predictive distribution
p(yτ∗|xτ∗,ψ(Dτ)). The perspective allows previous work (Finn et al., 2017; Gordon et al., 2019;
Perez et al., 2018; Ravi and Larochelle, 2017; Rebuffi et al., 2017, 2018; Rusu et al., 2018; Snell
et al., 2017; Triantafillou et al., 2020; Vinyals et al., 2016; Yosinski et al., 2014; Zintgraf et al.,
2018; Bauer et al., 2017) to be organised in terms of i) the choice of the parameterization of the
classifier (and in particular the nature of the local parameters), and ii) the function used to
compute the local parameters from the training data. Refer back to the illustration of this space
in Figure 2.4.

One of the inspirations for our work is conditional neural processes (CNPs) (Garnelo
et al., 2018a). CNPs directly model the predictive distribution p(yτ∗|xτ∗,ψ(Dτ)) and train
the parameters using maximum likelihood. Whereas previous work on CNPs has focused on
homogeneous regression and classification datasets and fairly simple models, here we study
multiple heterogeneous classification datasets and use a more complex model to handle this
scenario. Similarly, our work can be viewed as a deterministic limit of ML-PIP (Gordon et al.,
2019) which employs a distributional treatment of the local-parameters ψ.

A model with design choices closely related to CNAPS is TADAM (Oreshkin et al., 2018).
TADAM employs a similar set of local parameters, allowing for adaptation of both the feature
extractor and classification layer. However, it uses a far simpler adaptation network (lacking
auto-regressive structure) and an expensive and ad-hoc training procedure. Moreover, TADAM
was applied to simple few-shot learning benchmarks (e.g. CIFAR100 and mini-ImageNet)
and sees little gain from feature extractor adaptation. In contrast, we see a large benefit from
adapting the feature extractor. This may in part reflect the differences in the two models, but
we observe that feature extractor adaptation has the largest impact when used to adapt to
different datasets and that two stage training is required to see this. Further differences are our
usage of the CNP framework and the flexible deployment of CNAPS to continual learning
and active learning (see Section 4.5).

66
CNAPS: Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive

Processes

4.5 Experiments and Results

The experiments target three key questions: (i) Can CNAPS improve performance in multi-task
few-shot learning? (ii) Does the use of an adaptation network benefit computational-efficiency
and data-efficiency? (iii) Can CNAPS be deployed directly to complex learning scenarios
like continual learning and active learning? The experiments use the following modelling
choices (see Section C.3 for full details). While CNAPS can utilize any feature extractor, a
ResNet18 (He et al., 2016) is used throughout to enable fair comparison with Triantafillou et al.
(2020). To ensure that each task is handled independently, batch normalization statistics (Ioffe
and Szegedy, 2015) are learned (and fixed) during the pre-training phase for θ. Actual batch
statistics of the test data are never used during meta-training or testing.

Few Shot Classification. The first experiment tackles a demanding few-shot classification
challenge called META-DATASET (Triantafillou et al., 2020). META-DATASET is composed of
ten (eight train, two test) image classification datasets. The challenge constructs few-shot
learning tasks by drawing from the following distribution. First, one of the datasets is sampled
uniformly; second, the “way” and “shot” are sampled randomly according to a fixed procedure;
third, the classes and context / target instances are sampled. Where a hierarchical structure
exists in the data (ILSVRC or OMNIGLOT), task-sampling respects the hierarchy. In the meta-
test phase, the identity of the original dataset is not revealed and the tasks must be treated
independently (i.e. no information can be transferred between them). Notably, the meta-
training set comprises a disjoint and dissimilar set of classes from those used for meta-test.
Full training details are available in Section B.2.1 and (Triantafillou et al., 2020).

Triantafillou et al. (2020) consider two stage training: an initial stage that trains a feature
extractor in a standard classification setting, and a meta-training stage of all parameters in
an episodic regime. For the meta-training stage, they consider two settings: meta-training
only on the META-DATASET version of ILSVRC, and on all meta-training data. We focus on
the latter as CNAPS rely on training data from a variety of training tasks to learn to adapt,
but provide results for the former in Section 4.5. We pre-train θ on the meta-training set of
the META-DATASET version of ILSVRC, and meta-train ϕ in an episodic fashion using all
meta-training data. We compare CNAPS to models considered by Triantafillou et al. (2020),
including their proposed method (Proto-MAML) in Table 4.1. We meta-test CNAPS on three
additional held-out datasets: MNIST (LeCun et al., 2010), CIFAR10 (Krizhevsky and Hinton,
2009), and CIFAR100 (Krizhevsky and Hinton, 2009). As an ablation study, we compare a
version of CNAPS that does not make use of the auto-regressive component zAR, and a version
that uses no feature extractor adaptation. In our analysis of Table 4.1, we distinguish between
two types of generalization: (i) unseen tasks (classes) in meta-training datasets, and (ii) unseen
datasets.

4.5 Experiments and Results 67

Dataset Finetune MatchingNet ProtoNet fo-MAML Proto-MAML
CNAPS

(no ψf)
CNAPS

(no zAR)
CNAPS

ILSVRC 43.1 ± 1.1 36.1 ± 1.0 44.5 ± 1.1 32.4 ± 1.0 47.9 ± 1.1 43.8 ± 1.0 51.3 ± 1.0 52.3 ± 1.0
Omniglot 71.1 ± 1.4 78.3 ± 1.0 79.6 ± 1.1 71.9 ± 1.2 82.9 ± 0.9 60.1 ± 1.3 88.0 ± 0.7 88.4 ± 0.7
Aircraft 72.0 ± 1.1 69.2 ± 1.0 71.1 ± 0.9 52.8 ± 0.9 74.2 ± 0.8 53.0 ± 0.9 76.8 ± 0.8 80.5 ± 0.6
Birds 59.8 ± 1.2 56.4 ± 1.0 67.0 ± 1.0 47.2 ± 1.1 70.0 ± 1.0 55.7 ± 1.0 71.4 ± 0.9 72.2 ± 0.9
Textures 69.1 ± 0.9 61.8 ± 0.7 65.2 ± 0.8 56.7 ± 0.7 67.9 ± 0.8 60.5 ± 0.8 62.5 ± 0.7 58.3 ± 0.7
Quick Draw 47.0 ± 1.2 60.8 ± 1.0 64.9 ± 0.9 50.5 ± 1.2 66.6 ± 0.9 58.1 ± 1.0 71.9 ± 0.8 72.5 ± 0.8
Fungi 38.2 ± 1.0 33.7 ± 1.0 40.3 ± 1.1 21.0 ± 1.0 42.0 ± 1.1 28.6 ± 0.9 46.0 ± 1.1 47.4 ± 1.0
VGG Flower 85.3 ± 0.7 81.9 ± 0.7 86.9 ± 0.7 70.9 ± 1.0 88.5 ± 0.7 75.3 ± 0.7 89.2 ± 0.5 86.0 ± 0.5
Traffic Signs 66.7 ± 1.2 55.6 ± 1.1 46.5 ± 1.0 34.2 ± 1.3 52.3 ± 1.1 55.0 ± 0.9 60.1 ± 0.9 60.2 ± 0.9
MSCOCO 35.2 ± 1.1 28.8 ± 1.0 39.9 ± 1.1 24.1 ± 1.1 41.3 ± 1.0 41.2 ± 1.0 42.0 ± 1.0 42.6 ± 1.1
MNIST 76.0 ± 0.8 88.6 ± 0.5 92.7 ± 0.4
CIFAR10 61.5 ± 0.7 60.0 ± 0.8 61.5 ± 0.7
CIFAR100 44.8 ± 1.0 48.1 ± 1.0 50.1 ± 1.0

Table 4.1 Few-shot classification results on META-DATASET (Triantafillou et al., 2020) using
models trained on all training datasets. All figures are percentages and the ± sign indicates
the 95% confidence interval over tasks. Bold text indicates the scores within the confidence
interval of the highest score. Tasks from datasets below the dashed line were not used for
training. Competing methods’ results from (Triantafillou et al., 2020).

Unseen tasks: CNAPS achieve significant improvements over existing methods on seven of
the eight datasets. The exception is the TEXTURES dataset, which has only seven test classes
and accuracy is highly sensitive to the train / validation / test class split. The ablation study
demonstrates that removing zAR from the feature extractor adaptation degrades accuracy in
most cases, and that removing all feature extractor adaptation results in drastic reductions in
accuracy.

Unseen datasets: CNAPS-models outperform all competitive models at the time with the
exception of FINETUNE on the TRAFFIC SIGNS dataset. Removing zAR from the feature extractor
decreases accuracy and removing the feature extractor adaptation entirely significantly impairs
performance. The degradation is particularly pronounced when the held out dataset differs
substantially from the dataset used to pretrain θ, e.g. for MNIST.

Note that the superior results when using the auto-regressive component can not be
attributed to increased network capacity alone. In Section A.2.2 we demonstrate that CNAPS

yields superior classification accuracy when compared to parallel residual adapters (Rebuffi
et al., 2018) even though CNAPS requires significantly less network capacity in order to adapt
the feature extractor to a given task.

Few-Shot Classification Results When Training on ILSVRC-2012 only Table 4.2 shows
few-shot classification results on META-DATASET when trained on ILSVRC-2012 only. We
emphasize that this scenario does not capture the key focus of our work, and that these results
are provided mainly for completeness and compatibility with the work of Triantafillou et al.

68
CNAPS: Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive

Processes

Dataset Finetune MatchingNet ProtoNet fo-MAML Proto-MAML CNAPS

ILSVRC 45.8±1.1 45.0±1.1 50.5±1.1 36.1±1.0 51.0±1.1 50.6±1.1
Omniglot 60.9±1.6 52.3±1.3 60.0±1.4 38.7±1.4 63.0±1.4 45.2±1.4
Aircraft 68.7±1.3 49.0±0.9 53.1±1.0 34.5±0.9 55.3±1.0 36.0±0.8
Birds 57.3±1.3 62.2±1.0 68.8±1.0 49.1±1.2 66.9±1.0 60.7±0.9
Textures 69.1±0.9 64.2±0.9 66.6±0.8 56.5±0.8 67.8±0.8 67.5±0.7
Quick Draw 42.6±1.2 42.9±1.1 49.0±1.1 27.2±1.2 53.7±1.1 42.3±1.0
Fungi 38.2±1.0 34.0±1.0 39.7±1.1 23.5±1.0 38.0±1.1 30.1±0.9
VGG Flower 85.5±0.7 80.1±0.7 85.3±0.8 66.4±1.0 86.9±0.8 70.7±0.7
Traffic Signs 66.8±1.3 47.8±1.1 47.1±1.1 33.2±1.3 51.2±1.1 53.3±0.9
MSCOCO 34.9±1.0 35.0±1.0 41.0±1.1 27.5±1.1 43.4±1.1 45.2±1.1
MNIST 70.4±0.8
CIFAR10 65.2±0.8
CIFAR100 53.6±1.0

Table 4.2 Few-shot classification results on META-DATASET (Triantafillou et al., 2020) using
models trained on ILSVRC-2012 only. All figures are percentages and the ± sign indicates the
95% confidence interval. Bold text indicates the highest scores that overlap in their confidence
intervals. Results from competitive methods from (Triantafillou et al., 2020)

(2020). In particular, our method relies on training the parameters ϕ to adapt the conditional
predictive distribution to new datasets. In this setting, the model is never presented with
data that has not been used to pre-train θ, and therefore cannot learn to appropriately adapt
the network to new datasets. Despite this, CNAPS demonstrate competitive results with the
methods evaluated by Triantafillou et al. (2020) even in this scenario.

Feature Extractor Parameter Learning Figure 4.5 shows t-SNE (Maaten and Hinton, 2008)
plots that visualize the output of the set encoder zG and the FiLM layer parameters following
the first and last convolutional layers of the feature extractor at test time. Even with unseen
test data, the set encoder has learned to clearly separate examples arising from diverse datasets.
The FiLM generators learn to generate feature extractor adaptation parameters unique to each
dataset. The only significant overlap in the FiLM parameter plots is between CIFAR10 and
CIFAR100 datasets which are closely related. This visualization demonstrates that the model is
able to learn meaningful task and dataset level representations and parameterizations. The
results support the hypothesis that learning to adapt key parts of the network is more robust
and achieves significantly better performance than existing approaches.

FiLM Parameter Learning Performance: Speed-Accuracy Trade-off. CNAPS generate FiLM
layer parameters for each task τ at test time using the adaptation network ψf (Dτ). It is also
possible to learn the FiLM parameters via gradient descent (see (Rebuffi et al., 2017, 2018)).
Here we compare CNAPS to this approach. Figure 4.6 shows plots of 5-way classification
accuracy versus time for four held out data sets as the number of shots was varied. For gradient

4.6 Continual Learning 69

𝒛𝐺 𝜷1𝑏1 𝜸1𝑏1 𝜸4𝑏2𝜷4𝑏2
Aircraft
CIFAR10
CIFAR100
MSCOCO
Birds
Textures
Fungi
ILSVRC
MNIST
Omniglot
Quick Draw
Traffic Signs
VGG Flower

Fig. 4.5 t-SNE plots of the output of the set encoder zG and the FiLM layer parameters at the
start (β1b1,γ1b1) and end (β4b2,γ4b2) of the feature extraction process at test time.

20 100 300
Time (seconds)

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

COCO

20 100 300
Time (seconds)

40

50

60

70

80

90 Traffic Signs

20 100 300
Time (seconds)

40

50

60

70

80

90

100 MNIST

20 100 300
Time (seconds)

30

40

50

60

70

80
CIFAR 10

CNAPs
Gradient Descent

Fig. 4.6 Comparing CNAPS to gradient based feature extractor adaptation: accuracy on 5-way
classification tasks from withheld datasets as a function of processing time. Dot size reflects
shot number (1 to 25 shots).

descent, we used a fixed learning rate of 0.001 and took 25 steps for each point. The overall time
required to produce the plot was 1274 and 7214 seconds for CNAPS and gradient approaches,
respectively, on a NVIDIA Tesla P100-PCIE-16GB GPU. CNAPS is at least 5 times faster at
test time than gradient-based optimization requiring only a single forward pass through the
network while gradient based approaches require multiple forward and backward passes.
Further, the accuracy achieved with adaptation networks is significantly higher for fewer shots
as it protects against over-fitting. For large numbers of shots, gradient descent catches up,
albeit slowly.

4.6 Continual Learning

In continual learning (Ring, 1997), new tasks appear over time and existing tasks may change.
The goal is to adapt accordingly, but without retaining old data which is challenging for
artificial systems. To demonstrate the the versatility CNAPS we show that, although it has not
been explicitly trained for continual learning, we are able to apply the same model trained for
the few-shot classification experiments (without the auto-regressive component) to standard
continual learning benchmarks on held out datasets: Split MNIST (Zenke et al., 2017) and Split
CIFAR100 (Chaudhry et al., 2018). Refer to Section B.2.2 for more details on these benchmarks.

We modify the model to compute running averages for the representations of both ψτw
and ψτf , in this way it performs incremental updates using the new data and the old model,
and does not need to access old data. In particular, we store a compact representation of our

70
CNAPS: Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive

Processes

training data that can be updated at each step of the continual learning procedure. Notice
that Figure 4.2 indicates that the functional representation of our linear classification layer
ψτw(·) contains a mean pooling layer that combines the per-class output of our feature extractor
{fθ (xτn;ψf) |xτn ∈ Dτ ,yτn = c}. The result of this pooling,

zc =
1

N

∑
fθ (x

τ
n;ψf) (4.4)

where N = |{fθ (xτn;ψf) |xτn ∈ Dτ ,yτn = c}|, is supplied as input to the network ψw(·). This
network yields the class conditional parameters of the linear classifier ψτw, resulting in (along
with the feature extractor parameters ψτf) the full paramterization of ψτ . We store zc as the
training dataset representation for, class c.

If at any point in our continual learning procedure we observe new training data for class c
we can update our representation for class c by computing z′c =

1
N ′
∑
fθ (x

τ
n
′;ψf) the pooled

average resulting from N ′ new training examples xτm
′ for class c. We then update zc with

the weighted average: zc ← Nzc+N ′z′c
N+N ′ . At prediction time, we supply zc to ψw(·) to produce

classification parameters for class c.
Similar to the input to ψτw(·), the input to ψτf (·) also contains a mean-pooled representation,

this time of the entire training dataset zτG. This representation is also stored and updated in the
same way.

One issue with our procedure is that it is not completely invariant to the order in which
we observe the sequence of training data during our continual learning procedure. The
feature extractor adaptation parameters are only conditioned on the most recent training
data, meaning that if data from class c is not present in the most recent training data, zc was
generated using "old" feature extractor adaptation parameters (from a previous time step).
This creates a potential disconnect between the classification parameters from previous time
steps and the feature extractor output. Fortunately, in our experiment we noticed little within
dataset variance for the adaptation parameters. Since all of our experiments on continual
learning were within a single dataset, this did not seem to be an issue as CNAPS was able
to achieved good performance. However, for continual learning experiments that contain
multiple datasets, we anticipate that this issue will need to be addressed.

Figure 4.7 (left) shows the accumulated multi- and single-head (Chaudhry et al., 2018)
test accuracy averaged over 30 runs. Figure 4.7 (right) shows average results at the final task
comparing to SI (Zenke et al., 2017), EWC (Kirkpatrick et al., 2017), VCL (Nguyen et al., 2017),
and Riemannian Walk (Chaudhry et al., 2018). Please refer to Section B.2.2 for details on how
the experiments were executed.

Figure 4.7 demonstrates that CNAPS naturally resists catastrophic forgetting (Kirkpatrick
et al., 2017) and compares favourably to competing methods, despite the fact that it was not
exposed to these datasets during training, observes orders of magnitude fewer examples,
and was not trained explicitly to perform continual learning. CNAPS performs similarly to,

4.6 Continual Learning 71

1 2 3 4 5

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

 (%
)

MNIST Multi-head
RWalk 10k-shot CNAPs 1-shot CNAPs 10-shot CNAPs 100-shot

1 2 3 4 5

60

70

80

90

100
MNIST Single-head

1 2 3 4 5 6 7 8 9 10
Tasks

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

CIFAR100 Multi-head

1 2 3 4 5 6 7 8 9 10
Tasks

20

40

60

80
CIFAR100 Single-head

MNIST CIFAR100
Method Multi Single Multi Single

SI 99.3 57.6 73.2 22.8
EWC 99.3 55.8 72.8 23.1
VCL 98.5 - - -± 0.4
RWalk 99.3 82.5 74.2 34.0
CNAPS 98.9 80.9 76.0 37.2

± 0.2 ± 0.9 ± 0.5 ± 0.6

Fig. 4.7 Continual learning classification results on Split MNIST and Split CIFAR100 using a
model trained on all training datasets. (Left) The plots show accumulated accuracy averaged
over 30 runs for both single- and multi-head scenarios. (Right) Average accuracy at final task
computed over 30 experiments (all figures are percentages). Errors are one standard deviation.
Additional results from (Chaudhry et al., 2018; Swaroop et al., 2019).

or better than, the state-of-the-art Riemannian Walk method which departs from the pure
continual learning setting by maintaining a small number of training samples across tasks.
Conversely, CNAPS has the advantage of being exposed to a larger range of datasets and can
therefore leverage task transfer. We emphasize that this is not meant to be an “apples-to-apples”
comparison, but rather, the goal is to demonstrate the out-of-the-box versatility and strong
performance of CNAPS in new domains and learning scenarios.

Figure 4.7 showed the average performance as more tasks were observed for the single and
multi head settings. Figure 4.8 and Figure 4.9 provide more complete results, detailing the
performance through “time" at the task level. Figure 4.8 details the performance of CNAPS

1 2 3 4 5
Tasks

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Task 1

1 2 3 4 5
Tasks

Task 2

1 2 3 4 5
Tasks

Task 3

1 2 3 4 5
Tasks

Task 4

1 2 3 4 5
Tasks

Task 5

1 2 3 4 5
Tasks

Average
RWalk 10k-shot
CNAPs 1-shot
CNAPs 10-shot
CNAPs 100-shot

1 2 3 4 5
Tasks

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Task 1

1 2 3 4 5
Tasks

Task 2

1 2 3 4 5
Tasks

Task 3

1 2 3 4 5
Tasks

Task 4

1 2 3 4 5
Tasks

Task 5

1 2 3 4 5
Tasks

Average
RWalk 10k-shot
CNAPs 1-shot
CNAPs 10-shot
CNAPs 100-shot

Fig. 4.8 Continual learning results on Split MNIST. Top row is multi-head, bottom row is
single-head.

72
CNAPS: Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive

Processes

(with varying number of observed examples) and Riemannian Walk (RWalk) (Chaudhry et al.,
2018) on the five tasks of Split MNIST through time. Note that RWalk makes explicit use of
training data from previous time steps when new data is observed, while CNAPS do not.

Figure 4.8 implies that CNAPS is competitive with RWalk in this scenario, despite seeing
far less data per task, and not using old data to retrain the model at every time-step. Further,
we see that CNAPS is naturally resistant to forgetting, as it uses internal task representations
to maintain important information about tasks seen at previous time-steps.

Figure 4.9 demonstrates that CNAPS maintains similar results when scaling up to consider-
ably more difficult datasets such as CIFAR100. Here too, CNAPS has not been trained on this
dataset, yet demonstrates performance comparable to (and even better than) RWalk, a method
explicitly trained for this task that makes use of samples from previous tasks at each time step.

4.7 Active Learning

Active learning Cohn et al. (1996); Settles (2012) requires accurate data-efficient learning that
returns well-calibrated uncertainty estimates. Figure 4.10 compares the performance of CNAPS

and prototypical networks using two standard active learning acquisition functions (variation
ratios and predictive entropy (Cohn et al., 1996)) against random acquisition on the FLOWERS

dataset and three representative held-out languages from OMNIGLOT. Figure 4.10 show that
CNAPS achieves higher accuracy on average than prototypical networks. Moreover, CNAPS

achieves significant improvements over random acquisition, whereas prototypical networks
do not. These tests indicates that CNAPS is more accurate and suggest that CNAPS has better
calibrated uncertainty estimates than prototypical networks. It is not clear why this is the
case, but a plausible explanation is that CNAPS employs FiLM layers to effectively adapt the
feature extractor to unseen tasks which has shown to increase accuracy (see Table 4.1), whereas
prototypical networks has no such mechanism.

For completeness, Figure 4.11 shows the active learning results from all twenty held-out
languages in Omniglot. Figure 4.11 demonstrates that in almost all held-out languages, using
the predictive distribution of CNAPS not only improves overall performance, but also enables
the model to make use of standard acquisition functions (Cohn et al., 1996) to improve data
efficiency over random acquisition. In contrast, we see that in most cases, random acquisition
performs as well or better than acquisition functions that rely on the predictive distribution of
Prototypical Networks. This provides empirical evidence that in addition to achieving overall
better performance, the predictive distribution of CNAPS is more calibrated, and thus better
suited to tasks such as active learning that require uncertainty in predictions.

4.8 Summary 73

4.8 Summary

This chapter has introduced CNAPS, an automatic, fast and flexible modelling approach
for multi-task classification. We have demonstrated that at the time CNAPS achieve state-
of-the-art performance on the META-DATASET challenge, and can be deployed “out-of-the-
box” to diverse learning scenarios such as continual and active learning where they are
competitive with the state-of-the-art. Future avenues of research are to consider the exploration
of the design space by introducing gradients and function approximation to the adaptation
mechanisms, as well as generalizing the approach to distributional extensions of CNAPS

(Garnelo et al., 2018b; Kim et al., 2019).

4.9 Epilogue

Three recent publications have recently built directly on the CNAPS work. We discuss each one
briefly below. Following that, we summarize two very recent papers, one that demonstrates
superior results on Meta-Dataset and another that presents a novel approach to learn FiLM
layer parameters to modulate feature extractor activations.

Improved Few-Shot Visual Classification Bateni et al. (2019) improve on the CNAPS classi-
fication accuracy results by replacing the CNAPS linear classifier stage with a Prototypical
Networks (Snell et al., 2017) based classifier that uses the Mahalanobis distance metric instead
of the usual Euclidean distance metric. Their ‘Simple CNAPS’ system improves upon the
CNAPS classification accuracy overall by 6.1% and reduces the number of learnable param-
eters by 9.2%. The parameter savings are due to the fact that the ‘Simple CNAPS’ metric
based classifier stage has no learnable parameters and they do not require the linear classifier
adaptation network to generate any classifier parameters. A possible explanation for the
superior classification accuracy of Simple CNAPs is that it is based on the principles of linear
discriminant analysis (LDA) (Fisher, 1936; Duda et al., 2012). If the assumption that the data is
normally distributed holds, LDA can be more effective than logistic regression (Hastie et al.,
2009; Efron, 1975), especially if the sample size is small (Pohar et al., 2004) (which is the case in
few-shot learning).

The authors also show that the prototypical networks classifier with the simpler Euclidean
distance metric yields slightly better classification results than the VERSA classifier used in
CNAPS. This warrants further investigation as both are conceptually similar, with the main
difference being that prototypical networks with the Euclidean distance metric uses a simpler
hypernet to generate the linear classifier weights. Their work appeared in the proceedings of
CVPR 2020.

74
CNAPS: Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive

Processes

LEEP: A New Measure to Evaluate Transferability of Learned Representations Nguyen
et al. (2020) develop a measure to quantify the transferability of representations learned
by classifiers. The measure is called ‘Log Expected Empirical Prediction’ or LEEP. LEEP is
computationally efficient as the bottleneck step is simply a forward pass of the target data
through the source network and retraining the source network on the target data is not required.
It is also the first method to to measure transferability in meta-transfer learning algorithms. As
such, the authors demonstrate that LEEP can predict the performance of CNAPS, showing that
a higher LEEP score corresponds to higher test accuracies in CNAPS. Their work appeared in
the proceedings of ICML 2020.

Meta-learning from Poor-Quality Videos for Personalised Object Recognition (Note: I am
a co-author on this work). The goal of this paper is to develop a personal object recognizer to
allow blind or visually impaired users to locate objects of interest to them. CNAPS is ideal
for this scenario because the system can be ‘personalized’ by merely performing a forward
pass through the system with a small number of examples of each of the personal objects to
be recognized which form the context set. This forward pass will generate the FiLM layer
parameters and linear classifier weights and biases such that the system can now classify
arbitrary inputs, potentially on a mobile device equipped with a camera. The authors posit
that it is more effective for the blind or visually impaired user to record videos of their personal
objects to be recognized as opposed to a still image, as a video will likely contain at least a few
frames of a good capture of the object and provide a variety of views of the object. As a result,
this work extends CNAPS to support: (i) video (as opposed to still image) input; and (ii) a
task-specific frame weighter that filters out (via down-weighting) irrelevant frames from a
video sequence to be classified. The resulting system is called ‘V-CNAPs’ and the experimental
results evaluated on poor quality videos produced by visually impaired and blindfolded users
demonstrate the effectiveness of the basic CNAPS model and the new task-specific frame
weighter. This work is under review for ECCV 2020.

A Universal Representation Transformer Layer for Few-Shot Image Classification In a
very recent paper, Liu et al. (2020) demonstrate the best results so far on the in-domain datasets
on the Meta-Dataset benchmark, but fall short of the results by Bateni et al. (2019) on the more
important out-of-domain datasets. They achieve this by pretraining a feature extractor for each
of the the eight in-domain datasets and then meta-learn a dot-product, multi-head attention
layer that weights the feature embeddings from each of the eight feature extractors. The
weighted embeddings are then fed into a classification layer. While this concept yields superior
accuracy on the in-domain datasets due to the additional pretraining (CNAPS pretrains on
only a single dataset), it does not generalize well to datasets that it has not pretrained on. One
piece of empirical evidence that supports this view is the work of Bateni et al. (2019) which
extends CNAPS and achieves superior results compared to Liu et al. (2020) on the held-out

4.9 Epilogue 75

datasets demonstrating superior generalization via FiLM layers added to a feature extractor
pretrained on a single dataset.

Cross-domain few-shot classification via learned feature-wise transformation In another
recent paper, like CNAPS, Tseng et al. (2020) use FiLM layers (Perez et al., 2018) (though they
refer to them as feature-wise transformation layers) to adapt a feature extractor to diverse tasks
unseen during meta-training. However, the FiLM layer coeficients (γ and β) are parameterized
by a normal distribution where the mean is fixed to one for γ and to zero for β and the standard
deviations are meta-learned via stochastic gradient descent during meta-training. At meta-
test time, the FiLM layer parameters are sampled from the learned distribution. This differs
significantly from the CNAPS approach where the FiLM layer parameters are generated by a
hypernetwork as a function of the task context set. The authors did not evaluate their approach
on META-DATASET, so the performance of the two systems cannot be directly compared.

76
CNAPS: Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive

Processes

1 2 3 4 5 6 7 8 9 10
Tasks

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

Task 10

1 2 3 4 5 6 7 8 9 10
Tasks

Average
RWalk 10k-shot
CNAPs 1-shot
CNAPs 10-shot
CNAPs 100-shot

1 2 3 4 5 6 7 8 9 10
Tasks

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

Task 10

1 2 3 4 5 6 7 8 9 10
Tasks

Average
RWalk 10k-shot
CNAPs 1-shot
CNAPs 10-shot
CNAPs 100-shot

Fig. 4.9 Continual learning results on Split CIFAR100. Top two rows are multi-head, bottom
two rows are single-head.

4.9 Epilogue 77

65

70

75

C-
NA

Ps

VGG Flower

75

80

85

Avesta

60

65

70 Kannada

65

70
Malayalam

Var Rat
Pred Ent
Rand

0 10 20 30
Acquisitions

60

65

70

75

Pr
ot

o-
Ne

t

0 10 20 30
Acquisitions

75

80

85

0 10 20 30
Acquisitions

60

65

70

0 10 20 30
Acquisitions

65

70

Fig. 4.10 Accuracy vs active learning iterations for held-out classes / languages. (Top) CNAPS

and (bottom) prototypical networks. Error shading is one standard error. CNAPS achieves
better accuracy than prototypical networks and improvements over random acquisition,
whereas prototypical networks do not.

78
CNAPS: Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive

Processes

85

90

CN
AP

s

Angelic

70

75

80
Atemayar_Qelisayer

75

80

85

Atlantean

87.5

90.0

92.5
Aurek-Besh

Var Rat
Pred Ent
Rand

0 10 20 30
Acquisitions

80

85

Pr
ot

o-
Ne

t

0 10 20 30
Acquisitions

70

75

0 10 20 30
Acquisitions

80

85

0 10 20 30
Acquisitions

87.5

90.0

92.5

80

85

CN
AP

s

Avesta

75

80

Ge_ez

82.5

85.0

87.5
Glagolitic

60

65

Gurmukhi
Var Rat
Pred Ent
Rand

0 10 20 30
Acquisitions

75

80

Pr
ot

o-
Ne

t

0 10 20 30
Acquisitions

75

80

0 10 20 30
Acquisitions

82

84

86

0 10 20 30
Acquisitions

62.5

65.0

67.5

60

65

CN
AP

s

Kannada

85

90

Keble

65.0

67.5

70.0
Malayalam

75

80
Manipuri

Var Rat
Pred Ent
Rand

0 10 20 30
Acquisitions

62.5

65.0

67.5

Pr
ot

o-
Ne

t

0 10 20 30
Acquisitions

85

90

0 10 20 30
Acquisitions

66

68

70

0 10 20 30
Acquisitions

75.0

77.5

75

80

CN
AP

s

Mongolian

80

85
Old_Church_Slavonic_(Cyrillic)

60

65

Oriya

65

70

75
Sylheti

Var Rat
Pred Ent
Rand

0 10 20 30
Acquisitions

77.5

80.0

82.5

Pr
ot

o-
Ne

t

0 10 20 30
Acquisitions

80

82

84

0 10 20 30
Acquisitions

60.0

62.5

65.0

0 10 20 30
Acquisitions

65

70

75

80

85

CN
AP

s

Syriac_(Serto)

65

70

Tibetan

65

70

75

80 Tengwar

65

70

75

ULOG
Var Rat
Pred Ent
Rand

0 10 20 30
Acquisitions

75

80

85

Pr
ot

o-
Ne

t

0 10 20 30
Acquisitions

66

68

70

0 10 20 30
Acquisitions

65

70

75

0 10 20 30
Acquisitions

60

65

70

Fig. 4.11 Active learning results on all twenty held-out Omniglot languages. (Top) CNAPS

and (bottom) prototypical networks. Error shading is one standard error.

Chapter 5

TASKNORM: Rethinking Batch
Normalization for Meta-Learning

5.1 Introduction

Batch normalization has become an essential component of deep learning systems as it signifi-
cantly accelerates the training of neural networks by allowing the use of higher learning rates
and decreasing the sensitivity to network initialization. In this chapter, we investigate the use
of batch normalization in meta-learning methods. Recent approaches to meta-learning rely on
increasingly deep neural network based architectures to achieve state-of-the-art performance
in a range of benchmark tasks (Finn et al., 2017; Mishra et al., 2018; Triantafillou et al., 2020;
Requeima et al., 2019b). When constructing very deep networks, a standard component is
the use of normalization layers (NL). In particular, in the image-classification domain, batch
normalization (BN; Ioffe, 2017) is crucial to the successful training of very deep convolutional
networks.

However, as we discuss in Section 5.3, standard assumptions of the meta-learning scenario
violate assumptions of BN and vice-versa, complicating the deployment of BN for meta-
learning models. Many papers proposing novel meta-learning approaches employ different
forms of BN for the proposed models, and some forms make implicit assumptions that,
while improving benchmark performance, may result in potentially undesirable behaviours.
Moreover, as we demonstrate in Section 5.5, performance of the models can vary significantly
based on the form of BN employed, confounding comparisons across methods. Further,
naive adoption of BN for meta-learning does not reflect the statistical structure of the data-
distribution in this scenario. In contrast, we propose a novel variant of BN – TASKNORM –
that explicitly accounts for the statistical structure of the data distribution. We demonstrate
that by doing so, TASKNORM further accelerates training of models using meta-learning while
achieving improved test-time performance. Our main contributions are as follows:

80 TASKNORM: Rethinking Batch Normalization for Meta-Learning

• We identify and highlight several issues with BN schemes used in the recent meta-
learning literature.

• We propose TASKNORM, a novel variant of BN which is tailored for the meta-learning
setting.

• In experiments with fourteen datasets, we demonstrate that TASKNORM consistently
outperforms competing methods, while making less restrictive assumptions than its
strongest competitor.

This chapter is based on the ICML 2020 conference publication entitled ‘TASKNORM: Re-
thinking Batch Normalization for Meta-Learning’ (Bronskill et al., 2020). My contributions
were to develop the TASKNORM idea as an extension to Jonathan Gordon’s METABN con-
cept, jointly devise the set of experiments, independently write all the code and perform the
experiments, jointly analyze the results, and jointly write the paper.

5.2 Background and Related Work

In this section we lay the necessary groundwork for our investigation of batch normalization
in the meta-learning scenario.

5.2.1 Normalization Layers in Deep Learning

Normalization layers (NL) for deep neural networks were introduced by Ioffe and Szegedy
(2015) to accelerate the training of neural networks by allowing the use of higher learning rates
and decreasing the sensitivity to network initialization. Since their introduction, they have
proven to be crucial components in the successful training of ever-deeper neural architectures.
Our emphasis is the few-shot image classification setting, and as such we focus on NLs for 2D
convolutional networks. We denote input images x ∈ RC×W×H where W is the image width,
H the image height, C the number of image channels and image labels y. The input to a NL is
A = (a1, . . . ,aB), a batch of B image-shaped activations or pre-activations, to which the NL is
applied as

a′n = γ

(
an − µ√
σ2 + ϵ

)
+ β, (5.1)

where µ and σ are the normalization moments, γ and β are learned parameters, ϵ is a small
scalar to prevent division by 0, and operations between vectors are element-wise. NLs differ
primarily by how the normalization moments are computed. The first such layer – batch
normalization (BN) – was introduced by Ioffe and Szegedy (2015). A BN layer distinguishes

5.2 Background and Related Work 81

between training and test modes. At training time, BN computes the moments as

µBNc =
1

BHW

B∑
b=1

W∑
w=1

H∑
h=1

abwhc, (5.2)

σ2
BNc

=
1

BHW

B∑
b=1

W∑
w=1

H∑
h=1

(abwhc − µBNc)
2. (5.3)

Here, µBN ,σ2
BN ,γ,β ∈ RC . As µBN and σ2

BN depend on the batch of observations, BN can be
susceptible to failures if the batches at test time differ significantly from training batches, e.g.,
for streaming predictions. To counteract this, at training time, a running mean and variance,
µr,σr ∈ RC , are also computed for each BN layer over all training tasks and stored. At test
time, test activations a are normalized using Equation (5.1) with the statistics µr and σr in
place of the batch statistics. Importantly, BN relies on the implicit assumption that D comprises
i.i.d. samples from some underlying distribution.

More recently, additional NLs have been introduced. Many of these methods differ from
standard BN in that they normalize each instance independently of the remaining instances in
the batch, making them more resilient to batch distribution shifts at test time. These include
instance normalization (Ulyanov et al., 2016), layer normalization (Ba et al., 2016), and group
normalization (Wu and He, 2018). These are discussed further in Section 5.3.4.

5.2.2 Desiderata for Meta-Learning Normalization Layers

As modern approaches to meta-learning systems routinely employ deep networks, NLs become
essential for efficient training and optimal classification performance. For BN in the standard
supervised settings, i.i.d. assumptions about the data distribution imply that estimating
moments from the training set will provide appropriate normalization statistics for test data.
However, this does not hold in the meta-learning scenario, for which data points are only
assumed to be i.i.d. within a specific task. Therefore, the choice of what moments to use
when applying a NL to the context and target set data points, during both meta-training and
meta-test time, is key.

As a result, recent meta-learning approaches employ several normalization procedures that
differ according to these design choices. A range of choices are summarized in Figure 5.1. As we
discuss in Section 5.3 and demonstrate with experimental results, some of these have implicit,
undesirable assumptions which have significant impact on both predictive performance and
training efficiency. We argue that an appropriate NL for the meta-learning scenario requires
consideration of the data-generating assumptions associated with the setting. In particular, we
propose the following desiderata for a NL when used for meta-learning:

1. Improves speed and stability of training without harming test performance (accuracy or
log-likelihood);

82 TASKNORM: Rethinking Batch Normalization for Meta-Learning

𝑨 𝑨∗

𝑁 𝑀𝐵𝑁

𝑨′

𝑁𝑀𝐵𝑁

𝑨′∗

𝑨

𝑨′

𝑨∗

𝑨′∗

𝝁𝑟 , 𝝈𝑟
𝑁𝑁

Conventional Batch

Normalization

(CBN)

𝑨

𝑨′

𝑨∗

𝑨′∗

𝑁 𝑀𝐵𝑁 𝑁

MetaBN

𝑨 𝑨∗

𝑁 𝑀𝐵𝑁

𝑨′

𝑁𝑀𝐵𝑁

𝑨′∗

Transductive Batch

Normalization (TBN)

𝑨 𝑨∗

𝑁 𝑀𝐿𝑁

𝑨′

𝑁𝑀𝐿𝑁

𝑨′∗

Layer

Normalization

(LN)

𝑨 𝑨∗

𝑁 𝑀𝐼𝑁

𝑨′

𝑁𝑀𝐼𝑁

𝑨′∗

Instance

Normalization

(IN)
TaskNorm-I, RN𝑨

𝑁

𝑀𝐼𝑁

𝑨′

𝑀𝐵𝑁

1 − 𝛼

𝑨∗

𝑁

𝑀𝐼𝑁

𝑨∗′

𝛼1 − 𝛼

𝐵𝐶

Batch Normalization 𝐵𝑁

𝐵𝐶

Layer Normalization 𝐿𝑁
𝐵𝐶

Instance Normalization 𝐼𝑁

TaskNorm-L𝑨

𝑁

𝑀𝐿𝑁

𝑨′

𝑀𝐵𝑁

1 − 𝛼

𝑨∗

𝑁

𝑀𝐿𝑁

𝑨∗′

𝛼1 − 𝛼

𝑁 Normalize with moments 𝑀 𝑀𝑋𝑋 Compute 𝑋𝑋 moments 𝐴, 𝐴′ : In, Out Context Activations 𝐴∗, 𝐴′∗: In, Out Target Activations

Meta-train

Meta-test

Fig. 5.1 A range of options for batch normalization for meta-learning. The cubes on the left
depict the dimensions over which different moments are calculated for normalization of
2D convolutional layers. The computational diagrams on the right show how context and
target activations are processed for various normalization methods. For all methods except
conventional BN (CBN), the processing is identical at meta-train and meta-test time. Cube
diagrams are derived from Wu and He (2018).

2. Works well across a range of context set sizes;

3. Is non-transductive, thus supporting inference at meta-test time in a variety of circum-
stances.

A non-transductive meta-learning system makes predictions for a single test set label
conditioned only on a single input and the context set, while a transductive meta-learning
system conditions on additional samples from the test set:

p(yτ∗i |xτ∗i , Dτ)

non-transductive

; p(yτ∗i |xτ∗i=1:m, D
τ)

transductive

. (5.4)

We argue that there are two key issues with transductive meta-learners. The first is that
transductive learning is sensitive to the distribution over the target set used during meta-
training, and as such is less generally applicable than non-transductive learning. For example,
transductive learners may fail to make good predictions if target sets contain a different class
balance than what was observed during meta-training, or if are required to make predictions
for one example at a time. Transductive learners can also violate privacy constraints. In
Table 5.1 and Section 5.5.3, we provide empirical demonstrations of these failure cases.

The second issue is that transductive learners have more information available than non-
transductive learners at prediction time, which may lead to unfair comparisons. It is worth
noting that some meta-learning algorithms are specifically designed to leverage transductive
inference (e.g., Ren et al., 2018; Liu et al., 2019), though we do not discuss them in this work. In
Section 5.5.3 we demonstrate that there are significant performance differences for a model
when trained transductively versus non-transductively.

5.3 Normalization Layers for Meta-learning 83

5.3 Normalization Layers for Meta-learning

In this section, we discuss several normalization schemes that can and have been applied in the
recent meta-learning literature, highlighting the modelling assumptions and effects of different
design choices. Throughout, we assume that the meta-learning algorithm is constructed such
that the context-set inputs are passed through every neural-network module that the target set
inputs are passed through at prediction time. This implies that moments are readily available
from both the context and target set observations for any normalization layer, and is the case
for many widely-used meta-learning models (e.g., Finn et al., 2017; Snell et al., 2017; Gordon
et al., 2019).

To illustrate our arguments, we provide experiments with MAML running simple, but
widely used few-shot learning tasks from the Omniglot (Lake et al., 2011) and miniImagenet
(Ravi and Larochelle, 2017) datasets. The results of these experiments are provided in Table 5.1,
and full experimental details in Section B.3.

5.3.1 Conventional Usage of Batch Normalization (CBN)

We refer to conventional batch normalization (CBN) as that defined by Ioffe and Szegedy (2015)
and as outlined in Section 5.2.1. In the context of meta-learning, this involves normalizing tasks
with computed moments at meta-train time, and using the accumulated running moments to
normalize the tasks at meta-test time (see CBN in Figure 5.1).

We highlight two important issues with the use of CBN for meta-learning. The first is that,
from the graphical model perspective (refer to Figure 2.3), this is equivalent to lumping µ and
σ with the global parameters θ, i.e., they are learned from the meta-training set and shared
across all tasks at meta-test time. We might expect CBN to perform poorly in meta-learning
applications since the running moments are global across all tasks while the task data is only
i.i.d. locally within a task, i.e., CBN does not satisfy desiderata 1. This is corroborated by our
results (Table 5.1), where we demonstrate that using CBN with MAML results in very poor
predictive performance - no better than chance. The second issue is that, as demonstrated by
Wu and He (2018), using small batch sizes leads to inaccurate moments, resulting in significant
increases in model error. Importantly, the small batch setting may occur often in meta-learning,
for example in the 1-shot scenario. Thus, CBN does not satisfy desiderata 2.

Despite these issues, CBN is sometimes used, e.g., by Snell et al. (2017), though testing was
performed only on Omniglot and miniImagenet where the distribution of tasks is homogeneous
(Triantafillou et al., 2020).

5.3.2 Batch Renormalization (BRN)

Batch renormalization (BRN; Ioffe, 2017) is intended to mitigate the issue of non-identically
distributed and/or small batches while retaining the training efficiency and stability of CBN.

84 TASKNORM: Rethinking Batch Normalization for Meta-Learning

In BRN, the CBN algorithm is augmented with an affine transform with batch-derived param-
eters which correct for the batch statistics being different from the overall population. The
normalized activations of a BRN layer are computed as follows:

a′n = γ

(
r

(
an − µBN
σBN + ϵ

)
+ d

)
+ β,

where

r =stop_grad

(
clip[1/rmax,rmax]

(
σBN
σr

))
,

d =stop_grad

(
clip[−dmax,dmax]

(
µBN − µr

σr

))
.

Here stop_grad(·) denotes a gradient blocking operation, and clip[a,b] denotes an operation
returning a value in the range [a, b]. Like CBN, BRN is not well suited to the meta-learning
scenario as it does not map directly to the hierarchical form of meta-learning models. In
Section 5.5, we show that using BRN can improve predictive performance compared to CBN,
but still performs significantly worse than competitive approaches. Table 5.1 shows that batch
renormalization performs poorly when using MAML.

5.3.3 Transductive Batch Normalization (TBN)

Another approach is to do away with the running moments used for normalization at meta-test
time, and replace these with context / target set statistics. Here, context / target set statistics
are used for normalization, both at meta-train and meta-test time. This is the approach taken
by the authors of MAML (Finn et al., 2017),1 and, as demonstrated in our experiments, seems
to be crucial to achieve the reported performance. From the graphical model perspective, this
implies associating the normalization statistics with neither θ nor ψ, but rather with a special
set of parameters that is local for each set (i.e., normalization statistics for T τ are independent
of Dτ). We refer to this approach as transductive batch normalization (TBN; see Figure 5.1).

Unsurprisingly, Nichol et al. (2018) found that using TBN provides a significant perfor-
mance boost in all cases they tested, which is corroborated by our results in Table 5.1. In
other words, TBN achieves desiderata 2, and, as we demonstrate in Section 5.5, desiderata
1 as well. However, it is transductive. Due to the ubiquity of MAML, many competetive
meta-learning methods (e.g. Gordon et al., 2019) have adopted TBN. However, in the case
of TBN, transductivity is rarely stated as an explicit assumption, and may often confound
the comparison among methods (Nichol et al., 2018). Importantly, we argue that to ensure

1See for example (Finn, 2017) for a reference implementation.

5.3 Normalization Layers for Meta-learning 85

comparisons in experimental papers are rigorous, meta-learning methods that are transductive
must be labeled as such.

5.3.4 Instance-Based Normalization Schemes

An additional class of non-transductive NLs are instance-based NLs. Here, both at meta-train
and meta-test time, moments are computed separately for each instance, and do not depend
on other observations. From a modelling perspective, this corresponds to treating µ and σ
as local at the observation level. As instance-based NLs do not depend on the context set size,
they perform equally well across context-set sizes (desiderata 2). However, as we demonstrate
in Section 5.5, the improvements in predictive performance are modest compared to more
suitable NLs and they are worse than CBN in terms of training efficiency (thus not meeting
desiderata 1). Below, we discuss three examples.

Layer Normalization (LN; Ba et al., 2016) LN (see Figure 5.1) has been shown to improve
performance compared to CBN in recurrent neural networks, but does not offer the same gains
for convolutional neural networks (Ba et al., 2016). The LN moments are computed as:

µLNb
=

1

HWC

W∑
w=1

H∑
h=1

C∑
c=1

abwhc, (5.5)

σ2
LNb

=
1

HWC

W∑
w=1

H∑
h=1

C∑
c=1

(abwhc − µLNb
)2 (5.6)

where µLN ,σ2
LN ∈ RB . While non-transductive, Table 5.1 demonstrates that LN falls far short

of TBN in terms of accuracy. Further, in Section 5.5 we demonstrate that LN lacks in training
efficiency when compared to other NLs.

Instance Normalization (IN; Ulyanov et al., 2016) IN (see Figure 5.1) has been used in a
wide variety of image generation applications. The IN moments are computed as:

µINbc
=

1

HW

W∑
w=1

H∑
h=1

abwhc, (5.7)

σ2
INbc

=
1

HW

W∑
w=1

H∑
h=1

(abwhc − µINbc
)2 (5.8)

where µIN ,σ2
IN ∈ RB×C . Table 5.1 demonstrates that IN has superior predictive performance

to that of LN, but falls considerably short of TBN. In Section 5.5 we show that IN lacks in
training efficiency when compared to other NLs.

86 TASKNORM: Rethinking Batch Normalization for Meta-Learning

Group Normalization (GN; Wu and He, 2018) A key insight of Wu and He (2018) is that
CBN performance suffers with small batch sizes. The goal of Group Normalization is thus
to address the problem of normalization of small batch sizes, which, among other matters, is
crucial for training large models in a data-parallel fashion. This is achieved by dividing the
image channels into a number of groups G and subsequently computing the moments for each
group. GN is equivalent to LN when there is only a single group (G = 1) and equivalent to IN
when the number of groups is equal to the number of channels in the layer (G = C).

5.3.5 Other NLs

There exist additional NLs including Weight Normalization (Salimans and Kingma, 2016),
Cosine Normalization (Luo et al., 2018), Filter Response Normalization (Singh and Krishnan,
2019), among many others.

Weight normalization reparameterizes weight vectors in a neural network to improve
the conditioning for optimization. Weight normalization is non-transductive, but we don’t
consider this approach further in this work as we focus on NLs that modify activations as
opposed to weights.

Filter Response Normalization (FRN) is another non-transductive NL that performs well
for all batch sizes. However we did not include it in our evaluation as FRN also encompasses
the activation function as an essential part of normalization making it difficult to be a drop in
replacement for CBN in pre-trained networks as is the case for some of our experiments.

Cosine normalization replaces the dot-product calculation in neural networks with cosine
similarity for improved performance. We did not consider this method further in our work as
it is not a simple drop-in replacement for CBN in pre-existing networks such as the ResNet-18
we use in our experiments.

5.4 Task Normalization

In the previous section, we demonstrated that it is not immediately obvious how NLs should
be designed for meta-learning applications. We now develop TASKNORM, the first NL that
is specifically tailored towards this scenario. TASKNORM is motivated by the view of meta-
learning as hierarchical probabilistic modelling, discussed in Section 2.2.3. Given this hier-
archical view of the model parameters, the question that arises is, how should we treat the
normalization statistics µ and σ? Figure 2.3 implies that the data associated with a task τ
are i.i.d. only when conditioning on both θ and ψτ . Thus, the normalization statistics µ and σ
should be local at the task level, i.e., absorbed into ψτ . Further, the view that ψτ should be
inferred conditioned on Dτ implies that the normalization statistics for the target set should
be computed directly from the context set. Finally, our desire for a non-transductive scheme
implies that any contribution from points in the target should not affect the normalization

5.4 Task Normalization 87

for other points in the target set, i.e., when computing µ and σ for a particular observation
xτ∗ ∈ T τ , the NL should only have access to Dτ and xτ∗.

5.4.1 Meta-Batch Normalization (METABN)

This perspective leads to our definition of METABN, which is a simple adaptation of CBN
for the meta-learning setting. In METABN, the context set alone is used to compute the
normalization statistics for both the context and target sets, both at meta-train and meta-test
time (see Figure 5.1). To our knowledge, METABN has not been described in any publication,
but concurrent to this work, it is used in the implementation of Meta-Dataset (Triantafillou
et al., 2019).

METABN meets almost all of our desiderata, it (i) is non-transductive since the normal-
ization of a test input does not depend on other test inputs in the target set, and (ii) as we
demonstrate in Section 5.5, it improves training speed while maintaining accuracy levels of
meta-learning models. However, as we demonstrate in Section 5.5, METABN performs less
well for small context sets. This is because moment estimates will have high-variance when
there is little data, and is similar to the difficulty of using BN with small-batch training (Wu
and He, 2018). To address this issue, we introduce the following extension to METABN, which
yields our proposed normalization scheme – TASKNORM.

5.4.2 TASKNORM

The key intuition behind TASKNORM is to normalize a task with the context set moments in
combination with a set of non-transductive, secondary moments computed from the input
being normalized. A blending factor α between the two sets of moments is learned during
meta-training. The motivation for TASKNORM is as follows: when the Dτ is small (e.g. 1-shot
or few-shot learning) the context set alone will lead to noisy and inaccurate estimates of the
“true” task statistics. In such cases, a secondary set of moments may improve the estimate of
the moments, leading to better training efficiency and predictive performance in the low data
regime. Further, this provides information regarding xτ∗ at prediction time while maintaining
non-transductivity. The pooled moments for TASKNORM are computed as:

µTN =αµBN + (1− α)µ+, (5.9)

σ2
TN =α

(
σ2
BN + (µBN − µTN)2

)
+ (1− α)

(
σ2
+ + (µ+ − µTN)2

)
, (5.10)

where µTN ,σTN ∈ RB×C , µ+, σ2
+ are additional moments from a non-transductive NL such

as LN or IN computed using activations from the example being normalized (see Figure 5.1),
and µBN and σBN are computed from Dτ . Equation (5.10) is the standard pooled variance
when combining the variance of two Gaussian estimators. Importantly, we parameterize
α = SIGMOID(SCALE|Dτ | + OFFSET), where the SIGMOID function ensures that 0 ≤ α ≤ 1. α

88 TASKNORM: Rethinking Batch Normalization for Meta-Learning

100 101 102

Context Set Size
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Al
ph

a

Layer 1
Layer 2
Layer 3
Layer 4

(a)

0 100 200 300 400 500
Context Set Size

0
10
20
30
40
50
60
70

SC
AL

E*
(C

on
te

xt
 S

ize
)+

OF
FS

ET

Layer 1
Layer 2
Layer 3
Layer 4

(b)

Fig. 5.2 Plots of: (a) α versus context set size, and (b) SCALE|Dτ |+ OFFSET for the first NL
in each of the four layers in the feature extractor for the TASKNORM-I model associated with
Table 5.3.

and the scalars SCALE and OFFSET are learned during meta-training in a manner identical to
every other trainable parameter in the system. This enables us to learn how much each set
should contribute to the estimate of task statistics as a function of the context-set size |Dτ |.
Figure 5.2a depicts the value of α as a function of context set size |Dτ | for a representative set
of trained TASKNORM layers. In general, when the context size is suitably large (Nτ > 25), α
is close to unity, i.e., normalization is carried out entirely with the context set in those layers.
When the context size is smaller, there is a mix of the two sets of moments. Allowing each
TASKNORM layer to separately adapt to the size of the context set (as opposed to learning
a fixed α per layer) is crucial in the meta-learning setting, where we expect the size of Dτ

to vary, and are often particularly interested in the “few-shot” regime. Figure 5.2b plots the
line SCALE|Dτ | + OFFSET for same set of NLs as Figure 5.2a. The algorithm has learned
that the SCALE parameter is non-zero and the OFFSET is almost zero in all cases indicating
the importance of having α being a function of context size. In Section 5.5.4, we provide an
ablation study demonstrating the importance of our proposed parameterization of α. If the
context size is fixed, we do not use the full parameterization, but learn a single value for
alpha directly. The computational cost of TASKNORM is marginally greater than CBN’s. As a
result, per-iteration time increases only slightly. However, as we demonstrate in Section 5.5,
TASKNORM converges faster than CBN.

In related work, Nam and Kim (2018) define Batch-Instance Normalization (BIN) that
combines the results of CBN and IN with a learned blending factor in order to attenuate
unnecessary styles from images. However, BIN blends the output of the individual CBN and
IN normalization operations as opposed to blending the moments and then using the blended
moments to normalize as in TASKNORM.

5.5 Experiments 89

Configuration TBN example class CBN BRN LN IN RN MetaBN TaskNorm-L TaskNorm-I

Omniglot-5-1 98.4±0.7 21.6±1.3 21.6±1.3 20.1±0.0 20.0±0.0 83.0±1.3 87.4±1.2 92.6±0.9 91.8±0.9 94.0±0.8 94.4±0.8
Omniglot-5-5 99.2±0.2 22.0±0.5 23.2±0.5 20.0±0.0 20.0±0.0 91.0±0.8 93.9±0.5 98.2±0.2 98.1±0.3 98.0±0.3 98.6±0.2
Omniglot-20-1 90.9±0.5 3.7±0.2 3.7±0.2 5.0±0.0 5.0±0.0 78.1±0.7 80.4±0.7 89.0±0.6 89.6±0.5 89.6±0.5 90.0±0.5
Omniglot-20-5 96.6±0.2 5.5±0.2 14.5±0.3 5.0±0.0 5.0±0.0 92.3±0.2 92.9±0.2 96.8±0.2 96.4±0.2 96.4±0.2 96.3±0.2
miniImageNet-5-1 45.5±1.8 26.9±1.5 26.9±1.5 20.1±0.0 20.4±0.4 41.2±1.6 40.7±1.7 40.7±1.7 41.6±1.6 42.0±1.7 42.4±1.7
miniImageNet-5-5 59.7±0.9 30.3±0.7 27.2±0.6 20.2±0.2 20.7±0.5 52.8±0.9 54.3±0.9 57.6±0.9 58.6±0.9 58.1±0.9 58.7±0.9

Average Rank 1.25 - - 8.42 8.58 6.58 5.75 4.00 3.67 3.75 3.00

Table 5.1 Accuracy results for different few-shot settings on Omniglot and miniImageNet using
the MAML algorithm. All figures are percentages and the ± sign indicates the 95% confidence
interval. Bold indicates the highest scores. The numbers after the configuration name indicate
the way and shots, respectively. The vertical lines enclose the transductive results. The TBN,
examples, and class columns indicate accuracy when tested with all target examples at once,
one example at a time, and one class at a time, respectively. All other NLs are non-transductive
and yield the same result when tested by example or class.

Finally, we note that Reptile (Nichol et al., 2018) uses a non-transductive form of task
normalization that involves normalizing examples from the target set one example at a time
with the moments of the context set augmented with the single example. We refer to this
approach as reptile normalization or RN. It is easy to show that RN is a special case of TAS-
KNORM augmented with IN when α = |Dτ |/(1 + |Dτ |). In Section 5.5, we show that reptile
normalization falls short of TASKNORM, supporting the intuition that learning the value of α
is preferable to fixing a value.

5.5 Experiments

In this section, we evaluate TASKNORM along with a range of competitive normalization ap-
proaches.2 The goal of the experiments is to evaluate the following hypotheses: (i) Meta-learn-
ing algorithms are sensitive to the choice of NL; (ii) TBN will, in general, outperform non–
transductive NLs; and (iii) NLs that consider the meta-learning data assumptions (TASKNORM,
METABN, RN) will outperform ones that do not (CBN, BRN, IN, LN, etc.). (iv) Transductive
learners will perform poorly if the target set contains a different class balance that what was
observed during meta-training or if they are required to make predictions one example at a
time.

5.5.1 Small Scale Few-Shot Classification Experiments

We evaluate TASKNORM and a set of NLs using the first order MAML and Prototypical
Networks algorithms on the Omniglot and miniImageNet datasets under various way (the
number of classes used in each task) and shot (the number of context set examples used per

2Source code available at https://github.com/cambridge-mlg/cnaps.

https://github.com/cambridge-mlg/cnaps

90 TASKNORM: Rethinking Batch Normalization for Meta-Learning

Configuration TBN CBN BRN LN IN RN MetaBN TaskNorm-L TaskNorm-I

Omniglot-5-1 98.4±0.2 98.5±0.2 98.5±0.2 98.7±0.2 93.7±0.4 98.0±0.2 98.4±0.2 98.6±0.2 98.4±0.2
Omniglot-5-5 99.6±0.1 99.6±0.1 99.6±0.1 99.7±0.1 98.8±0.1 99.6±0.1 99.6±0.1 99.6±0.1 99.6±0.1
Omniglot-20-1 94.5±0.2 94.5±0.2 94.6±0.2 94.9±0.2 83.5±0.3 94.1±0.2 94.5±0.2 95.0±0.2 93.4±0.2
Omniglot-20-5 98.6±0.1 98.6±0.1 98.6±0.1 98.7±0.1 96.3±0.1 98.6±0.1 98.6±0.1 98.7±0.1 98.6±0.1
miniImageNet-5-1 45.9±0.6 47.8±0.6 46.3±0.6 47.5±0.6 30.4±0.5 39.7±0.5 42.6±0.6 47.5±0.6 43.2±0.6
miniImageNet-5-5 65.5±0.5 66.7±0.5 64.7±0.5 66.3±0.5 48.8±0.5 63.1±0.5 64.6±0.5 65.3±0.5 63.9±0.5

Average Rank 4.58 3.25 4.33 2.75 9.00 6.67 5.25 3.08 6.08

Table 5.2 Accuracy results for different few-shot settings on Omniglot and miniImageNet using
the Prototypical Networks algorithm. All figures are percentages and the ± sign indicates the
95% confidence interval. Bold indicates the highest scores. The numbers after the configuration
name indicate the way and shots, respectively. The vertical lines in the TBN column are to
emphasize that this method is transductive.

class) configurations. This setting is smaller scale, and considers only fixed-sized context and
target sets. Configuration and training details can be found in Section B.3.

Accuracy Table 5.1 and Table 5.2 show accuracy results for various normalization methods
on the Omniglot and miniImageNet datasets using the first order MAML and the Prototypical
Networks algorithms, respectively. We compute the average rank in an identical manner to
(Triantafillou et al., 2020).

For MAML, TBN is clearly the best method in terms of classification accuracy. The best
non-transductive approach is TASKNORM that uses IN augmentation (TASKNORM-I). The two
methods using instance-based normalization (LN, IN) do significantly less well than methods
designed with meta-learning desiderata in mind (i.e. TASKNORM, MetaBN, and RN). The
methods using running averages at meta-test time (CBN, BRN) fare the worst. Figure 5.3
compares the performance of MAML on unseen tasks from miniImageNet when trained with
TBN, IN, METABN, and TASKNORM, as a function of the number of shots per class in Dτ , and
demonstrates that these trends are consistent across the low-shot range.

Note that when meta-testing occurs one example at a time (e.g. streaming data scenario) or
one class at a time (unbalanced class distribution scenario), accuracy for TBN drops dramati-
cally compared to the case where all the examples are tested at once. This is a drawback of the
transductive approach. All of the other NLs in the table are non-transductive and do not suffer
a decrease in accuracy when tested an example at a time or a class at a time.

Compared to MAML, the Prototypical Networks algorithm is much less sensitive to the
NL used. Table 5.2 indicates that with the exception of IN, all of the normalization methods
yield good performance. We suspect that this is due to the fact that ProtoNets employs a
parameter-less nearest neighbor classifier and no gradient steps are taken at meta-test time,
lessening the importance of normalization. In addition, this is likely due to the fact that the
tasks in the small scale experiments are homogeneous (i.e. they have fixed shot and way with

5.5 Experiments 91

2 4 6 8 10
Shot

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

TBN
TaskNorm-I
MetaBN
IN

Fig. 5.3 Accuracy vs shot for MAML on 5-way miniImageNet classification.

little variation in the image content). In the large scale experiments with heterogeneous tasks
that are described in Section 5.5.2, we see that ProtoNets benefits to a much greater degree
from TASKNORM. The top performer for ProtoNets in the small scale experiments is LN which
narrowly edges out TaskNorm-L and CBN. Interestingly, TBN is not on top and TASKNORM-I
lags as IN is the least effective method.

Training Speed Figure 5.4a plots validation accuracy versus training iteration for the first
order MAML algorithm training on Omniglot 5-way-5-shot. TBN is the most efficient in terms
of training convergence. The best non-transductive method is again TASKNORM-I, which
is only marginally worse than TBN and just slightly better than TASKNORM-L. Importantly,
TASKNORM-I is superior to either of MetaBN and IN alone in terms of training efficiency.
Figure 5.4b depicts the training curves for the ProtoNets algorithm. With the exception of IN
which converges to a lower validation accuracy, all NLs converge at the the same speed.

For the MAML algorithm, the experimental results support our hypotheses. Performance
varies significantly across NLs. TBN outperformed all methods in terms of classification
accuracy and training efficiency, and TASKNORM is the best non-transductive approach. Finally,
The meta-learning specific methods outperformed the more general ones. The picture for
Prototypical Networks is rather different. There is little variability across NLs, TBN lagging
the most consistent method LN, and the NLs that considered meta-learning needs were not
necessarily superior to those that did not.

92 TASKNORM: Rethinking Batch Normalization for Meta-Learning

0 10000 20000 30000 40000 50000 60000
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

TBN, CBN, RN
TaskNorm-I
TaskNorm-L
MetaBN
LN
IN

(a)

0 10000 20000 30000 40000 50000
Iteration

0.6

0.7

0.8

0.9

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

TBN, CBN, RN
TaskNorm-I
TaskNorm-L
MetaBN
LN
IN

(b)

Fig. 5.4 Plots of validation accuracy versus training iteration using: (a) the MAML algorithm
for Omniglot 5-way, 5-shot corresponding to the results in Table 5.1, and (b) the ProtoNets
algorithm for Omniglot 20-way, 1-shot corresponding to the results in Table 5.2.

5.5.2 Large Scale Few-Shot Classification Experiments

Next, we evaluate NLs on a demanding few-shot classification challenge called Meta-Dataset,
composed of thirteen (eight train, five test) image classification datasets (Triantafillou et al.,
2020). Experiments are carried out with CNAPS, which achieves state-of-the-art performance
on Meta-Dataset (Requeima et al., 2019b) and Prototypical Networks. The challenge constructs
few-shot learning tasks by drawing from the following distribution. First, one of the datasets is
sampled uniformly; second, the “way” and “shot” are sampled randomly according to a fixed
procedure; third, the classes and context / target instances are sampled. As a result, the context
size Dτ will vary in the range between 5 and 500 for each task. In the meta-test phase, the
identity of the original dataset is not revealed and tasks must be treated independently (i.e. no
information can be transferred between them). The meta-training set comprises a disjoint and
dissimilar set of classes from those used for meta-test. Details provided in Section B.3 and
Triantafillou et al. (2020).

Accuracy The classification accuracy results for CNAPS and Prototypical Networks on Meta-
Dataset are shown in Table 5.3 and Table 5.4, respectively. In the case of Prototypical Networks,
all the the NLs specifically designed for meta-learning scenarios outperform TBN in terms of
classification accuracy based on their average rank over all the datasets. For CNAPS, both RN
and TASKNORM-I meet or exceed the rank of TBN. This may be as |Dτ | (i) is quite large in
Meta-Dataset, and (ii) may be imbalanced with respect to classes, making prediction harder
with transductive NLs. TASKNORM-I comes out as the clear winner ranking first in 11 and 10
of the 13 datasets using CNAPS and Prototypical Networks, respectively. This supports the
hypothesis that augmenting the BN moments with a second, instance based set of moments

5.5 Experiments 93

Dataset TBN Baseline CBN BRN LN IN RN MetaBN TaskNorm-r TaskNorm-L TaskNorm-I

ILSVRC 50.2±1.0 51.3±1.0 24.8±0.7 19.2±0.7 45.5±1.1 46.7±1.0 49.7±1.1 51.3±1.1 49.3±1.0 51.2±1.1 50.6±1.1
Omniglot 91.4±0.5 88.0±0.7 47.9±1.4 60.0±1.6 87.4±0.8 79.7±1.0 91.0±0.6 90.9±0.6 87.8±0.7 90.6±0.6 90.7±0.6
Aircraft 81.6±0.6 76.8±0.8 29.5±0.9 56.3±0.8 76.5±0.8 74.7±0.7 82.4±0.6 83.9±0.6 81.1±0.7 81.9±0.6 83.8±0.6
Birds 74.5±0.8 71.4±0.9 42.1±1.0 32.6±0.8 67.3±0.9 64.9±1.0 72.4±0.8 73.2±0.9 72.8±0.9 72.4±0.8 74.6±0.8
Textures 59.7±0.7 62.5±0.7 37.5±0.7 50.5±0.6 60.1±0.6 59.7±0.7 58.6±0.7 58.9±0.8 63.2±0.8 57.2±0.7 62.1±0.7
Quick Draw 70.8±0.8 71.9±0.8 44.5±1.0 56.7±1.0 71.6±0.8 68.2±0.9 74.3±0.8 74.1±0.7 71.6±0.8 74.3±0.8 74.8±0.7
Fungi 46.0±1.0 46.0±1.1 21.1±0.8 26.1±0.9 39.6±1.0 37.8±1.0 49.0±1.0 47.9±1.0 42.0±1.1 47.1±1.1 48.7±1.0
VGG Flower 86.6±0.5 89.2±0.5 79.0±0.7 75.7±0.7 84.4±0.6 82.6±0.6 86.9±0.6 85.9±0.6 87.7±0.6 87.3±0.5 89.6±0.6
Traffic Signs 66.6±0.9 60.1±0.9 38.3±0.9 38.8±1.2 57.3±0.8 62.5±0.8 66.6±0.8 58.9±0.9 62.7±0.8 62.0±0.8 67.0±0.7
MSCOCO 41.3±1.0 42.0±1.0 14.2±0.7 19.1±0.8 32.9±1.0 40.8±1.0 42.1±1.0 41.6±1.1 40.1±1.0 41.6±1.0 43.4±1.0
MNIST 92.1±0.4 88.6±0.5 65.9±0.8 82.5±0.6 86.8±0.5 89.8±0.5 91.3±0.4 92.1±0.4 93.2±0.3 90.5±0.4 92.3±0.4
CIFAR10 70.1±0.8 60.0±0.8 26.1±0.7 29.1±0.6 55.8±0.8 65.9±0.8 69.7±0.7 69.6±0.8 66.9±0.8 70.3±0.8 69.3±0.8
CIFAR100 55.6±1.0 48.1±1.0 16.7±0.8 16.7±0.7 37.9±1.0 52.9±1.0 55.0±1.0 54.2±1.1 53.0±1.1 59.5±1.0 54.6±1.1

Average Rank 3.92 5.58 10.69 10.31 7.96 7.54 3.77 4.04 5.38 4.42 2.38

Table 5.3 Few-shot classification results on META-DATASET using the CNAPS algorithm. Meta-
training performed on datasets above the dashed line. Datasets below the dashed line are
entirely held out. All figures are percentages and the ± sign indicates the 95% confidence
interval over tasks. Bold indicates the highest scores. Vertical lines in TBN column emphasize
that this method is transductive. Numbers in the BASELINE column are from (Requeima et al.,
2019b).

and learning the blending factor α as a function of context set size is superior to fixing α to
a constant value (as is the case with RN). With both methods, the instance based NLs fall
short of the meta-learning specific ones. However, in the case of CNAPS, they outperform the
running average based methods (CBN, BRN), which perform poorly. In the case of Prototypical
Networks, BRN outperforms the instance based methods, and IN fairs the worst of all. In
general, Prototypical Networks is less sensitive to the NL used when compared to CNAPS.
The BASELINE column in Table 5.3 is taken from (Requeima et al., 2019b), where the method
reported state-of-the-art results on Meta-Dataset. The BASELINE algorithm uses the running
moments learned during pre-training of its feature extractor for normalization. Using meta-
learning specific NLs (in particular TASKNORM) achieves significantly improved accuracy
compared to BASELINE.

As an ablation, we have also added an additional variant of TASKNORM that blends the
batch moments from the context set with the running moments accumulated during meta-
training that we call TASKNORM-r. TASKNORM-r makes use of the global running moments to
augment the local context statistic and did not perform as well as the TASKNORM variants that
employed local moments (i.e. TASKNORM-I and TASKNORM-L).

Training Speed Figure 5.5a plots training loss versus training iteration for the models in
Table 5.3 that use the CNAPS algorithm. The fastest training convergence is achieved by
TASKNORM-I. The instance based methods (IN, LN) are the slowest to converge. Note that
TASKNORM converges within 60k iterations while BASELINE takes 110k iterations and IN takes

94 TASKNORM: Rethinking Batch Normalization for Meta-Learning

Dataset TBN CBN BRN LN IN RN MetaBN TaskNorm-r TaskNorm-L TaskNorm-I

ILSVRC 44.7±1.0 43.6±1.0 43.0±1.0 33.9±0.9 32.5±0.9 45.1±1.0 44.2±1.0 42.7±1.0 45.1±1.1 44.9±1.0
Omniglot 90.7±0.6 77.5±1.1 89.1±0.7 90.8±0.6 83.4±0.8 90.8±0.6 90.4±0.6 88.6±0.7 90.2±0.6 90.6±0.6
Aircraft 83.3±0.6 77.0±0.7 84.4±0.5 73.9±0.7 75.0±0.6 80.9±0.6 82.3±0.6 79.6±0.6 81.2±0.6 84.7±0.5
Birds 69.6±0.9 67.5±0.9 69.0±0.9 54.1±1.0 50.2±1.0 68.6±0.9 68.6±0.8 64.2±0.9 68.8±0.9 71.0±0.9
Textures 61.2±0.7 57.7±0.7 58.0±0.7 55.8±0.7 45.3±0.7 64.1±0.7 60.5±0.7 60.8±0.7 63.4±0.8 65.9±0.7
Quick Draw 75.0±0.8 62.1±1.0 74.3±0.8 72.5±0.8 70.8±0.8 75.4±0.7 74.2±0.7 73.2±0.8 75.4±0.7 77.5±0.7
Fungi 46.4±1.0 43.6±1.0 46.5±1.0 33.2±1.1 29.8±1.0 46.7±1.0 46.5±1.0 42.3±1.1 46.5±1.0 49.6±1.1
VGG Flower 83.1±0.6 82.3±0.6 84.5±0.6 78.3±0.8 69.4±0.8 84.4±0.7 86.0±0.6 81.1±0.7 82.9±0.7 83.2±0.6
Traffic Signs 64.0±0.8 59.5±0.8 65.7±0.8 69.1±0.7 60.7±0.8 66.0±0.8 63.2±0.8 64.9±0.8 67.0±0.7 65.8±0.7
MSCOCO 38.2±1.0 36.6±1.0 38.4±1.0 30.1±0.9 27.7±0.9 37.3±1.0 38.6±1.1 35.4±1.0 39.2±1.0 38.5±1.0
MNIST 93.4±0.4 86.5±0.6 91.9±0.4 94.0±0.4 87.4±0.5 93.9±0.4 93.9±0.4 92.5±0.4 91.9±0.4 93.3±0.4
CIFAR10 64.7±0.8 57.3±0.8 60.1±0.8 51.5±0.8 50.5±0.8 62.3±0.8 63.0±0.8 61.4±0.8 66.9±0.8 67.6±0.8
CIFAR100 48.0±1.1 43.1±1.0 43.9±1.0 34.0±0.9 32.1±1.0 47.2±1.1 47.0±1.0 45.2±1.0 51.3±1.1 50.0±1.0

Average Rank 4.04 8.19 5.31 7.46 9.58 3.65 3.96 6.73 3.58 2.50

Table 5.4 Few-shot classification results on META-DATASET using the Prototypical Networks
algorithm. Meta-training performed on datasets above the dashed line. Datasets below the
dashed line are entirely held out. All figures are percentages and the ± sign indicates the 95%
confidence interval over tasks. Bold indicates the highest scores. Vertical lines in TBN column
emphasize that this method is transductive.

200k. Figure 5.5b show the training curves for the ProtoNets algorithm. The convergence
speed trends are very similar to the CNAPS case, with TASKNORM-I being the fastest.

Our results demonstrate that TASKNORM is the best approach for normalizing tasks on
the large scale Meta-Dataset benchmark in terms of classification accuracy and training effi-
ciency. Here, we see high sensitivity of performance across NLs. Interestingly, in this setting
TASKNORM-I outperformed TBN in classification accuracy, as did both RN and METABN. This
refutes the hypothesis that TBN will always outperform other methods due to its transductive
property, and implies that designing NL methods specifically for meta-learning has signifi-
cant value. In general, the meta-learning specific methods outperformed more general NLs,
supporting our third hypothesis. We suspect the reason that TASKNORM outperforms other
methods is due to its ability to adaptively leverage information from both Dτ and xτ∗ when
computing moments, based on the size of Dτ .

5.5.3 Transduction Tests

A non-transductive meta-learning system makes predictions for a single test set label condi-
tioned only on a single input and the context set. A transductive meta-learning system also
conditions on additional samples from the test set.

Table 5.5 demonstrates failure modes for transductive learning. In addition to reporting
the classification accuracy results when the target set is evaluated all at once (first column of
results for each NL), we report the classification accuracy when meta-testing is performed one
target-set example at a time (second column of results for each NL), and one target-set class at a

5.5 Experiments 95

0 10000 20000 30000 40000 50000 60000 70000
Iteration

101

102

Tr
ai

ni
ng

 L
os

s

TBN, CBN, RN
TaskNorm-I
TaskNorm-L
MetaBN
LN
IN
Baseline

(a)

0 10000 20000 30000 40000 50000 60000
Iteration

101

Tr
ai

ni
ng

 L
os

s

TBN, CBN, RN
TaskNorm-I
TaskNorm-L
MetaBN
LN
IN

(b)

Fig. 5.5 Training Loss versus iteration on META-DATASET corresponding to the results using:
(a) the CNAPS algorithm in Table 5.3, and (b) the ProtoNets algorithm in Table 5.4. Note that
TBN, CBN, and RN all share the same meta-training step.

time (third column of results for each NL). Table 5.5 demonstrates that classification accuracy
drops dramatically for TBN when testing is performed one example or one class at a time.

Importantly, in the case of TASKNORM-I (or any non-transductive NL – i.e. all of NLs
evaluated in this work apart from TBN), the evaluation results are identical whether they
are meta-tested on the entire target set at once, one example at a time, or one class at a time.
This shows that transductive learning is sensitive to the distribution over the target set used
during meta-training, demonstrating that transductive learning is less generally applicable
than non-transductive learning. In particular, transductive learners may fail to make good
predictions if target sets contains a different class balance than what was observed during
meta-training, or if they are required to make predictions for one example at a time (e.g. in
streaming applications).

5.5.4 Ablation Study: Choosing the best parameterization for α

There are a number of possibilities for the parameterization of the TASKNORM blending
parameter α. We consider four different configurations for each NL:

1. α is learned separately for each channel (i.e. channel specific) as an independent parame-
ter.

2. α is learned shared across all channels as an independent parameter.

3. α is learned separately for each channel (i.e. channel specific) as a function of context set
size (i.e. α = SIGMOID(SCALE|Dτ |+ OFFSET)).

96 TASKNORM: Rethinking Batch Normalization for Meta-Learning

TBN TASKNORM-I
Dataset All Example Class All Example Class

ILSVRC 50.2±1.0 9.5±0.3 11.8±0.4 50.4±1.1 50.4±1.1 50.4±1.1
Omniglot 91.4±0.5 7.5±0.4 9.6±0.4 91.3±0.6 91.3±0.6 91.3±0.6
Aircraft 81.6±0.6 11.8±0.4 14.4±0.4 83.8±0.6 83.8±0.6 83.8±0.6
Birds 74.5±0.8 7.6±0.4 8.4±0.4 74.4±0.9 74.4±0.9 74.4±0.9
Textures 59.7±0.7 17.0±0.2 18.1±0.4 61.1±0.7 61.1±0.7 61.1±0.7
Quick Draw 70.8±0.8 5.6±0.4 8.8±0.4 74.7±0.7 74.7±0.7 74.7±0.7
Fungi 46.0±1.0 5.0±0.3 6.5±0.4 50.6±1.1 50.6±1.1 50.6±1.1
VGG Flower 86.6±0.5 11.2±0.4 12.6±0.4 87.8±0.5 87.8±0.5 87.8±0.5
Traffic Signs 66.6±0.9 6.0±0.3 8.1±0.4 64.8±0.8 64.8±0.8 64.8±0.8
MSCOCO 41.3±1.0 6.1±0.3 7.9±0.4 42.2±1.0 42.2±1.0 42.2±1.0
MNIST 92.1±0.4 14.4±0.3 19.3±0.4 91.3±0.4 91.3±0.4 91.3±0.4
CIFAR10 70.1±0.8 14.4±0.3 16.4±0.4 70.0±0.8 70.0±0.8 70.0±0.8
CIFAR100 55.6±1.0 5.6±0.3 7.7±0.4 54.6±1.0 54.6±1.0 54.6±1.0

Table 5.5 Few-shot classification results for TBN and TASKNORM-I on META-DATASET using
the CNAPS algorithm. For each NL, the first column of results "All" reports accuracy when
meta-testing is performed on the entire target set at once. The second column of results
"Example" reports accuracy when meta-testing is performed one example at a time. The third
column of results "Class" reports accuracy when meta-testing is performed one class at a time.
All figures are percentages and the ± sign indicates the 95% confidence interval over tasks.
Meta-training is performed on datasets above the dashed line, while datasets below the dashed
line are entirely held out.

4. α is learned shared across all channels as a function of context set size (i.e. α =

SIGMOID(SCALE|Dτ |+ OFFSET)).

Accuracy Table 5.6 and Table 5.7 show classification accuracy for the various parameteriza-
tions for MAML and the CNAPS algorithms, respectively using the TASKNORM-I NL.

When using the MAML algorithm, there are only two options to evaluate as the context
size is fixed for each configuration of dataset, shot, and way and thus we need only evaluate
the independent options (1 and 2 above). Table 5.6 indicates that the classification accuracy
for the channel specific and shared parameterizations are nearly identical, but the shared
parameterization is better in the Omniglot-5-1 benchmark and hence has the best ranking
overall.

When using the CNAPS algorithm on the Meta-Dataset benchmark, the best parameter-
ization option in terms of classification accuracy is α shared across channels as a function
of context size. One justification for having α be a function of context size can be seen in
Figure 5.2b. Here we plot the line SCALE|Dτ |+ OFFSET on a linear scale for a representative
set of NLs in the ResNet-18 used in the CNAPS algorithm. The algorithm has learned that
the SCALE parameter is non-zero and the OFFSET is almost zero in all cases. If a constant α

5.5 Experiments 97

Independent
Configuration Channel Specific Shared

Omniglot-5-1 90.7±1.0 94.4±0.8
Omniglot-5-5 98.3±0.2 98.6±0.2
Omniglot-20-1 90.6±0.5 90.0±0.5
Omniglot-20-5 96.4±0.2 96.3±0.2
miniImageNet-5-1 42.6±1.8 42.4±1.7
miniImageNet-5-5 58.8±0.9 58.7±0.9

Average Rank 1.67 1.33

Table 5.6 Few-shot classification results for two α parameterizations on Omniglot and
miniImageNet using the MAML algorithm. All figures are percentages and the ± sign in-
dicates the 95% confidence interval over tasks. Bold text indicates the highest scores.

would lead to better accuracy, we would see the opposite (i.e the SCALE parameter would be
at or near zero and the OFFSET parameter being some non-zero value). From Table 5.7 we can
also see that accuracy is better when the parameterization is a shared α opposed to having a
channel-specific α.

Training Speed Figure 5.6a and Figure 5.6b show the learning curves for the various pa-
rameterization options using the MAML and the CNAPS algorithms, respectively with a
TASKNORM-I NL.

For the MAML algorithm the training efficiency of the shared and channel specific parame-
terizations are almost identical. For the CNAPS algorithm, Figure 5.6b indicates the training
efficiency of the independent parameterization is considerably worse than the functional one.
The two functional representations for the CNAPs algorithm have almost identical training
curves. Based on Figure 5.6a and Figure 5.6b, we conclude that the training speed of the func-
tional parameterization is superior to that of the independent parameterization and that there
is little or no difference in the training speeds between the functional, shared parameterization
and the functional, channel specific parameterization.

In summary, the best parameterization for α when it is learned shared across channels as a
function of context set size (option 4, above). We use this parameterization in all of the CNAPS

experiments in the main paper. For the MAML experiments, the functional parameterization
is meaningless given that all the test configurations have a fixed context size. In that case, we
used the independent, shared across channels parameterization for α for the experiments in
the main paper.

98 TASKNORM: Rethinking Batch Normalization for Meta-Learning

Independent Functional
Dataset Channel Specific Shared Channel Specific Shared

ILSVRC 45.3±1.0 49.6±1.1 49.8±1.1 50.6±1.1
Omniglot 90.8±0.6 90.9±0.6 90.1±0.6 90.7±0.6
Aircraft 82.3±0.7 84.6±0.6 84.4±0.6 83.8±0.6
Birds 70.1±0.9 73.2±0.9 73.1±0.9 74.6±0.8
Textures 54.8±0.7 58.5±0.7 61.0±0.8 62.1±0.7
Quick Draw 73.0±0.8 73.9±0.7 74.2±0.7 74.8±0.7
Fungi 43.8±1.0 47.6±1.0 48.0±1.0 48.7±1.0
VGG Flower 85.9±0.6 86.3±0.5 86.5±0.7 89.6±0.6
Traffic Signs 62.6±0.8 62.6±0.8 60.1±0.8 67.0±0.7
MSCOCO 38.3±1.1 40.9±1.0 40.2±1.0 43.4±1.0
MNIST 92.6±0.4 91.7±0.4 91.1±0.4 92.3±0.4
CIFAR10 65.7±0.9 67.7±0.8 67.3±0.9 69.3±0.8
CIFAR100 48.1±1.2 52.1±1.1 53.3±1.0 54.6±1.1

Average Rank 3.5 2.5 2.5 1.5

Table 5.7 Few-shot classification results for various α parameterizations on META-DATASET

using the CNAPS algorithm. All figures are percentages and the ± sign indicates the 95%
confidence interval over tasks. Bold text indicates the highest scores. Meta-training performed
on datasets above the dashed line, while datasets below the dashed line are entirely held out.

5.5.5 Evolution of α as Training Progresses

Figure 5.7a and Figure 5.7b show the how the SCALE and OFFSET parameters, respectively,
vary as training progresses. Both SCALE and OFFSET increase monotonically with training
iteration. As SCALE and OFFSET increase, α will also increase, which informs us that as
training progresses, there is less reliance on the the auxiliary moment (in this case IN) and more
weight is put on the standard batch moment (BN). It also tells us that the auxiliary moment
plays a more significant role early on in training when SCALE and OFFSET are smaller.

Similarly, Figure 5.8a and Figure 5.8b depict plots of α as a function of training iteration
and context set size for two of the NLs in the feature extractor. It is clear from these plots that
the weight placed on the standard batch moment (BN) increases and the weight placed on the
auxiliary moment (IN) decreases as training progresses.

5.6 Summary

In this chapter, we have identified and specified several issues and challenges with NLs for
the meta-learning setting. We have introduced a novel variant of batch normalization – that
we call TASKNORM – which is geared towards the meta-learning setting. Our experiments
demonstrate that TASKNORM achieves performance gains in terms of both classification
accuracy and training speed, sometimes exceeding transductive batch normalization. We

5.6 Summary 99

0 10000 20000 30000 40000 50000 60000
Iteration

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Independent, Channel Specific
Independent, Shared

(a)

0 10000 20000 30000 40000 50000 60000 70000
Iteration

101

4 × 100

6 × 100

2 × 101

Tr
ai

ni
ng

 L
os

s

Independent, Channel Specific
Independent, Shared
Functional, Channel Specific
Functional, Shared

(b)

Fig. 5.6 (a) Plots of validation accuracy versus training iteration corresponding to the parame-
terization experiments using the MAML algorithm in Table 5.6. (b) Plot of training loss versus
iteration corresponding to the parameterization experiments using the CNAPS algorithm in
Table 5.7.

0 5000 10000 15000 20000 25000 30000 35000 40000
Training Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

SC
AL

E

Layer 1
Layer 2
Layer 3
Layer 4

(a)

0 5000 10000 15000 20000 25000 30000 35000 40000
Training Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

OF
FS

ET

Layer 1
Layer 2
Layer 3
Layer 4

(b)

Fig. 5.7 (a) Plot of the learned SCALE parameter versus training iteration for the first NL in
each of the four layers in the feature extractor for the TASKNORM-I model. (b) Plot of the
learned OFFSET parameter versus training iteration for the first NL in each of the four layers
in the feature extractor for the TASKNORM-I model.

100 TASKNORM: Rethinking Batch Normalization for Meta-Learning

100 101 102

Context Set Size
0.5

0.6

0.7

0.8

0.9

1.0

Al
ph

a

Iteration 10000
Iteration 20000
Iteration 30000
Iteration 40000

(a)

100 101 102

Context Set Size

0.6

0.7

0.8

0.9

1.0

Al
ph

a

Iteration 10000
Iteration 20000
Iteration 30000
Iteration 40000

(b)

Fig. 5.8 Plots of α as a function of training iteration and context set size for the TASKNORM-I
model. (a) Is for the first NL in the first layer of the feature extractor. (b) Is for the first NL in
the last layer of the feature extractor.

recommend that future work in the few-shot / meta-learning community adopt TASKNORM,
and if not, declare the form of normalization used and implications thereof, especially where
transductive methods are applied.

Chapter 6

Conclusions and Discussion

6.1 Summary

The goal of this work has been to further the theory, design, development, and analysis of
data and computation efficient machine learning systems. In particular, the work focused on
few-shot image classification systems. Our resulting system CNAPS:

• during meta-training is exposed to multiple tasks such that it meta-learns to solve new
tasks from only a few examples;

• at meta-test time can effectively and efficiently solve new, unseen tasks from a broad
range of data distributions, in both the low and high data regimes, without the need for
retraining;

• is fast at meta-test-time as learning a new task learning requires only a forward pass
of the task context set through the meta-trained network and as such it is amenable to
execution on a mobile device;

• has demonstrated state of the art results on META-DATASET (Triantafillou et al., 2020),
arguably the most challenging few-shot learning benchmark to date.

6.1.1 Primary Contributions

The following is a list of the primary contributions of this work:

• We introduced ML-PIP, a probabilistic framework for meta-learning that unifies a broad
class of recently proposed meta-learning methods, and suggests alternative approaches.

• We developed VERSA, an instance of ML-PIP employing a fast, flexible and versatile
amortization network that takes few-shot learning datasets as inputs, with arbitrary
numbers of training examples, and outputs a distribution over task-specific parameters

102 Conclusions and Discussion

in a single forward pass of the network, avoiding the need to compute gradients at
meta-test time.

• We demonstrated high quality one-shot reconstruction of unseen views of a 3D model by
extending VERSA to regression tasks.

• We introduced CNAPS that extends CNPs to the multi-task classification setting. CNAPS

adds a second amortized network to VERSA in order to adapt key parameters in the
feature extractor to the current task.

• We devised a rich adaptation neural network with a novel auto-regressive structure that
provides information to deeper layers in the feature extractor concerning how shallower
layers have adapted to the task.

• We demonstrated that CNAPS achieved state-of-the-art results (at the time) on the
challenging META-DATASET benchmark indicating high-quality transfer-learning.

• We showed that trained CNAPS models are immediately deployable to continual learn-
ing and active learning where they can outperform existing approaches that do not
leverage transfer learning.

• We evaluated a range of approaches to batch normalization for meta-learning scenarios,
and developed a novel approach called TASKNORM.

• We demonstrated that TASKNORM achieves performance gains in terms of both classifica-
tion accuracy and training speed, sometimes exceeding transductive batch normalization
in large scale experiments.

6.2 Discussion

In this section, we first discuss building a state-of-the-art, few-shot, multi-task classification
system given the insights that I accumulated during my research. Following that, we offer
some thoughts on future extensions to this work.

6.2.1 Building a State-of-the-Art Few-shot, Multi-task Image Classifier

During the course of this thesis, we have endeavoured to design and implement better and
better few-shot, multi-task image classification systems. In this section, I will distill the
knowledge and insights that I have gained during this process and express how I believe a
state-of-the-art system should be built today.

6.2 Discussion 103

Feature Extraction It is well known that a good feature embedding is key to accurate image
classification (Tian et al., 2020). Much of the recent progress on few-shot learning benchmarks
such as miniImageNet has been due to more powerful feature extractors. Image feature
extraction techniques have evolved rapidly in recent years from using feature descriptors
such as histogram of oriented gradients (HOG) (Dalal and Triggs, 2005) and scale-invariant
feature transform (SIFT) (Lowe, 2004), to basic convolutional neural networks (LeCun et al.,
1999), residual networks (He et al., 2016), and more recently, inverted residual and linear
bottleneck layers (Sandler et al., 2018) used in MobileNetV2 and EfficientNet (Tan and Le,
2019). EfficientNets are scalable in terms of network depth, network width, and input image
resolution and can trade off classification accuracy with computational resources by changing
the depth, width, or resolution. Many of the few-shot learning benchmarks use small image
sizes (e.g. miniImageNet images are 84 × 84 pixels). Using larger image sizes can yield
more than a 10 percentage point increase in accuracy (Sandler et al., 2018) on the ImageNet
(Krizhevsky et al., 2012) benchmark. Almost all of these high performance networks are
available in a pre-trained, ready to use form.

A key requirement for meta-learning is the ability to adapt the systems to new unseen
tasks. While feature extractors pre-trained on ImageNet are powerful, the features extracted on
images that differ significantly from those in the ImageNet dataset (e.g. MNIST handwritten
digits (LeCun et al., 2010)) will be non-optimal. As demonstrated in Chapter 4, FiLM (Perez
et al., 2018) layers are a parameter efficient and expressive method to modulate the feature
activations in a pre-trained feature extractor that can effectively adapt the pre-trained network
adaptations to novel task data.

My recommendation for feature extraction at this time would be to use at least 224× 224

pixel images with the largest size pre-trained EfficientNet variant supplemented with FiLM
layer modulation that fits the computational resources available.

Final Layer Classifier In any few-shot, multi-task classification, the final classifier layer must
adapt in some manner to the task at hand. If nothing else, the final classifier layer must
have an output of size equal to the way (or number of classes) of the current task. There are
many options for the final layer classifier, however the most commonly used are a simple
linear classifier or a metric type classifier such as prototypical networks (Snell et al., 2017).
Almost all of the work in this thesis focused on the use of VERSA-style final layer linear
classifier with the weights generated class-by-class using a network that was trained across
many tasks in an amortized fashion. However, Bateni et al. (2019) show that you can improve
the classification accuracy of CNAPS by replacing the final VERSA classification layer with a
prototypical networks classifier that uses the Euclidean distance metric. The authors also show
that if you use a prototypical networks classifier with the Mahalanobis distance metric you can
improve on the CNAPS accuracy performance by an even larger margin. I have independently
verified these results. These results are interesting in that VERSA and prototypical networks are

104 Conclusions and Discussion

both special cases of ML-PIP (as was shown in Section 3.5) and both VERSA and prototypical
networks when using the Euclidean distance metric can be expressed in the form of a linear
classifier. However, VERSA requires a non-trivial multi-layer perceptron to generate the
linear classifier weights while prototypical networks does not require a network at all (see
Section 2.3.3). We postulate that prototypical networks using the Euclidean distance metric
edges out the VERSA classifier in terms of classification accuracy because the VERSA amortized
weight generation network is over-fitting, while there is no such network to overfit with
prototypical networks. Computing the Mahalanobis distance is considerably more expensive
compared to the Euclidean distance due to the requirement to invert the potentially large task-
specific covariance matrix, but in my view that extra computation is worth the considerable
gain in classification accuracy. Thus, my recommendation is to use prototypical networks
with the Mahalanobis distance metric as the final layer classifier in a multi-task, few-shot
classification system.

Learning Algorithm This thesis has focused on using the episodic training regime introduced
by Vinyals et al. (2016) to train networks to generate parameters that adapt a few-shot, multi-
task classifier to a new task in an amortized fashion. The key advantages of this approach
are:

• Speed of adaptation. Once meta-trained, only one forward pass of the context set through
the parameter generating networks is required to adapt the classifier to a new task.

• Automatic adaptation. There are no parameters to tune to adapt the system to a new
task.

These attributes make the the system computationally efficient such that it is suitable for
real-time scenarios.

Tian et al. (2020) argue that you don’t need a sophisticated meta-learning algorithm at all
to be successful on common few-shot image classification benchmarks. Their work shows that
given a pre-trained feature extractor, you can use fine-tuning on the context set at meta-test time
to learn a final-layer linear classifier that is adapted to the current task. They forego the episodic
meta-training step entirely. This approach was evaluated only on fixed shot and way tasks and
only on in-distribution data. An extension to their approach would be to add FiLM layers to
allow adaptation to out of distribution data where the FiLM layer parameters are learned via
fine-tuning. Preliminary experiments that I have performed indicate that fine-tuning both the
final layer linear classifier and the FiLM layer parameters significantly outperform tuning only
the final layer classifier. In contrast to the amortized approach, fine tuning is slow and is not
fully automatic requiring the learning rate and the number of optimization steps to use to be
specified. Fine tuning is also more susceptible to over-fitting on few-shot data.

As the number of shots increases, the performance of amortization based meta-learning
approaches will suffer compared to fine-tuning as: (i) it is expensive to train the amortization

6.2 Discussion 105

based approaches with high shot; (ii) the capacity of the amortization networks is limited
and this can be an issue in the case of a large context set that requires extensive adaptation;
(iii) fine-tuning becomes less-likely to over-fit as the context size increases.

Another downside to the meta-learning approach that employs episodic training is that
during meta-training, it is not possible to break a task into smaller pieces for processing which
puts a limit on the size of a task that can be processed on a single GPU. This forces a trade-off
between the number of images in the context and target sets and the size of the images images
in the task. The fine-tuning approach does not face such limits as in this case the learning can
be easily split in smaller pieces (i.e. a mini-batch) of arbitrary size.

The fundamental trade-off between the fast, but potentially less accurate amortized ap-
proach and the slow, but potentially more accurate fine-tuning approach was depicted in
Figure 4.6.

Thus, my recommendation for the few-shot learning mechanism is as follows. If the time
to adapt a few-shot, multi-task system is critical (i.e. in a real-time or near real-time system),
use an amortized approach to generate the FiLM layer parameters in the feature extractor and
for the final layer classifier use prototypical networks with Mahalanobis distance metric which
has no parameters and has shown superiority over a linear classifier. If you have the time (and
potentially more data), use fine-tuning to learn the parameters for the FiLM layers and the final
layer linear classifier. Note that I am not recommending any of the few-step gradient methods,
such as MAML (Finn et al., 2017), as the amortized approach is both faster and achieves better
classification accuracy than any of the few-step gradient methods.

Batch Normalization When meta-training a few-shot image classification system in an
episodic manner, I unreservedly recommend the use of TASKNORM-I. In large scale experi-
ments, it resulted in higher classification accuracy and faster training convergence than any
other method.

6.2.2 Future Work

In this section we offer a glimpse of what could come next as an outgrowth of the work in this
thesis and some thoughts on directions for future work.

Personalization We see the biggest impact of meta-learning in personalized machine learning
i.e. rapidly adapting machine learning solutions to an individual by learning only from that
user’s data. Examples of this include: (i) a personal object recognition system to aid a visually
impaired user to locate various personal items with the use of a camera on a smartphone;
(ii) generating a talking head model of a user from only a few views (Zakharov et al., 2019).
In both cases above, a lengthy meta-training procedure on many few-shot learning tasks is
carried out, but once trained, the model is quick to personalize from only a small amount of

106 Conclusions and Discussion

data. If personalization is data and computation efficient, it will be amenable to execution
on an end user’s device (such as a smartphone or laptop computer) potentially protecting
end-user privacy and eliminating networking delays. Otherwise, if the personalization step
requires gradient-based or other compute intensive optimization, the computation may not be
feasible on an end user’s device requiring that the computation be done in the cloud along with
the associated issues of networking, privacy, security, and the cost of running a cloud-based
service. Using a CNAPS style architecture with amortized inference networks to generate the
personalization parameters would allow the personalization step to be performed on a smart
phone.

Designing Few-Shot Learning Systems for Computational Efficiency Neural network mod-
els are becoming ever larger and more powerful (e.g. the BERT language representation model
has 340 million parameters (Devlin et al., 2018)). Designing meta-learning architectures needs
to take into consideration parameter count a well as the time and energy usage to make a
prediction on a new task if meta-learning technology is to be incorporated into everyday
learning products and services. Using amortized networks that are trained on many few-shot
learning tasks as used in the CNAPS system that was detailed in Chapter 4 have a significant
advantage in terms of speed of execution and power usage at meta-test time compared to
gradient based approaches such as MAML or fine tuning as only a forward pass through the
amortization network is required to generate task specific parameters.

Given that a good feature embedding is key to good few-shot image classification perfor-
mance, work on improving the efficacy of convolutional neural networks becomes important.
Recent work on separable depth-wise convolutions (Sifre and Mallat, 2014) and inverted resid-
uals (Sandler et al., 2018) has allowed parameter counts to be drastically reduced with little
impact on classification accuracy. For example, the MobileNetv2(1.4) network that uses depth-
wise separable convolutions within inverted residual blocks consists of 6.9 million parameters
and achieves 74.7% top-1 accuracy on the ImageNet benchmark (Sandler et al., 2018) while the
VGG-19 network (Simonyan and Zisserman, 2014) that uses conventional convolutional layers
consists of 144 million parameters and achieves a similar 74.7% accuracy. Neural architecture
search (NAS) (Zoph and Le, 2016) has also led to smaller, but high performance models, for
example MNASNet (Tan et al., 2019). This is an area that is ripe for future investigation and
the creation of new efficiency oriented benchmarks.

Continual Learning As outlined in Section 2.5, continual learning is the ability of a machine
learning model to continuously learn from new data, building on past learning, and without
forgetting what it has learned in the past. Few-shot classification methods that employ
amortization networks (including CNAPS) can be directly applied to continual learning
scenarios since: (i) like any other few-shot learning system they are meta-trained to adapt to
new task data (i.e. they have "learned how to learn"); and (ii) a deep sets based amortization

6.2 Discussion 107

network can generate a compact summary of a context set categorized by class, that when
persisted can serve as a simple memory of the class data seen to date which can be easily
updated as new data is seen.

Section 4.6 detailed the use of CNAPS in the continual learning setting. The promising
CNAPS results imply that there is a strong connection between meta-learning and continual
learning. This raises the question as to whether meta-learning would benefit from explicitly
using continual learning tasks at training time to improve overall performance as the current
approach does not. Other researchers have also been aware of this connection. Vuorio et al.
(2018) consider a meta continual learning approach where a neural network is used to predict
parameter update steps which constrain parameters that are important to past tasks, but allow
large updates for parameters used to learn the current task, which helps mitigate catastrophic
forgetting. Antoniou et al. (2020) have defined a new few-shot continual learning benchmark
which should spur additional progress in the field.

Meta-Imitation Learning Imitation learning is when a robot or other artificial agent learns
a new task by observing many demonstrations of that task. The demonstration may be a
video clip or tele-operation in the case of a robot. However, a complex task may require an
impractical number of demonstrations to learn from. Meta-Imitation Learning is when the
robot or agent is given only a few demonstrations of a new task to learn from at meta-test
time, but is meta-trained on many tasks via demonstrations and has "learned how to learn" a
new task from only a few demonstrations. Learning from a a small number of demonstrations
is an appealing concept for many applications, especially robotics, since they are often easy
and intuitive to provide compared to explicitly programming each specific movement of a
robotic arm. Learning from a demonstration is particularly challenging as a time dimension is
usually involved (e.g. a video demonstration) increasing the amount of data and variability
in the tasks. For example, Zhou et al. (2019) introduce a concept called "Watch, Try, Learn"
where the goal is for an agent to observe a single demonstration (Watch), then attempt to solve
a similar task from what it has learned from the demonstration (Try), receive success or failure
indication on the attempt, and from the indication improve its strategy (Learn), such that the
agent can successfully complete any similar task. A Conditional Neural Process (CNP - refer
back to Section 2.4) approach has been used to learn robot movement primitives (i.e. motion
paths) from demonstrations (Seker et al., 2019) in order to solve picking and placing tasks. It
would be interesting to extend the CNP approach with CNAPS style adaptation to see if that
would improve performance, especially in the case where the movements are learned from
video. Meta-imitation learning for robotics is a challenging area of research, but there are many
practical applications where the concepts from few-shot learning can be readily applied.

Image Retrieval A potentially interesting avenue of exploration is the connection between
information retrieval (Manning et al., 2008), meta-learning, and few-shot learning. In particular,

108 Conclusions and Discussion

given the work in this thesis, the focus would be on a few-shot learning approach to image
retrieval. This idea is not entirely new. Triantafillou et al. (2017) take an information retrieval
approach to few-shot learning using mean average precision as the ranking loss function. The
authors apply this approach to few-shot classification on Omniglot and miniImageNet with
competitive results. They also devise a new 1-shot image retrieval task where they select N
classes at random and then 10 examples at random from each class. Each of the 10N images
acts as a query in turn and ranks the remaining 10N − 1 images. The goal is that the 9 relevant
images are ranked higher that the remaining 10(N−1) images, with the performance measured
in terms of mean average precision. Wang et al. (2017) present a method for few-shot hash
learning for image retrieval where hash functions learned from unlabeled images are used for
generating codes of a new image category from only a few examples.

Noh et al. (2017) introduce the Google-Landmarks Dataset as well as a high performance
image retrieval system. The Landmarks dataset contains over 1.2 million images of more than
14 thousand landmarks throughout the world. Some landmarks have over 50 thousand images
while some have only one. The database has been used for both image recognition as well as
image retrieval. Given the large number of landmark classes and the wide range of examples
per class, this dataset would be ideal to evaluate few-shot image classification systems with
tasks of varying way and shot. The image retrieval system has a multi-step training process
which begins with a ResNet50 model pre-trained on ImageNet. The system is then fine-tuned
in a supervised fashion on the Landmarks dataset. Finally, attention layers on the feature maps
are trained. At this point the system could be used for image classification or image retrieval.
In the image retrieval scenario, attention-weighted features from the query images are matched
to images in the database using a highly optimized k-nearest neighbors algorithm, making the
approach not entirely different from prototypical networks. It would be interesting to try and
combine the few-shot image retrieval approach of Triantafillou et al. (2017) with the approach
of Noh et al. (2017) to see if a high-scale, meta-learned, few-shot image retrieval system could
be realized.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous
systems. Software available from tensorflow.org.

Antoniou, A., Patacchiola, M., Ochal, M., and Storkey, A. (2020). Defining benchmarks for
continual few-shot learning. arXiv preprint arXiv:2004.11967.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Bakker, B. and Heskes, T. (2003). Task clustering and gating for Bayesian multitask learning.
Journal of Machine Learning Research, 4(May):83–99.

Bateni, P., Goyal, R., Masrani, V., Wood, F., and Sigal, L. (2019). Improved few-shot visual
classification. arXiv preprint arXiv:1912.03432.

Bauer, M., Rojas-Carulla, M., Świątkowski, J. B., Schölkopf, B., and Turner, R. E. (2017). Dis-
criminative k-shot learning using probabilistic models. arXiv preprint arXiv:1706.00326.

Berger, J. O. (2013). Statistical decision theory and Bayesian analysis. Springer Science & Business
Media.

Bertinetto, L., Henriques, J. F., Valmadre, J., Torr, P., and Vedaldi, A. (2016). Learning feed-
forward one-shot learners. In Advances in Neural Information Processing Systems, pages
523–531.

Bird, J. J., Kobylarz, J., Faria, D. R., Ekárt, A., and Ribeiro, E. P. (2020). Cross-domain mlp
and cnn transfer learning for biological signal processing: Eeg and emg. IEEE Access,
8:54789–54801.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty in
neural network. In International Conference on Machine Learning, pages 1613–1622.

Bouma, S. (2017). One shot learning and siamese networks in keras. https://sorenbouma.
github.io/blog/oneshot/. Accessed: 2018-07-25.

Bronskill, J., Gordon, J., Requeima, J., Nowozin, S., and Turner, R. (2020). Tasknorm: Rethinking
batch normalization for meta-learning. In Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research. PMLR.

https://sorenbouma.github.io/blog/oneshot/
https://sorenbouma.github.io/blog/oneshot/

110 References

Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41–75.

Casella, G. and Berger, R. L. (2002). Statistical inference, volume 2. Duxbury Pacific Grove, CA.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva,
M., Song, S., Su, H., Xiao, J., Yi, L., and Yu, F. (2015). ShapeNet: An Information-Rich
3D Model Repository. Technical Report arXiv:1512.03012 [cs.GR], Stanford University —
Princeton University — Toyota Technological Institute at Chicago.

Chaudhry, A., Dokania, P. K., Ajanthan, T., and Torr, P. H. (2018). Riemannian walk for
incremental learning: Understanding forgetting and intransigence. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 532–547.

Chen, Y. (2018). A re-implementation of "prototypical networks for few-shot learning". https:
//github.com/cyvius96/prototypical-network-pytorch.

Chen, Y., Wang, X., Liu, Z., Xu, H., and Darrell, T. (2020). A new meta-baseline for few-shot
learning. arXiv preprint arXiv:2003.04390.

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and Vedaldi, A. (2014). Describing textures
in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3606–3613.

Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1996). Active learning with statistical models.
Journal of artificial intelligence research, 4:129–145.

Cremer, C., Li, X., and Duvenaud, D. (2018). Inference suboptimality in variational autoen-
coders. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 1078–1086,
Stockholmsmässan, Stockholm Sweden. PMLR.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In 2005
IEEE computer society conference on computer vision and pattern recognition (CVPR’05), volume 1,
pages 886–893. IEEE.

Dawid, A. P. (2007). The geometry of proper scoring rules. Annals of the Institute of Statistical
Mathematics, 59(1):77–93.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Duda, R. O., Hart, P. E., and Stork, D. G. (2012). Pattern classification. John Wiley & Sons.

Edelen, J., Li, J., Bronskill, J. F., Guiver, J. P., Dastgir, K., Rajmohan, S., and Sadovsky, A. (2019).
Personalized predictive models. US Patent 10,504,029.

Edwards, H. and Storkey, A. (2017). Towards a neural statistician. In Proceedings of the
International Conference on Learning Representations (ICLR).

Efron, B. (1975). The efficiency of logistic regression compared to normal discriminant analysis.
Journal of the American Statistical Association, 70(352):892–898.

Eslami, S. A., Rezende, D. J., Besse, F., Viola, F., Morcos, A. S., Garnelo, M., Ruderman, A., Rusu,
A. A., Danihelka, I., Gregor, K., et al. (2018). Neural scene representation and rendering.
Science, 360(6394):1204–1210.

https://github.com/cyvius96/prototypical-network-pytorch
https://github.com/cyvius96/prototypical-network-pytorch

References 111

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation
of deep networks. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages
1126–1135, International Convention Centre, Sydney, Australia. PMLR.

Finn, C., Xu, K., and Levine, S. (2018). Probabilistic model-agnostic meta-learning. arXiv
preprint arXiv:1806.02817.

Finn, C. B. (2017). Code for "Model-agnostic meta-learning for fast adaptation of deep net-
works". https://github.com/cbfinn/maml.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of
eugenics, 7(2):179–188.

Foong, A. Y., Bruinsma, W. P., Gordon, J., Dubois, Y., Requeima, J., and Turner, R. E. (2020).
Meta-learning stationary stochastic process prediction with convolutional neural processes.
arXiv preprint arXiv:2007.01332.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences, 3(4):128–135.

Furukawa, Y., Hernández, C., et al. (2015). Multi-view stereo: A tutorial. Foundations and
Trends® in Computer Graphics and Vision, 9(1-2):1–148.

Gal, Y., Islam, R., and Ghahramani, Z. (2017). Deep bayesian active learning with image
data. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
1183–1192. JMLR. org.

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T., Saxton, D., Shanahan, M., Teh, Y. W.,
Rezende, D., and Eslami, S. M. A. (2018a). Conditional neural processes. In Dy, J. and Krause,
A., editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 1704–1713, Stockholmsmässan, Stockholm
Sweden. PMLR.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D. J., Eslami, S., and Teh, Y. W.
(2018b). Neural processes. arXiv preprint arXiv:1807.01622.

Geisser, S. (1983). On the prediction of observables: a selective update. Technical report,
University of Minnesota.

Geisser, S. (2017). Predictive inference. Routledge.

Gidaris, S. and Komodakis, N. (2018). Dynamic few-shot visual learning without forgetting. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4367–4375.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning, volume 1. MIT
press Cambridge.

Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., and Turner, R. (2019). Meta-learning proba-
bilistic inference for prediction. In International Conference on Learning Representations.

Grant, E., Finn, C., Levine, S., Darrell, T., and Griffiths, T. (2018). Recasting gradient-based
meta-learning as hierarchical bayes. In International Conference on Learning Representations.

Ha, D., Dai, A., and Le, Q. V. (2016). Hypernetworks. In International Conference on Learning
Representations.

https://github.com/cbfinn/maml

112 References

Ha, D. and Eck, D. (2017). A neural representation of sketch drawings. arXiv preprint
arXiv:1704.03477.

Hartley, R. and Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge
university press.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning: data mining,
inference, and prediction. Springer Science & Business Media.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Heskes, T. (2000). Empirical bayes for learning to learn. In Proceedings of the Seventeenth
International Conference on Machine Learning, ICML ’00, pages 367–374, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The" wake-sleep" algorithm for
unsupervised neural networks. Science, 268(5214):1158–1161.

Hoi, S. C., Sahoo, D., Lu, J., and Zhao, P. (2018). Online learning: A comprehensive survey.
arXiv preprint arXiv:1802.02871.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. (2020). Meta-learning in neural
networks: A survey. arXiv preprint arXiv:2004.05439.

Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., and Igel, C. (2013). Detection of traffic
signs in real-world images: The german traffic sign detection benchmark. In The 2013
international joint conference on neural networks (IJCNN), pages 1–8. IEEE.

Huszar, F. (2013). Scoring rules, divergences and information in Bayesian machine learning. PhD
thesis, University of Cambridge.

Iakovleva, E., Verbeek, J., and Alahari, K. (2020). Meta-learning with shared amortized
variational inference. arXiv preprint arXiv:2008.12037.

Ioffe, S. (2017). Batch renormalization: Towards reducing minibatch dependence in batch-
normalized models. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems
30, pages 1945–1953. Curran Associates, Inc.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Bach, F. and Blei, D., editors, Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 448–456, Lille, France. PMLR.

Jaynes, E. T. (2003). Probability theory: the logic of science. Cambridge university press.

Kaiser, Ł., Nachum, O., Aurko, R., and Bengio, S. (2017). Learning to remember rare events. In
International Conference on Learning Representations (ICLR).

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum, D., Vinyals, O., and Teh,
Y. W. (2019). Attentive neural processes. In International Conference on Learning Representations.

Kim, Y., Wiseman, S., Miller, A. C., Sontag, D., and Rush, A. M. (2018). Semi-amortized varia-
tional autoencoders. In Proceedings of the 35th International Conference on Machine Learning.

References 113

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of
the International Conference on Learning Representations.

Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling, M. (2014). Semi-supervised learning
with deep generative models. In Advances in Neural Information Processing Systems, pages
3581–3589.

Kingma, D. P., Salimans, T., and Welling, M. (2015). Variational dropout and the local reparam-
eterization trick. In Advances in Neural Information Processing Systems, pages 2575–2583.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational Bayes. In Proceedings of the
International Conference on Learning Representations (ICLR).

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan,
K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526.

Koch, G., Zemel, R., and Salakhutdinov, R. (2015). Siamese neural networks for one-shot image
recognition. In ICML Deep Learning Workshop, volume 2.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images.
Technical report, Citeseer.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105.

Lacoste, A., Oreshkin, B., Chung, W., Boquet, T., Rostamzadeh, N., and Krueger, D. (2018).
Uncertainty in multitask transfer learning. arXiv preprint arXiv:1806.07528.

Lacoste-Julien, S., Huszár, F., and Ghahramani, Z. (2011). Approximate inference for the
loss-calibrated Bayesian. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 416–424.

Lake, B., Salakhutdinov, R., Gross, J., and Tenenbaum, J. (2011). One shot learning of simple
visual concepts. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 33.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338.

LeCun, Y., Cortes, C., and Burges, C. (2010). MNIST handwritten digit database. AT&T Labs
[Online]. Available: http://yann. lecun. com/exdb/mnist, 2:18.

LeCun, Y., Haffner, P., Bottou, L., and Bengio, Y. (1999). Object recognition with gradient-based
learning. In Shape, contour and grouping in computer vision, pages 319–345. Springer.

Li, Z., Zhou, F., Chen, F., and Li, H. (2017). Meta-sgd: Learning to learn quickly for few shot
learning. arXiv preprint arXiv:1707.09835.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L.
(2014). Microsoft coco: Common objects in context. In European conference on computer vision,
pages 740–755. Springer.

Liu, L., Hamilton, W., Long, G., Jiang, J., and Larochelle, H. (2020). A universal representation
transformer layer for few-shot image classification. arXiv preprint arXiv:2006.11702.

114 References

Liu, Q. and Wang, D. (2016). Stein variational gradient descent: A general purpose bayesian
inference algorithm. In Advances In Neural Information Processing Systems, pages 2378–2386.

Liu, Y., Lee, J., Park, M., Kim, S., Yang, E., Hwang, S., and Yang, Y. (2019). Learning to propagate
labels: transductive propagation network for few-shot learning. In International Conference
on Learning Representations.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110.

Luo, C., Zhan, J., Xue, X., Wang, L., Ren, R., and Yang, Q. (2018). Cosine normalization: Using
cosine similarity instead of dot product in neural networks. In International Conference on
Artificial Neural Networks, pages 382–391. Springer.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning
research, 9(Nov):2579–2605.

Maji, S., Rahtu, E., Kannala, J., Blaschko, M., and Vedaldi, A. (2013). Fine-grained visual
classification of aircraft. arXiv preprint arXiv:1306.5151.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to information retrieval.
Cambridge university press.

Maudsley, D. B. (1980). A theory of meta-learning and principles of facilitation: An organismic
perspective.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P. (2018). A simple neural attentive
meta-learner. In International Conference on Learning Representations.

Mohamed, S. (2018). Density ratio trick. http://blog.shakirm.com/2018/01/
machine-learning-trick-of-the-day-7-density-ratio-trick/.

Naik, D. K. and Mammone, R. (1992). Meta-neural networks that learn by learning. In Neural
Networks, 1992. IJCNN., International Joint Conference on, volume 1, pages 437–442. IEEE.

Nam, H. and Kim, H.-E. (2018). Batch-instance normalization for adaptively style-invariant
neural networks. In Advances in Neural Information Processing Systems, pages 2558–2567.

Narayanaswamy, S., Paige, T. B., van de Meent, J.-W., Desmaison, A., Goodman, N., Kohli, P.,
Wood, F., and Torr, P. (2017). Learning disentangled representations with semi-supervised
deep generative models. In Advances in Neural Information Processing Systems, pages 5927–
5937.

Ng, A. Y. and Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes. In Advances in Neural Information Processing Systems,
pages 841–848.

Nguyen, C. V., Hassner, T., Archambeau, C., and Seeger, M. (2020). Leep: A new measure to
evaluate transferability of learned representations. arXiv preprint arXiv:2002.12462.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. (2017). Variational continual learning. arXiv
preprint arXiv:1710.10628.

Nichol, A., Achiam, J., and Schulman, J. (2018). On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999.

http://blog.shakirm.com/2018/01/machine-learning-trick-of-the-day-7-density-ratio-trick/
http://blog.shakirm.com/2018/01/machine-learning-trick-of-the-day-7-density-ratio-trick/

References 115

Nilsback, M.-E. and Zisserman, A. (2008). Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pages 722–729. IEEE.

Noh, H., Araujo, A., Sim, J., Weyand, T., and Han, B. (2017). Large-scale image retrieval with
attentive deep local features. In Proceedings of the IEEE international conference on computer
vision, pages 3456–3465.

Oreshkin, B. N., Lacoste, A., and Rodriguez, P. (2018). TADAM: Task dependent adaptive
metric for improved few-shot learning. arXiv preprint arXiv:1805.10123.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch:
An imperative style, high-performance deep learning library. In Wallach, H., Larochelle,
H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and Courville, A. (2018). FiLM: Visual reasoning
with a general conditioning layer. In Thirty-Second AAAI Conference on Artificial Intelligence.

Pohar, M., Blas, M., and Turk, S. (2004). Comparison of logistic regression and linear discrimi-
nant analysis: a simulation study. Metodoloski zvezki, 1(1):143.

Pratt, L. Y., Mostow, J., Kamm, C. A., and Kamm, A. A. (1991). Direct transfer of learned
information among neural networks. In AAAI, volume 91, pages 584–589.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d
classification and segmentation. Proc. Computer Vision and Pattern Recognition (CVPR), IEEE,
1(2):4.

Qiao, S., Liu, C., Shen, W., and Yuille, A. L. (2018). Few-shot image recognition by predicting
parameters from activations. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 7229–7238.

Rajeswaran, A., Finn, C., Kakade, S. M., and Levine, S. (2019). Meta-learning with implicit
gradients. In Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., and
Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages 113–124.
Curran Associates, Inc.

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press.

Ravi, S. and Larochelle, H. (2017). Optimization as a model for few-shot learning. In Proceedings
of the International Conference on Learning Representations.

Rebuffi, S.-A., Bilen, H., and Vedaldi, A. (2017). Learning multiple visual domains with residual
adapters. In Advances in Neural Information Processing Systems, pages 506–516.

Rebuffi, S.-A., Bilen, H., and Vedaldi, A. (2018). Efficient parametrization of multi-domain
deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8119–8127.

Ren, M., Ravi, S., Triantafillou, E., Snell, J., Swersky, K., Tenenbaum, J. B., Larochelle, H., and
Zemel, R. S. (2018). Meta-learning for semi-supervised few-shot classification. In International
Conference on Learning Representations.

116 References

Rendell, L. A., Sheshu, R., and Tcheng, D. K. (1987). Layered concept-learning and dynamically
variable bias management. In IJCAI, pages 308–314.

Requeima, J., Gordon, J., Bronskill, J., Nowozin, S., and Turner, R. E. (2019a). Code for
"Fast and flexible multi-task classification using conditional neural adaptive processes".
https://github.com/cambridge-mlg/cnaps.

Requeima, J., Gordon, J., Bronskill, J., Nowozin, S., and Turner, R. E. (2019b). Fast and
flexible multi-task classification using conditional neural adaptive processes. In Wallach, H.,
Larochelle, H., Beygelzimer, A., dÁlché-Buc, F., Fox, E., and Garnett, R., editors, Advances in
Neural Information Processing Systems 32, pages 7957–7968. Curran Associates, Inc.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approxi-
mate inference in deep generative models. In International Conference on Machine Learning,
pages 1278–1286.

Ring, M. B. (1997). Child: A first step towards continual learning. Machine Learning, 28(1):77–
104.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition challenge.
International journal of computer vision, 115(3):211–252.

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., and Hadsell, R.
(2018). Meta-learning with latent embedding optimization. arXiv preprint arXiv:1807.05960.

Saad, D. (2009). On-line learning in neural networks, volume 17. Cambridge University Press.

Salimans, T. and Kingma, D. P. (2016). Weight normalization: A simple reparameterization
to accelerate training of deep neural networks. In Advances in neural information processing
systems, pages 901–909.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4510–4520.

Satorras, V. G. and Estrach, J. B. (2018). Few-shot learning with graph neural networks. In
International Conference on Learning Representations.

Schmidhuber, J. (1987). Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universität München.

Schmidhuber, J. (1993). A ‘self-referential’weight matrix. In International Conference on Artificial
Neural Networks, pages 446–450. Springer.

Schroeder, B. and Cui, Y. (2018). Fgvcx fungi classification challenge at fgvc5. https://www.
kaggle.com/c/fungi-challenge-fgvc-2018.

Schwarz, J., Czarnecki, W., Luketina, J., Grabska-Barwinska, A., Teh, Y. W., Pascanu, R., and
Hadsell, R. (2018). Progress compress: A scalable framework for continual learning. In Dy,
J. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 4528–4537, Stockholmsmässan,
Stockholm Sweden. PMLR.

Seker, M. Y., Imre, M., Piater, J., and Ugur, E. (2019). Conditional neural movement primitives.
In Robotics: Science and Systems (RSS).

https://www.kaggle.com/c/fungi-challenge-fgvc-2018
https://www.kaggle.com/c/fungi-challenge-fgvc-2018

References 117

Settles, B. (2012). Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning,
6(1):1–114.

Sifre, L. and Mallat, S. (2014). Rigid-motion scattering for image classification. Ph. D. thesis.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Singh, S. and Krishnan, S. (2019). Filter response normalization layer: Eliminating batch
dependence in the training of deep neural networks. arXiv preprint arXiv:1911.09737.

Snell, J. (2017). Code for the nips 2017 paper "prototypical networks for few-shot learning".
https://github.com/jakesnell/prototypical-networks.

Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical networks for few-shot learning. In
Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett,
R., editors, Advances in Neural Information Processing Systems 30, pages 4077–4087. Curran
Associates, Inc.

Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243.

Sugiyama, M., Suzuki, T., and Kanamori, T. (2012). Density ratio estimation in machine learning.
Cambridge University Press.

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and Hospedales, T. M. (2018). Learning to
compare: Relation network for few-shot learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1199–1208.

Swaroop, S., Nguyen, C. V., Bui, T. D., and Turner, R. E. (2019). Improving and understanding
variational continual learning. arXiv preprint arXiv:1905.02099.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., and Le, Q. V. (2019).
Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2820–2828.

Tan, M. and Le, Q. V. (2019). Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946.

Thrun, S. and Pratt, L. (2012). Learning to learn. Springer Science & Business Media.

Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J. B., and Isola, P. (2020). Rethinking few-shot
image classification: a good embedding is all you need? arXiv preprint arXiv:2003.11539.

Triantafillou, E., Zemel, R., and Urtasun, R. (2017). Few-shot learning through an information
retrieval lens. In Advances in Neural Information Processing Systems, pages 2255–2265.

Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Evci, U., Xu, K., Goroshin, R., Gelada,
C., Swersky, K., Manzagol, P.-A., and Larochelle, H. (2020). Meta-dataset: A dataset of
datasets for learning to learn from few examples. In International Conference on Learning
Representations.

Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Xu, K., Goroshin, R., Gelada, C., Swer-
sky, K., Manzagol, P.-A., and Larochelle, H. (2019). Code for "Meta-dataset: A dataset of
datasets for learning to learn from few examples". https://github.com/google-research/
meta-dataset.

https://github.com/jakesnell/prototypical-networks
https://github.com/google-research/meta-dataset
https://github.com/google-research/meta-dataset

118 References

Trippe, B. and Turner, R. (2018). Overpruning in variational bayesian neural networks. arXiv
preprint arXiv:1801.06230.

Tseng, H.-Y., Lee, H.-Y., Huang, J.-B., and Yang, M.-H. (2020). Cross-domain few-shot classifi-
cation via learned feature-wise transformation. arXiv preprint arXiv:2001.08735.

Turner, R. E. (2018). Notes from review of neural scene representation and rendering.

Turner, R. E. and Sahani, M. (2011). Two problems with variational expectation maximisation
for time-series models. Bayesian Time series models, 1(3.1):3–1.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016). Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022.

Utgoff, P. E. (1986). Shift of bias for inductive concept learning. Machine learning: An artificial
intelligence approach, 2:107–148.

Vartak, M., Thiagarajan, A., Miranda, C., Bratman, J., and Larochelle, H. (2017). A meta-
learning perspective on cold-start recommendations for items. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in
Neural Information Processing Systems 30, pages 6904–6914. Curran Associates, Inc.

Vinyals, O., Blundell, C., Lillicrap, T., kavukcuoglu, k., and Wierstra, D. (2016). Matching
networks for one shot learning. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and
Garnett, R., editors, Advances in Neural Information Processing Systems 29, pages 3630–3638.
Curran Associates, Inc.

Vuorio, R., Cho, D.-Y., Kim, D., and Kim, J. (2018). Meta continual learning. arXiv preprint
arXiv:1806.06928.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S. (2011). The caltech-ucsd
birds-200-2011 dataset.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and
variational inference. Foundations and Trends® in Machine Learning, 1(1-2):1–305.

Wang, Y., Yao, Q., Kwok, J., and Ni, L. M. (2019). Generalizing from a few examples: A survey
on few-shot learning. arXiv preprint arXiv:1904.05046.

Wang, Y.-X., Gui, L., and Hebert, M. (2017). Few-shot hash learning for image retrieval. In
Proceedings of the IEEE International Conference on Computer Vision Workshops, pages 1228–1237.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612.

Wu, Y. and He, K. (2018). Group normalization. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 3–19.

Xiong, W., Wu, L., Alleva, F., Droppo, J., Huang, X., and Stolcke, A. (2018). The microsoft 2017
conversational speech recognition system. In 2018 IEEE international conference on acoustics,
speech and signal processing (ICASSP), pages 5934–5938. IEEE.

Yoon, J., Kim, T., Dia, O., Kim, S., Bengio, Y., and Ahn, S. (2018). Bayesian model-agnostic
meta-learning. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and
Garnett, R., editors, Advances in Neural Information Processing Systems 31, pages 7332–7342.
Curran Associates, Inc.

References 119

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features in deep
neural networks? In Advances in neural information processing systems, pages 3320–3328.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J. (2017).
Deep sets. In Advances in Neural Information Processing Systems, pages 3394–3404.

Zakharov, E., Shysheya, A., Burkov, E., and Lempitsky, V. (2019). Few-shot adversarial learning
of realistic neural talking head models. In Proceedings of the IEEE International Conference on
Computer Vision, pages 9459–9468.

Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning through synaptic intelligence. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 3987–3995.
JMLR. org.

Zhang, C., Butepage, J., Kjellstrom, H., and Mandt, S. (2017). Advances in variational inference.
arXiv preprint arXiv:1711.05597.

Zhou, A., Jang, E., Kappler, D., Herzog, A., Khansari, M., Wohlhart, P., Bai, Y., Kalakrishnan,
M., Levine, S., and Finn, C. (2019). Watch, try, learn: Meta-learning from demonstrations
and reward. arXiv preprint arXiv:1906.03352.

Zhuo, J., Liu, C., Shi, J., Zhu, J., Chen, N., and Zhang, B. (2017). Message passing stein
variational gradient descent. arXiv preprint arXiv:1711.04425.

Zintgraf, L. M., Shiarlis, K., Kurin, V., Hofmann, K., and Whiteson, S. (2018). CAML: Fast
context adaptation via meta-learning. arXiv preprint arXiv:1810.03642.

Zoph, B. and Le, Q. V. (2016). Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578.

Appendix A

Additional Modeling Details and
Experiments

A.1 Additional ML-PIP Modeling Details and Experiments

A.1.1 Bayesian Decision Theoretic Generalization of ML-PIP

A generalization of the new inference framework presented in Section 3.2 is based upon
Bayesian decision theory (BDT). BDT provides a recipe for making predictions ŷ for an
unknown test variable y∗ by combining information from observed training data Dτ (here
from a single task τ) and a loss function L(y∗, ŷ) that encodes the cost of predicting ŷ when
the true value is y∗ (Berger, 2013; Jaynes, 2003). In BDT an optimal prediction minimizes the
expected loss (suppressing dependencies on the inputs and θ to reduce notational clutter):1

ŷ∗ = argmin
ŷ

∫
p(y∗|Dτ)L(y∗, ŷ)dy∗, where p(y∗|Dτ) =

∫
p(y∗|ψτ)p(ψτ |Dτ)dψτ (A.1)

is the Bayesian predictive distribution and p(ψτ |Dτ) the posterior distribution of ψτ given the
training data from task τ .

BDT separates test and training data and so is a natural lens through which to view recent
episodic approaches to training that utilize many internal training/test splits (Vinyals et al.,
2016). Based on this insight, what follows is a fairly dense derivation of an ultimately simple
stochastic variational objective for meta-learning probabilistic inference that is rigorously
grounded in Bayesian inference and decision theory.

Distributional BDT. We generalize BDT to cases where the goal is to return a full predictive
distribution q(·) over the unknown test variable y∗ rather than a point prediction. The quality
of q is quantified through a distributional loss function L(y∗, q(·)). Typically, if y∗ (the true

1For discrete outputs the integral may be replaced with a summation.

122 Additional Modeling Details and Experiments

value of the underlying variable) falls in a low probability region of q(·) the loss will be high,
and vice versa. The optimal predictive q∗ is found by optimizing the expected distributional
loss with q constrained to a distributional family Q:

q∗ = argmin
q∈Q

∫
p(y∗|Dτ)L(y∗, q(·))dy∗. (A.2)

Amortized variational training. Here, we amortize q to form quick predictions at test time
and learn parameters by minimizing average expected loss over tasks. Let ϕ be a set of shared
variational parameters such that q(y∗) = qϕ(y

∗|D) (or qϕ for shorthand). Now the approximate
predictive distribution can take any training dataset Dτ as an argument and directly perform
prediction of yτ∗. The optimal variational parameters are found by minimizing the expected
distributional loss across tasks

ϕ∗ = argmin
ϕ
L [qϕ] , L [qϕ] =

∫
p(D)p(y∗|D)L(y∗, qϕ(·|D))dy∗ dD = Ep(D,y∗)[L(y∗, qϕ(·|D))] .

(A.3)
Here the variables D,x∗ and y∗ are placeholders for integration over all possible datasets, test
inputs and outputs. Note that Equation (A.3) can be stochastically approximated by sampling
a task t and randomly partitioning into training data D and test data {x∗

m,y
∗
m}Mm=1, which

naturally recovers episodic mini-batch training over tasks and data (Vinyals et al., 2016; Ravi
and Larochelle, 2017). Critically, this does not require computation of the true predictive
distribution. It also emphasizes the meta-learning aspect of the procedure, as the model is
learning how to infer predictive distributions from training tasks.

Loss functions. We employ the log-loss: the negative log density of qϕ at y∗. In this case,

L [qϕ] = Ep(D,y∗) [− log qϕ(y
∗|D)] = Ep(D) [KL [p(y∗|D)∥qϕ(y∗|D)] + H [p(y∗|D)]] , (A.4)

where KL[p(y)∥q(y)] is the KL-divergence, and H [p(y)] is the entropy of p. Equation (A.4)
has the elegant property that the optimal qϕ is the closest member of Q (in a KL sense) to the
true predictive p(y∗|D), which is unsurprising as the log-loss is a proper scoring rule (Huszar,
2013). This is reminiscent of the sleep phase in the wake-sleep algorithm (Hinton et al., 1995).
Exploration of alternative proper scoring rules (Dawid, 2007) and more task-specific losses
(Lacoste-Julien et al., 2011) is left for future work.

Specification of the approximate predictive distribution. Next, we consider the form of
qϕ. Motivated by the optimal predictive distribution, we replace the true posterior by an
approximation:

qϕ(y
∗|D) =

∫
p(y∗|ψ)qϕ(ψ|D)dψ. (A.5)

A.1 Additional ML-PIP Modeling Details and Experiments 123

A.1.2 Justification for Context-Independent Approximation

In this section we lay out both theoretical and empirical justifications for the context-independent
approximation detailed in Section 3.3.

Theoretical Argument – Density Ratio Estimation

A principled justification for the approximation is best understood through the lens of density
ratio estimation (Mohamed, 2018; Sugiyama et al., 2012). We denote the conditional density of
each class as p(x|y = c) and assume equal a priori class probability p(y = c) = 1/C. Density
ratio theory then uses Bayes’ theorem to show that the optimal softmax classifier can be
expressed in terms of the conditional densities (Mohamed, 2018; Sugiyama et al., 2012):

Softmax(y = c|x) = exp(h(x)⊤wc)∑
c′ exp(h(x)

⊤wc′)
= p(y = c|x) = p(x|y = c)∑

c′
p(x|y = c′)

, (A.6)

This implies that the optimal classifier will construct estimators for the conditional density for
each class, that is exp(h(x)⊤wc) ∝ p(x|y = c). Importantly for our approximation, notice that
these estimates are constructed independently for each class, similarly to training a naive Bayes
classifier. VERSA mirrors this optimal form using:

log p(x|y = c) ∝ hθ(x̃)⊤wc, (A.7)

where wc ∼ qϕ (w|{xn|yn = c}) for each class in a given task. Under ideal conditions (i.e., if
one could perfectly estimate p(x∗|y = c)), the context-independent assumption holds, further
motivating our design.

Empirical Justification

Here we detail a simple experiment to evaluate the validity of the context-independent in-
ference assumption. The goal of the experiment is to examine if weights may be context-
independent without imposing the assumption on the amortization network. To see this, we
randomly generate fifty tasks from a dataset, where classes may appear a number of times
in different tasks. We then perform free-form (non-amortized) variational inference on the
weights for each of the tasks, with a Gaussian variational distribution:

qϕ (W
τ |Dτ ,θ) = N

(
W τ ;µτϕ, σ

τ2
ϕ

)
. (A.8)

If the assumption is reasonable, we may expect the distribution of the weights of a specific
class to be similar regardless of the additional classes in the task.

124 Additional Modeling Details and Experiments

(a)

(b)

Fig. A.1 Visualizing the learned weights for dθ = 16. (a) Weight dimensionality is reduced
using T-SNE (Maaten and Hinton, 2008). Weights are colored according to class. (b) Each
weight represents one column of the image. Weights are grouped by class.

We examine 5-way classification in the MNIST dataset. We randomly sample and fix
fifty such tasks. We train the model twice using the same feature extraction network used
in the few-shot classification experiments, and fix the dθ to be 16 and 2. We then train the
model in an episodic manner by mini-batching tasks at each iteration. The model is trained to
convergence, and achieves 99% accuracy on held out test examples for the tasks. After training
is complete we examine the optimized µτϕ for each class in each task. Figure A.1a shows a t-SNE
(Maaten and Hinton, 2008) plot for the 16-dimensional weights. We see that when reduced
to 2-dimensions, the weights cluster according to class. Figure A.1b visualizes the weights in
their original space. In this plot, weights from the same class are grouped together, and clear
similarity patterns are evident across the image, showing that weights from the same class
have similar means across tasks. Figure A.2 details the task weights in 2-dimensional space.
Here, each pentagon represents the weight means learned for one training task, where the
nodes of the pentagon are colored according to the class the weights represent. In Figure A.2a
we see that overall, the classes cluster in 2-dimensional space as well. However, there is some

A.2 Additional CNAPS Few-Shot Classification Results 125

(a) (b)

Fig. A.2 Visualizing the task weights for dθ = 2. (a) All training tasks. (b) Only training tasks
containing both ‘1’s and ‘2’s.

overlap (e.g., classes ‘1’ and ‘2’), and that for some tasks a class-weight may appear away from
the cluster. Figure A.2b shows the same plot, but only for tasks that contain both class ‘1’ and
‘2’. Here we can see that for these tasks, class ‘2’ weights are all located away from their cluster.

This implies that each class-weights are typically well-approximated as being independent
of the task. However, if the model lacks capacity to properly assign each set of class weights
to different regions of space, for tasks where classes from similar regions of space appear, the
inference procedure will ‘move’ one of the class weights to an ‘empty’ region of the space.

A.2 Additional CNAPS Few-Shot Classification Results

A.2.1 Joint Training of θ and ϕ

Our experiments in jointly training θ and ϕ show that the two-stage training procedure pro-
posed in Section 4.3 is crucially important. In particular, we found that joint training diverged
in almost all cases we attempted. We were only able to train jointly in two circumstances:
(i) Using batch normalization in “train” mode for both context and target sets. We stress
that this implies computing the batch statistics at test time, and using those to normalize the
batches. This is in contrast to the methodology we propose in the main text: only using batch
normalization in “eval” mode, which enforces that no information is transferred across tasks
or datasets. (ii) “Warm-start" the training procedure with batch normalization in “train” mode,
and after a number of epochs (we use 50 for the results shown below), switch to proper usage
of batch normalization. All other training procedures we attempted diverged.

Table A.1 details the results of our study on training procedures. The results demonstrate
that the two-stage greatly improves performance of the model, even compared to using batch
normalization in “train mode”, which gives the model an unfair advantage over our standard
model.

126 Additional Modeling Details and Experiments

Dataset
Joint Training

(warmstart BN)
Joint Training

(BN train mode)
Two-Stage Training

(BN test mode)

ILSVRC 17.3±0.7 41.6±1.0 49.5±1.0
Omniglot 74.9±1.0 80.8±0.9 89.7±0.5
Aircraft 51.4±0.8 70.5±0.7 87.2±0.5
Birds 44.1±1.0 48.3±1.0 76.7±0.9
Textures 49.1±0.7 73.5±0.6 83.0±0.6
Quick Draw 46.6±1.0 71.5±0.8 72.3±0.8
Fungi 20.4±0.9 43.1±1.1 50.5±1.1
VGG Flower 66.6±0.8 71.0±0.7 92.5±0.4
Traffic Signs 21.2±0.8 40.4±1.1 48.4±1.1
MSCOCO 18.8±0.7 37.1±1.0 39.7±0.9

Table A.1 Few-shot classification results on META-DATASET (Triantafillou et al., 2020) compar-
ing joint training for θ and ϕ (columns 2 and 3) to two-stage training (column 4). All figures
are percentages and the ± sign indicates the 95% confidence interval.

A.2.2 Comparison Between CNAPS and Parallel Residual Adapters

CNAPS adds FiLM layers (Perez et al., 2018) in series with each convolutional layer to adapt
the feature extractor to a particular task while parallel residual adapters from Rebuffi et al.
(2018) adds 1×1 convolutions in parallel with each convolution layer to do the same. However,
if the number of feature channels is C, then the number of parameters required for each
convolutional layer in the feature extractor is 2C for CNAPS and C2 for parallel residual
adapters. Hence, parallel residual adapters have C/2 times the capacity compared to FiLM
layers. Despite this advantage, CNAPs achieves superior results as can be seen in Table A.2.

A.2 Additional CNAPS Few-Shot Classification Results 127

Dataset Parallel Residual Adapter CNAPS

ILSVRC 51.2 ± 1.0 52.3 ± 1.0
Omniglot 87.3 ± 0.7 88.4 ± 0.7
Aircraft 78.3 ± 0.7 80.5 ± 0.6
Birds 67.8 ± 0.9 72.2 ± 0.9
Textures 55.5 ± 0.7 58.3 ± 0.7
Quick Draw 70.9 ± 0.7 72.5 ± 0.8
Fungi 44.6 ± 1.1 47.4 ± 1.0
VGG Flower 81.7 ± 0.7 86.0 ± 0.5
Traffic Signs 57.2 ± 0.9 60.2 ± 0.9
MSCOCO 43.7 ± 1.0 42.6 ± 1.1
MNIST 91.1 ± 0.4 92.7 ± 0.4
CIFAR10 64.5 ± 0.8 61.5 ± 0.7
CIFAR100 50.4 ± 0.9 50.1 ± 1.0

Table A.2 Few-shot classification results on META-DATASET (Triantafillou et al., 2020) using
models trained on all training datasets for Parallel Residual Adapters (Rebuffi et al., 2018) and
CNAPS. All figures are percentages and the ± sign indicates the 95% confidence interval over
tasks. Bold text indicates the scores within the confidence interval of the highest score. Tasks
from datasets below the dashed line were not used for training.

Appendix B

Experiment Details

B.1 VERSA Experimentation Details

In this section we provide comprehensive details on the VERSA few-shot classification experi-
ments.

B.1.1 Omniglot Few-shot Classification Training Procedure

Omniglot (Lake et al., 2011) is a few-shot learning dataset consisting of 1623 handwritten
characters (each with 20 instances) derived from 50 alphabets. We follow a pre-processing and
training procedure akin to that defined in (Vinyals et al., 2016). First the images are resized
to 28× 28 pixels and then character classes are augmented with rotations of 90 degrees. The
training, validation and test sets consist of a random split of 1100, 100, and 423 characters,
respectively. When augmented this results in 4400 training, 400 validation, and 1292 test
classes, each having 20 character instances. For C-way, kc-shot classification, training proceeds
in an episodic manner. Each training iteration consists of a batch of one or more tasks. For
each task C classes are selected at random from the training set. During training, kc character
instances are used as training inputs and 15 character instances are used as test inputs. The
validation set is used to monitor the progress of learning and to select the best model to test,
but does not affect the training process. Final evaluation of the trained model is done on 600
randomly selected tasks from the test set. During evaluation, kc character instances are used as
training inputs and kc character instances are used as test inputs. We use the Adam (Kingma
and Ba, 2015) optimizer with a constant learning rate of 0.0001 with 16 tasks per batch to train
all models. The 5-way - 5-shot and 5-way - 1-shot models are trained for 80,000 iterations while
the 20-way - 5-shot model is trained for 60,000 iterations, and the 20-way - 1-shot model is
trained for 100,000 iterations. In addition, we use a Gaussian form for q and set the number of
ψ samples to L = 10.

130 Experiment Details

B.1.2 miniImageNET Few-shot Classification Training Procedure

miniImageNet (Vinyals et al., 2016) is a dataset of 60,000 color images that is sub-divided into
100 classes, each with 600 instances. The images have dimensions of 84× 84 pixels. For our
experiments, we use the 64 training, 16 validation, and 20 test class splits defined by (Ravi and
Larochelle, 2017). Training proceeds in the same episodic manner as with Omniglot. We use
the Adam (Kingma and Ba, 2015) optimizer and a Gaussian form for q and set the number of ψ
samples to L = 10. For the 5-way - 5-shot model, we train using 4 tasks per batch for 100,000
iterations and use a constant learning rate of 0.0001. For the 5-way - 1-shot model, we train
with 8 tasks per batch for 50,000 iterations and use a constant learning rate of 0.00025.

B.2 CNAPS Experimentation Details

All experiments were implemented in PyTorch (Paszke et al., 2019) and executed either on
NVIDIA Tesla P100-PCIE-16GB or Tesla V100-SXM2-16GB GPUs. The full CNAPS model
runs in a distributed fashion across 2 GPUs and takes approximately one and a half days to
complete episodic training and testing.

B.2.1 META-DATASET Training and Evaluation Procedure

Feature Extractor Weights θ Pretraining

We first reduce the size of the images in the ImageNet ILSVRC-2012 dataset (Russakovsky et al.,
2015) to 84 × 84 pixels. Some images in the ImageNet ILSVRC-2012 dataset are duplicates of
images in other datasets included in META-DATASET, so these were removed. We then split
the 1000 training classes of the ImageNet ILSVRC-2012 dataset into training, validation, and
test sets according to the criteria detailed in (Triantafillou et al., 2020). The test set consists
of the 130 leaf-node subclasses of the “device" synset node, the validation set consists of the
the 158 leaf-node subclasses of the “carnivore" synset node, and the training set consists of
the remaining 712 leaf-node classes. We then pretrain a feature extractor with parameters θ
based on a modified ResNet-18 (He et al., 2016) architecture on the above 712 training classes.
The ResNet-18 architecture is detailed in Table C.10. Compared to a standard ResNet-18, we
reduced the initial convolution kernel size from 7 to 5 and eliminated the initial max-pool step.
These changes were made to accommodate the reduced size of the imagenet training images.
We train for 125 epochs using stochastic gradient descent with momentum of 0.9, weight decay
equal to 0.0001, a batch size of 256, and an initial learning rate of 0.1 that decreases by a factor
of 10 every 25 epochs. During pretraining, the training dataset was augmented with random
crops, random horizontal flips, and random color jitter. The top-1 accuracy after pretraining
was 63.9%. For all subsequent training and evaluation steps, the ResNet-18 weights were
frozen.The dimensionality of the feature extractor output is df = 512. The hyper-parameters

B.2 CNAPS Experimentation Details 131

used were derived from the PyTorch (Paszke et al., 2019) ResNet training tutorial. The only
tuning that was performed was on the number of epochs used for training and the interval
at which the learning rate was decreased. For the number of epochs, we tried both 90 and
125 epochs and selected 125, which resulted in slightly higher accuracy. We also found that
dropping the learning rate at an interval of 25 versus 30 epochs resulted in slightly higher
accuracy.

Episodic Training of ϕ

Next we train the functions that generate the parameters ψτf , ψτw for the feature extractor
adapters and the linear classifier, respectively. We train two variants of CNAPS (on ImageNet
ILSVRC-2012 only and all datasets - see Table B.1). We generate training and validation
episodes using the reader from (Triantafillou et al., 2019). We train in an end-to-end fashion
for 110,000 episodes with the Adam (Kingma and Ba, 2015) optimizer, using a batch size of 16
episodes, and a fixed learning rate of 0.0005. We validate using 200 episodes per validation
dataset. Note that when training on ILSVRC only, we validate on ILSVRC only, however, when
training on all datasets, we validate on all datasets that have validation data (see Table B.1)
and consider a model to be better if more than half of the datasets have a higher classification
accuracy than the current best model. No data augmentation was employed during the
training of ϕ. Note that while training ϕ the feature extractor fθ(·) is in ‘eval’ mode (i.e. it will
use the fixed batch normalization statistics learned during pretraining the feature extractor
weights θ with a moving average). No batch normalization is used in any of the functions
generating the ψτ parameters, with the exception of the set encoder g (that generates the
global task representation zτG). Note that the target points are never passed through the set
encoder g. Again, very little hyper-parameter tuning was performed. No grid search or other
hyper-parameter search was used. For learning rate we tried both 0.0001 and 0.0005, and
selected the latter. We experimented with the number of training episodes in the range of
80,000 to 140,000, with 110,000 episodes generally yielding the best results. We also tried
lowering the batch size to 8, but that led to decreased accuracy.

Evaluation

We generate test episodes using the reader from (Triantafillou et al., 2019). We test all models
with 600 episodes each on all test datasets. The classification accuracy is averaged over the
episodes and a 95% confidence interval is computed. We compare the best validation and fully
trained models in terms of accuracy and use the best of the two. Note that during evaluation,
the feature extractor fθ(·) is also in ‘eval’ mode.

132 Experiment Details

ImageNet ILSVRC-2012 All Datasets

Train Validation Test Train Validation Test

ILSVRC ILSVRC ILSVRC ILSVRC ILSVRC ILSVRC
Omniglot Omniglot Omniglot Omniglot
Aircraft Aircraft Aircraft Aircraft
Birds Birds Birds Birds
Textures Textures Textures Textur
Quick Draw Quick Draw Quick Draw Quick Draw
Fungi Fungi Fungi Fungi
VGG Flower VGG Flower VGG Flower VGG Flower
MSCOCO MSCOCO MSCOCO
Traffic Signs Traffic Signs
MNIST MNIST
CIFAR10 CIFAR10
CIFAR100 CIFAR100

Table B.1 Datasets used to train, validate, and test models.

B.2.2 Continual Learning Experimentation Details

Split MNIST Benchmark The MNIST dataset (LeCun et al., 2010) consists of ten classes of
handwritten digits (zero through nine). In the split MNIST benchmark, the MNIST dataset is
split into five disjoint subsets of two consecutive digits i.e. {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}}
(Chaudhry et al., 2018). These five subsets serve as a sequence of tasks to learn consecutively.

Split CIFAR-100 Benchmark The CIFAR 100 dataset (Krizhevsky and Hinton, 2009) consists
of 100 classes of photographs of various objects. In the split CIFAR 100 benchmark, the CIFAR
100 is split into ten disjoint datasets of consecutive classes i.e. {{0 − 9}, {10 − 19}, {20 −
29}, {30 − 39}, {40 − 49}, {50 − 59}, {60 − 69}, {70 − 79}, {80 − 89}, {90 − 99}}. These ten
subsets serve as a sequence of tasks to learn consecutively.

Single versus Multi-Head Evaluation The primary difference between single-head and
multi-head evaluations is that at test time, the task identifier in multi-head it is known, while
in single-head it is unknown (Chaudhry et al., 2018). For example, consider the split MNIST
benchmark at the 5th and final task in the sequence. During training on this task, both
evaluation methodologies only get to see data from the classes in this task (i.e. {8, 9}). At test
time, in multi-head evaluation, the goal is to predict a class out of only these two labels (i.e.
{8, 9}). However at test time in single-head evaluation, the goal is to predict a label out of all
ten classes (i.e. {0, ..., 9}) that the model has seen thus far, even though the training data for
this task included only classes labeled {8, 9} and there is no access to training data from earlier

B.2 CNAPS Experimentation Details 133

classes. As a result, single-head evaluation is considerably more challenging that multi-head
evaluation.

Continual Learning Evaluation Procedure For all of the continual learning experiments, we
use a CNAPS model with FiLM adaptation that has been meta-trained on the eight training
datasets from META-DATASET. For each benchmark of 30 epochs, the context set consists
of 1, 10, and 100 labeled shots per class drawn from the training split of the dataset, and
the target set consists of 1000 images per class drawn from the test split of the dataset for
which predictions of the label are made. The context and target sets are then passed into the
meta-trained model and the average classification accuracy of all the test examples over all the
epochs is computed.

B.2.3 Active Learning Experimentation Details

Active Learning Datasets We use the test split of the Omniglot (Lake et al., 2011) and VGG
Flower (Nilsback and Zisserman, 2008) datasets for the active learning experiments. Note that
these datasets are members of the META-DATASET benchmark and the learners evaluated in
the active learning experiments have been meta-trained on the training splits of these datasets.

Each active learning dataset is split into three parts: the first labeled set contains 5 labeled
examples per class, the second test set contains 5 labeled images per class when evaluating
with Omniglot and 20 labeled images per class when evaluating with VGG Flower, and the
third pool set contains the remaining unlabeled images.

Active Learning Evaluation Procedure For all of the active learning experiments, we use
a CNAPS model with FiLM adaptation and a prototypical networks model that have been
meta-trained on the eight training datasets from META-DATASET. We perform 30 active
learning iterations to acquire 30 new images to be labeled by the oracle that will be added
to the labeled set of images (refer to Section 2.6). During each iteration, we: (i) compute the
classification accuracy on the test set using the meta-trained model with the labeled set as the
context set (this is the iteration accuracy reported in all of the plots); (ii) use the meta-trained
model to compute the predictive distribution using the currently labeled set of images as the
context set and all of the unlabeled images in the pool set as the target inputs; (iii) choose the
best candidate to label by computing the acquisition function using each of the predictions.
(iv) move the best candidate from the pool set to the labeled set of images for use in the next
iteration. The above is repeated for both CNAPS and prototypical networks for each of the
acquisition functions evaluated (Predictive Entropy, Variation Ratios, and Random (Gal et al.,
2017)) on both Omniglot and VGG Flower datasets.

134 Experiment Details

B.3 TASKNORM Experimentation Details

In this section, we provide the experimental details required to reproduce our experiments.
The experiments using MAML (Finn et al., 2017) were implemented in TensorFlow (Abadi
et al., 2015), the Prototypical Networks experiments were implemented in Pytorch (Paszke
et al., 2019), and the experiments using CNAPS (Requeima et al., 2019b) were implemented
using a combination of TensorFlow (Abadi et al., 2015) and Pytorch. All experiments were
executed on NVIDIA Tesla P100-16GB GPUs.

B.3.1 MAML Experiments

We evaluate MAML using a range of normalization layers on:

1. Omniglot (Lake et al., 2011): a few-shot learning dataset consisting of 1623 handwritten
characters (each with 20 instances) derived from 50 alphabets.

2. miniImageNet (Vinyals et al., 2016): a dataset of 60,000 color images that is sub-divided
into 100 classes, each with 600 instances.

For all the MAML experiments, we used the codebase provided by the MAML authors (Finn,
2017) with only small modifications to enable additional normalization techniques. Note that
we used the first-order approximation version of MAML for all experiments. MAML was
invoked with the command lines as specified in the main.py file in the MAML codebase. No
hyper-parameter tuning was performed and we took the results from a single run. All models
were trained for 60,000 iterations and then tested. No early stopping was used. We did not
select the model based on validation accuracy or other criteria. The MAML code employs ten
gradient steps at test time and computes classification accuracy after each step. We report the
maximum accuracy across those ten steps. To generate the plot in Figure 5.3, we use the same
command line as Omniglot-5-1, but vary the update batch size from one to ten.

B.3.2 CNAPS Experiments

We evaluate CNAPS using a range of normalization layers on a demanding few-shot classi-
fication challenge called Meta-Dataset (Triantafillou et al., 2020). Meta-Dataset is composed
of ten (eight train, two test) image classification datasets. We augment Meta-Dataset with
three additional held-out datasets: MNIST (LeCun et al., 2010), CIFAR10 (Krizhevsky and
Hinton, 2009), and CIFAR100 (Krizhevsky and Hinton, 2009). The challenge constructs few-
shot learning tasks by drawing from the following distribution. First, one of the datasets is
sampled uniformly; second, the “way” and “shot” are sampled randomly according to a fixed
procedure; third, the classes and context / target instances are sampled. Where a hierarchical
structure exists in the data (ILSVRC or OMNIGLOT), task-sampling respects the hierarchy. In
the meta-test phase, the identity of the original dataset is not revealed and the tasks must

B.3 TASKNORM Experimentation Details 135

be treated independently (i.e. no information can be transferred between them). Notably,
the meta-training set comprises a disjoint and dissimilar set of classes from those used for
meta-test. Full details are available in Triantafillou et al. (2020).

For all the CNAPS experiments, we use the code provided by the the CNAPS authors
(Requeima et al., 2019a) with only small modifications to enable additional normalization
techniques. We follow an identical dataset configuration and training process as prescribed
in Requeima et al. (2019a). To generate results in Table 5.3, we used the following CNAPS

options: FiLM feature adaptation, a learning rate of 0.001, and TBN, CBN, BRN, and RN
used 70,000 training iterations, IN used 200,000 iterations, LN used 110,000 iterations, and
TASKNORM used 60,000 iterations. The CNAPS code generates two models: fully trained and
best validation. We report the better of the two. We performed no hyper-parameter tuning and
report the test results from the first run. Note that CBN, TBN, and RN share the same trained
model. They differ only in how meta-testing is done.

B.3.3 Prototypical Networks Experiments

We evaluate the Prototypical Networks (Snell et al., 2017) algorithm with a range of NLs using
the same Omniglot, miniImageNet, and META-DATASET benchmarks.

For Omniglot, we used the codebase created by the Prototypical Networks authors (Snell,
2017). For miniImageNet, we used the a different codebase ((Chen, 2018)) as the first codebase
did not support miniImageNet. Only small modifications were made to the two codebases
to enable additional NLs. For Omniglot and miniImageNet, we set hyper-parameters as
prescribed in (Snell et al., 2017). Early stopping was employed and the model that produced
the best validation was used for testing.

For META-DATASET, we use the code provided by the the CNAPS authors (Requeima et al.,
2019a) with only small modifications to enable additional normalization techniques and a new
classifier adaptation layer to generate the linear classifier weights per equation (8) in (Snell
et al., 2017). We follow an identical dataset configuration and training process as prescribed
in Requeima et al. (2019a). To generate results in Table 5.4, we used the following CNAPS

options: FiLM feature adaptation, a learning rate of 0.001, 60,000 training iterations for all NLs,
and the pretrained feature extractor weights were not frozen and allowed to update during
meta-training.

Appendix C

Network Architectures

C.1 VERSA Few-shot Classification Network Architectures

Tables C.1 to C.3 and Section C.1 detail the neural network architectures for the feature extractor
θ, amortization network ϕ, and linear classifier ψ, respectively. The feature extraction network
is very similar to that used in (Vinyals et al., 2016). The output of the amortization network
yields mean-field Gaussian parameters for the weight distributions of the linear classifier ψ.
When sampling from the weight distributions, we employ the local-reparameterization trick
(Kingma et al., 2015), that is we sample from the implied distribution over the logits rather
than directly from the variational distribution. To reduce the number of learned parameters,
we share the feature extraction network θ with the pre-processing phase of the amortizaion
network ψ.

Omniglot Shared Feature Extraction Network (θ): x∗ → hθ(x
∗)

Output size Layers

28× 28× 1 Input image
14× 14× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, SAME)
7× 7× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, SAME)
4× 4× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, SAME)
2× 2× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, SAME)

256 flatten

Table C.1 Feature extraction network used for Omniglot few-shot learning. Batch Normaliza-
tion and dropout with a keep probability of 0.9 used throughout.

138 Network Architectures

miniImageNet Shared Feature Extraction Network (θ): x∗ → hθ(x
∗)

Output size Layers

84× 84× 1 Input image
42× 42× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, VALID)
21× 21× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, VALID)
10× 10× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, VALID)
5× 5× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, VALID)
2× 2× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, VALID)

256 flatten

Table C.2 Feature extraction network used for miniImageNet few-shot learning. Batch Normal-
ization and dropout with a keep probability of 0.5 used throughout.

Amortization Network (ϕ): xc1, ...,x
c
kc
→ µw(c) , σ2w(c)

Phase Output size Layers

feature extraction k × 256 shared feature network (θ)
instance pooling 256 mean
ψ weight distribution 256 2 × fully connected, ELU +

linear fully connected to µw(c) , σ2w(c)

Table C.3 Amortization network used for Omniglot and miniImageNet few-shot learning.

C.2 VERSA View Reconstruction Network Architectures

C.3 CNAPS Network Architectures

C.3.1 ResNet18 Architecture details

Throughout our experiments in Section 4.5, we use a ResNet18 (He et al., 2016) as our feature
extractor, the parameters of which we denote θ. Table C.8 and Table C.9 detail the architectures
of the basic block (left) and basic scaling block (right) that are the fundamental components of
the ResNet that we employ. Table C.10 details how these blocks are composed to generate the
overall feature extractor network. We use the implementation that is provided by the PyTorch
(Paszke et al., 2019)1, though we adapt the code to enable the use of FiLM layers.

C.3.2 Adaptation Network Architecture Details

In this section, we provide the details of the architectures used for our adaptation networks.
Table C.11 details the architecture of the set encoder g : Dτ 7→ zG that maps context sets to
global representations.

1https://pytorch.org/docs/stable/torchvision/models.html

C.3 CNAPS Network Architectures 139

Linear Classifier (ψ): hθ(x∗)→ p(y∗|x∗,θ,ψτ)

Output size Layers

256 Input features
C fully connected, softmax

Table C.4 Linear classifier used for Omniglot and miniImageNet few-shot learning.

ShapeNet Encoder Network (ϕ): y → h

Output size Layers

32× 32× 1 Input image
16× 16× 64 conv2d (3× 3, stride 1, SAME, RELU), pool (2× 2, stride 2, VALID)
8× 8× 64 conv2d (3× 3, stride 1, SAME, RELU), pool (2× 2, stride 2, VALID)
4× 4× 64 conv2d (3× 3, stride 1, SAME, RELU), pool (2× 2, stride 2, VALID)
2× 2× 64 conv2d (3× 3, stride 1, SAME, RELU), pool (2× 2, stride 2, VALID)

dϕ fully connected, RELU

Table C.5 Encoder network used for ShapeNet few-shot learning. No dropout or batch normal-
ization is used.

ShapeNet Amortization Network (ϕ): xτ1 , ...,x
τ
k, y

τ
1 , ..., y

τ
k → µψ, σ

2
ψ

Phase Output size Layers

ϕpre k × dϕ encoder network (ϕ)
concatenate h and x k × (dψ + dx) concat(h, x)
ϕmid k × dϕ 2× 2 fully connected, ELU
instance pooling 1× dϕ average
ϕpost 1× dϕ 2× fully connected, ELU
ψ distribution dψ fully connected linear layers to µψ, σ2ψ

Table C.6 Amortization network used for ShapeNet few-shot learning.

Table C.12 details the architecture used in the auto-regressive parameterization of zAR.
In our experiments, there is one such network for every block in the ResNet18 (detailed in
Table C.10). These networks accept as input the set of activations from the previous block,
and map them (through the permutation invariant structure) to a vector representation of the
output of the layer. The representation zi = (zG, zAR) is then generated by concatenating the
global and auto-regressive representations, and fed into the adaptation network that provides
the FiLM layer parameters for the next layer. This network is detailed in Table C.13, and
illustrated in Figure 4.4. Note that, as depicted in Figure 4.4, each layer has four networks with
architectures as detailed in Table C.13, one for each γ and β, for each convolutional layer in
the block.

140 Network Architectures

ShapeNet Generator Network (θ): x̃→ p(y∗|x∗,θ,ψτ)

Output size Layers

dψ + dx concat(ψ, x)
512 fully connected, RELU
1024 fully connected, RELU

2× 2× 256 reshape
4× 4× 128 deconv2d (3× 3, stride 2, SAME, RELU)
8× 8× 64 deconv2d (3× 3, stride 2, SAME, RELU)

16× 16× 32 deconv2d (3× 3, stride 2, SAME, RELU)
32× 32× 1 deconv2d (3× 3, stride 2, SAME, sigmoid)

Table C.7 Generator network used for ShapeNet few-shot learning. No dropout or batch
normalization is used.

Layers

Input
Conv2d (3× 3, stride 1, pad 1)
BatchNorm
FiLM (γb,1,βb,1)
ReLU
Conv2d (3× 3, stride 1, pad 1)
BatchNorm
FiLM (γb,2,βb,2)
Sum with Input
ReLU

Table C.8 ResNet-18 basic block b.

Layers

Input
Conv2d (3× 3, stride 2, pad 1)
BatchNorm
FiLM (γb,1,βb,1)
ReLU
Conv2d (3× 3, stride 1, pad 1)
BatchNorm
FiLM (γb,2,βb,2)
Downsample Input by factor of 2
Sum with Downsampled Input
ReLU

Table C.9 ResNet-18 basic scaling block b.

C.3.3 Linear Classifier Adaptation Network

Finally, in this section we give the details for the linear classifer ψτw, and the adaptation
network that provides these task-specific parameters ψw(·). The adaptation network accepts
a class-specific representation that is generated by applying a mean-pooling operation to
the adapted feature activations of each instance associated with the class in the context set:
zτc = 1

Nτ
c

∑
x∈Dτ

c

fθ(x;ψ
τ
f), where N τ

c denotes the number of context instances associated with

class c in task τ . ψw is comprised of two separate networks (one for the weights ψw and one
for the biases ψb) detailed in Table C.14 and Table C.15. The resulting weights and biases (for
each class in task τ) can then be used as a linear classification layer, as detailed in Table C.16.

C.3 CNAPS Network Architectures 141

ResNet-18 Feature Extractor (θ) with FiLM Layers: x→ fθ(x;ψ
τ
f), x

∗ → fθ(x
∗;ψτf)

Stage Output size Layers

Input 84× 84× 3 Input image
Pre-processing 41× 41× 64 Conv2d (5× 5, stride 2, pad 1, BatchNorm, ReLU)
Layer 1 41× 41× 64 Basic Block × 2
Layer 2 21× 21× 128 Basic Block, Basic Scaling Block
Layer 3 11× 11× 256 Basic Block, Basic Scaling Block
Layer 4 6× 6× 512 Basic Block, Basic Scaling Block
Post-Processing 512 AvgPool, Flatten

Table C.10 ResNet-18 feature extractor network.

Set Encoder (g): x→ zτG

Output size Layers

84× 84× 3 Input image
42× 42× 64 Conv2d (3× 3, stride 1, pad 1, ReLU), MaxPool (2× 2, stride 2)
21× 21× 64 Conv2d (3× 3, stride 1, pad 1, ReLU), MaxPool (2× 2, stride 2)
10× 10× 64 Conv2d (3× 3, stride 1, pad 1, ReLU), MaxPool (2× 2, stride 2)
5× 5× 64 Conv2d (3× 3, stride 1, pad 1, ReLU), MaxPool (2× 2, stride 2)
2× 2× 64 Conv2d (3× 3, stride 1, pad 1, ReLU), MaxPool (2× 2, stride 2)

64 AdaptiveAvgPool2d

Table C.11 Set encoder g.

Set Encoder (ϕf): {f liθ (x;ψ
τ
f)} → ziAR

Output size Layers

li channels × li channel size Input {f liθ (x;ψ
τ
f)}

li channels × li channel size AvgPool, Flatten
li channels fully connected, ReLU
li channels 2 × fully connected with residual skip connection, ReLU
li channels fully connected with residual skip connection
li channels mean pooling over instances
li channels Input from mean pooling
li channels fully connected, ReLU

Table C.12 Network of set encoder ϕf .

142 Network Architectures

Network (ϕf): (zG, zAR)→ (γ,β)

Output size Layers

64 + li channels Input from Concatenate
li channels fully connected, ReLU
li channels 2 × fully connected with residual skip connection, ReLU
li channels fully connected with residual skip connection

Table C.13 Network ϕf .

Network (ϕw):
zc → ψw,w

Output size Layers

512 Input from mean pooling
512 2 × fully connected, ELU
512 fully connected
512 Sum with Input

Table C.14 Network ϕw.

Network (ϕb):
zc → ψw,b

Output size Layers

512 Input from mean pooling
512 2 × fully connected, ELU
1 fully connected

Table C.15 Network ϕb.

Linear Classifier (ψw): fθ(x∗;ψτf)→ p(y∗|x∗,ψτ (Dτ),θ)

Output size Layers

512 Input features fθ(x∗;ψτf)

512× Cτ Input weights w
512× 1 Input biases b
Cτ fully connected
Cτ softmax

Table C.16 Linear classifier network.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Overview and Main Contributions
	1.3 List of Publications
	1.3.1 Conference Proceedings
	1.3.2 Workshops
	1.3.3 Source Code Repositories

	2 Background
	2.1 Meta-Learning, Multi-Task Learning, and Transfer Learning
	2.1.1 Meta-Learning
	2.1.2 Multi-Task Learning
	2.1.3 Transfer Learning

	2.2 Few-Shot Learning Fundamentals
	2.2.1 Tasks, Context and Target Sets
	2.2.2 Episodic Training
	2.2.3 Hierarchical Probabilistic Modelling View of Meta-Learning

	2.3 Meta-learning Methods
	2.3.1 Multi-step Gradient Approaches
	2.3.2 Few-step Gradient Approaches
	2.3.3 Amortization via Hypernetworks
	2.3.4 Semi-amortized Approaches
	2.3.5 Probabilistic Methods

	2.4 Neural Processes
	2.4.1 Conditional Neural Processes
	2.4.2 Neural Processes
	2.4.3 Generative Query Networks for View Reconstruction

	2.5 Continual Learning and Amortized Inference Methods
	2.6 Active Learning and Few-shot Learning
	2.7 Datasets for Few-Shot Classification
	2.7.1 Omniglot
	2.7.2 miniImageNet
	2.7.3 Meta-Dataset

	2.8 Conclusion

	3 Versa: Meta-Learning Probabilistic Inference For Prediction
	3.1 Introduction
	3.2 Meta-Learning Probabilistic Inference For Prediction
	3.2.1 Probabilistic Model
	3.2.2 Probabilistic Inference

	3.3 Versatile Amortized Inference
	3.4 Variational Inference Derivations for the Model
	3.5 ML-PIP Unifies Disparate Related Work
	3.6 Experiments and Results
	3.6.1 Posterior Inference with Toy Data
	3.6.2 Few-shot Classification
	3.6.3 ShapeNet View Reconstruction

	3.7 Summary
	3.8 Epilogue

	4 CNAPs: Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes
	4.1 Introduction
	4.2 Model Design
	4.2.1 Specification of the classifier: global TEXT and task-specific parameters TEXT
	4.2.2 Computing the local parameters via adaptation networks

	4.3 Model Training
	4.4 Related Work
	4.5 Experiments and Results
	4.6 Continual Learning
	4.7 Active Learning
	4.8 Summary
	4.9 Epilogue

	5 TaskNorm: Rethinking Batch Normalization for Meta-Learning
	5.1 Introduction
	5.2 Background and Related Work
	5.2.1 Normalization Layers in Deep Learning
	5.2.2 Desiderata for Meta-Learning Normalization Layers

	5.3 Normalization Layers for Meta-learning
	5.3.1 Conventional Usage of Batch Normalization (CBN)
	5.3.2 Batch Renormalization (BRN)
	5.3.3 Transductive Batch Normalization (TBN)
	5.3.4 Instance-Based Normalization Schemes
	5.3.5 Other NLs

	5.4 Task Normalization
	5.4.1 Meta-Batch Normalization (MetaBN)
	5.4.2 TaskNorm

	5.5 Experiments
	5.5.1 Small Scale Few-Shot Classification Experiments
	5.5.2 Large Scale Few-Shot Classification Experiments
	5.5.3 Transduction Tests
	5.5.4 Ablation Study: Choosing the best parameterization for
	5.5.5 Evolution of as Training Progresses

	5.6 Summary

	6 Conclusions and Discussion
	6.1 Summary
	6.1.1 Primary Contributions

	6.2 Discussion
	6.2.1 Building a State-of-the-Art Few-shot, Multi-task Image Classifier
	6.2.2 Future Work

	References
	Appendix A Additional Modeling Details and Experiments
	A.1 Additional ML-PIP Modeling Details and Experiments
	A.1.1 Bayesian Decision Theoretic Generalization of ML-PIP
	A.1.2 Justification for Context-Independent Approximation

	A.2 Additional CNAPs Few-Shot Classification Results
	A.2.1 Joint Training of TEXT and TEXT
	A.2.2 Comparison Between CNAPs and Parallel Residual Adapters

	Appendix B Experiment Details
	B.1 Versa Experimentation Details
	B.1.1 Omniglot Few-shot Classification Training Procedure
	B.1.2 miniImageNET Few-shot Classification Training Procedure

	B.2 CNAPs Experimentation Details
	B.2.1 Meta-Dataset Training and Evaluation Procedure
	B.2.2 Continual Learning Experimentation Details
	B.2.3 Active Learning Experimentation Details

	B.3 TaskNorm Experimentation Details
	B.3.1 MAML Experiments
	B.3.2 CNAPs Experiments
	B.3.3 Prototypical Networks Experiments

	Appendix C Network Architectures
	C.1 Versa Few-shot Classification Network Architectures
	C.2 Versa View Reconstruction Network Architectures
	C.3 CNAPs Network Architectures
	C.3.1 ResNet18 Architecture details
	C.3.2 Adaptation Network Architecture Details
	C.3.3 Linear Classifier Adaptation Network

