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Abstract

Ubiquitous progress in wearable sensing and mobile-computing technologies,
alongside growing diversity in sensor modalities, has created new pathways
for the collection of health and well-being data outside of laboratory settings,
in a longitudinal fashion. Wearable and mobile devices have the potential
to provide low-cost, objective measures of physical activity, clinically rele-
vant data for patient assessment and scalable behaviour monitoring in large
populations. This data can be used in both interventional and observational
studies to derive insights regarding the links between behaviour, health and
disease, as well as to advance the personalization and effectiveness of com-
mercial wellness applications. Today, over 400,000 participants have had
their behaviour tracked prospectively using accelerometers for epidemiologi-
cal studies across the globe Traditionally, epidemiologists and clinicians have
relied upon self-report measures of physical activity and sleep which, whilst
valuable in the absence of alternatives, are subject to bias and often pro-
vide partial, incomplete information Physical behaviour data extracted from
wearable devices is being used to derive sensor-assessed, objective measures
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of physical behaviours, overcoming the limitations of self-report with the aim
of relating these to clinical endpoints and eventually applying the findings
to preventive and predictive medicine. Moreover, the application of artifi-
cial intelligence (AI), sensor fusion and signal processing to wearable sensor
data has led to improved human activity recognition (HAR) and behavioural
phenotyping. Here, we review the state of the art in wearable and mobile
sensing technology in epidemiology and clinical medicine and discuss how AI
is changing the field.

Keywords: Wearable Devices, Combined Sensing, Multimodal Fusion,
Digital Health, Human Activity Recognition, Human Computer
Interaction, Behavioural Phenotyping, mHealth, Artificial Intelligence

1. Towards Digital Phenotyping

Until recently, the study of human behaviour has been hindered by the
ability to accurately quantify its component parts. However, technological
advances in wearable devices and smartphones increasingly facilitate the col-
lection of vast amounts of multimodal data in an unobtrusive, seamless way.
In particular, the use of data generated passively by these devices enables
the measurement of free-living human behaviour in a scalable manner. This
data can be used for digital phenotyping.

Digital phenotyping can be defined as “movement-by-movement quan-
tification of the in situ individual-level human phenotype using data from
personal digital devices” [1]. This new field has already generated significant
research interest across epidemiology and clinical medicine. For instance,
in psychiatry, objective, multimodal, continuous quantification of behaviour
using individuals’ own devices may result in clinically useful markers which
can then be used to improve diagnostics, tailor treatment or design new in-
tervention models [2]. Similarly, real-time feedback paired with AI models
introduces new opportunities for health and well-being applications. For ex-
ample, it may be possible to develop personalized interventional feedback
generated automatically based upon physiological, environmental and social
cues from mobile and wearable devices [3].

The decreasing cost and increasing capabilities of sensors embedded in
mobile and wearable devices, coupled with the proliferation of data sources
from social media, environmental factors and other sources have yielded new
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concepts and techniques in the quantification of well-being, mobility and so-
cial interaction [3]. In order for the field to progress, platforms that seek scal-
ability and equity must be developed, enabling the establishment of shared
data repositories and standardized data pipelines whilst fostering interdis-
ciplinary collaborations between clinicians, patients, epidemiologists, public
health researchers and computer scientists [2]. Similarly, ubiquitous monitor-
ing of physical behaviour necessitates new regulatory frameworks and raises
novel privacy considerations that safeguard the rights and freedom of users.

This chapter provides an introduction to how multimodal wearable and
smartphone devices can be used to derive objective measurements of phys-
ical activity and behaviour. In doing so, we provide an introduction to the
field of physical activity epidemiology and the transition from questionnaire
based assessments to objective monitoring through accelerometers. We ex-
plore how mobile phones can be used to track physical and psychological
behaviours. Furthermore, the role and impact of AI in this emerging field of
digital phenotyping is explored.

2. Mobile health

Today, an off-the-shelf smartphone is equipped with more than a dozen
sensors, including chips that measure proximity (how close the phone is to
the user’s face), acceleration, ambient light, moisture, gyroscope, compass,
barometer (air pressure), touch ID thumbprint, and a Face ID 3D camera
for secure identification. Every phone also comes equipped with cameras,
microphones, WiFi and bluetooth connectivity as depicted in Figure 2. All
listed features have been used in human-computer interaction and ubiquitous
computing research.

As noted in a 2010 seminal review [6], the main obstacle in mobile sensing
is not that of adoption, since billions of individuals already carry sensor-rich
devices. Rather, it is the ongoing challenge of performing accurate, privacy-
aware research with noisy and missing data, and using this research to provide
effective interventions for users.

The sensors or extra metadata used in mobile health studies vary ac-
cording to both the desired task and mobile phone capabilities. The most
prominent inputs used to train machine learning models are presented here
alongside references to the related paper in which the model was used. Move-
ment, including specific activities, such as sitting, cycling or walking, are esti-
mated through the accelerometer [7–18]. Location coordinates or calculated
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Figure 1: Summary of the sensors found in modern smartphones. Technological
developments in smartphones enable increased processing capabilities and have equipped
these mobile devices with a plethora of built-in multimodal sensors. These sensors can be
used for a variety of health and wellness applications, such as mood prediction [4]. Figure
inspired by Byrom et al. poster [5].

features such as the number of places visited today can be calculated by GPS
[7–10, 12–16, 18–21]. Ambient sounds or conversations that characterise noise
are captured through the microphone [4, 7–10, 12, 18]. Indicators such as
incoming/outgoing calls, SMSs and emails capture communication patterns
[9, 12–14, 16, 18, 19, 22]. The applications used provide an indication of how
users spend time on their mobile phone [9, 12, 18, 19]. Occasional surveys
related to personality, sleep quality or current mood prompt users to provide
input and act as both a ground truth to train models and as features for those
models [13, 14, 16, 18, 19, 22, 23]. Temporal features [13, 14, 16, 20, 23], such
as the day of the week or the weather [13, 14, 16, 22], record exogenous or
seasonal factors. Other task-specific features include web visits [19], phone
recharge [7, 18], ambient sound and light [8, 9, 12], keypress speed [11], com-
pass [12], gyroscope [12], and skin physiology measures [13, 14, 16]. All these
sensors offer new capabilities to the researchers and practitioners who build
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machine learning and AI models to predict clinical and behavioral outcomes.
In the next section the most widely-used AI data-driven methods applied to
wearable and mobile health data are discussed.

3. Artificial Intelligence

Data-driven insights derived from AI have already had a tangible impact
on wearable sensing and mobile health. These developments have facilitated
better human activity recognition (HAR) models, more accurate predictive
models of human behaviour and the development of personalized lifestyle
recommendations. In this section, two schools of thought are presented re-
garding the application of AI methods to wearable and mobile data. The first
looks for informative features that represent the time-series through inventive
feature extraction, whilst the second is based on the emerging power of rep-
resentation learning to automatically extract features from lightly processed
time-series during the training process.

3.1. Traditional feature-engineering modeling

Usually, mobile and wearable sensors data is transformed into feature
vectors in order to be compatible with the majority of machine learning al-
gorithms. A feature vector is a matrix-like data structure where each row
represents a unique sample and each column is a separate feature or variable.
However, the raw time-series signals arising from, for example accelerome-
ters, are represented as multiple continuous sequences. Consequently, the
next step after data collection is to summarize the information from each
sensor into a number of independent variables that capture semantic in-
formation. This task is called feature-extraction and researchers work to
come up with increasingly complex features that correlate with a given label.
For example, in the MoodExplorer study [12] extracted the mean, variance,
and signal-to-noise ratios from microphone sensors, while the Emotionsense
study [18] calculated the standard deviation of the magnitude of acceleration
(
√
x2 + y2 + z2) from the three axes (x, y, z) of the accelerometer.
Depending on the size of the datasets and the computing power available,

computing these features as a pre-processing step can be a time-consuming,
multi-step process. Simple statistics such as the mean, median, standard
deviation and inter-quartile range are easier to estimate and could be used.
However, they may not capture the informative features of noisy signals. On
the other hand, higher-order statistics and transformations like the kurtosis,

5



skewness, stationarity, least squares slope, autocorrelation, Fourier trans-
form, and entropy provide more expressive metrics that reflect real time-series
phenomena like the seasonality or repeatability [24, 25].

After the calculation of the appropriate metrics from the time-series sig-
nal, they are then fed to machine learning algorithms. If additional linked
datasets (metadata) exist (i.e. demographic or personality traits) they are
concatenated with the sensor features into a big feature vector. The most
common classification algorithms found in the literature are Logistic Re-
gression, Random Forests, Support Vector Machines, and variants of Neural
Networks. Extensive feature extraction, resulting in a large number of fea-
tures, can lead to suboptimal results. Learning algorithms under-perform
when the number of features is higher than the number of samples, in a
phenomenon known as (“the curse of dimensionality”) [26]. As a result,
researchers try to reduce the number of features before the training, either
with feature selection or dimensionality reduction. For example, in a study
that aimed to recognize state changes in bipolar patients [10], data was re-
duced using Linear Discriminant Analysis (LDA). Other robust approaches
include Principal Component Analysis (PCA). However, it is worth noting
that in a stress recognition study [22] the authors avoided PCA because the
transformation yielded new variables that were hard to interpret.

3.2. Raw sensor time-series modeling

The mobile sensing–ubiquitous computing research community can be
compared to the computer vision community (previously known as the im-
age processing community) approximately 10 years ago. A decade ago, com-
puter vision algorithms could not work directly on the raw pixels of an image
(raw sensors in our case) and researchers published inventive methods, called
feature descriptors. Seminal papers of that time, including the Scale Invari-
ant Feature Transform (SIFT) [27], or the Histogram of Oriented Gradients
(HOG) [28] which are based on handcrafted algorithms that extract interest
points from an image based on geometry. The turning point for computer
vision took place in 2012. In that year, the Imagenet study [29] showed that
deep learning methods can obtain better results than handcrafted-feature
approaches.

The equivalent of the Imagenet moment has yet to arrive in mobile sens-
ing, for a number of reasons. Foremost, datasets are not yet big enough to be
fully exploited using deep learning and there are no big, benchmark datasets
that are systematically evaluated through yearly competitions. In addition,
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unlike object recognition, there is not a single, well established task that
guides all research in this area. As previously discussed, in this field, many
overlapping but distinct aims exist (i.e. inferring mood, stress, schizophrenia,
bipolar disorders, sleep patterns, social interactions or depression).

A variety of tasks can be performed using the diverse sensors that are
integrated into today’s mobile phones and wearables. These sensors yield
time-series signals that can be modeled with recurrent or convolutional neu-
ral networks. For instance, the field of HAR has shown strong results when
using deep learning methods for these tasks [30]. One of the only studies that
has applied deep learning to raw time-series, investigated whether depressive
status could be predicted by phone typing, showing 90% accuracy in depres-
sion detection based on less than a minute of typing data [11]. Phone typing
dynamics is a growing area research [31]. Traditional machine learning algo-
rithms like Logistic Regression or Support Vector Machines under-performed
relative to this benchmark, although the study did not perform systematic
feature extraction which could have limited the potential of these techniques.

A novel, unified approach was introduced in DeepSense [17], integrat-
ing convolutional and recurrent neural networks to exploit local interactions
among similar mobile sensors. This approach merged local interactions of
different sensory modalities into global interactions and extracted temporal
relationships to model signal dynamics. This approach demonstrates the ef-
ficacy of convolutional layers in learning local patterns, and recurrent layers
in learning temporal properties. The authors proposed a single network that
achieves state-of-the-art results across three different problems: car track-
ing with motion sensors, a heterogeneous HAR task and user identification
through biometric motion analysis.

Especially in the case of time-series forecasting, raw time-series model-
ing achieves strong results when using sequence-to-sequence encoder-decoder
models [32]. Teacher forcing training methods feed the intermediate predic-
tions as input for multi-step predictions and guarantees that it can combat
the accumulated compounding errors of the predictions with adversarial net-
works [33]. Another research direction is to avoid recurrent and convolutional
layers altogether and use only attention layers, since they train faster and
produce cutting-edge results in some (still limited) domains [34, 35].

In the next section the application of these techniques on wearable sensors
is explored in the context of epidemiological studies.
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4. Towards objective measures of physical behaviours in epidemi-
ology

4.1. Introduction to epidemiological research

The overarching goal of epidemiological research is to inform the devel-
opment of interventions that reduce mortality and morbidity in populations
[36]. In order to achieve this aim, epidemiologists study the distribution of
health-related states or events, such as disease, in order to understand their
burden and identify their determinants 1. To conduct this type of research,
intersecting data regarding both the outcome of interest and the potential
determinants is required. Not only must this data intersect, with the same
individuals providing information about both the exposure and the outcome,
but it must be both reliable and valid. This means that the measure used
to assess the exposure and the outcome must be repeatable over time and
accurately convey what it intends to measure. In general, objective measures
are preferred, whereby individuals are not required to recall or report their
exposure or outcome status themselves. This protects against unintentional
recall biases and inaccuracies, as well as intentional adjustments to report-
ing based on social desirability. However, these considerations must also be
balanced against the burden objective measuring places upon participants
and the other costs that they incur. Researchers may favour a marginally
less accurate measure if the measure can be collected with ease and is thus
unlikely to be refused by participants, and if the cost of collection is minimal,
such that many participants can be included, thus increasing the power of
the study to detect associations.

Epidemiologists must also be attentive to chance, bias, confounding and
reverse-causality that could cause them to draw erroneous conclusions. For
example, if a study reported an association between sleep duration and obe-
sity, the results must be interpreted with caution and cannot be assumed
evidence of a causal relationship without further criteria being met. In this
example, the relationship could be spurious and simply the result of chance.
The probability of chance explaining the results diminishes as the number
of studies reporting the same finding increase. Further, the probability of
chance diminishes if larger data-sets are used. If the result is not spurious,
it may be the result of reverse causality. Contrary to the initial hypothesis,
obesity may be the exposure variable and sleep may be the outcome.

1https://www.who.int/topics/epidemiology/en/
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Various methods to help rule-out reverse causality exist. At minimum,
longitudinal studies are required such that sleep measures are collected prior
to the onset of obesity. Further, if exposures are amenable, Randomised con-
trolled trials (RCTs) can be conducted or, if the genetic determinants of an
exposure are well characterised, Mendelian randomisation (MR) analyses can
be performed. If reverse causality does not appear a likely explanation it re-
mains possible that confounding from a third, extraneous variable, associated
with both the exposure and the outcome but which does not lie on the causal
pathway between them explains the relationship [36]. For instance, smok-
ing may cause both poor sleep and obesity, inducing a statistical association
between the two variables that may erroneously be interpreted as a causal
relationship. In order to control for confounding, analyses should be con-
trolled for potential confounders or MR analyses using genetic instruments
may be used.

Finally, various forms of bias should be considered. Together these com-
prise systematic errors in the design, conduct or analysis of a study that may
result in a distortion of the relationship between exposures and outcomes [37].
There are two major sources of bias in epidemiological research: selection bias
and information bias [36]. Selection bias relates to the study population in
which a research question is addressed. For example, if a study includes only
adult men, the results are only generalisable to adult men and cannot be con-
sidered applicable to other population groups. A common source of selection
bias in epidemiological research is that the individuals who choose enroll in
population-based studies are often healthier and better educated than the
general population from which they are drawn [38, 39]. Whilst the results of
these studies are still internally valid, they must be generalised with caution.
Biases may also relate the data collected. This is referred to as information
bias and will be elaborated in the following section.

Overall, epidemiological research requires large data-sets with accurate,
cost-effective and minimally burdensome measures of exposures, outcomes
and potential confounding variables. Ideally, these data-sets should follow
participants longitudinally. In the following sections, the way in which multi-
modal wearable sensing devices have revolutionised the ability to interrogate
the associations of human activity to health and disease is explored.

4.2. Traditional measurement of physical activity through questionnaires

Prior to the advent of wearable sensing and mHealth technologies, re-
searchers primarily relied upon questionnaire-based methods to measure phys-
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ical activity. Questionnaires have many advantages for epidemiological re-
search. They do not require experts or any special training to adminis-
ter, they are also cost-effective, non-invasive and widely acceptable to par-
ticipants. Further, individuals can be asked to report upon their typical,
long-term habits and behaviours which may not be accurately represented in
laboratory settings. These characteristics of questionnaires facilitate the col-
lection of data from large numbers of individuals and explains the popularity
of these approaches 2.

Despite their many advantages, questionnaires are not objective measures
and may be subject to information bias. Information bias occurs when the
measures used in a study are inaccurate. In the case of self-report measures,
individuals may inaccurately recall their behaviour, report an idealised ver-
sion of their habits or some combination. Previous studies have found that
self-reported physical activity suffers from reporting bias and that this results
from a combination of social desirability bias (reporting behaviour which is
seen to be socially desirable), as well as the cognitive complexity of reporting
the duration, intensity and frequency of physical activity behaviours with
precision [40–42]. In addition, the understanding of a behaviour that is self-
reported is limited to the specific set of questions given to study participants.
These may not be enough to reflect a complete view of complex behaviours.
Inaccuracies resulting from reporting errors may be randomly distributed
across the population being studied. In this case, the results of the study
would be biased toward the null, diminishing the ability of the researchers to
identify true associations between exposures and outcomes. However, the er-
rors may also be systematic, with participants in different population groups
systematically under or over-reporting their activity levels. This could lead
to the identification of erroneous associations.

In order to diminish concern regarding information bias in studies using
self-report measures of physical activity, questionnaires should be validated
against a gold-standard measure.

4.3. The transition towards objective monitoring of physical behaviours

Objective monitoring of physical activity with devices such as pedometers
(step measurement [43–45]), actigraphy (count-based movement measure-
ment [46]) and accelerometers (raw movement intensity measurement) have

2https://www.who.int/ncds/surveillance/steps/resources/GPAQ_Analysis_

Guide.pdf
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been used to overcome the limitations of self-reported activity measures [47].
Recently, increasingly sophisticated sensors embedded within smartphones
have resulted in a proliferation of affective computing and behavioural pheno-
typing applications, as explored in section 2. A non-comprehensive overview
of the current landscape for human behaviour phenotyping using wearable
sensors and smartphones is presented in Figure 2.

Technological advances in the last 20 years allow for devices like triax-
ial accelerometers to record and store data across multiple days without
requiring recharging. Further, such devices are affordable, reliable and non-
obtrusive. Indeed, in 2003, the National Institutes of Health and the National
Cancer Institute funded the National Health and Nutrition Examination Sur-
vey (NHANES) 3, a large epidemiological study that aims to further under-
stand the objective measurement of physical activity through accelerometery,
became the first study of its kind in the United States. Many other large
initiatives followed. The UK Biobank Study 4, the Whitehall study 5 and
the China Kadoorie Biobank (CKB) 6 all exemplify the use of accelerometry
in large-scale observational studies.

These studies allow researchers to perform epidemiological investigations
exploring the associations between activity-related exposures of interest (pre-
dominantly comprising physical activity, sedentary behaviour and sleep) and
disease outcomes, whilst controlling for potential confounders (such as diet,
alcohol consumption, smoking habits or socio-economic background). Sim-
ilarly, such studies often provide intersecting genome-wide genotyping in-
formation, facilitating genome-wide association studies (GWAS) designed to
identify the determinants of physical activity, sedentary behaviour or sleep
[48]. GWAS results can then be used to facilitate MR studies in other co-
horts, designed to assess the causal impact of physical behaviours on health
and disease outcomes.

4.4. Analyzing physical activity: Accelerometers for movement analysis

Although physical activity and exercise are often used interchangeably in
the literature, there is a difference between these concepts. Physical activity

3https://www.cdc.gov/nchs/nhanes/index.htm
4https://www.ukbiobank.ac.uk/
5https://www.ucl.ac.uk/epidemiology-health-care/research/epidemiology-

and-public-health/research/whitehall-ii
6https://www.ckbiobank.org/site/
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Figure 2: Example of a layered, hierarchical framework of wearable and mobile
technology for health. The boxes at the top of the figure represent inputs to the sensing
platform. The boxes in between represent features and high-level behavioral markers.
(PPG: Photoplethysmography, HRV: Heart rate variability). Figure inspired by [49].

can be defined as any bodily movement that results in energy expenditure
being increased above resting levels. Exercise is a particular type of physical
activity that is purposeful, planned, structured and often repetitive [50]. As
such, activities such as housework are considered examples of physical activ-
ity, but not of exercise, because they are typically sporadic and unplanned
in nature [51].

Physical activity can be broken down and defined by (1) type (walking,
running, cycling, etc); (2) duration/volume (total time performing the ac-
tivity); (3) frequency (number of sessions either per day or per week) and
(4) intensity (how much energy is expended during exercise) [52]. Metabolic
equivalent tasks (METs) are often used to describe the intensity of a given
activity. For instance, one MET is equivalent to sitting at rest [52]. Depend-
ing on their intensity, activities can be categorized into: sedentary (≤1.5
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METs), light (1.6-2.9 METs), moderate (3.0-5.9 METs) or vigorous (≥ 6.0
METs) [52]. Different types of activities will normally fall into one of these
buckets repeatedly. For instance, typing on a computer would be categorised
as sedentary, walking is considered light, brisk walking is moderate and run-
ning is vigorous. In order to understand physical behaviours at a population
level, it is imperative to be able to accurately quantify the intensity of ac-
tivities and link this to health outcomes. This informs the design physical
activity recommendations, as well as the assessment of whether these recom-
mendations are being met [51].

Accelerometry is a valuable technique for the accurate estimation of daily
energy expenditure in large population studies, given its feasibility, low cost
and the existence of validation studies [53–55]. Acceleration signals are com-
posed of a movement component, a gravitational component and noise [56].
When conditions are static with non-rotational movement, the gravitational
component is visible as the offset of one or more sensor axes and can then
be used for the detection of the sensor orientation in relation to the ver-
tical plane [56]. However, this separation is complicated when rotational
movements are included as the frequency domains of the movement-related
component and the gravitational component can overlap, making it almost
impossible to separate these two components using simple frequency-based
filtering [57]. The inclusion of gyroscopes in addition to accelerometry helps
to mitigate this problem but they are not yet feasible for use in large-scale
observational research [56, 58]. A schematic of the processing and analysis of
raw accelerometer signals is presented in Figure 3. This process starts with
raw measurements and data storage of triaxial acceleration waveforms (usu-
ally between 60-100 Hz), followed by a post-processing step where the sensor
is calibrated to local gravity, time-stamping and re-sampling take place. The
filtering of machine noise (≥ 20Hz) follows and non-wear time is then iden-
tified. Once this post-processing step finishes, summary metrics and feature
extraction follows. In this step, statistical metrics and features (i.e. mean
magnitude, pitch, roll, power spectra, etc) are derived.

Several accelerometer-derived metrics and constructs are well-defined, es-
tablished methods to quantify objective physical activity records.

Volume of Physical Activity: Volume of physical activity refers to the
total volume of activity in a given time period. In order to compare different
records and recordings of different lengths, volume of physical activity is
divided by the duration of the measurement to result in an average activity
intensity rate.
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Intensity: As previously mentioned, physical activity intensity can be
categorized into: Vigorous, Moderate, Light and Sedentary. These categories
were originally defined by asking participants but have since been informed
by objective data, cross-referencing with resources such as the Ainsworth
Compendium [59], which is an aggregation of mean activity intensities that
are measured or estimated while performing different activities.

Posture: Posture, limb positioning and the pose of the body are of inter-
est to physical activity scientists as they can provide new context for other
measurements of physical activity [60, 61]. Indeed, interest in this domain
has grown in recent years. For instance, the consensus statement regard-
ing the definition of sedentary behaviour now includes the sitting posture
as a defining characteristic [62]. Advances in micro-electro-mechanical sen-
sors (MEMs) and orientation estimation algorithms allow wearable sensors
to be used for non-restricted human motion capture applications [63]. Bio-
mechanically, human bodies are composed of a series of connected, jointed
links that move and operate with different degrees of freedom (DOF) which
can be measured using these devices. However, proper estimation of consis-
tent and clinically meaningful joint kinematics using wearable inertial sensors
requires a sensor-to-segment coordinate system calibration and understand-
ing. To describe limb location, six parameters are required: these are location
((x,y,z) coordinates with respect to the reference system axes) and orienta-
tion parameters ((α,β,γ) angles with respect to the reference system plane)
of a limb segment in space. These six coordinates constitute the DOFs of a
given limb segment in space and can be used to define orientation and spatial
location at a given time.

Raw data
Triaxial 
acceleration

Auto-calibration
Account for inherent 
gravity artefacts

Vector magnitude
Combine triaxial signals 
into one metric

Noise removal
High pass filters 
(ENMO/HPFVM)

Sliding windows
Create epochs of 
short chunks

Non-wear detection
Identify off-body periods 
and omit

μ
σ

Summarise metrics
Calculate physical 
activity statistical metrics 

√x²+y²+z²

Figure 3: Typical data analysis pipeline for movement sensor data: from raw
accelerometer data to appropriate filters and summary statistics. (ENMO : Euclidean
Norm Minus One, HPFVM : High-pass Filtered Vector Magnitude )
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4.5. Human Activity Recognition
HAR can be defined as the challenge of recognizing when a person is

engaging in certain activities. Hence, HAR attempts to identify the activ-
ity being performed by an individual, alongside when the activity is taking
place. HAR systems are based on observations of activities that are captured
using a variety of sensors, such as accelerometers and gyroscopes (to capture
movement-related data), heart rate monitors (to study heart rate variability)
and more. These on-body sensors allow for truly ubiquitous and continuous
monitoring of physical behaviors.

The sensors record temporal data, which means that automated HAR
methods face a dual issue. First, the method needs to be able to localize
contiguous portions of data relevant to the activity recognition problem that
the system is facing (segmentation). Second, those segments are then classi-
fied by automatically assigning class labels. Indeed, this task is particularly
complex as information regarding the activity is typically required to iden-
tify when the activity took place. However, classification requires previous
localization within the sensor dataset to determine when the activity starts
and ends. Importantly, the classification step of HAR cannot retrieve any
segments that are not included in the original segmentation step, making
the task particularly challenging. Due to this dual problem, researchers in
HAR often use sliding-window approaches to avoid missing any important
information for the classification step. The sliding window approach works
by providing a small analysis window that shifts along the continuous data
stream, extracting contiguous portions of sensor readings. The resulting data
is then analysed in isolation, showing strong results in identifying periodic
activities such as walking, cycling or climbing stairs. The performance of
this analysis largely depends on how the sliding window was defined (length,
steps, etc.). Thus, domain knowledge is an important factor when consider-
ing the configuration of the sliding window.

Once this process is complete, machine learning pipelines pre-process the
sensor data extracted from the sliding window and proceed to extract features
and employ probabilistic classification back-ends that are able to assign ac-
tivity labels to the corresponding analysis window [64]. Over the last decade,
deep learning approaches have been established as valuable alternatives to
conventional machine learning models which have limited ability in perform
in the context of challenging pattern recognition tasks, such as the ones used
in HAR. Deep learning models eliminate the need to manually construct
feature spaces by automatically learning (hierarchical) data representations
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Figure 4: Multi-modal sensing modeling with deep neural networks. Sensor
data is modeled with time-aware layers while participant variables are fed into a sep-
arate sub-network. The network is trained end-to-end and learns joint representations
of both modalities leveraging latent combinations of sensor features and demographics.
(RNN/CNN: Recurrent/Convolutional Neural Networks)

that are integrated into an overarching classification model. Furthermore,
their modelling power has yielded very impressive results as a result of their
ability to learn extremely complex decision functions. This is of great im-
portance when dealing with the challenging analytical problems introduced
in HAR tasks [65].

Combining multiple sensors for activity recognition purposes has shown
promising results. These multimodal approaches have the ability to capture
information that may not be possible to explore through individual sensors,
such as contextual changes or social interactions [66]. In the next section mul-
timodal sensing is introduced, addressing the opportunities and challenges
associated to integrating multiple sensors for digital phenotyping.
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4.6. Multimodal sensing

Most conventional studies using either smartphones or wearable sensors
to study physical behaviours have used single sensor approaches for mea-
surement and classification tasks (accelerometer, pedometers or gyroscopes).
Occasionally they have used GPS for coarse grained location sensing. How-
ever, smartphones and new generation wearable devices often come equipped
with a vast array of sensors that enable multimodal sensing. Incorporating
multimodal sensing information can yield additional physiological and en-
vironmental cues, such as sound, heart rate, skin conductance, location or
activity type as depicted in the feature layer of Figure 2. Indeed, large-scale
longitudinal studies, such as ’All of US’ 7, will incorporate multimodal wear-
able sensor data with the aim of better understanding physical behaviours
in free-living environments.

Multimodal sensing approaches often rely on traditional shallow models,
like Random Forests or Support Vector Machines, operating on features ex-
tracted from each sensor separately [66]. Subsequently, there are two strate-
gies to perform sensor fusion: Feature Concatenation ([67], [68]) that pro-
duces a single feature vector merging all the features extracted upstream; and
Ensemble Classifiers ([69]) where classifiers are trained in single modalities
and their predictions merged at the final step.

A significant challenge arises when attempting to incorporate information
from sensor types are different in nature (i.e. an accelerometer, an ECG, and
a phone camera). Due to the inherent differences in sampling rates and data
distributions or shapes, the aforementioned approaches struggle to merge
these diverse inputs and produce meaningful representations. An important
insight here is to combine and find patterns regarding the latent cross-sensor
interactions that cannot be discovered in isolation or ensembles. This is
achieved with shared or merged layers in deep neural networks that can
model different sensor timeseries and extra participant metadata in a joint
latent space (see Fig. 4).

5. Conclusion

Wearable devices and smartphones allow for truly ubiquitous and con-
tinuous tracking of physical behaviours. Here we introduced established and

7https://allofus.nih.gov/
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emerging modelling methods for mobile sensing data and discussed the im-
pact that the application of AI will have in the field. These methods will
facilitate the collection of large-scale data with unprecedented granularity
which, in turn, will have important implications for industrial and academic
purposes. Given the nature of the data collected, it is paramount that these
practices meet appropriate privacy controls and that they are regulated ac-
cordingly. As the technology continues to develop, this will require adequate
management of the availability of data for researchers to conduct studies
in the public interest, while protecting personal privacy and preventing the
misuse of sensitive data.
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dowell, Physical activity in the United States measured by accelerom-
eter, Medicine and Science in Sports and Exercise 40 (2008) 181–188.
doi:10.1249/mss.0b013e31815a51b3.

[41] E. de Leeuw, N. Borgers, A. Smits, Pretesting Questionnaires for
Children and Adolescents, in: Methods for Testing and Evalu-
ating Survey Questionnaires, John Wiley & Sons, Inc., Hoboken,
NJ, USA, ????, pp. 409–429. URL: http://doi.wiley.com/10.1002/
0471654728.ch20. doi:10.1002/0471654728.ch20.

[42] J. F. Sallis, B. E. Saelens, Assessment of physical activity by self-report:
Status, limitations, and future directions, Research Quarterly for Exer-
cise and Sport 71 (2000) 1–14. doi:10.1080/02701367.2000.11082780.

[43] D. R. Bassett, H. R. Wyatt, H. Thompson, J. C. Peters, J. O. Hill,
Pedometer-measured physical activity and health behaviors in U.S.
adults, Medicine and Science in Sports and Exercise 42 (2010) 1819–
1825. doi:10.1249/MSS.0b013e3181dc2e54.

[44] K. Corder, S. Brage, U. Ekelund, Accelerometers and pedome-
ters: Methodology and clinical application, 2007. doi:10.1097/MCO.
0b013e328285d883.

[45] M. D. Schmidt, L. C. Blizzard, A. J. Venn, J. A. Cochrane, T. Dwyer,
Practical considerations when using pedometers to assess physical ac-
tivity in population studies: Lessons from the burnie take heart study,
Research Quarterly for Exercise and Sport 78 (2007) 162–170. doi:10.
1080/02701367.2007.10599413.

23

http://dx.doi.org/10.1249/mss.0b013e31815a51b3
http://doi.wiley.com/10.1002/0471654728.ch20
http://doi.wiley.com/10.1002/0471654728.ch20
http://dx.doi.org/10.1002/0471654728.ch20
http://dx.doi.org/10.1080/02701367.2000.11082780
http://dx.doi.org/10.1249/MSS.0b013e3181dc2e54
http://dx.doi.org/10.1097/MCO.0b013e328285d883
http://dx.doi.org/10.1097/MCO.0b013e328285d883
http://dx.doi.org/10.1080/02701367.2007.10599413
http://dx.doi.org/10.1080/02701367.2007.10599413


[46] A. S. Buchman, P. A. Boyle, L. Yu, R. C. Shah, R. S. Wilson, D. A.
Bennett, Total daily physical activity and the risk of AD and cognitive
decline in older adults, Neurology 78 (2012) 1323–1329. doi:10.1212/
WNL.0b013e3182535d35.

[47] W. Guo, T. J. Key, G. K. Reeves, Accelerometer compared with ques-
tionnaire measures of physical activity in relation to body size and com-
position: A large cross-sectional analysis of UK Biobank, BMJ Open 9
(2019). doi:10.1136/bmjopen-2018-024206.

[48] M. Willetts, S. Hollowell, L. Aslett, C. Holmes, A. Doherty, Statistical
machine learning of sleep and physical activity phenotypes from sensor
data in 96,220 UK Biobank participants, Scientific Reports 8 (2018).
doi:10.1038/s41598-018-26174-1.

[49] D. C. Mohr, M. Zhang, S. M. Schueller, Personal sensing: understanding
mental health using ubiquitous sensors and machine learning, Annual
review of clinical psychology 13 (2017) 23–47.

[50] V. S. Conn, A. R. Hafdahl, S. A. Brown, L. M. Brown, Meta-analysis
of patient education interventions to increase physical activity among
chronically ill adults, 2008. doi:10.1016/j.pec.2007.10.004.

[51] M. McCarthy, M. Grey, Motion sensor use for physical activ-
ity data: Methodological considerations, 2015. doi:10.1097/NNR.
0000000000000098.

[52] S. J. Strath, L. A. Kaminsky, B. E. Ainsworth, U. Ekelund, P. S. Freed-
son, R. A. Gary, C. R. Richardson, D. T. Smith, A. M. Swartz, Guide to
the assessment of physical activity: Clinical and research applications:
A scientific statement from the American Heart association, Circulation
128 (2013) 2259–2279. doi:10.1161/01.cir.0000435708.67487.da.

[53] A. Doherty, D. Jackson, N. Hammerla, T. Plötz, P. Olivier, M. H.
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