Security Efficiency Analysis of a Biometric
Fuzzy Extractor for Iris Templates

F. Herndndez Alvarez and L. Hernandez Encinas

Department of Information Processing and Coding
Applied Physics Institute, CSIC
C/ Serrano 144, 28006-Madrid, Spain
{fernando.hernandez, luis}@iec.csic.es

Abstract. A Biometric fuzzy extractor scheme for iris templates was
recently presented in [3]. This fuzzy extractor binds a cryptographic key
with the iris template of a user, allowing to recover such cryptographic
key by authenticating the user by means of a new iris template from her.
In this work, an analysis of the security efficiency of this fuzzy extractor
is carried out by means of a study about the behavior of the scheme
with cryptographic keys of different bitlengths: 64, 128, 192, and 256.
The different sizes of the keys permit to analyze the variability of the
intra- and inter-user in the iris templates.
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1 Introduction

One of the most important uses of Biometrics nowadays is to identify and authen-
ticate individuals by means of one or several of their physiological or behavioral
features, like fingerprint, voice, hand geometry, iris, retina, signature, etc.

In general, to validate the identity of a user, biometric procedures consists
into two phases: The enrollment and the verification phase. In the enrollment
phase, the biometric templates are processed and stored in the database. In
the verification phase, a new biometric template (called the query template) is
extracted from the user ant it is compared with the data already stored. If the
comparison matches, the user identity is validated.

The main properties which permit to consider biometric data as good candi-
dates for security applications are the following: They are unique to each user,
they are hard to forge, and they have a good source of entropy. Nevertheless,
biometric templates present some drawbacks. Among them the most important
are the intra- and inter-user variability.

The intra-user variability measures the differences of two biometric templates
extracted from the same user, while the inter-user variability measures the simi-
larities between two biometric templates extracted from different users. These
two measurements can cause not to recognize a known user or to recognize an



attacker as a known user. The ratios used to measure these two subjects are,
respectively: False Rejection Rate (FRR) and False Acceptance Ratio (FAR).

One desirable characteristic that the biometric templates should have is to be
revoked or canceled if necessary, as PIN and passwords do. Several approaches,
known as biometric template protection schemes ([6]), have been proposed to
secure biometric templates and they can be broadly classified into two categories,
namely, feature transformation approach and biometric cryptosystem.

In the feature transformation approach a transformation function is applied
to the biometric template before storing it in the database. The function used
can be invertible or non-invertible. On the other hand, biometric cryptosystems
([10]) need to generate public information, known as helper data, about the
biometric template in order to perform the verification phase. These systems
can be classified into three models, key release, key binding and key generation.

In a key binding cryptosystem, the biometric template is secured by binding
it with a key in a cryptographic framework. The key and the biometric template
are stored in the database as a single entity which represents the helper data.
This system has the advantage that it is tolerant to intra-user variability, but this
tolerance is determined by the error correcting capability. The limitation of this
system is that the matching has to be done using error correction schemes and
therefore it is necessary the use of sophisticated matchers. Another limitation is
the way the helper data are designed. Several template protection technologies
can be considered as key binding approaches, for example fuzzy commitment
scheme ([5]), fuzzy vault scheme ([4]), etc.

The fuzzy vault scheme is a cryptographic framework that binds a biometric
template with a secret key to build a secure sketch of this template. This sketch
is the data which are stored because it is computationally hard to retrieve either
the template or the key without any knowledge of the user’s biometric data.

In this work, an analysis of the security efficiency of the fuzzy extractor
scheme for iris templates proposed in [3] is carried out. This is done by means
of a complete study about the behavior of the scheme with cryptographic keys
of different bitlengths: 64, 128, 192, and 256. The different sizes of the keys will
permit to analyze the intra- and inter-user variability of the iris templates.

The rest of this work is organized as follows. In Section 2 a short review of
the fuzzy extractor scheme proposed in [3] is presented. The security efficiency
analysis of that scheme is carried out in Section 3; and finally, the conclusions
of this work are presented in Section 4.

2 Review of a biometric fuzzy extractor for iris templates

In [3] a biometric fuzzy extractor scheme for iris templates was presented. It is
based on fuzzy extractor schemes ([2]) and on fuzzy vault schemes ([4]).

As it is well-known, fuzzy extractor’s basic aim, according to the definitions
of Dodis et al. ([2]), is to authenticate a user using her own biometric template,
B, as the key. To do so, it makes use of another process known as secure sketch
to allow precise reconstruction of a noisy input. The correctness of the whole



procedure depends on the Hamming distance between 8, used in the enrollment
phase, and the query template B, used in the verification phase. Moreover, a
fuzzy vault scheme binds a biometric template, B, with a secret (or a key), S,
to build a secure sketch of B itself.

Among the papers related to key binding, the scheme whose efficiency is being
measured in this work ([3]) has some similarities with the schemes proposed by
Lee et al. ([7]) and Tong et al. ([9]). The main differences among them are that
[7] generates the IrisCode from a set of iris features by clustering, technique that
is not used in our scheme, and [9] uses fingerprints instead of iris templates.

Therefore, some stages have been adjusted to provide a higher level of se-
curity and making them fit with iris templates instead of fingerprints. Another
improvement that has been done is that we implement in Java the whole scheme
to present some conclusions and useful results.

The two phases associated to this scheme are the following:

2.1 Enrollment phase

In the enrollment phase, from the user’s iris template, B, and a key/secret, S,
chosen by herself, the scheme produces two sets, H and A, as public helper data,
which are stored in the database. The different stages of this phase are:

1. The key S is represented in a base (10, 16, 256, 512, etc.). The digits of S in
that base are considered as the coefficients of a polynomial p(z) of degree d.
That is, if S = {s¢,51,...,54}, then p(z) = 5o + 517 + 5222 + ... + sqz.

2. Next, n random integer numbers, z; € Z, are generated in order to compute
n pairs of points, (z;,y;), verifying p(z), i.e., y; = p(x;), 0 <i <n —1. The
parameter n determines the level of fuzziness of the system, so n must be
much greater than d, (n>> d).

3. The points are encoded by using a Reed-Solomon code into n codewords
determining a set C' = {cp,c1,...,cn—1}. This codification is done to avoid
somehow the intra-user variability thanks to the error-correction properties
of the Reed-Solomon codes.

4. A hash function, b, is applied to the elements of C' to obtain a new set
H = {b(co), b(c1),...,blcn-1)}.

5. The iris template of each user is divided into n parts, as many as points were
calculated: B =bg || b1 | --. || bn—1-

6. Then, from the values b; and ¢;, 0 < i < n — 1, the elements of the set
A ={60,01,...,0n_1} are calculated, where §, = ¢; —b;,0 <i<n—1.

Finally, once the helper data (H and A) are determined, they are stored in
the database. Moreover, the control parameters are made public.
2.2 Verification phase

The first task of this phase is to obtain the control parameters previously stored
in the enrollment phase. Then, the following stages are performed:



1. The query iris template, 9B, is divided into n parts, as it was done in the
enrollment phase: B =bg || by || ... || bu_1.

2. Next, from the sets A and B, a new set is computed: C' = {&,¢1,...,En_1},
where ¢; = §; + Bi,.
Note that each value ¢; is supposed to be similar to the corresponding value
¢; € C, but with some differences due to the intra-user variability.

3. The same hash function, b, is applied to the elements of the C, and the result
is compared with the elements of the set H.
In this comparison, at least d+1 coincidences between H and h(C') are neces-
sary to continue with the process, due to the fact that Lagrange interpolation
method is used to rebuild the polynomial p(z) of degree d. This comparison
shows the importance of the parameter n, because it will determine the rate
of errors admitted in the system due to the intra-user variability.

4. The coincident values are decoded by means of the Reed-Solomon code and
d + 1 points, (x;,y;), at least, are obtained.

5. By using that points and the Lagrange interpolation method, p(x) is rebuilt.

6. Finally, from the coefficients of p(x), the secret S is determined and retrieved
to the user.

3 Security efficiency analysis

In order to determine the security efficiency of the fuzzy extractor scheme pre-
sented above, the False Rejection Rate and the False Acceptance Rate of this
biometric system will be computed by using different sizes of the secret S.

A fix value of 192 bits for S was considered in [3]. In the present analysis
different bitlengths of S, denoted by |S|, will be used to make a comparison
between all of them and to determine the security efficiency of the system. The
different bitlengths selected are 64, 128, 192, and 256 because they are the stan-
dard sizes for cryptographic symmetric keys used nowadays ([8]). This analysis
is relevant because if a base to represent the secret .S is fixed, the value of the
degree d of p(z) depends on the size (bitlength) of S, |S|.

In this way, when the comparison is carried out in the verification phase, as
the value of d is different, a different number of coincidences between H and
h(C) are necessary to validate the user’s iris template. This fact can be seen as
an advantage but at the same time as a drawback, because it can be “easier” to
recognize a known user but it does the same to a possible attacker.

The results of this analysis have been obtained by using the same 25 users
as those ones used in [3]. These data have been taken from the CASIA database
of iris images. Each one of these users have 7 different images of their irises and
the corresponding templates of all these 25-7 = 175 images have been extracted
by using the algorithm designed by Diez Laiz ([1]).

The parameters used in this analysis are the same (or similar for the Reed-
Solomon codes) than those used in [3] in order to do a trustworthy comparison.
The only different parameter is the degree of p(z), d, as it depends on the
bitlength of S. In fact, the values considered are: The base used for S is 512; the
hash function is h = SHA-512; and the fuzziness parameter is n = 384.



The values for d as function of the bitlength of S are shown in Table 1.

Table 1. Values of d depending on the bitlength of S.

[ bitlength of S: [S] [[ 64 [ 128 [ 192[ 256 |
[ Valueofd [[8] 14 [21] 28]

3.1 Intra-user variability: FRR

In this analysis each one of the 7 templates of the 25 users is compared with
the rest of the templates of the same user. In this way, it is analyzed whether
the user is recognized or not, and the False Rejection Rate is determined. The
number of comparisons done for each user is (;) =21.

Tables 2, 3, 4, and 5 shows the comparisons obtained with d+ 1 coincidences,
at least, for each of the 25 users compared to herself, and for each value of d.

Table 2. Number of comparisons with, at least, d + 1 = 8 coincidences for |S| = 64.

User 1| User 2 | User 3 | User 4 | User 5 | User 6 | User 7 | User 8 | User 9
>d=7 21 21 21 21 21 21 21 15 21
User 10|User 11|User 12|User 13|User 14|User 15|User 16|User 17|User 18
>d=17 21 21 21 20 21 21 21 21 21
User 19|User 20|User 21|User 22|User 23|User 24|User 25
>d="7 21 21 21 21 21 21 21

Table 3. Number of comparisons with, at least, d+ 1 = 15 coincidences for |S| = 128.

User 1 | User 2 | User 3 | User 4 | User 5 | User 6 | User 7 | User 8 | User 9
>d=14 21 21 21 21 21 20 21 15 21
User 10|User 11|User 12|User 13|User 14|User 15|User 16|User 17{User 18
>d=14 21 19 21 20 20 21 21 21 21
User 19|User 20|User 21|User 22|User 23|User 24|User 25
>d=14 20 20 21 21 21 19 21

Table 4. Number of comparisons with, at least, d + 1 = 22 coincidences for |S| = 192.

User 1 | User 2 | User 3 | User 4 | User 5 | User 6 | User 7 | User 8 | User 9

>d=21 21 20 21 20 21 19 19 14 18
User 10|User 11|User 12|User 13|User 14|User 15|User 16|User 17{User 18
>d=21 21 13 19 15 19 20 18 21 21

User 19|User 20|User 21|User 22|User 23|User 24|User 25
>d=21 16 15 20 21 18 17 20




Table 5. Number of comparisons with, at least, d+ 1 = 29 coincidences for |S| = 256.

User 1| User 2 | User 3 | User 4 | User 5 | User 6 | User 7 | User 8 | User 9
>d =28 21 17 21 19 16 17 15 10 17
User 10|User 11|User 12|User 13|User 14|User 15|User 16|User 17{User 18
>d =28 13 11 12 11 15 18 16 21 15
User 19|User 20|User 21|User 22|User 23|User 24|User 25
>d =28 13 13 13 19 15 15 18

Considering that the total number of comparisons is 21 - 25 = 525, Table 6
shows the values of Genuine Acceptance Rate (GAR) and False Rejection Rate
(FRR =1 — GAR) for each value of |S|.

Table 6. Values of GAR and FRR for each value of |S|.

[ bitlength of S: [S][[ 64 | 128 [ 192 | 256 |
GAR 98.7% | 97.3% | 88.9% | 74.5%
FRR 1.3% | 2.7% [11.1% | 25.5%

3.2 Inter-user variability: FAR

In this analysis, the templates of a given user are compared with all the templates
of the rest of users. In this way a measure of the similarities among them is
obtained.

This analysis is divided in two parts. In both parts of the analysis instead
of using the 7 templates of each user, only one template is randomly chosen. In
the first part, the templates considered are compared with the whole database
(Templates vs. Database), and in the second part, the comparison is done only
between the 25 chosen templates themselves (Templates vs. Templates). Then,
two values for the False Acceptance Rate are obtained, FAR; and FAR>, re-
spectively.

Analysis of Templates vs. Database

In the first part of this analysis the 25 chosen templates are compared with
the whole database formed by the 24 other users. The number of coincidences
obtained for each value of bitlength are shown in Tables 7, 8, and 9 (for the
value |S| = 256, there are only 3 coincidences, in the users 15, 18 and 22, so the
table for this case is not shown).

Finally, taking into account all the values obtained, the False Acceptance
Rate, FAR;, for each bitlength, |.S|, was computed, as it is shown in Table 10.

Analysis of Templates vs. Templates

In this part, the comparison is done only between the 25 chosen templates
themselves, so in total there are 300 comparisons.

Table 11 shows the number of comparisons with, at least, d 4+ 1 coincidences
and the corresponding value for the False Acceptance Rate, FAR,.



Table 7. Number of comparisons with, at least, d + 1 = 8 coincidences for |S| = 64.

Tpl. 1| Tpl. 2| Tpl. 3| Tpl. 4 | Tpl. 5| Tpl. 6 | Tpl. 7| Tpl. 8| Tpl. 9
>d="T7| 120 144 107 57 109 118 150 11 90
Tpl. 10|Tpl. 11|Tpl. 12|Tpl. 13|Tpl. 14|Tpl. 15/Tpl. 16{Tpl. 17|Tpl. 18
>d="7| 102 88 110 134 115 143 159 146 136
Tpl. 19|Tpl. 20|Tpl. 21|Tpl. 22| Tpl. 23| Tpl. 24|Tpl. 25
>d="7| 90 104 121 107 147 130 109

Table 8. Number of comparisons with, at least, d+ 1 = 15 coincidences for |S| = 128.

Tpl. 1| Tpl. 2| Tpl. 3| Tpl. 4| Tpl. 5| Tpl. 6 | Tpl. 7| Tpl. 8| Tpl. 9

>d=14| 18 44 41 3 11 17 42 0 5
Tpl. 10{Tpl. 11|{Tpl. 12{Tpl. 13|Tpl. 14| Tpl. 15| Tpl. 16|Tpl. 17|Tpl. 18
>d=14| 18 3 25 35 35 52 65 55 59

Tpl. 19(Tpl. 20| Tpl. 21| Tpl. 22|Tpl. 23|Tpl. 24|Tpl. 25
>d=14| 13 16 10 37 37 33 31

Table 9. Number of comparisons with, at least, d + 1 = 22 coincidences for |S| = 192.

Tpl. 1| Tpl. 2| Tpl. 3| Tpl. 4| Tpl. 5| Tpl. 6 | Tpl. 7| Tpl. 8| Tpl. 9
>d=21 0 2 2 0 0 2 4 0 0
Tpl. 10{Tpl. 11|{Tpl. 12{Tpl. 13|Tpl. 14|Tpl. 15|Tpl. 16|Tpl. 17|Tpl. 18
>d=21 1 0 1 2 2 6 7 4 8
Tpl. 19(Tpl. 20{Tpl. 21|Tpl. 22{Tpl. 23|Tpl. 24|Tpl. 25
>d=21 0 0 0 9 1 2 4

Table 10. Values of FAR; for each bitlength of S.

[ bitlength of S| 64 | 128 | 192 | 256 |
| FAR,  [[67.78% [ 16.79% | 1.35% | 0.07% |

Table 11. Values of FAR> for each bitlength of S.

| bitlengthof S [ 64 [ 128 [ 192 [256]
> d coincidences 179 29 2 0
FAR, 59.67% | 9.67% | 0.67% | 0%

4 Conclusions and Future work

In this work, an analysis of the security efficiency of a fuzzy extractor scheme
for iris templates is presented. The main conclusions are the following:

1. Referring to the global efficiency of the scheme, it can be stated that the lower
the bitlength of S is, the easier to recognize a known user. Therefore the lower
the percentage of False Rejection Rate is, which is a good improvement.



2.

3.

Nevertheless, at the same time, the lower the bitlength of S is, the easier to
recognize an attacker as a known user, as the values of FAR show.

As the False Acceptance Rate is a security relevant measure while the False
Rejection Rate is more a comfort criteria, a commitment between these two
values has to be taken, but giving more importance always to the FAR.

. Thus, from the four different values of |S| analyzed, the best one in relation

to the intra-user variability is |S| = 256 (FAR; = 0.07% and FAR,; =
0%); whereas the best value in relation to the intra-user variability is |.S| =
64 (FRR = 1.3%). So, it cannot be stated in a definitive way what value
of |S| is the best. That value will depend on the security requirements of

the application where this scheme will be used. Anyway, the most balanced
solution from the values of FAR and FRR could be |S| = 192.

From the previous conclusions, it would be of interest to improve the im-

plementation of the scheme in order to perform the experiments faster and to
use bigger values for |S|, for example, 384, 512, etc. Moreover, it is important
to improve the extraction algorithms for iris templates in order to reduce the
inter-variability and increase the intra-variability of users.
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